

TEST REPORT

Applicant:	Yuneec Technology Co.,Li	mited
Address:	Unit 2301,23/F,9 Chong Yi Tong,Kowloon,Hong kon	ip Street,Kwun g.
Equipment Type:	Smart Remote Controller	
Model Name:	T-One	
Brand Name:	YUNEEC	
FCC ID:	2ACS5-TONE	
Test Standard:	FCC 47 CFR Part 2.1093 (refer section 3.1)	
Test Date:	May 26, 2022 ~ May 28, 2	022
Date of Issue:	Jun. 28, 2022	
ISSUED BY: Shenzhen BALUN Technology	BALUN Co. Ltd.	
Tested by: Xu Rui	Checked by: Zong Liyao	Approved by: Wei Yanquan
		(Chief Engineer)

Xu Rui

Liyano. Zong

àb.

	R	evision History
Version	Issue Date	Revisions Content
<u>Rev. 01</u>	<u>Jun. 28, 2022</u>	Initial Issue

TABLE OF CONTENTS

1	GENER	AL INFORMATION	4
	1.1	Identification of the Testing Laboratory	4
	1.2	Identification of the Responsible Testing Location	4
2	PRODU	ICT INFORMATION	5
	2.1	Applicant Information	5
	2.2	Manufacturer Information	5
	2.3	Factory Information	5
	2.4	General Description for Equipment under Test (EUT)	5
	2.5	Ancillary Equipment	5
	2.6	Technical Information	6
3	SUMMA	ARY OF TEST RESULT	7
	3.1	Test Standards	7
	3.2	Device Category and SAR Limit	8
	3.3	Test Result Summary	9
	3.4	Test Uncertainty1	0
4	MEASU	REMENT SYSTEM 1	12
	4.1	Definition of Specific Absorption Rate (SAR)1	2
	4.2	SATIMO SAR System1	3
5	MEASU	REMENT PROCEDURE2	22
	5.1	Antenna Port Test Requirement2	22
	5.2	Purpose of System Check2	22
	5.3	System Check Setup2	22
6	EUT TE	ST POSITION CONFIGURATUONS2	23
	6.1	Body Exposure Condition2	23
	6.2	Extremity Exposure Condition2	23

Report No.: BL-EC2220625-701

7	SAR M	FASUREMENT PROCEDURES	24
'	7 1	SAR Maasuramant Process Diagram	27 21
	7.1	SAR Measurement Process Diagram	. 24
	7.2	SAR Scan General Requirements	. 25
	7.3	SAR Measurement Procedure	.26
	7.4	Area & Zoom Scan Procedures	.26
8	CONDL	JCTED RF OUPUT POWER	. 27
	8.1	WIFI	. 27
9	EUT AN	ITENNA LOCATION SKETCH	. 30
	9.1	SAR Test Exclusion Consideration Table	. 31
10) TEST R	ESULT	. 33
	10.1	2.4G ISM Band Body SAR	. 33
	10.2	2.4G ISM Band Limbs SAR	. 33
	10.3	WIFI 2.4G Body SAR	. 34
	10.4	WIFI 2.4G Limbs SAR	. 34
	10.5	5.8G ISM Band Body SAR	. 35
	10.6	5.8G ISM Band Limbs SAR	. 35
	10.7	WIFI 5G Body SAR	. 36
	10.8	WIFI 5G Limbs SAR	. 36
11	SAR Me	easurement Variability	. 37
12	2 SIMULT	TANEOUS TRANSMISSION	. 38
	12.1	Simultaneous Transmission Mode Consider	. 38
	12.2	Sum SAR of Simultaneous Transmission	. 38
13	B TEST E	QUIPMENTS LIST	. 40
A	NNEX A	SIMULATING LIQUID VERIFICATION RESULT	. 41
A	NNEX B	SYSTEM CHECK RESULT	. 42
A	NEX C	TEST DATA	. 51
A	NNEX D	EUT EXTERNAL PHOTOS	. 59
 Al		SAR TEST SETUP PHOTOS	59
Δ1		CALIBRATION REPORT	50
7 M			

1 GENERAL INFORMATION

1.1 Identification of the Testing Laboratory

Company Name	Shenzhen BALUN Technology Co., Ltd.
Address	Block B, 1/F, Baisha Science and Technology Park, Shahe West
	Road, Nanshan District, ShenZhen, GuangDong Province, China
Phone Number	+86 755 6685 0100

1.2 Identification of the Responsible Testing Location

Test Location	Shenzhen BALUN Technology Co., Ltd.
Address	Block B, 1/F, Baisha Science and Technology Park, Shahe West
	Road, Nanshan District, ShenZhen, GuangDong Province, China
Accreditation	The laboratory is a testing organization accredited by FCC as a
Certificate	accredited testing laboratory. The designation number is CN1196.
	All measurement facilities used to collect the measurement data are
Description	located at Block B, 1/F, Baisha Science and Technology Park, Shahe
Description	West Road, Nanshan District, ShenZhen, GuangDong Province,
	China

2 **PRODUCT INFORMATION**

2.1 Applicant Information

Applicant	Yuneec Technology Co.,Limited
Address	Unit 2301,23/F,9 Chong Yip Street,Kwun Tong,Kowloon, Hong kong.

2.2 Manufacturer Information

Manufacturer	Yuneec International (China) Co.,Ltd
Address	No.388 East Zhengwei Road, Jinxi Town, Kunshan, Jiangsu 215324,
Address	China

2.3 Factory Information

Factory	Yuneec International (China) Co.,Ltd
Addroso	No.388 East Zhengwei Road, Jinxi Town, Kunshan, Jiangsu 215324,
Address	China

2.4 General Description for Equipment under Test (EUT)

EUT Name	Smart Remote Controller
Model Name Under Test	T-One
Series Model Name	N/A
Description of Model	
Name Differentiation	
Serial Number	Tone20220322
Hardware Version	N/A
Software Version	N/A
Dimensions (Approx.)	N/A
Weight (Approx.)	N/A

2.5 Ancillary Equipment

	Battery	
	Brand Name	N/A
	Model No.	YP-4A
Ancillary Equipment 1	Serial No.	N/A
	Capacitance	9600mAh
	Rated Voltage	7.38V
	Limited Voltage	N/A
	Manufacturer	Yuneec International (China) Co.,Ltd

2.6 Technical Information

	Bluetooth (BR+EDR+BLE)
Network and Wireless connectivity	WIFI 802.11a, 802.11b, 802.11g, 802.11n and 802.11ac
	U-NII-1/2A/2C/3
	2.4G ISM Band (OFDM modulation)
	5.8G ISM Band (OFDM modulation)

The requirement for the following technical information of the EUT was tested in this report:

Operating Mode	2.4G WLAN; 5G WLAN;2.4G ISM; 5.8G ISM; Bluetooth				
	802.11b/g	2400 ~ 2483.5 MHz			
	802.11n(HT20)	2400 ~ 2483.5 MHz			
		5150 ~ 5350 MHz			
	802.11a	5470 ~ 5725 MHz			
		5725 ~ 5850 MHz			
	802 11	5150 ~ 5350 MHz			
Frequency Range	002.11	5470 ~ 5725 MHz			
Frequency Kange		5725 ~ 5850 MHz			
	802.11 2c()/HT200/HT400/HT80)	5150 ~ 5350 MHz			
		5470 ~ 5725 MHz			
		5725 ~ 5850 MHz			
	2.4G ISM Band	2400 ~ 2483.5 MHz			
	5.8G ISM Band	5725 ~ 5850 MHz			
	Bluetooth	2400 ~ 2483.5 MHz			
	WLAN	PCB			
Antenna Type	Bluetooth	PCB			
	2.4G & 5.8G ISM	Dipole			
Hotspot Function	N/A				
Exposure Category	General Population/Uncontrolled exposure				
EUT Stage	Portable Device				

3 SUMMARY OF TEST RESULT

3.1 Test Standards

No.	Identity	Document Title
1	47 CFR Part	Padiafraguanay radiation avagura avaluation; partable devices
1	2.1093	Radiofrequency radiation exposure evaluation, portable devices
2	ANSI/IEEE Std.	IEEE Standard for Safety Levels with Respect to Human Exposure
2	C95.1-1999	to Radio Frequency Electromagnetic Fields, 3 kHz to 300 GHz
		Recommended Practice for Determining the Peak Spatial-Average
3 IEEE Std. 1528-		Specific Absorption Rate (SAR) in the Human Head from Wireless
	2013	Communications Devices: Measurement Techniques
4	FCC KDB 447498	RF Exposure Procedures and Equipment Authorization Policies
4	D04	for Mobile and Portable Devices
-	FCC KDB 865664	
5	D01 v01r04	SAR Measurement 100 MHZ to 6 GHZ
<u> </u>	FCC KDB 865664	
0	D02 v01r02	RF Exposure Reporting
7	KDB 248227 D01	SAD Cuidence for IEEE 202 11 (M/ Ei) Tronomittore
1	v02r02	SAR Guidarice for IEEE 802.11 (WI-FI) Transmitters

This device belongs to portable device category because its radiating structure is allowed to be used within 20 centimeters of the body of the user. Limit for General Population/Uncontrolled exposure should be applied for this device, it is 1.6 W/kg as averaged over any 1 gram of tissue.

	SAR Value (W/Kg)						
Body Position	General Population/	Occupational/					
	Uncontrolled Exposure	Controlled Exposure					
Whole-Body SAR	0.09	0.4					
(averaged over the entire body)	0.08	0.4					
Partial-Body SAR	1 60	0.0					
(averaged over any 1 gram of tissue)	1.80	8.0					
SAR for hands, wrists, feet and							
ankles	4.0	20.0					
(averaged over any 10 grams of tissue)							

Tahle	of	Eyn	001	re l	im	ite
Table	; UI	EXP	osu	IEL	. 11 1 1	ILS.

llGroup

NOTE:

General Population/Uncontrolled: Locations where there is the exposure of individuals who have no knowledge or control of their exposure. General population/uncontrolled exposure limits are applicable to situations in which the general public may be exposed or in which persons who are exposed as a consequence of their employment may not be made fully aware of the potential for exposure or cannot exercise control over their exposure. Members of the general public would come under this category when exposure is not employment-related; for example, in the case of a wireless transmitter that exposes persons in its vicinity.

