FCC/ISED RF TESTREPORT

ISSUED BY Shenzhen BALUN Technology Co., Ltd.

FOR

Personal Ground Station

ISSUED TO Yuneec Technology Co., Limited

Unit 2301, 23/F, 9 Chong Yip Street, Kwun Tong, Kowloon, Hong Kong.

	Report No.:	BL-EC2060327-603
sound interesting of the sector of the sector sector sector	EUT Name:	Personal Ground Station
	Model Name:	ST16E
Prepared by: Ye Junji	Brand Name:	YUNEECS
Ye Hongji	Test Standard:	47 CFR Part 15 Subpart E
Date Jul. 17.202		RSS-Gen (Issue 5, March 2019)
		RSS-247 (Issue 2, February 2017)
BAD	FCC ID:	2ACS5-ST16E
Approved by:	ISED Number:	11554B-ST16E
Liao Jianming		
(Technical Director)	Test Conclusion:	Pass
Date 741.17, 2020	Test Date:	Jun. 28, 2020 ~ Jul. 16, 2020
J	Date of Issue:	Jul. 17, 2020

NOTE: This test report of test results only related to testing samples, which can be duplicated completely for the legal use with the approval of the applicant; it shall not be reproduced except in full, without the written approval of Shenzhen BALUN Technology Co., Ltd. Any objections should be raised within thirty days from the date of issue. To validate the report, please contact us.

Block B, 1st FL, Baisha Science and Technology Park, Shahe Xi Road, Nanshan District, Shenzhen, Guangdong, P. R. China 518055 TEL: +86-755-66850100, FAX: +86-755-61824271 Email: qc@baluntek.com

Revision History

Version	Issue Date	Revisions Content
<u>Rev. 01</u>	<u>Jul. 14, 2020</u>	Initial Issue
Rev. 02	Jul. 17, 2020	Added test data on Annex A

TABLE OF CONTENTS

1	AD	MINISTRATIVE DATA (GENERAL INFORMATION)	. 4
	1.1	Identification of the Testing Laboratory	. 4
	1.2	Identification of the Responsible Testing Location	. 4
	1.3	Laboratory Condition	. 4
	1.4	Announce	. 5
2	PR	ODUCT INFORMATION	. 6
	2.1	Applicant	. 6
	2.2	Manufacturer	. 6
	2.3	Factory	. 6
	2.4	General Description for Equipment under Test (EUT)	. 6
	2.5	Technical Information	. 7
	2.6	Additional Instructions	. 8
	2.7	Channel List	. 9
3	SU	MMARY OF TEST RESULTS	10
	3.1	Test Standards	10
	3.2	Verdict	10
4	GE	NERAL TEST CONFIGURATIONS	11
	4.1	Test Environments	11
	4.2	Test Equipment List	11
	4.3	Measurement Uncertainty	12
	4.4	Description of Test Setup	13
5	TE	ST ITEMS	16
	5.1	RF Output Power	16
	5.2	Emission Bandwidth and 6 dB Bandwidth	17
	5.3	Power Spectral density (PSD)	18
	5.4	Conducted Emission	19
	5.5	Radiated Spurious Emissions and Band Edge (Restricted-band)2	20

ANNEX	А	TEST RESULT	25
A.1	RF	Output Power	25
A.2	Em	ission Bandwidth & 99% Bandwidth	26
A.3	6 d	B Bandwidth	28
A.4	Pov	ver Spectral Density	29
A.5	Cor	nducted Emissions	30
A.6	Rad	diated Spurious Emissions and Band Edge (Restricted-band)	32
ANNEX	В	TEST SETUP PHOTOS	38
ANNEX	С	EUT EXTERNAL PHOTOS	38
ANNEX	D	EUT INTERNAL PHOTOS	38

1 ADMINISTRATIVE DATA (GENERAL INFORMATION)

1.1 Identification of the Testing Laboratory

Company Name	Shenzhen BALUN Technology Co., Ltd.
Address	Block B, 1st FL, Baisha Science and Technology Park, Shahe Xi Road,
	Nanshan District, Shenzhen, Guangdong Province, P. R. China
Phone Number	+86 755 6685 0100

1.2 Identification of the Responsible Testing Location

Test Location	Shenzhen BALUN Technology Co., Ltd.
Address	Block B, 1st FL, Baisha Science and Technology Park, Shahe Xi Road, Nanshan District, Shenzhen, Guangdong Province, P. R. China
Accreditation Certificate	The laboratory has been listed by Industry Canada to perform electromagnetic emission measurements. The recognition numbers of test site are 11524A-1. The laboratory is a testing organization accredited by FCC as a accredited testing laboratory. The designation number is CN1196. The laboratory is a testing organization accredited by American Association for Laboratory Accreditation(A2LA) according to ISO/IEC 17025.The accreditation certificate is 4344.01. The laboratory is a testing organization accredited by China National Accreditation Service for Conformity Assessment (CNAS) according to ISO/IEC 17025. The accreditation certificate number is L6791.
Description	All measurement facilities used to collect the measurement data are located at Block B, FL 1, Baisha Science and Technology Park, Shahe Xi Road, Nanshan District, Shenzhen, Guangdong Province, P. R. China 518055

1.3 Laboratory Condition

Ambient Temperature	20°C to 25°C
Ambient Relative Humidity	45% to 55%
Ambient Pressure	100 kPa to 102 kPa

1.4 Announce

- (1) The test report reference to the report template version v4.4.
- (2) The test report is invalid if not marked with the signatures of the persons responsible for preparing and approving the test report.
- (3) The test report is invalid if there is any evidence and/or falsification.
- (4) The results documented in this report apply only to the tested sample, under the conditions and modes of operation as described herein.
- (5) This document may not be altered or revised in any way unless done so by BALUN and all revisions are duly noted in the revisions section.
- (6) Content of the test report, in part or in full, cannot be used for publicity and/or promotional purposes without prior written approval from the laboratory.
- (7) The laboratory is only responsible for the data released by the laboratory, except for the part provided by the applicant.

2 PRODUCT INFORMATION

2.1 Applicant

Applicant	Yuneec Technology Co., Limited
Address	Unit 2301, 23/F, 9 Chong Yip Street, Kwun Tong, Kowloon, Hong
Address	Kong.

2.2 Manufacturer

Manufacturer	Yuneec International (China) Co., Ltd.
Addroop	No.388 East Zhengwei Road, Jinxi Town, Kunshan, Jiangsu 215324,
Address	China

2.3 Factory

Factory	Yuneec International (China) Co., Ltd.
Address	No.388 East Zhengwei Road, Jinxi Town, Kunshan, Jiangsu 215324,
Address	China

2.4 General Description for Equipment under Test (EUT)

EUT Name	Personal Ground Station	
Model Name Under Test	ST16E	
Series Model Name	N/A	
Description of Model	N/A	
name differentiation		
Serial Number	CAFBB22A09805012	
Hardware Version	N/A	
Software Version	N/A	
Dimensions (Approx.)	N/A	
Weight (Approx.)	N/A	

2.5 Technical Information

Notwork and Wireless	2.4G WIFI 802.11b, 802.11g, 802.11n
Network and Wireless	5G WIFI 802.11a
connectivity	2.4G ISM Band (OFDM modulation), GPS

The requirement for the following technical information of the EUT was tested in this report:

Frequency Range	Band IV: 5725 MHz to 5850 MHz		
Product Type	⊠ Portable		
	Fix Location		
Modulation technology	OFDM		
Modulation Type	64QAM, 16QAM, BPSK, QPSK		
Transfer Rate (Mbps)	802.11a: 54/ 48/ 36 / 24 / 18/12 / 9/ 6 Mbps		
Channel Bandwidth	802.11a: 20 MHz		
Maximum Output Power	17.50 dBm		
Antenna Type	Omni-directional Antenna		
Antenna Gain	-3.48 dBi		
About the Dreduct	The equipment is Personal Ground Station, intended for used		
About the Product	with information technology equipment.		
Note: This value of antenna gain is provided by the applicant.			

2.6 Additional Instructions

EUT Software Settings:

	\square	Special software is used.
Mada		The software provided by client to enable the EUT under
Mode		transmission condition continuously at specific channel
		frequencies individually.

During testing, Channel and Power Controlling Software provided by the customer was used to control the operating channel as well as the output power level. The RF output power selection is for the setting of RF output power expected by the customer and is going to be fixed on the firmware of the final end product.

Test Software Version	ADB			
Support Units	Description	Manufacturer	Model	
(Software installation media)	Notebook	Lenovo	K43c-80	

Band IV (5725 - 5850 MHz) Power level setup in software					
Mode	Channel Frequency (MHz) Soft Set				
11a	CH149	5745	27		
11a	CH157	5785	27		
11a	CH165	5825	27		

Run Software

C:\Windows\System32\cmd.exe - adb shell	_	$\times \mid$
iiwpriv wlan0 mp_rate 12		^
fconfig wlan0 down ifconfig wlan0 up		
iwpriv wland up txpower patha=42, pathb=42		
iwpir wland mp_txbower backgroundiwpir wland mp_start		
iwpirv wland mp_ctx background wpirv wiand mp_ctart		
iwpriv wland mp bandwidth 40M=0, shortGI=0		
iwpriv wland mp and tx a		
iwpriv wlan0 mp rate 12		
iwpriv wlan0 mp_txpower patha=42, pathb=42		
root@anzhen4_mrd7_w:/ # rmmod 8192du		
iwpriv wlan0 mp_ctx background		
root@anzhen4_mrd7_w:/ # insmod /lib/8192du_mp		
root@anzhen4_mrd7_w:/ # ifconfig wlan0 down		
root@anzhen4_mrd7_w:/ # ifconfig wlan0 up		
root@anzhen4_mrd7_w:/ # iwpriv wlan0 mp_start		
root@anzhen4_mrd7_w:/		
root©anzhen4 mrd7 w:/ # iwpriv wlan0 mp bandwidth 40M=0, shortGI=0		
rooteenzhent_midr_w./ # iwpirv wland mp_baldwitch tow-, shorter-0		
wland mp_ant_tx:switch Tx antenna to a		
root@anzhen4_mrd7.w:/ # iwpriv wlan0 mp_rate 12		
wlan0 mp rate; Set data rate to 12		
root@anzhen4 mrd7 w:/ # iwpriv wlan0 mp txpower patha=42, pathb=42		
wlan0 mp txpower:Set power level path A:42 path B:42		
root@anzhen4_mrd7_w:/ # iwpriv wlan0 mp_ctx background		
<pre>wlan0 mp_ctx:Start continuous DA=ffffffffff len=1500</pre>		
infinite=yes.		
root@anzhen4_mrd7_w:/ # _		\sim

2.7 Channel List

20 MHz			
Channel Number Frequency (MHz)			
149	5745		
153	5765		
157	5785		
161	5805		
165	5825		

The Lowest frequency, the middle frequency and the highest frequency of channel were selected to perform the test, and the selected channel see below:

For 802.11a

Band IV (5725 - 5850 MHz)				
Channel Number	Channel	Frequency (MHz)		
149	Low	5745		
157	Mid	5785		
165	High	5825		

Note: Preliminary tests were performed in different data rate in above table to find the worst radiated emission. The data rate shown in the table below is the worst-case rate with respect to the specific test item. Investigation has been done on all the possible configurations for searching the worst cases. The following table is a list of the test modes shown in this test report.