Occupational/Controlled: Locations where there is exposure that may be incurred by persons who are aware of the potential for exposure, In general, occupational/controlled exposure limits are applicable to situations in which persons are exposed as a consequence of their employment, who have been made fully aware of the potential for exposure and can exercise control over their exposure. This exposure category is also applicable when the exposure is of a transient nature due to incidental passage through a location where the exposure levels may be higher than the general population/uncontrolled limits, but the exposed person is fully aware of the potential for exposure and can exercise control over his or her exposure by leaving the area or by some other appropriate means.

3.3 Test Result Summary

3.3.1 Highest SAR

Frequency Band		Maximum Report SAR(W/kg)	Maximum Report SAR(W/kg)	
		1 g	10 g	
		Body	Limbs	
	2.4G ISM Band	0.125	0.097	
	2.4G WLAN	0.008	0.012	
VVIEI	5.8G ISM Band	0.067	0.081	
	5G WLAN	0.079	0.032	
Limits	s (W/kg)	1.6	4.0	
Test	Verdict	Pass		

Note:The worst cae for SimultaneousTransmission Maximum Report SAR(W/kg) Body is 0.204(1g) 2.4G ISM Band +5G WLAN Limbs is 0.129(10g) 2.4G ISM Band +5G WLAN

3.4 Test Uncertainty

3.4.1 Measurement uncertainly evaluation for SAR test

The following measurement uncertainty levels have been estimated for tests performed on the EUT as specified in IEEE 1528 This uncertainty represents an expanded uncertainty expressed at approximately the 95% confidence level using a coverage factor of k=2.

Uncertainty Component		Prob. Dist.	Div.	Ci (1g)	Ci (10 g)	1g Ui (+-%)	10 g Ui (+-%)	Vi v _{eff}
Measurement System								
Probe calibration	5.8	N	1	1	1	5.80	5.80	∞
Axial Isotropy	3.5	R	$\sqrt{3}$	0.7	0.7	1.41	1.41	∞
Hemispherical Isotropy	5.9	R	$\sqrt{3}$	0.7	0.7	2.38	2.38	∞
Boundary effect	1.0	R	$\sqrt{3}$	1	1	0.58	0.58	∞
Linearity	4.7	R	$\sqrt{3}$	1	1	2.71	2.71	∞
System detection limits	1.0	R	$\sqrt{3}$	1	1	0.58	0.58	∞
Modulation response	3.0	R	$\sqrt{3}$	1	1	1.73	1.73	∞
Readout Electronics	0.5	N	1	1	1	0.50	0.50	∞
Response Time	0.0	R	$\sqrt{3}$	1	1	0.00	0.00	∞
Integration Time	1.4	R	$\sqrt{3}$	1	1	0.81	0.81	∞
RF ambient Conditions - Noise	3.0	R	$\sqrt{3}$	1	1	1.73	1.73	∞
RF ambient Conditions - Reflections	3.0	R	$\sqrt{3}$	1	1	1.73	1.73	∞
Probe positioner Mechanical Tolerance	1.4	R	$\sqrt{3}$	1	1	0.81	0.81	∞
Probe positioning with respect to Phantom Shell	1.4	R	$\sqrt{3}$	1	1	0.81	0.81	∞
Extrapolation, interpolation and integration Algoritms for	2.3	R	$\sqrt{3}$	1	1	1.33	1.33	∞
Max. SAR Evaluation								
	0.0	N				0.00	0.00	
	2.6	N	1	1	1	2.60	2.60	N-1
	3.0	N	1	1	1	3.00	3.00	N-1
Output power Variation - SAR drift measurement	5.0	R	$\sqrt{3}$	1	1	2.89	2.89	∞
SAR scaling	2.0	R	√3	1	1	1.15	1.15	∞
Phantom and Tissue Parameters	4.0		5			0.04	0.04	
Phantom Uncertainty (Shape and thickness tolerances)	4.0	R	√3	1	1	2.31	2.31	∞
conductivity)	2.0	Ν	1	1	0.84	2.00	1.68	∞
Liquid conductivity (temperature uncertainty)	2.5	R	$\sqrt{3}$	0.78	0.71	1.13	1.03	8
Liquid conductivity - measurement uncertainty	5.0	Ν	1	0.78	0.71	3.90	3.55	М
Liquid permittivity (temperature uncertainty)	2.5	R	$\sqrt{3}$	0.23	0.26	0.33	0.38	∞
Liquid permittivity - measurement uncertainty	5.0	Ν	1	0.23	0.26	1.15	1.30	М
Combined Standard Uncertainty	-	RSS		-		10.72	10.56	-

Expanded Uncertainty		k		21 45	01 11	
(95% Confidence interval)	-	ĸ	-	21.45	21.11	-

3.4.2 Measurement uncertainly evaluation for system check

This measurement uncertainty budget is suggested by IEEE 1528. The break down of the individual uncertainties is as follows:

Uncertainty Component		Prob.	Div	Ci	Ci	1g Ui	10g Ui	Vi
	(+- %)	Dist.	DIV.	(1g)	(10g)	(+-%)	(+-%)	V1
Measurement System	1			1				
Probe calibration	5.8	Ν	1	1	1	5.80	5.30	∞
Axial Isotropy	3.5	R	$\sqrt{3}$	1	1	2.02	2.02	∞
Hemispherical Isotropy	5.9	R	$\sqrt{3}$	0	0	0.00	0.00	∞
Boundary effect	1.0	R	$\sqrt{3}$	1	1	0.58	0.56	∞
Probe Linearity	4.7	R	$\sqrt{3}$	1	1	2.71	2.71	∞
System detection limits	1.0	R	$\sqrt{3}$	1	1	0.58	0.58	∞
Modulation response	0.0	R	$\sqrt{3}$	1	1	0.00	0.00	8
Readout Electronics	0.5	Ν	1	1	1	0.50	0.50	8
Response Time	0.0	R	$\sqrt{3}$	1	1	0.00	0.00	8
Integration Time	1.4	R	$\sqrt{3}$	0	0	0.00	0.00	8
RF ambient Conditions - Noise	3.0	R	$\sqrt{3}$	1	1	1.73	1.73	8
RF ambient Conditions - Reflections	3.0	R	$\sqrt{3}$	1	1	1.73	1.73	8
Probe positioner Mechanical Tolerance	1.4	R	$\sqrt{3}$	1	1	0.81	0.81	8
Probe positioning with respect to Phantom Shell	1.4	R	$\sqrt{3}$	1	1	0.81	0.81	8
Extrapolation, interpolation and integration Algoritms for	2.2	Б	12	1	1	1 2 2	1 22	~
Max. SAR Evaluation	2.3	ĸ	<i>N</i> 3	I	I	1.55	1.55	
Dipole								
Deviation of experimental dipole	5.5	Ν	1	1	1	5.00	5.00	∞
Dipole axis to liquid distance	2.0	R	$\sqrt{3}$	1	1	1.15	1.15	8
Power drift	0.5	R	$\sqrt{3}$	1	1	0.29	0.29	8
Phantom and Tissue Parameters								
Phantom Uncertainty (Shape and thickness tolerances)	4.0	R	$\sqrt{3}$	1	1	2.31	2.31	8
SAR correction for deviation(in permittivity and	2.0	Ν	1	1	0.84	2 00	1 68	8
conductivity)	2.0		1		0.04	2.00	1.00	
Liquid conductivity (temperature uncertainty)	2.5	R	$\sqrt{3}$	0.78	0.71	1.13	1.02	∞
Liquid conductivity - measurement uncertainty	5.0	Ν	1	0.78	0.71	3.90	3.55	М
Liquid permittivity (temperature uncertainty)	2.5	R	$\sqrt{3}$	0.23	0.26	0.33	0.38	∞
Liquid permittivity - measurement uncertainty	5.0	Ν	1	0.23	0.26	1.15	1.30	М
Combined Standard Uncertainty	-	RSS		-		10.43	10.25	-
Expanded Uncertainty	_	k		_		20.86	20 51	
(95% Confidence interval)	-	Ň		-		20.00	20.01	_

4 MEASUREMENT SYSTEM

4.1 Definition of Specific Absorption Rate (SAR)

SAR is related to the rate at which energy is absorbed per unit mass in an object exposed to a radio field. The SAR distribution in a biological body is complicated and is usually carried out by experimental techniques or numerical modeling. The standard recommends limits for two tiers of groups, occupational/controlled and general population/uncontrolled, based on a person's awareness and ability to exercise control over his or her exposure. In general, occupational / controlled exposure limits are higher than the limits for general population /uncontrolled.

The SAR definition is the time derivative (rate) of the incremental energy (dW) absorbed by (dissipated in) an incremental mass (dm) contained in a volume element (dv) of a given density (ρ). The equation description is as below:

$$SAR = \frac{d}{dt} \left(\frac{dW}{dm} \right) = \frac{d}{dt} \left(\frac{dW}{\rho dv} \right)$$

SAR is expressed in units of Watts per kilogram (W/kg) SAR measurement can be related to the electrical field in the tissue by

$$SAR = \frac{\sigma E^2}{\rho}$$

Where: σ is the conductivity of the tissue,

 ρ is the mass density of the tissue and E is the RMS electrical field strength.