Test Items	Mode	Data Rate	Modulation Type	Band IV Channel
RF Output Power	11a	6	BPSK	165/157/149
Emission Bandwidth & 99% Occupied Bandwidth	11a	6	BPSK	165/157/149
6 dB bandwidth	11a	6	BPSK	165/157/149
Power Spectral Density	11a	6	BPSK	165/157/149
Radiated Spurious Emissions	11a	6	BPSK	165/157/149
Band Edge (Restricted- band)	11a	6	BPSK	165/157/149

3 SUMMARY OF TEST RESULTS

3.1 Test Standards

No.	Identity	Document Title
	47 CFR Part 15	
1	Subpart E	Unlicensed National Information Infrastructure Devices
	(10-1-16 Edition)	
2	KDB Publication	Guidelines for Compliance Testing of Unlicensed National Information
2	789033 D02v02r01	Infrastructure (U-NII) Devices Part 15, Subpart E
	RSS-Gen	
4	(Issue 5, Mar.	General Requirements for Compliance of Radio Apparatus
	2019)	
	RSS-247	Digital Transmission Systems (DTSs), Frequency Hopping
5	(Issue 2, February	Systems(FHSs) and Licence-Exemp Local Area Network (LE-LAN)
	2017)	Devices
6	ANSI C63.10-2013	American National Standard for Testing Unlicensed Wireless Devices

3.2 Verdict

No.	Description	FCC Part No.	RSS Part No.	Test Result	Verdict
1	Antenna Requirement	15.203	RSS-247, 6.2		Pass
2	RF Output Power	15.407(a)	RSS-247, 6.2	ANNEX A.1	Pass
3	Emission Bandwidth & 99% Occupied Bandwidth	15.407(a)	RSS-247, 6.2	ANNEX A.2	Pass
4	6 dB bandwidth	15.407(e)	RSS-247, 6.2	ANNEX A.3	Pass
5	Power Spectral Density	15.407(a)	RSS-247, 6.2	ANNEX A.4	Pass
6	Conducted Emission	15.207	RSS-GEN, 8.8	ANNEX A.5	Pass
7	Radiated Spurious Emissions and Band Edge (Restricted-band)	15.407(b)	RSS-247, 6.2	ANNEX A.6	Pass
8	Receiver Spurious Emissions		RSS-Gen, 7.1.2		N/A ^{Note3}

Note ¹: The EUT has a permanently and irreplaceable attached antenna, which complies with the requirement FCC 15.203.

Note ²: Only radio communication receivers operating in stand-alone mode within the band 30-960 MHz, as well as scanner receivers, are subject to Industry Canada requirements, so this test is not applicable.

4 GENERAL TEST CONFIGURATIONS

4.1 Test Environments

During the measurement, the normal environmental conditions were within the listed ranges:

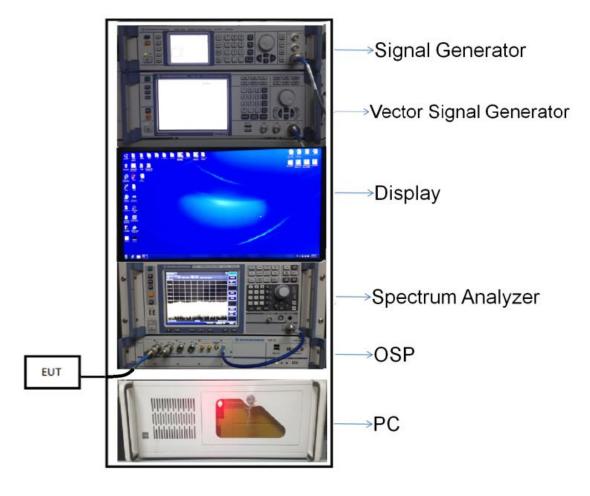
Relative Humidity	45% to 55%			
Atmospheric Pressure	100 kPa to 102 kPa			
Temperature	NT (Normal Temperature)	+22°C to +25°C		
Working Voltage of the EUT	NV (Normal Voltage)	3.6 V		

4.2 Test Equipment List

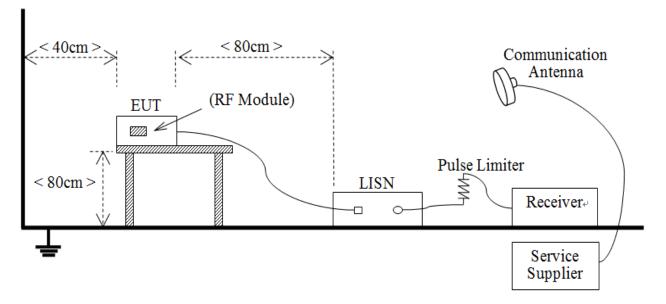
Description	Manufacturer	Model	Serial No.	Cal. Date	Cal. Due
Spectrum Analyzer	ROHDE&SCHWARZ	FSV-30	103118	2020.06.08	2021.06.07
Switch Unit with OSP- B157	ROHDE&SCHWARZ	OSP120	101270	2020.06.08	2021.06.07
EMI Receiver	KEYSIGHT	N9038A	MY53220118	2020.06.09	2021.06.08
EMI Receiver	ROHDE&SCHWARZ	ESRP	101036	2020.06.09	2021.06.08
LISN	SCHWARZBECK	NSLK 8127	8127-687	2020.06.09	2021.06.08
Bluetooth Tester	ROHDE&SCHWARZ	CBT	101005	2020.06.08	2021.06.07
DC Power Supply	ROHDE&SCHWARZ	HMP2020	018141664	2020.06.08	2021.06.07
Power Splitter	KMW	DCPD-LDC	1305003215		
Power Sensor	ROHDE&SCHWARZ	NRP-Z21	103971	2020.06.08	2021.06.07
Attenuator (20 dB)	KMW	ZA-S1-201	110617091		
Attenuator (6 dB)	KMW	ZA-S1-61	1305003189		
Temperature Chamber	AHK	SP20	1412	2020.06.10	2021.06.09
Test Antenna- Loop(9 kHz-30 MHz)	SCHWARZBECK	FMZB 1519	1519-037	2017.11.09	2020.11.08
Test Antenna- Bi-Log(30 MHz-3 GHz)	SCHWARZBECK	VULB 9163	9163-624	2018.08.22	2020.08.21
Test Antenna- Horn(1-18 GHz)	SCHWARZBECK	BBHA 9120D	9120D-1148	2019.07.22	2021.07.21
Test Antenna- Horn (18-40 GHz)	A-INFO	LB- 180400KF	J211060273	2019.01.06	2021.01.05
Anechoic Chamber	RAINFORD	9m*6m*6m	N/A	2017.02.21	2022.02.20
Anechoic Chamber	EMC Electronic Co., Ltd	20.10*11.60 *7.35m	N/A	2018.08.08	2021.08.07
Shielded Enclosure	ChangNing	CN-130701	130703		
Signal Generator	ROHDE&SCHWARZ	SMB100A	177746	2020.06.08	2021.06.07
Power Amplifier	OPHIR RF	5225F	1037	2020.02.19	2021.02.18
Power Amplifier	OPHIR RF	5273F	1016	2020.02.19	2021.02.18
Directional Coupler	Werlantone	C5982-10	109275	N/A	N/A
Directional Coupler	Werlantone	CHP-273E	S00801z-01	N/A	N/A
Sound Level Meter	B&K	NL-20	00844023	2019.11.12	2020.11.11
Ear Simulator	B&K	4185	2409449	2019.11.12	2020.11.11
Ear Simulator	B&K	4195	2418189	2019.11.12	2020.11.11
Audio analyzer	B&K	UPL 16	100129	2019.11.12	2020.11.11