4.2 SATIMO SAR System

4.2.1 SATIMO SAR System Diagram

These measurements were performed with the automated near-field scanning system OPENSAR from SATIMO. The system is based on a high precision robot (working range: 850 mm), which positions the probes with a positional repeatability of better than \pm 0.02 mm. Special E- and H-field probes have been developed for measurements close to material discontinuity, the sensors of which are directly loaded with a Schottky diode and connected via highly resistive lines to the data acquisition unit.

The SAR measurements were conducted with dosimetric probe (manufactured by SATIMO), designed in the classical triangular configuration and optimized for dosimetric evaluation. The probe has been calibrated according to the procedure described in SAR standard with accuracy of better than $\pm 10\%$. The spherical isotropy was evaluated with the procedure described in SAR standard and found to be better than ± 0.25 dB. The phantom used was the SAM Phantom as described in FCC supplement C, IEEE P1528.

4.2.2 Robot

The SATIMO SAR system uses the high precision robots from KUKA. For the 6-axis controller system, the robot controller version (KUKA) from KUKA is used. The KUKA robot series have many features that are important for our application:

- High precision (repeatability ±0.035 mm)
- · High reliability (industrial design)
- · Jerk-free straight movements
- Low ELF interference (the closed metallic construction shields against motor control fields)

4.2.3 E-Field Probe

For the measurements the Specific Dosimetric E-Field Probe SN 39/21 EPGO 359 with following specifications is used

- -- Dynamic range: 0.01-100 W/kg
- Tip Diameter : 2.5 mm
- Lower detection limit : 10 mW/kg
- (repeatability better than +/- 1mm)
- Probe linearity: +/- 0.07 dB
- Calibration range: 300 MHz to 6000 MHz for head & body simulating liquid.

Angle between probe axis (evaluation axis) and surface normal line: less than 30°

E-Field Probe Calibration Process

Probe calibration is realized, in compliance with CENELEC EN 62209-1/-2 and IEEE 1528 std, with CALISAR, Antennessa proprietary calibration system. The calibration is performed with the IEC62209-1/2 annexe technique using reference guide at the five frequencies.

Where :		
Pfw	=	Forward Power
Pbw	=	Backward Power
a and b	=	Waveguide Dimensions
I	=	Skin Depth

Keithley configuration

Rate = Medium; Filter =ON; RDGS=10; FILTER TYPE =MOVING AVERAGE; RANGE AUTO After each calibration, a SAR measurement is performed on a validation dipole and compared with a NPL calibrated probe, to verify it.

The calibration factors, CF(N), for the 3 sensors corresponding to dipole 1, dipole 2 and dipole 3 are: CF(N)=SAR(N)/Vlin(N) (N=1,2,3)

The linearised output voltage Vlin(N) is obtained from the displayed output voltage V(N) using $Vlin(N)=V(N)^*(1+V(N)/DCP(N))$ (N=1,2,3) Where the DCP is the diode compression point in mV.

4.2.4 Phantoms

For the measurements the Specific Anthropomorphic Mannequin (SAM) defined by the IEEE SCC-34/SC2 group is used. The phantom is a polyurethane shell integrated in a wooden table. The thickness of the phantom amounts to 2mm +/- 0.2mm. It enables the dosimetric evaluation of left and right phone usage and includes an additional flat phantom part for the simplified performance check. The phantom set-up includes a cover, which prevents the evaporation of the liquid.

Photo of Phantom SN 30/13 SAM104

State of the local division of the local div	

Serial Number	Positionner Material	Permittivity	Loss Tangent
SN 30/13 SAM103	Gelcoat with fiberglass	3.4	0.02
SN 30/13 SAM104	Gelcoat with fiberglass	3.4	0.02

Serial Number		Left Head		Right Head	Flat Part		
	2	2.00	2	2.03	1	2.09	
	3	2.02	3	2.05	2	2.10	
	4	2.04	4	2.04	3	2.09	
CN 20/42 CAM402	5	2.04	5	2.07	4	2.11	
3N 30/13 3AWI 103	6	2.02	6	2.07	5	2.11	
	7	2.01	7	2.09	6	2.09	
	8	2.04	8	2.10	7	2.11	
	9	2.02	9	2.09	-	-	
	2	2.05	2	2.06	1	2.03	
	3	2.08	3	2.03	2	2.03	
	4	2.05	4	2.03	3	2.01	
CN 20/42 CAM404	5	2.06	5	2.02	4	2.03	
SN 30/13 SAM104	6	2.08	6	2.02	5	2.03	
	7	2.06	7	2.04	6	2.00	
	8	2.07	8	2.04	7	1.98	
	9	2.07	9	2.05	-	-	

4.2.5 Device Holder

The SAR in the phantom is approximately inversely proportional to the square of the distance between the source and the liquid surface. For a source at 5 mm distance, a positioning uncertainty of \pm 0.5 mm would produce a SAR uncertainty of \pm 20 %. Accurate device positioning is therefore crucial for accurate and repeatable measurements. The positions in which the devices must be measured are defined by the standards.

Serial Number	Holder Material	Permittivity	Loss Tangent
SN 25/13 MSH87	Deirin	3.7	0.005
SN 25/13 MSH88	Deirin	3.7	0.005

The positioning system allows obtaining cheek and tilting position with a very good accuracy. In compliance with CENELEC, the tilt angle uncertainty is lower than 1°.

4.2.6 Simulating Liquid

For SAR measurement of the field distribution inside the phantom, the phantom must be filled with homogeneous tissue simulating liquid to a depth of at least 15 cm. For head SAR testing, the liquid height from the ear reference point (ERP) of the phantom to the liquid top surface is larger than 15 cm. For body SAR testing, the liquid height from the center of the flat phantom to the liquid top surface is larger than 15 cm. The nominal dielectric values of the tissue simulating liquids in the phantom and the tolerance of 5%.

The following table gives the recipes for tissue simulating liquid and the theoretical Conductivity/Permittivity.

	Head (Reference IEEE1528)												
Frequency	Water	Sugar	Cellulose	Salt	Preventol	DGBE	Conductivity	Permittivity					
(MHz)	(%)	(%)	(%)	(%)	(%)	(%)	σ (S/m)	3					
750	41.1	57.0	0.2	1.4	0.2	0	0.89	41.9					
835	40.3	57.9	0.2	1.4	0.2	0	0.90	41.5					
900	40.3	57.9	0.2	1.4	0.2	0	0.97	41.5					
1800, 1900, 2000	55.2	0	0	0.3	0	44.5	1.4	40.0					
2450	55.0	0	0	0.1	0	44.9	1.80	39.2					
2600	54.9	0	0	0.1	0	45.0	1.96	39.0					
Frequency(MHz)	Water	ŀ	lexyl Carbito	bl	Triton	X-100	Conductivity	Permittivity					
Frequency(MHZ)	(%)		(%)		(%	6)	σ (S/m)	3					
5200	62.52		17.24		17.	24	4.66	36.0					
5800	62.52		17.24		17.	24	5.27	35.3					
		Body (Fro	om instrun	nent man	ufacturer)								
Frequency	Water	Sugar	Cellulose	Salt	Preventol	DGBE	Conductivity	Permittivity					
(MHz)	(%)	(%)	(%)	(%)	(%)	(%)	σ (S/m)	3					
750	51.7	47.2	0	0.9	0.1	0	0.96	55.5					
835	50.8	48.2	0	0.9	0.1	0	0.97	55.2					
900	50.8	48.2	0	0.9	0.1	0	1.05	55.0					
1800, 1900, 2000	70.2	0	0	0.4	0	29.4	1.52	53.3					
2450	68.6	0	0	0.1	0	31.3	1.95	52.7					
2600	68.2	0	0	0.1	0	31.7	2.16	52.5					

Tel: +86-755-66850100

 Web: www.titcgroup.com
 Template No.: TRP-FCC SATIMO-WIFI (2022-01-12)

 Add: Block B, 1/F, Baisha Science and Technology Park, Shahe West Road, Nanshan District, ShenZhen, GuangDong Province, China

	Matan	DGBE	Salt	Conductivity	Permittivity
Frequency(MHZ)	vvaler	(%)	(%)	σ (S/m)	ε
5200	78.60	21.40	/	5.54	47.86
5800	78.50	21.40	0.1	6.0	48.20

5 MEASUREMENT PROCEDURE

5.1 Antenna Port Test Requirement

The SATIMO SAR system is equipped with one or more system validation kits. These units together with the predefined measurement procedures within the SATIMO software enable the user to conduct the system performance check and system validation. System validation kit includes a dipole, tripod holder to fix it underneath the flat phantom and a corresponding distance holder.

5.2 Purpose of System Check

The system performance check verifies that the system operates within its specifications. System and operator errors can be detected and corrected. It is recommended that the system performance check be performed prior to any usage of the system in order to guarantee reproducible results. The system performance check uses normal SAR measurements in a simplified setup with a well characterized source. This setup was selected to give a high sensitivity to all parameters that might fail or vary over time. The system check does not intend to replace the calibration of the components, but indicates situations where the system uncertainty is exceeded due to drift or failure.

5.3 System Check Setup

In the simplified setup for system evaluation, the EUT is replaced by a calibrated dipole and the power source is replaced by a continuous wave that comes from a signal generator. The calibrated dipole must be placed beneath the flat phantom section of the SAM twin phantom with the correct distance holder. The distance holder should touch the phantom surface with a light pressure at the reference marking and be oriented parallel to the long side of the phantom. The equipment setup is shown below:

6 EUT TEST POSITION CONFIGURATUONS

According to KDB 648474 D04 Handset , handsets are tested for SAR compliance in head, body-worn accessory and other use configurations described in the following subsections.

6.1 Body Exposure Condition

For Close to Body mode(1g Body SAR) the EUT is set 10mm away from the phantom, the test distance is 10mm.

6.2 Extremity Exposure Condition

For Hand-held mode (10g Extremity SAR) the EUT (Equipment Under Test) is set directly against the phantom, the test distance is 0mm.

7 SAR MEASUREMENT PROCEDURES

7.1 SAR Measurement Process Diagram

7.2 SAR Scan General Requirements

Probe boundary effect error compensation is required for measurements with the probe tip closer than half a probe tip diameter to the phantom surface. Both the probe tip diameter and sensor offset distance must satisfy measurement protocols; to ensure probe boundary effect errors are minimized and the higher fields closest to the phantom surface can be correctly measured and extrapolated to the phantom surface for computing 1-g SAR. Tolerances of the post-processing algorithms must be verified by the test laboratory for the scan resolutions used in the SAR measurements, according to the reference distribution functions specified in IEEE Std 1528-2013.

			≤3GHz	>3GHz			
Maximum distance from ((geometric center of prob	closest meas e sensors) t	surement point o phantom surface	5±1 mm	½·δ·ln(2)±0.5 mm			
Maximum probe angle fro normal at the measureme	om probe axi ent location	s to phantom surface	30°±1°	20°±1°			
			≤ 2 GHz: ≤ 15 mm 2 – 3 GHz: ≤ 12 mm	3–4 GHz: ≤ 12 mm 4 – 6 GHz: ≤ 10 mm			
Maximum area scan spat	tial resolutior	n: Δx Area , Δy Area	When the x or y dimension of the test device, in the measurement plane orientation, is smaller than the above, the measurement resolution must be \leq the corresponding x				
			or y dimension of the test device with at least one measurement point on the test device.				
Maximum zoom scan spatial resolution: Δx Zoom , Δy Zoom			≤ 2 GHz: ≤ 8 mm 2 –3 GHz: ≤ 5 mm*	3–4 GHz: ≤ 5 mm* 4 – 6 GHz: ≤ 4 mm*			
	unifor	m grid: Δz Zoom (n)	≤ 5 mm	3–4 GHz: ≤ 4 mm 4–5 GHz: ≤ 3 mm 5–6 GHz: ≤ 2 mm			
Maximum zoom scan spatial resolution, normal to phantom		∆ z Zoom (1): between 1st two points closest to	≤ 4 mm	3–4 GHz: ≤ 3 mm 4–5 GHz: ≤ 2.5 mm			
surface	graded grid	phantom surface ∆ z Zoom (n>1): between subsequent	5–6 GHz: ≤ 2 mm ≤ 1.5·Δz Zoom (n-1)				
Minimum zoom		points		3–4 GHz: ≥ 28 mm			
scan volume		x, y, z	≥30 mm	4–5 GHz: ≥ 25 mm 5–6 GHz: ≥ 22 mm			
Note:							

Note:

 δ is the penetration depth of a plane-wave at normal incidence to the tissue medium; see draft standard IEEE P1528-2011 for details.

* When zoom scan is required and the reported SAR from the area scan based 1-g SAR estimation procedures of KDB 447498 is ≤ 1.4 W/kg, ≤ 8 mm, ≤ 7 mm and ≤ 5 mm zoom scan resolution may be applied, respectively, for 2 GHz to 3GHz, 3 GHz to 4 GHz and 4 GHz to 6 GHz.

7.3 SAR Measurement Procedure

The following steps are used for each test position

- Establish a call with the maximum output power with a base station simulator. The connection between the mobile and the base station simulator is established via air interface
- Measurement of the local E-field value at a fixed location. This value serves as a reference value for calculating a possible power drift.
- Measurement of the SAR distribution with a grid of 8 to 16mm * 8 to 16 mm and a constant distance to the inner surface of the phantom. Since the sensors cannot directly measure at the inner phantom surface, the values between the sensors and the inner phantom surface are extrapolated. With these values the area of the maximum SAR is calculated by an interpolation scheme.
- Around this point, a cube of 30 * 30 * 30 mm or 32 * 32 * 32 mm is assessed by measuring 5 or 8 * 5 or 8*4 or 5 mm. With these data, the peak spatial-average SAR value can be calculated.

7.4 Area & Zoom Scan Procedures

First Area Scan is used to locate the approximate location(s) of the local peak SAR value(s). The measurement grid within an Area Scan is defined by the grid extent, grid step size and grid offset. Next, in order to determine the EM field distribution in a three-dimensional spatial extension, Zoom Scan is required. The Zoom Scan is performed around the highest E-field value to determine the averaged SAR-distribution over 10 g. Area scan and zoom scan resolution setting follows KDB 865664 D01 quoted below. When the 1-g SAR of the highest peak is within 2 dB of the SAR limit, additional zoom scans are required for other peaks within 2 dB of the highest peak that have not been included in any zoom scan to ensure there is no increase in SAR.

8 CONDUCTED RF OUPUT POWER

8.1 WIFI

8.1.1 2.4G ISM Band

Band	Mada	Channel	Freq.	Conducted	Tune-up Power	SAR Test
(GHz)	wode	Channel	(MHz)	Power (dBm)	Limit (dBm)	Require.
2.4	OFDM	Low	2405	17.04	17.50	Yes
2.4 (2.4, 2.492)		Mid.	2441	16.40	17.50	Yes
(2.4~2.483)		High	2473	16.25	17.50	Yes

8.1.2 2.4G WLAN

Band	Mada	Channel	Freq.	Conducted	Tune-up Power	SAR Test
(GHz)	Mode	Channel	(MHz)	Power (dBm)	Cted Tune-up Power S/ dBm) Limit (dBm) R 34 16.00 2 75 16.00 1 16 16.00 1 17 15.50 2 18 15.00 1 17 15.00 1 17 15.00 1	Require.
		1	2412	15.64	Cted Tune-up Power SAR Test dBm) Limit (dBm) Require. 34 16.00 Yes 75 16.00 Yes 36 16.00 Yes 36 16.00 Yes 36 15.50 No 27 15.50 No 28 15.00 No 34 15.00 No 36 15.00 No	Yes
802.11b 6 2437 15.75	16.00	Yes				
		11	2462	15.56	16.00	Yes
2.4	802.11g	1	2412	15.41	15.50	No
(2.4		6	2437	15.27	15.50	No
(2.4°2.403)		11	2462	15.12	15.50	No
		1	2412	14.28	15.00	No
	802.11n(HT20)	6	2437	13.97	15.00	No
		11	2462	14.84	15.00	No
Note: According	KDB 248227 D01 SAR	is not required f	or the following 2	2.4 GHz OFDM co	nditions. When the	highest reported

SAR for DSSS is adjusted by the ratio of OFDM to DSSS specified maximum output power and the adjusted SAR is $\,\leqslant\,$ 1.2 W/kg.

Adjusted SAR = Report SAR * (max power (OFDM)/ max power (DSSS)) = 0.125 * (35.48mW/39.81mW) = 0.111 W/Kg, so the 2.4G OFDM SAR test is not required.

8.1.3 5.8G ISM Band

Band	Mada	Channal	Freq.	Conducted	Tune-up Power	SAR Test
(GHz)	Mode	Channel	(MHz)	Power (dBm)	Limit (dBm)	Require.
5 (5.745~5.825)	OFDM	Low	5745	10.75	12.00	Yes
		Mid.	5785	10.98	12.00	Yes
		High	5825	11.72	12.00	Yes

8.1.4 5G WLAN

Band	Mada	Channel	Freq.	Conducted	Tune-up	SAR Test
(GHz)	Mode	Channel	(MHz)	Power (dBm)	Limit (dBm)	Require.
		36	5180	13.40	13.50	No
	802.11a	44	5220	13.41	13.50	No
		48	5240	13.38	13.50	No
		36	5180	12.86	13.00	No
	802.11n(HT20)	44	5220	12.75	13.00	No
		48	5240	12.66	13.00	No
5.2	000 44 ~(UT40)	38	5190	12.69	13.00	No
(5.15~5.25)	802.11n(H140)	46	5230	12.58	13.00	No
		36	5180	12.36	13.00	No
	802.11ac(VHT20)	44	5220	12.51	13.00	No
		48	5240	12.42	13.00	No
		38	5190	12.52	13.00	No
	802.11ac(VH140)	46	5230	12.44	13.00	No
	802.11ac(VHT80)	42	5210	10.48	11.00	No
		52	5260	13.35	13.50	Yes
	802.11a	60	5300	13.22	13.50	Yes
		64	5320	13.43	13.50	Yes
		52	5260	12.83	13.00	No
	802.11n(HT20)	60	5300	12.86	13.00	No
		64	5320	12.96	13.00	No
5.3		54	5270	12.65	13.00	No
(5.25~5.35)	802.11n(HT40)	62	5310	12.54	13.00	No
		52	5260	12.55	13.00	No
	802.11ac(VHT20)	60	5300	12.41	13.00	No
		64	5320	12.73	13.00	No
		54	5270	12.67	13.00	No
	802.11ac(VH140)	62	5310	12.43	13.00	No
	802.11ac(VHT80)	58	5290	10.51	11.00	No
		100	5500	13.42	13.50	Yes
	802.11a	116	5580	13.36	13.50	Yes
		140	5700	13.42	13.50	Yes
5.6		100	5500	12.87	13.00	No
(5.47~5.725)	802.11n(HT20)	116	5580	12.83	13.00	No
(5.47~5.725)		140	5700	12.96	13.00	No
		102	5510	12.69	13.00	No
	802.11n(H140)	118	5590	12.65	13.00	No

E-mail: qc@baluntek.com Template No.: TRP-FCC SATIMO-WIFI (2022-01-12) Page No. 28 / 60

 Web: www.titcgroup.com
 Template No.: TRP-FCC SATIMO-WIFI (2022-01-12)

 Add: Block B, 1/F, Baisha Science and Technology Park, Shahe West Road, Nanshan District, ShenZhen, GuangDong Province, China