4.3 Measurement Uncertainty

The following measurement uncertainty levels have been estimated for tests performed on the EUT as specified in CISPR 16-4-2.

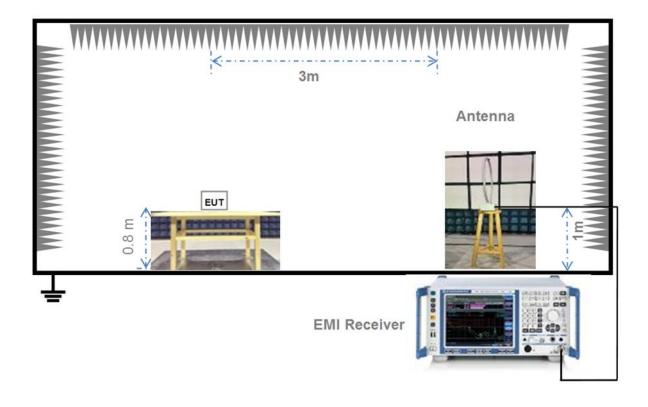

This uncertainty represents an expanded uncertainty expressed at approximately the 95% confidence level using a coverage factor of k=2.

Measurement	Value		
Occupied Channel Bandwidth	±4%		
RF output power, conducted	±1.4 dB		
Power Spectral Density, conducted	±2.5 dB		
Unwanted Emissions, conducted	±2.8 dB		
All emissions, radiated	±5.4 dB		
Temperature	±1°C		
Humidity	±4%		

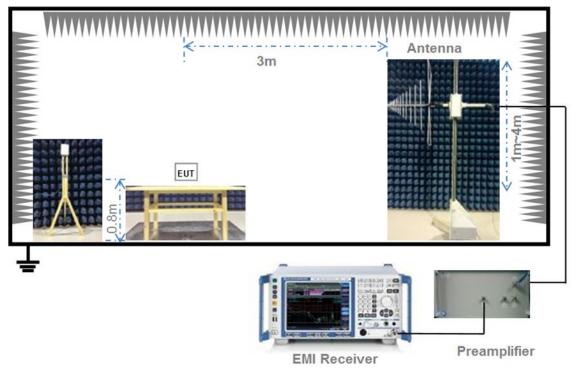

4.4 Description of Test Setup

4.4.1 For Antenna Port Test

(Diagram 1)

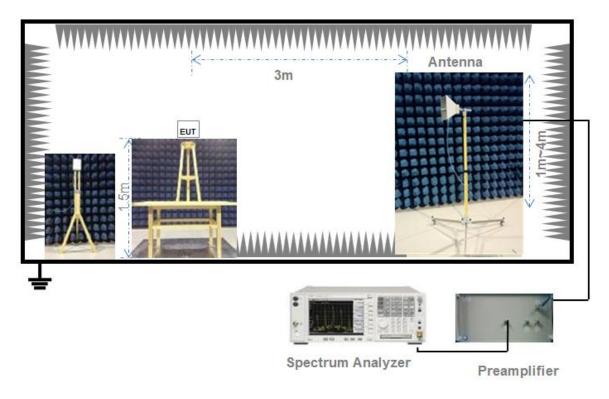

4.4.2 For AC Power Supply Port Test

(Diagram 2)



4.4.3 For Radiated Test (Below 30 MHz)

(Diagram 3)


4.4.4 For Radiated Test (30 MHz-1 GHz)

(Diagram 4)

4.4.5 For Radiated Test (Above 1 GHz)

(Diagram 5)

5 TEST ITEMS

5.1 RF Output Power

5.1.1 Test Limit

FCC §15.407(a)

The maximum conducted output power should not exceed:

Frequency Band (MHz)	Limit		
5150-5250	250 mW		
5250-5350	250 mW or 11 dBm + 10log B, whichever is less.		
5470-5725	250 mW or 11 dBm + 10log B, whichever is less.		
5725-5850 1 W			
Note: Where "B" is the 26 dB emissions bandwidth in MHz.			

RSS-247, 6.2

The maximum conducted output power shall not exceed:

Frequency Band (MHz)	Limit		
5150-5250	N/A		
5250-5350	250 mW or 11 dBm + 10log B, whichever is less.		
5470-5725	250 mW or 11 dBm + 10log B, whichever is less.		
5725-5850	1 W		
Note: Where "B" is the 90% emissions bandwidth in MHz			

Note: Where "B" is the 99% emissions bandwidth in MHz.

The maximum e.i.r.p. shall not exceed:

Frequency Band (MHz)	Limit		
5150-5250	200 mW or 10 dBm + 10log B, whichever is less.		
5250-5350	1W or 17 dBm + 10log B, whichever is less.		
5470-5725	1W or 17 dBm + 10log B, whichever is less.		
5725-5850	N/A		
Note: Where "B" is the 99% emissions bandwidth in MHz.			

5.1.2 Test Setup

The section 4.4.1 (Diagram 1) test setup description was used for this test. The photo of test setup please refer to ANNEX B.