		134	5670	12.55	13.00	No
		100	5500	12.38	13.00	No
	802.11ac(VHT20)	116	5580	12.54	13.00	No
		140	5700	12.72	13.00	No
		102	5510	12.51	13.00	No
	802.11ac(VHT40)	118	5590	12.62	13.00	No
		134	5670	12.43	13.00	No
		106	5530	10.47	11.00	No
	802.11ac(VHT80)	122	5610	10.50	11.00	No
		138	5690	10.33	11.00	No
		149	5745	13.38	13.50	Yes
	802.11a	157	5785	13.32	13.50	Yes
		165	5825	13.38	13.50	Yes
		149	5745	12.82	13.00	No
	802.11n(HT20)	157	5785	12.79	13.00	No
		165	5825	12.93	13.00	No
5.8	802 11p(UT40)	151	5755	12.64	13.00	No
(5.725~5.850)	802.1III(H140)	159	5795	12.62	13.00	No
		149	5745	12.51	13.00	No
	802.11ac(VHT20)	157	5785	12.34	13.00	No
		165	5825	12.50	13.00	No
	802 11ac/\/HT40\	151	5755	12.69	13.00	No
	002.11ac(v11140)	159	5795	12.55	13.00	No
	802.11ac(VHT80)	155	5775	10.42	11.00	No
Nister M/here the second		venie enerified f				

Note: When the same maximum output power is specified for both bands, begin SAR measurement in U-NII-2A band by applying the OFDM SAR requirements. If the highest reported SAR for a test configuration is ≤ 1.2 W/kg, SAR is not required for U-NII-1 band for that configuration (802.11 mode and exposure condition); otherwise, each band is tested independently for SAR.

8.1.5 Bluetooth

Mode		GFSK		π/4-DQPSK				
Channel	0 39 78		0	39	78			
Frequency (MHz)	2402	2441	2480	2402	2441	2480		
Conducted Power (dBm)	8.32	8.41	7.51	8.02	7.23	6.74		
Tune-Up Limit (dBm)		8.50	8.50					
Mode		8-DPSK		BLE				
Channel	0	39	78	0	19	39		
Frequency (MHz)	2402	2441	2480	2402	2440	2480		
Conducted Power (dBm)	8.11	7.21	6.67	8.21	8.22	7.14		
Tune-Up Limit (dBm)		8.50			8.50			

9 EUT ANTENNA LOCATION SKETCH

<EUT Front View>

9.1 SAR Test Exclusion Consideration Table

According with FCC KDB 447498 D04, Appendix B, The SAR-based exemption formula applies for single fixed, mobile, and portable RF sources with available maximum time-averaged power or effective radiated power (ERP), whichever is greater, of less than or equal to the threshold Pth (mW).

		Max De	Max, Dook Dower		Test Position Configurations						
Band	Mode	IVIAX. FE	ak rowei	Front	Book	Left	Right	Тор	Bottom		
		dBm	mW	FIOII	Dack	Edge	Edge	Edge	Edge		
2.4G ISM	Distan	ce to User		<5mm	<5mm	40mm	160mm	<5mm	195mm		
Band	OFDM	17.50	56.23	Yes	Yes	No	No	Yes	No		
	Distan	ce to User		10mm	40mm	155mm	55mm	120mm	60mm		
2.4G WLAN	802.11b	16.00	39.81	Yes	No	No	No	No	No		
5.8G ISM	Distan	ce to User		<5mm	<5mm	40mm	160mm	<5mm	195mm		
Band	Band OFDM		15.85	Yes	Yes	No	No	Yes	No		
5.2G&5.3G	Distan	ce to User		10mm	40mm	155mm	55mm	120mm	60mm		
WLAN	802.11a	13.50	22.39	Yes	No	No	No	No	No		
	Distan	ce to User		10mm	40mm	155mm	55mm	120mm	60mm		
5.0G WLAN	802.11a	13.50	22.39	Yes	No	No	No	No	No		
	Distan	ce to User		10mm	40mm	155mm	55mm	120mm	60mm		
5.8G WLAN	802.11a	13.50	22.39	Yes	No	No	No	No	No		
	Distan	Distance to User				155mm	55mm	120mm	60mm		
Diueloolii	ВТ	8.50	7.08	No	No	No	No	No	No		

Note:

Maximum power is the source-based time-average power and represents the maximum RF output power including 1. tune-up tolerance among production units

Per KDB 447498 D04, for larger devices, the test separation distance of adjacent edge configuration is determined by 2. the closest separation between the antenna and the user.

- Per KDB 447498 D04, standalone SAR test exclusion threshold is applied; If the distance of the antenna to the user is 3. < 5mm, 5mm is used to determine SAR exclusion threshold.
- 4. Per KDB 447498 D04, for separation distances from 0.5 cm to 40 cm and at frequencies from 0.3 GHz to 6 GHz (inclusive), the threshold Pth (mW) is given by Following:

$$P_{ti}(mW) = \begin{cases} ERP_{20cm}(d/20cm)^x & d \le 20cm \\ ERP_{20cm} & 20cm \le d \le 40cm \end{cases}$$

where

$$x = -\log_{10}\left(\frac{60}{ERP_{20cm}\sqrt{f}}\right)$$

- a. f(GHz) is the RF channel transmit frequency in GHz
- b. d is the separation distance (cm), The result is rounded to one decimal place for comparison
- ERP_{20cm} are determined by: c.

$$ERP_{20cm}(mW) = f(x) = \begin{cases} 2040f & 0.3GHz \le f < 1.5GHz \\ 3060 & 1.5GHz \le f \le 6GHz \end{cases}$$

5. Per KDB 248227 D01, choose the highest output power channel to test SAR and determine further SAR exclusion.8. For each frequency band, testing at higher data rates and higher order modulations is not required when the

maximum average output power for each of these configurations is less than 1/4dB higher than those measured at the lowest data rate

- 6. Per KDB 248227 D01 SAR is not required for the following 2.4 GHz OFDM conditions.
 - a. When KDB Publication 447498 D01 SAR test exclusion applies to the OFDM configuration.

b. When the highest reported SAR for DSSS is adjusted by the ratio of OFDM to DSSS specified maximum output power and the adjusted SAR is \le 1.2 W/kg.

- 7. Per KDB 248227 D01 SAR is not required for the following U-NII-1 and U-NII-2A bands conditions.
 - a. When the same maximum output power is specified for both bands, begin SAR measurement in U-NII-2A band by applying the OFDM SAR requirements. If the highest reported SAR for a test configuration is ≤ 1.2 W/kg, SAR is not required for U-NII-1 band for that configuration (802.11 mode and exposure condition); otherwise, each band is tested independently for SAR.

When different maximum output power is specified for the bands, begin SAR measurement in the band with higher specified maximum output power. The highest reported SAR for the tested configuration is adjusted by the ratio of lower to higher specified maximum output power for the two bands. When the adjusted SAR is \leq 1.2 W/kg, SAR is not required for the band with lower maximum output power in that test configuration; otherwise, each band is tested independently for SAR.

10 TEST RESULT

10.1 2.4G ISM Band Body SAR

Mode	Mode	Antenna Status	Position	Dist. (mm)	Ch.	Freq. (MH z)	Power Drift (%)	1g Meas SAR (W/kg)	Meas. Power (dBm)	Max. tune-up power (dBm)	Scaling Factor	Duty cycle (%)	Duty cycle Factor	1g Scaled SAR (W/kg)	Meas. No.
Body															
		Horizontal Top E	Front Side	10	Low	2405	-	0.000	17.04	17.50	1.112	100	1.000	0.000	/
			Back Side	10	Low	2405	-	0.000	17.04	17.50	1.112	100	1.000	0.000	/
			orizontal	10	Low	2405	-0.62	0.091	17.04	17.50	1.112	100	1.000	0.101	/
OFDM	Ground		Top Edge	10	Mid	2441	-2.11	0.097	16.40	17.50	1.288	100	1.000	0.125	1#
				10	High	2473	3.49	0.073	16.25	17.50	1.334	100	1.000	0.097	/
		Vertical From Ba	Front Side	10	Low	2405	-	0.000	17.04	17.50	1.112	100	1.000	0.000	/
			Back Side	10	Low	2405	-0.36	0.015	17.04	17.50	1.112	100	1.000	0.017	/
Note: Re	fer to ANNE>	C for the deta	iled test data	for each	test con	figuratior	٦.								

10.2 2.4G ISM Band Limbs SAR

Mode	Mode	Antenna Status	Position	Dist. (mm)	Ch.	Freq. (MH z)	Power Drift (%)	10g Meas SAR (W/kg)	Meas. Power (dBm)	Max. tune-up power (dBm)	Scaling Factor	Duty cycle (%)	Duty cycle Factor	10g Scaled SAR (W/kg)	Meas. No.
Limbs															
			Front Side	0	Low	2405	-	0.000	17.04	17.50	1.112	100	1.000	0.000	/
			Back Side	0	Low	2405	3.54	0.014	17.04	17.50	1.112	100	1.000	0.016	/
		Horizontal		0	Low	2405	2.15	0.053	17.04	17.50	1.112	100	1.000	0.059	/
OFDM	Ground		Top Edge	0	Mid	2441	-4.38	0.075	16.40	17.50	1.288	100	1.000	0.097	2#
				0	High	2473	-0.65	0.055	16.25	17.50	1.334	100	1.000	0.073	/
) (autional	Front Side	0	Low	2405	-0.88	0.018	17.04	17.50	1.112	100	1.000	0.020	/
		vertical	Back Side	0	Low	2405	0.98	0.020	17.04	17.50	1.112	100	1.000	0.022	/
Note: Re	fer to ANNE>	C for the deta	Dete: Refer to ANNEX C for the detailed test data for each test configuration.												

10.3 WIFI 2.4G Body SAR

Mode	Position	Dist. (mm)	Ch.	Freq. (MHz)	Power Drift (%)	1g Meas SAR (W/kg)	Meas. Power (dBm)	Max. tune- up power (dBm)	Scaling Factor	Duty cycle (%)	Duty cycle Factor	1g Scaled SAR (W/kg)	Meas. No.
Body													
802.11b	Front Side	10	6	2437	-0.62	0.008	15.75	16.00	1.059	100	1.000	0.008	3#
Note: Refe	r to ANNEX C for	the detaile	ed test d	ata for each	test configu	ration.							

10.4 WIFI 2.4G Limbs SAR

Mode	Position	Dist. (mm)	Ch.	Freq. (MHz)	Power Drift (%)	10g Meas SAR (W/kg)	Meas. Power (dBm)	Max. tune- up power (dBm)	Scaling Factor	Duty cycle (%)	Duty cycle Factor	10g Scaled SAR (W/kg)	Meas. No.
Limbs													
802.11b	Front Side	0	6	2437	-0.59	0.011	15.75	16.00	1.038	100	1.000	0.012	4#
Note: Refe	Note: Refer to ANNEX C for the detailed test data for each test configuration.												

10.5 5.8G ISM Band Body SAR

Mode	Mode	Antenna Status	Position	Dist. (mm)	Ch.	Freq. (MHz)	Power Drift (%)	1g Meas SAR (W/kg)	Meas. Power (dBm)	Max. tune- up power (dBm)	Scaling Factor	Duty cycle (%)	Duty cycle Factor	1g Scaled SAR (W/kg)	Meas. No.
Body															
			Front Side	10	High	5825	-	0.000	11.72	12.00	1.067	100.00	1.000	0.000	/
			Back Side	10	High	5825	-	0.000	11.72	12.00	1.067	100.00	1.000	0.000	/
		Horizontal		10	High	5825	-1.70	0.063	11.72	12.00	1.067	100.00	1.000	0.067	5#
OFDM	Ground		Top Edge	10	Low	5745	-1.65	0.042	10.75	12.00	1.334	100.00	1.000	0.056	/
				10	Mid	5785	0.35	0.045	10.98	12.00	1.265	100.00	1.000	0.057	/
		Vartical	Front Side	10	High	5825	-	0.000	11.72	12.00	1.067	100.00	1.000	0.000	/
		vertical	Back Side	10	High	5825	-	0.000	11.72	12.00	1.067	100.00	1.000	0.000	/
Note: Refe	er to ANNEX C	for the detailed	l test data for e	ach test c	onfiguration	ı.									

10.6 5.8G ISM Band Limbs SAR

Mode	Mode	Antenna Status	Position	Dist. (mm)	Ch.	Freq. (MHz)	Power Drift (%)	10g Meas SAR (W/kg)	Meas. Power (dBm)	Max. tune- up power (dBm)	Scaling Factor	Duty cycle (%)	Duty cycle Factor	10g Scaled SAR (W/kg)	Meas. No.
Limbs															
			Front Side	0	165	High	-	0.000	11.72	12.00	1.067	100.00	1.000	0.000	/
			Back Side	0	165	High	0.15	0.021	11.72	12.00	1.067	100.00	1.000	0.022	/
		Horizontal		0	165	High	-2.61	0.043	11.72	12.00	1.067	100.00	1.000	0.046	/
OFDM	Ground		Top Side	0	149	Low	0.84	0.061	10.75	12.00	1.334	100.00	1.000	0.081	6#
				0	157	Mid	-0.95	0.033	10.98	12.00	1.265	100.00	1.000	0.042	/
		Vortical	Front Side	0	165	High	-	0.000	11.72	12.00	1.067	100.00	1.000	0.000	/
		ventical	Back Side	0	165	High	0.03	0.012	11.72	12.00	1.067	100.00	1.000	0.013	/
Note: Refe	er to ANNEX C	for the detailed	l test data for e	ach test c	onfiguration	٦.									

10.7 WIFI 5G Body SAR

Fre. Band	Mode	Position	Dist. (mm)	Ch.	Freq. (MHz)	Power Drift (%)	1g Meas SAR (W/kg)	Meas. Power (dBm)	Max. tune-up power (dBm)	Scaling Factor	Duty cycle (%)	Duty cycle Factor	1g Scaled SAR (W/kg)	Meas. No.
Body														
			10	60	5300	0.30	0.054	13.22	13.50	1.067	100.00	1.000	0.058	/
5.3G	802.11a	Front Side	10	52	5260	-0.23	0.043	13.35	13.50	1.035	100.00	1.000	0.045	/
			10	64	5320	2.31	0.039	13.43	13.50	1.016	100.00	1.000	0.040	/
			10	116	5580	0.06	0.071	13.36	13.50	1.033	100.00	1.000	0.073	/
5.6G	802.11a	Front Side	10	100	5500	2.36	0.065	13.42	13.50	1.019	100.00	1.000	0.066	/
			10	140	5700	-0.31	0.070	13.42	13.50	1.019	100.00	1.000	0.071	/
			10	157	5785	-2.36	0.062	13.32	13.50	1.042	100.00	1.000	0.065	/
5.8G	802.11a	Front Side	10	149	5745	-2.44	0.077	13.38	13.50	1.028	100.00	1.000	0.079	7#
			10	165	5825	0.01	0.040	13.38	13.50	1.028	100.00	1.000	0.041	/
Note: R	efer to ANNE	EX C for the detai	led test da	ata for ead	h test config	juration.								

10.8 WIFI 5G Limbs SAR

Fre. Band Limbs	Mode	Position	Dist. (mm)	Ch.	Freq. (MHz)	Power Drift (%)	10g Meas SAR (W/kg)	Meas. Power (dBm)	Max. tune-up power (dBm)	Scaling Factor	Duty cycle (%)	Duty cycle Factor	10g Scaled SAR (W/kg)	Meas. No.
			0	60	5300	-2.35	0.022	13.22	13.50	1.067	100.00	1.000	0.023	/
5.3G	802.11a	Front Side	0	52	5260	-1.50	0.015	13.35	13.50	1.035	100.00	1.000	0.016	/
			0	64	5320	3.11	0.017	13.43	13.50	1.016	100.00	1.000	0.017	/
			0	116	5580	-0.84	0.031	13.36	13.50	1.033	100.00	1.000	0.032	8#
5.6G	802.11a	Front Side	0	100	5500	0.35	0.028	13.42	13.50	1.019	100.00	1.000	0.029	/
			0	140	5700	3.98	0.023	13.42	13.50	1.019	100.00	1.000	0.023	/
			0	157	5785	0.15	0.026	13.32	13.50	1.042	100.00	1.000	0.027	/
5.8G	802.11a	Front Side	0	149	5745	4.39	0.020	13.38	13.50	1.028	100.00	1.000	0.021	/
			0	165	5825	-0.98	0.026	13.38	13.50	1.028	100.00	1.000	0.027	/
Note: R	efer to ANNE	EX C for the detai	led test da	ata for eac	ch test confic	juration.								

11 SAR Measurement Variability

According to KDB 865664 D01, SAR measurement variability was assessed for each frequency band, which is determined by the SAR probe calibration point and tissue-equivalent medium used for the device measurements. When both head and body tissue-equivalent media are required for SAR measurements in a frequency band, the variability measurement procedures should be applied to the tissue medium with the highest measured SAR, using the highest measured SAR configuration for that tissue-equivalent media are \leq 1.45 W/kg and the ratio of these highest SAR values, i.e., largest divided by smallest value, is \leq 1.10, the highest SAR configuration for either head or body tissue-equivalent medium may be used to perform the repeated measurement. These additional measurements are repeated after the completion of all measurements requiring the same head or body tissue-equivalent medium in a frequency band. The test device should be returned to ambient conditions (normal room temperature) with the battery fully charged before it is re-mounted on the device holder for the repeated measurement(s) to minimize any unexpected variations in the repeated results.

SAR repeated measurement procedure:

- 1. When the highest measured SAR is < 0.80 W/kg, repeated measurement is not required.
- 2. When the highest measured SAR is >= 0.80 W/kg, repeat that measurement once.
- If the ratio of largest to smallest SAR for the original and first repeated measurements is > 1.20, or when the original or repeated measurement is >= 1.45 W/kg, perform a second repeated measurement.
- If the ratio of largest to smallest SAR for the original, first and second repeated measurements is >
 1.20, and the original, first or second repeated measurement is >= 1.5 W/kg, perform a third repeated
 measurement.

Frequency Band (MHz)	Wireless Band	RF Exposure Conditions	Test Position	Highest Measured SAR (W/kg)	Repeated SAR (Yes/No)	Highest Measured SAR (W/kg)	Largest to Smallest SAR Radio		
-	-	-	-	-	-	-	-		
Note: The	Note: The highest measured SAR is 0 125 < 0 80 W/kg, repeated measurement is not required								

Note: For product specific 10g SAR, the highest measured 10g SAR is 0.097 < 2.0 W/kg, repeated measurement is not required.

12 SIMULTANEOUS TRANSMISSION

Simultaneous transmission SAR test exclusion is determined for each operating configuration and exposure condition according to the reported standalone SAR of each applicable simultaneous transmitting antenna. When the sum of SAR 1g of all simultaneously transmitting antennas in an operating mode and exposure condition combination is within the SAR limit (SAR 1g 1.6 W/kg), the simultaneous transmission SAR is not required. When the sum of SAR 1g is greater than the SAR limit (SAR 1g 1.6 W/kg), SAR test exclusion is determined by the SAR to Peak Location Ratio (SPLSR).