5.1.3 Test Procedure

The maximum peak conducted output power may be measured using a broadband Average RF power meter. The power meter shall have a video bandwidth that is greater than or equal to the emission bandwidth and utilize a fast-responding diode detector.

The E.I.R.P used radiated test method. At a test site that has been validated using the procedures of ANSI C63.4 or the latest CISPR 16-1-4 for measurements above 1 GHz, so as to simulate a near free-space environment.

5.1.4 Test Result

Please refer to ANNEX A.1.

5.2 Emission Bandwidth and 6 dB Bandwidth

5.2.1 Limit

FCC §15.407(a), RSS-247, 6.2

Within the 5.725-5.85 GHz band, the minimum 6 dB bandwidth of U-NII devices shall be at least 500 kHz.

5.2.2 Test Setup

The test setup photo please refer to 4.4.1 (Diagram 1) test setup description was used for this test. The photo of test setup please refer to ANNEX B.

5.2.3 Test Procedure

Emission bandwidth

- 1. Set RBW = approximately 1% of the emission bandwidth.
- 2. Set VBW \geq 3*RBW,
- 3. Detector = Peak.
- 4. Trace mode = Max hold.
- 5. Measure the maximum width of the emission that is 26 dB down from the peak of the emission.

Occupied Bandwidth

- 1. Set Span = 1.5 times to 5.0 times the OBW
- 2. Set RBW = 1% to 5% of the OBW.
- 3. Set VBW \geq 3*RBW, Detector = Peak.
- 4. Trace mode = Max hold.
- 5. Use the 99% power bandwidth function of the instrument.
- 6 dB bandwidth
- 1. Set RBW = 100 kHz, VBW = 300 kHz.
- 2. Detector = Peak.
- 3. Trace mode = Max hold.
- 4. Allow the trace to stabilize.

5. Measure the maximum width of the emission that is constrained by the frequencies associated with the two outermost amplitude points (upper and lower frequencies) that are attenuated by 6 dB relative to the maximum level measured in the fundamental emission.

5.2.4 Test Result

Please refer to ANNEX A.2 and ANNEX A.3.

5.3 Power Spectral density (PSD)

5.3.1 Limit

FCC §15.407(a)

The maximum power spectral density should not exceed:

Frequency Band (MHz)	Limit
5150-5250	11 dBm/MHz
5250-5350	11 dBm/MHz
5470-5725	11 dBm/MHz
5725-5850	30 dBm/500kHz

RSS-247, 6.2

The maximum power spectral density should not exceed:

Frequency Band (MHz)	Limit
5150-5250	N/A
5250-5350	11 dBm/MHz
5470-5725	11 dBm/MHz
5725-5850	30 dBm/500kHz

The e.i.r.p. spectral density should not exceed:

Frequency Band (MHz)	Limit
5150-5250	10 dBm/MHz
5250-5350	N/A
5470-5725	N/A
5725-5850	N/A

5.3.2 Test Setup

The section 4.4.1 (Diagram 1) test setup description was used for this test. The photo of test setup please refer to ANNEX B.

5.3.3 Test Procedure

Set the spectrum analyzer or EMI receiver span to view the entire emission bandwidth.

1. Set RBW = 510 kHz/1 MHz, VBW ≥ 3*RBW, Sweep time = Auto, Detector = RMS.

2. Allow the sweeps to continue until the trace stabilizes.

3. Use the peak marker function to determine the maximum amplitude level.

4. The E.I.R.P spectral density used radiated test method. At a test site that has been validated using the procedures of ANSI C63.4 or the latest CISPR 16-1-4 for measurements above 1 GHz, so as to simulate a near free-space environment.

5.3.4 Test Result

Please refer to ANNEX A.4.

5.4 Conducted Emission

5.4.1 Limit

FCC §15.207, RSS-GEN, 8.8

For an intentional radiator that is designed to be connected to the public utility (AC) power line, the radio frequency voltage that is conducted back onto the AC power line on any frequency within the band 150 kHz to 30 MHz shall not exceed the limits in the following table, as measured using a 50μ H/50 Ω line impedance stabilization network (LISN).

Frequency range	Conducted Limit (dBµV)				
(MHz)	Quai-peak	Average			
0.15 - 0.50	66 to 56	56 to 46			
0.50 - 5	56	46			
0.50 - 30	60	50			

5.4.2 Test Setup

The section 4.4.2 (Diagram 2) test setup description was used for this test. The photo of test setup please refer to ANNEX B.

5.4.3 Test Procedure

The maximum conducted interference is searched using Peak (PK), if the emission levels more than the AV and QP limits, and that have narrow margins from the AV and QP limits will be re-measured with AV and QP detectors. Tests for both L phase and N phase lines of the power mains connected to the EUT are performed. Refer to recorded points and plots below.

5.4.4 Test Result

Please refer to ANNEX A.5.

5.5 Radiated Spurious Emissions and Band Edge (Restricted-band)

5.5.1 Limit

FCC §15.209 & 15.407(b), RSS-247, 6.2

Frequency (MHz)	Field Strength (µV/m)	Measurement Distance (m)
0.009 - 0.490	2400/F(kHz)	300
0.490 - 1.705	24000/F(kHz)	30
1.705 - 30.0	1.705 - 30.0 30 30	
30 - 88	100	3
88 - 216	150	3
216 - 960	200	3
Above 960	500	3

Note ¹: The Limit for radiated test was performed according to FCC Part 15C

Note ²: The tighter limit applies at the band edge.

Un-restricted band emissions							
Out Operating Band (MHz)	Limit						
5150 - 5250	e.i.r.p27 dBm (68.2 dBuV/m@3m)						
5250 - 5350	e.i.r.p27 dBm (68.2 dBuV/m@3m)						
5470 - 5725	e.i.r.p27 dBm (68.2 dBuV/m@3m)						
5725 - 5850							
	5600 5650 5700 5750 5800 5850 5900 5950 Frequency (MHz)						

Note: The following formula is used to convert the equipment isotropic radiated power (eirp) to field strength.

5.5.2 Test Setup

The section 4.4.3-4.4.5 (Diagram 3 - Diagram 5) test setup description was used for this test. The photo of test

setup please refer to ANNEX B.

5.5.3 Test Procedure

Since the emission limits are specified in terms of radiated field strength levels, measurements performed to demonstrate compliance have traditionally relied on a radiated test configuration. Radiated measurements remain the principal method for demonstrating compliance to the specified limits; however antenna-port conducted measurements are also now acceptable to demonstrate compliance (see below for details). When radiated measurements are utilized, test site requirements and procedures for maximizing and measuring radiated emissions that are described in ANSI C63.10 shall be followed.

Antenna-port conducted measurements may also be used as an alternative to radiated measurements for demonstrating compliance in the restricted frequency bands. If conducted measurements are performed, then proper impedance matching must be ensured and an additional radiated test for cabinet/case spurious emissions is required.

General Procedure for conducted measurements in restricted bands

a) Measure the conducted output power (in dBm) using the detector specified (see guidance regarding measurement procedures for determining quasi-peak, peak, and average conducted output power, respectively).

b) Add the maximum transmit antenna gain (in dBi) to the measured output power level to determine the EIRP level (see guidance on determining the applicable antenna gain)

c) Add the appropriate maximum ground reflection factor to the EIRP level (6 dB for frequencies \leq 30 MHz, 4.7 dB for frequencies between 30 MHz and 1000 MHz, inclusive and 0 dB for frequencies > 1000 MHz).

d) For devices with multiple antenna-ports, measure the power of each individual chain and sum the EIRP of all chains in linear terms (e.g., Watts, mW).

e) Convert the resultant EIRP level to an equivalent electric field strength using the following relationship:

E = EIRP - 20log D + 104.8

where:

E = electric field strength in $dB\mu V/m$,

EIRP = equivalent isotropic radiated power in dBm

D = specified measurement distance in meters.

f) Compare the resultant electric field strength level to the applicable limit.

g) Perform radiated spurious emission test.

Quasi-Peak measurement procedure

The specifications for measurements using the CISPR quasi-peak detector can be found in Publication 16 of the International Special Committee on Radio Frequency Interference (CISPR) of the International Electrotechnical Commission.

As an alternative to CISPR quasi-peak measurement, compliance can be demonstrated to the applicable emission limits using a peak detector.

Peak power measurement procedure

Peak emission levels are measured by setting the instrument as follows:

- a) RBW = as specified in Table 1.
- b) VBW \geq 3 x RBW.
- c) Detector = Peak.
- d) Sweep time = auto.
- e) Trace mode = max hold.

f) Allow sweeps to continue until the trace stabilizes. (Note that the required measurement time may be longer for low duty cycle applications).

Frequency	RBW		
9-150 kHz	200-300 Hz		
0.15-30 MHz	9-10 kHz		
30-1000 MHz	100-120 kHz		
> 1000 MHz	1 MHz		

Table 1—RBW as a function of frequency

If the peak-detected amplitude can be shown to comply with the average limit, then it is not necessary to perform a separate average measurement.

Trace averaging across on and off times of the EUT transmissions followed by duty cycle correction

If continuous transmission of the EUT (i.e., duty cycle \ge 98 percent) cannot be achieved and the duty cycle is constant (i.e., duty cycle variations are less than \pm 2 percent), then the following procedure shall be used:

a) The EUT shall be configured to operate at the maximum achievable duty cycle.

b) Measure the duty cycle, x, of the transmitter output signal as described in section 6.0.

c) RBW = 1 MHz (unless otherwise specified).

d) VBW \geq 3 x RBW.

e) Detector = RMS, if span/(# of points in sweep) \leq (RBW/2). Satisfying this condition may require increasing the number of points in the sweep or reducing the span. If this condition cannot be satisfied, then the detector mode shall be set to peak.

f) Averaging type = power (i.e., RMS).

1) As an alternative, the detector and averaging type may be set for linear voltage averaging.

2) Some instruments require linear display mode in order to use linear voltage averaging. Log or dB averaging shall not be used.

g) Sweep time = auto.

h) Perform a trace average of at least 100 traces.

i) A correction factor shall be added to the measurement results prior to comparing to the emission limit in order to compute the emission level that would have been measured had the test been performed at 100 percent duty cycle. The correction factor is computed as follows:

1) If power averaging (RMS) mode was used in step f), then the applicable correction factor is $10 \log(1/x)$, where x is the duty cycle.

2) If linear voltage averaging mode was used in step f), then the applicable correction factor is $20 \log(1/x)$, where

x is the duty cycle.

3) If a specific emission is demonstrated to be continuous (\geq 98 percent duty cycle) rather than turning on and off with the transmit cycle, then no duty cycle correction is required for that emission.

NOTE: Reduction of the measured emission amplitude levels to account for operational duty factor is not permitted. Compliance is based on emission levels occurring during transmission - not on an average across on and off times of the transmitter.

Determining the applicable transmit antenna gain

A conducted power measurement will determine the maximum output power associated with a restricted band emission; however, in order to determine the associated EIRP level, the gain of the transmitting antenna (in dBi) must be added to the measured output power (in dBm).

Since the out-of-band characteristics of the EUT transmit antenna will often be unknown, the use of a conservative antenna gain value is necessary. Thus, when determining the EIRP based on the measured conducted power, the upper bound on antenna gain for a device with a single RF output shall be selected as the maximum in-band gain of the antenna across all operating bands, or 2 dBi, whichever is greater. However, for devices that operate in multiple frequency bands while using the same transmit antenna, the highest gain of the antenna within the operating band nearest in frequency to the restricted band emission being measured may be used in lieu of the overall highest gain when the emission is at a frequency that is within 20 percent of the nearest band edge frequency, but in no case shall a value less than 2 dBi be used.

See KDB 662911 for guidance on calculating the additional array gain term when determining the effective antenna gain for a EUT with multiple outputs occupying the same or overlapping frequency ranges in the same band.