12.1 Simultaneous Transmission Mode Consider

NO.	Simultaneous Tx Combination	Body	Limbs
1	2.4G ISM Band +2.4G WLAN	Yes	Yes
2	2.4G ISM Band +5G WLAN	Yes	Yes
3	2.4G ISM Band +Bluetooth	Yes	Yes
4	5.8G ISM Band +2.4G WLAN	Yes	Yes
5	5.8G ISM Band +5G WLAN	Yes	Yes
6	5.8G ISM Band + Bluetooth	Yes	Yes

12.2 Sum SAR of Simultaneous Transmission

Simultanaoua Mada	Mada	Max. 1g SAR	1g Sum SAR	Limit 1g
Simultaneous Mode	Mode	(W/kg)	(W/kg)	(W/Kg)
Body (Separation 10 mm)				
2.4C ISM Bond 12.4C WILAN	2.4G ISM Band	0.125	0 122	
2.4G ISINI DAHU +2.4G WLAN	2.4G WLAN	0.008	0.133	
2.4C ISM Bond I EC M/LAN	2.4G ISM Band	0.125	0.204	
2.4G ISINI Dariu +5G WLAN	5G WLAN	0.079	0.204	
2.4C ISM Band - Blueteeth	2.4G ISM Band	0.125	0.125	
	Bluetooth	0.000	0.125	1.0
	5.8G ISM Band	0.067	0.075	1.0
5.8G ISM Band +2.4G WLAN	2.4G WLAN	0.008	0.075	
	5.8G ISM Band	0.067	0.140	
5.8G ISM Band +5G WLAN	5G WLAN	0.079	0.140	
E 9C ISM Band L Blueteeth	5.8G ISM Band	0.067	0.067	
5.8G ISM Band + Bluetooth	Bluetooth	0.000	0.067	

Report No.: BL-EC2220625-701

Simultanagua Mada	Mada	Max. 10g SAR	10g Sum SAR	Limit 10g
Simultaneous Mode	Mode	(W/kg)	(W/kg)	(W/Kg)
Limbs (Separation 0 mm)				
2.4C ISM Bond + 2.4C W/LAN	2.4G ISM Band	0.097	0.100	
2.46 ISINI Dariu +2.46 WLAN	2.4G WLAN	0.012	0.109	
2.4C ISM Bond +EC W/LAN	2.4G ISM Band	0.097	0.120	
2.4G ISIVI BAINU TSG WLAIN	5G WLAN	0.032	0.129	
2.4C ISM Bond - Blueteeth	2.4G ISM Band	0.097	0.007	
	Bluetooth	0.000	0.097	4.0
5 9C ISM Road +2 4C WILAN	5.8G ISM Band	0.081	0.003	4.0
5.0G ISIVI DAITU +2.4G WLAN	2.4G WLAN	0.012	0.093	
5 9C ISM Bond +5C W/LAN	5.8G ISM Band	0.081	0 112	
5.0G ISWI BAHU TSG WLAN	5G WLAN	0.032	0.113	
5 9C ISM Pand + Plustaath	5.8G ISM Band	0.081	0.081	
	Bluetooth	0.000	0.001	

13 TEST EQUIPMENTS LIST

Description	Manufacturer	Model	Serial No./Version	Cal. Date	Cal. Due
Test Software	SATIMO	OpenSAR	V4_02_31	N/A	N/A
2450MHz Dipole	SATIMO	SID 2450	S/N 08/21 DIP2G450- 452	2021/03/18	2024/03/17
Waveguide	SATIMO	SWG5500	S/N 49/16 WGA42	2021/03/18	2024/03/17
E-Field Probe	MVG	SSE2	S/N 39/21 EPGO 359	2021/11/02	2022/11/02
MultiMeter	Keithley	MultiMeter 2000	4024022	2021/06/04	2022/06/03
Signal Generator	R&S	SMB100A	182396	2021/12/20	2022/12/19
Power Meter	R&S	NRVD-B2	7250BJ-0112/2011	2021/09/08	2022/09/07
Power Sensor	R&S	NRV-Z4	100381	2021/09/08	2022/09/07
Power Sensor	R&S	NRV-Z2	100211	2021/09/08	2022/09/07
Network Analyzer	Agilent	E5071B	MY42404001	2022/04/02	2023/04/01
Thermometer	Elitech	RC-4HC	EF720B004820	2021/12/01	2022/11/30
Power Amplifier	SATIMO	6552B	22374	N/A	N/A
Dielectric Probe Kit	SATIMO	SCLMP	SN 25/13 OCPG56	N/A	N/A
Antenna	SATIMO	ANTA3	SN 17/13 ZNTA45	N/A	N/A
Phantom 1	SATIMO	SAM	SN 30/13 SAM103	N/A	N/A
Attenuator	COM-MW	ZA-S1-31	1305003187	N/A	N/A
Directional coupler	AA-MCS	AAMCS- UDC	000272	N/A	N/A

Note: For dipole antennas, BALUN has adopted 3 years as calibration intervals, and on annual basis, every measurement dipole has been evaluated and is in compliance with the following criteria:

1. There is no physical damage on the dipole;

2. System validation with specific dipole is within 10% of calibrated value;

3. Return-loss in within 20% of calibrated measurement.

4. Impedance (real or imaginary parts) in within 5 Ohms of calibrated measurement.

ANNEX A SIMULATING LIQUID VERIFICATION RESULT

The dielectric parameters of the liquids were verified prior to the SAR evaluation using an SCLMP Dielectric Probe Kit.

Date	Fre. (MHz)	Temp. (℃)	Meas. Conductivity(σ) (S/m)	Meas. Permittivity(ε)	Target Conductivity(σ) (S/m)	Target Permittivity(ε)	Conductivity Tolerance (%)	Permittivity Tolerance (%)
2022.05.26	2450	22.2	1.82	40.25	1.80	39.20	1.11	2.68
2022.05.27	5200	22.3	4.72	35.12	4.66	35.97	1.29	-2.36
2022.05.27	5600	22.3	5.21	34.38	5.07	35.50	2.76	-3.15
2022.05.28	5800	22.2	5.51	33.78	5.28	35.30	4.36	-4.31
Note: The tolerances limit of Conductivity and Permittivity is $\pm 5\%$.								

ANNEX B SYSTEM CHECK RESULT

Comparing to the original SAR value provided by SATIMO, the validation data should be within its specification of 10%(for 1 g).

Dete	Freq.	Power	Measured	Normalized SAR	Dipole SAR	Tolerance
Dale	(MHz)	(mW)	SAR (W/kg)	(W/kg)	(W/kg)	(%)
2022.05.26	2450	100	5.35	53.50	51.44	4.00
2022.05.27	5200	100	15.72	157.20	164.06	-4.18
2022.05.27	5600	100	17.24	172.40	175.86	-1.97
2022.05.28	5800	100	18.33	183.30	182.49	0.44
Note: The tolerance limit of System validation ±10%.						

Comparing to the original SAR value provided by SATIMO, the validation data should be within its specification of 10%(for 10 g).

Dete	Freq.	Power	Measured	Normalized SAR	Dipole SAR	Tolerance
Date	(MHz)	(mW)	SAR (W/kg)	(W/kg)	(W/kg)	(%)
2022.05.26	2450	100	2.44	24.40	23.18	5.26
2022.05.27	5200	100	5.29	52.90	57.20	-7.52
2022.05.27	5600	100	5.84	58.40	59.97	-2.62
2022.05.28	5800	100	6.14	61.40	61.35	0.08
Note: The tolerance limit of System validation ±10%.						

System Performance Check Data(2450MHz)

Type: Phone measurement (Complete) E-Field Probe: SN 39/21 EPGO359 Area scan resolution: dx=8mm,dy=8mm Zoom scan resolution: dx=5mm, dy=5mm, dz=5mm Date of measurement: 2022.05.26 Measurement duration: 17 minutes 59 seconds

Phantom File	surf_sam_plan.txt
Phantom	Validation plane
Band	2450MHz
Signal	CW
Frequency (MHz)	2450.000000
Relative permittivity (real part)	40.249600
Conductivity (S/m)	1.819367
Power drift (%)	-0.090000
Ambient Temperature:	22.8°C
Liquid Temperature:	22.2°C
ConvF:	2.21
Crest factor:	1:1

Maximum location: X=1.00, Y=0.00 SAR Peak: 9.72 W/kg

SAR 10g (W/Kg)	2.444082
SAR 1g (W/Kg)	5.351502

System Performance Check Data(5200 MHz)

Type: Phone measurement (Complete) E-Field Probe: SN 39/21 EPGO359 Area scan resolution: dx=8 mm,dy=8 mm Zoom scan resolution: dx=4 mm, dy=4 mm, dz=2 mm Date of measurement: 2022.05.27 Measurement duration: 29 minutes 32 seconds

Phantom File	surf_sam_plan.txt
Phantom	Validation plane
Band	5200 MHz
Signal	CW
Frequency (MHz)	5200.000000
Relative permittivity (real part)	35.123451
Conductivity (S/m)	4.715484
Power drift (%)	0.790000
Ambient Temperature:	22.9°C
Liquid Temperature:	22.3°C
ConvF:	1.32
Crest factor:	1:1

Maximum location: X=0.00, Y=1.00 SAR Peak: 39.61 W/kg

SAR 10 g (W/Kg)	5.293793
SAR 1 g (W/Kg)	15.722962

System Performance Check Data(5600 MHz)

Type: Phone measurement (Complete) E-Field Probe: SN 39/21 EPGO359 Area scan resolution: dx=8 mm,dy=8 mm Zoom scan resolution: dx=4 mm, dy=4 mm, dz=2 mm Date of measurement: 2022.05.27 Measurement duration: 27 minutes 28 seconds

Phantom File	surf_sam_plan.txt
Phantom	Validation plane
Band	5600 MHz
Signal	CW
Frequency (MHz)	5600.000000
Relative permittivity (real part)	34.381241
Conductivity (S/m)	5.211521
Power drift (%)	0.390000
Ambient Temperature:	22.8°C
Liquid Temperature:	22.3°C
ConvF:	2.15
Crest factor:	1:1