Radiated spurious emission test

An additional consideration when performing conducted measurements of restricted band emissions is that unwanted emissions radiating from the EUT cabinet, control circuits, power leads, or intermediate circuit elements will likely go undetected in a conducted measurement configuration. To address this concern, a radiated test shall be performed to ensure that emissions emanating from the EUT cabinet (rather than the antenna port) also comply with the applicable limits.

For these cabinet radiated spurious emission measurements the EUT transmit antenna may be replaced with a termination matching the nominal impedance of the antenna. Procedures for performing radiated measurements are specified in ANSI C63.10. All detected emissions shall comply with the applicable limits.

The measurement frequency range is from 30 MHz to the 10th harmonic of the fundamental frequency. The Turn Table is actuated to turn from 0° to 360°, and both horizontal and vertical polarizations of the Test Antenna are used to find the maximum radiated power. Mid channels on all channel bandwidth verified. Only the worst RB size/offset presented.

The power of the EUT transmitting frequency should be ignored.

All Spurious Emission tests were performed in X, Y, Z axis direction. And only the worst axis test condition was recorded in this test report.

Use the following spectrum analyzer settings:

Span = wide enough to fully capture the emission being measured RBW = 1 MHz for $f \ge 1$ GHz, 100 kHz for f < 1 GHz VBW \ge RBW Sweep = auto

Detector function = peak Trace = max hold

5.5.4 Test Result

Please refer to ANNEX A.6.

ANNEX A TEST RESULT

A.1 RF Output Power

Note ¹: For FCC standard, if transmitting antennas of directional gain greater than 6 dBi are used, all band maximum conducted output power shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

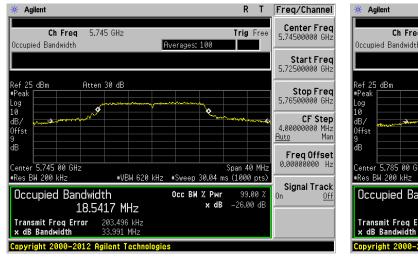
Note ²: For IC standard, the band IV (5725 - 5850 MHz) maximum conducted output power shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

Test Data

Conducted Power

Band IV (5725 - 5850 MHz)						
Mode Channel	Channel	Frequency	Conducted	Conducted	FCC/IC	Verdict
	Channel	(MHz)	Power (dBm)	Power (mW)	Limit (W)	verdict
11a	CH149	5745	17.50	56.23	1.0	Pass
11a	CH157	5785	17.12	51.52	1.0	Pass
11a	CH165	5825	17.31	53.83	1.0	Pass

A.2 Emission Bandwidth & 99% Bandwidth

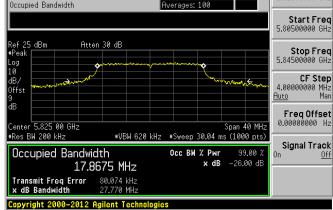

	Band IV (5725 - 5850 MHz)										
Mode	Channel	Frequency (MHz)	26 dB Bandwidth (MHz)	99% Bandwidth (MHz)							
11a	CH149	5745	33.99	18.38							
11a	CH157	5785	28.82	17.94							
11a	CH165	5825	27.77	17.84							

Center Freq

5 82500000 GHz

Test plots (26dB Bandwidth)

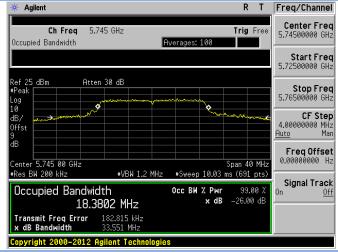
802.11a Band IV LOW CHANNEL

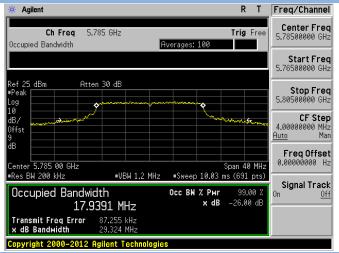


802.11a Band IV MIDDLE CHANNEL

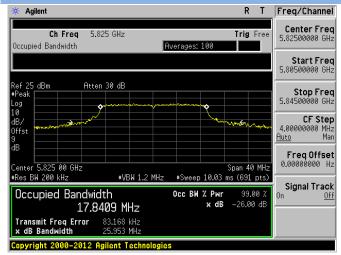
R T Freq/Channel 🔆 Agilent Ch Freq 5.825 GHz Trig Free Occupied Bandwidth Averages: 100

802.11a Band IV HIGH CHANNEL



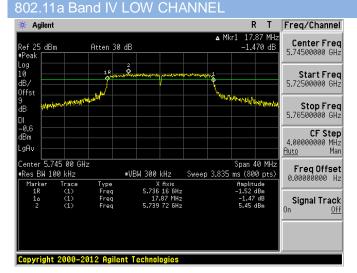


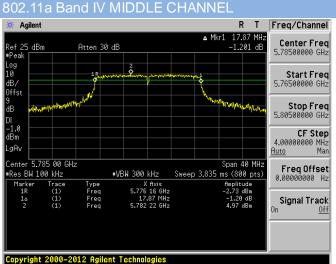
Test plots (99% Bandwidth)