Maximum location: X=0.00, Y=0.00 SAR Peak: 52.24 W/kg

SAR 10 g (W/Kg)	5.844205
SAR 1 g (W/Kg)	17.239801

System Performance Check Data(5800 MHz)

Type: Phone measurement (Complete) E-Field Probe: SN 39/21 EPGO359 Area scan resolution: dx=8 mm,dy=8 mm Zoom scan resolution: dx=4 mm, dy=4 mm, dz=2 mm Date of measurement: 2022.05.28 Measurement duration: 27 minutes 40 seconds

Phantom File	surf_sam_plan.txt
Phantom	Validation plane
Band	5800 MHz
Signal	CW
Frequency (MHz)	5800.000000
Relative permittivity (real part)	33.783216
Conductivity (S/m)	5.512125
Power drift (%)	-0.120000
Ambient Temperature:	22.8°C
Liquid Temperature:	22.2°C
ConvF:	1.93
Crest factor:	1:1

Maximum location: X=0.00, Y=0.00 SAR Peak: 57.41 W/kg

SAR 10 g (W/Kg)	6.137030
SAR 1 g (W/Kg)	18.334424

ANNEX C TEST DATA

MEAS. 1 Body Plane with H-Top Edge 10mm on Mid Channel in OFDM mode

Test Date:
Measurement duration:
Signal:
Liquid Parameters:
Test condition:
Probe:
Area Scan:
Zoom Scan:
Maximum location:
SAR 10g (W/Kg):
SAR 1g (W/Kg):
Power drift (%):
3D screen shot

26/05/2022 15 minutes 12 seconds 802.11b, f=2441.0 MHz, Duty Cycle: 1:1.0 Permittivity: 39.22; Conductivity: 1.79 S/m Ambient Temperature: 22.8°C, Liquid Temperature: 22.2°C SN_3921_EPGO359, ConvF: 2.25 sam_direct_droit2_surf8mm.txt, h= 5.00 mm 5x5x7,dx=8mm, dy=8mm, dz=5mm,Complete X=0.000000, Y=-8.000000 0.048156 0.097295 -2.11

Z Axis Scan

MEAS. 2 Body Plane with H-Top Edge 0mm on Mid Channel in OFDM mode

Tost Dato:	26/05/2022
Test Date.	20/03/2022
Measurement duration:	15 minutes 27 seconds
Signal:	802.11b, f=2441.0 MHz, Duty Cycle: 1:1.0
Liquid Parameters:	Permittivity: 39.22; Conductivity: 1.79 S/m
Test condition:	Ambient Temperature: 22.8°C, Liquid Temperature: 22.2°C
Probe:	SN_3921_EPGO359, ConvF: 2.25
Area Scan:	sam_direct_droit2_surf8mm.txt, h= 5.00 mm
Zoom Scan:	5x5x7,dx=8mm, dy=8mm, dz=5mm,Complete
Maximum location:	X=0.000000, Y=-16.000000
SAR 10g (W/Kg):	0.074608
SAR 1g (W/Kg):	0.163921
Power drift (%):	-4.38
3D screen shot	

<u>Z Axis Scan</u>

MEAS. 3 Body Plane with Right Side 10mm on Mid Channel in IEEE 802.11b mode

Test Date:	26/05/2022
Measurement duration:	16 minutes 2 seconds
Signal:	802.11b, f=2437.0 MHz, Duty Cycle: 1:1.0
Liquid Parameters:	Permittivity: 39.22; Conductivity: 1.79 S/m
Test condition:	Ambient Temperature: 22.8°C, Liquid Temperature: 22.2°C
Probe:	SN_3921_EPGO359, ConvF: 2.25
Area Scan:	sam_direct_droit2_surf8mm.txt, h= 5.00 mm
Zoom Scan:	5x5x7,dx=8mm, dy=8mm, dz=5mm,Complete
Maximum location:	X=8.000000, Y=16.000000
SAR 10g (W/Kg):	0.004488
SAR 1g (W/Kg):	0.007885
Power drift (%):	-0.62
3D screen shot	

MEAS. 4 Body Plane with Back Side 0mm on Low Channel in IEEE 802.11b mode

Test Date:	26/05/2022
Measurement duration:	14 minutes 52 seconds
Signal:	802.11b, f=2437.0 MHz, Duty Cycle: 1:1.0
Liquid Parameters:	Permittivity: 39.22; Conductivity: 1.79 S/m
Test condition:	Ambient Temperature: 22.8°C, Liquid Temperature: 22.2°C
Probe:	SN_3921_EPGO359, ConvF: 2.25
Area Scan:	sam_direct_droit2_surf8mm.txt, h= 5.00 mm
Zoom Scan:	5x5x7,dx=8mm, dy=8mm, dz=5mm,Complete
Maximum location:	X=-8.000000, Y=0.000000
SAR 10g (W/Kg):	0.011310
SAR 1g (W/Kg):	0.027269
Power drift (%):	-0.59
3D screen shot	

MEAS. 5 Body Plane with H-Top Edge 10mm on High Channel in OFDM mode

Test Date:	28/05/2022
Measurement duration:	18 minutes 41 seconds
Signal:	802.11a , f=5825.0 MHz, Duty Cycle: 1:1.0
Liquid Parameters:	Permittivity: 35.33; Conductivity: 5.25 S/m
Test condition:	Ambient Temperature: 22.8°C, Liquid Temperature: 22.2°C
Probe:	SN_3921_EPGO359, ConvF: 1.92
Area Scan:	sam_direct_droit2_surf10mm.txt, h= 5.00 mm
Zoom Scan:	7x7x12,dx=4mm, dy=4mm, dz=2mm,Complete
Maximum location:	X=-20.000000, Y=28.000000
SAR 10g (W/Kg):	0.020999
SAR 1g (W/Kg):	0.062568
Power drift (%):	-1.70
3D screen shot	

MEAS. 6 Body Plane with H-Top Edge 0mm on Low Channel in OFDM mode

Test Date:	28/05/2022
Measurement duration:	15 minutes 20 seconds
Signal:	802.11a, f=5745.0 MHz, Duty Cycle: 1:1.0
Liquid Parameters:	Permittivity: 39.22; Conductivity: 1.79 S/m
Test condition:	Ambient Temperature: 22.8°C, Liquid Temperature: 22.2°C
Probe:	SN_3921_EPGO359, ConvF: 1.92
Area Scan:	sam_direct_droit2_surf10mm.txt, h= 5.00 mm
Zoom Scan:	7x7x12,dx=4mm, dy=4mm, dz=2mm,Complete
Maximum location:	X=0.000000, Y=40.000000
SAR 10g (W/Kg):	0.061292
SAR 1g (W/Kg):	0.183213
Power drift (%):	0.84
3D screen shot	

Z Axis Scan

MEAS. 7 Body Plane with Back Side 10mm on Low Channel in IEEE 802.11a mode

Test Date:	28/05/2022
Measurement duration:	13 minutes 39 seconds
Signal:	802.11a, f=5745.0 MHz, Duty Cycle: 1:1.0
Liquid Parameters:	Permittivity: 39.22; Conductivity: 1.79 S/m
Test condition:	Ambient Temperature: 22.8°C, Liquid Temperature: 22.2°C
Probe:	SN_3921_EPGO359, ConvF: 1.92
Area Scan:	sam_direct_droit2_surf10mm.txt, h= 5.00 mm
Zoom Scan:	7x7x12,dx=4mm, dy=4mm, dz=2mm,Complete
Maximum location:	X=-8.000000, Y=8.000000
SAR 10g (W/Kg):	0.018273
SAR 1g (W/Kg):	0.077146
Power drift (%):	-2.44
3D screen shot	

MEAS. 8 Body Plane with Back Side 0mm on Mid Channel in IEEE 802.11a mode

Test Date:	27/05/2022
Measurement duration:	15 minutes 16 seconds
Signal:	802.11a, f=5580.0 MHz, Duty Cycle: 1:1.0
Liquid Parameters:	Permittivity: 39.28; Conductivity: 1.77 S/m
Test condition:	Ambient Temperature: 22.8°C, Liquid Temperature: 22.3°C
Probe:	SN_3921_EPGO359, ConvF: 2.12
Area Scan:	sam_direct_droit2_surf10mm.txt, h= 5.00 mm
Zoom Scan:	7x7x12,dx=4mm, dy=4mm, dz=2mm,Complete
Maximum location:	X=0.000000, Y=-8.000000
SAR 10g (W/Kg):	0.031264
SAR 1g (W/Kg):	0.093253
Power drift (%):	-0.84
3D screen shot	

<u>Z Axis Scan</u>

ANNEX D EUT EXTERNAL PHOTOS

Please refer the document "BL-EC2220625-AW.pdf".

ANNEX E SAR TEST SETUP PHOTOS

Please refer the document "BL-EC2220625-AS.pdf".

ANNEX F CALIBRATION REPORT

Please refer the document "CALIBRATION REPORT.pdf".

Statement

1. The laboratory guarantees the scientificity, accuracy and impartiality of the test, and is responsible for all the information in the report, except the information provided by the customer. The customer is responsible for the impact of the information provided on the validity of the results.

2. The report without China inspection body and laboratory Mandatory Approval (CMA) mark has no effect of proving to the society.

3. For the report with CNAS mark or A2LA mark, the items marked with "☆" are not within the accredited scope.

4. This report is invalid if it is altered, without the signature of the testing and approval personnel, or without the "inspection and testing dedicated stamp" or test report stamp.

5. The test data and results are only valid for the tested samples provided by the customer.

6. This report shall not be partially reproduced without the written permission of the laboratory.

7. Any objection shall be raised to the laboratory within 30 days after receiving the report.

--END OF REPORT--