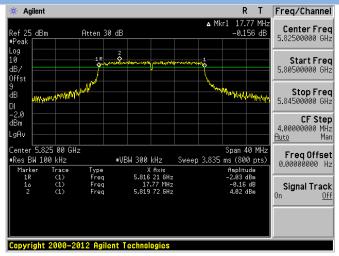

802.11a Band IV LOW CHANNEL

802.11a Band IV MIDDLE CHANNEL

802.11a Band IV HIGH CHANNEL



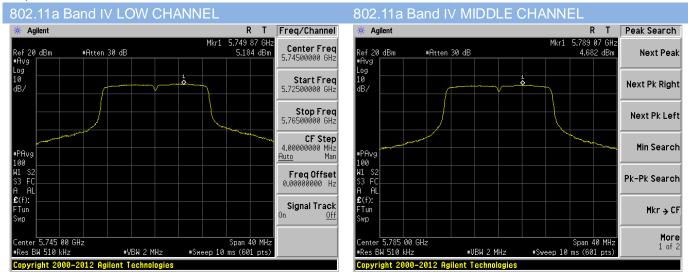

A.3 6 dB Bandwidth


Test Data

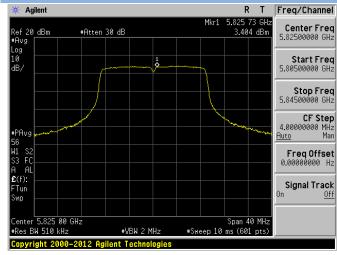
		Band N	/ (5725 - 5850 MHz)		
Mode	Channel	Frequency (MHz)	6 dB Bandwidth (MHz)	Limit (kHz)	Verdict
11a	CH149	5745	17.87	500	Pass
11a	CH157	5785	17.87	500	Pass
11a	CH165	5825	17.77	500	Pass

Test plots

802.11a Band IV HIGH CHANNEL

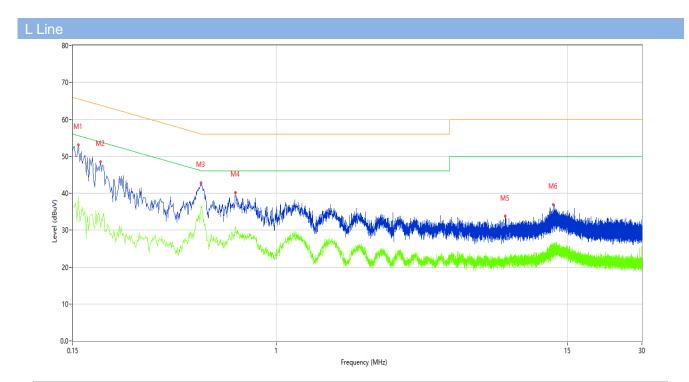


A.4 Power Spectral Density

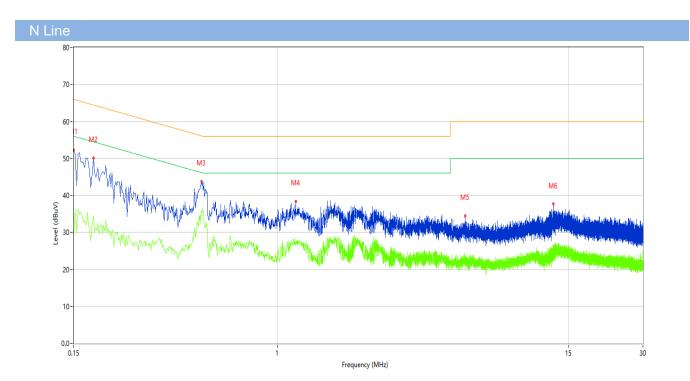

Test Data

	Band IV (5725 - 5850 MHz)										
Mode	ode Channel Frequency PSD FCC/IC Limit (MHz) (dBm/MHz) (dBm/500kHz)										
11a	CH149	5745	5.18	30	Pass						
11a	CH157	5785	4.68	30	Pass						
11a	CH165	5825	3.40	30	Pass						

Note: The RBW used in Band IV is 510 kHz, and the PSD factor is: 10*log (500 kHz/RBW) = -0.09 dBm. <u>Test plots</u>



802.11a Band IV LOW CHANNEL

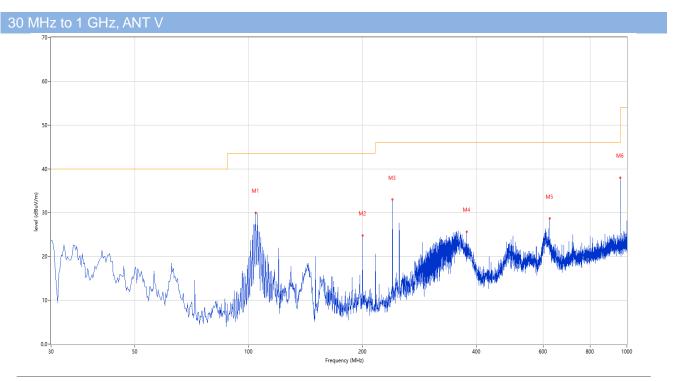


A.5 Conducted Emissions

No.	Frequency	Results	Factor	Limit	Over Limit	Detector	Line	Verdict
	(MHz)	(dBuV)	(dB)	(dBuV)	(dB)			
1*	0.158	50.49	11.12	65.57	-15.08	Peak	L	Pass
1**	0.158	39.04	11.12	55.57	-16.53	AV	L	Pass
2*	0.194	45.38	11.21	63.86	-18.48	Peak	L	Pass
2**	0.194	30.54	11.21	53.86	-23.32	AV	L	Pass
3*	0.494	40.32	11.11	56.10	-15.78	Peak	L	Pass
3**	0.494	35.80	11.11	46.10	-10.30	AV	L	Pass
4*	0.682	35.04	11.20	56.00	-20.96	Peak	L	Pass
4**	0.682	30.98	11.20	46.00	-15.02	AV	L	Pass
5*	8.400	24.32	11.06	60.00	-35.68	Peak	L	Pass
5**	8.400	22.96	11.06	50.00	-27.04	AV	L	Pass
6*	13.126	30.44	11.13	60.00	-29.56	Peak	L	Pass
6**	13.126	25.96	11.13	50.00	-24.04	AV	L	Pass

No.	Frequency	Results	Factor	Limit	Over Limit	Detector	Line	Verdict
	(MHz)	(dBuV)	(dB)	(dBuV)	(dB)			
1*	0.150	50.54	11.16	66.00	-15.46	Peak	N	Pass
1**	0.150	29.63	11.16	56.00	-26.37	AV	N	Pass
2*	0.180	46.70	11.14	64.49	-17.79	Peak	Ν	Pass
2**	0.180	34.42	11.14	54.49	-20.07	AV	N	Pass
3*	0.492	40.72	11.11	56.13	-15.41	Peak	N	Pass
3**	0.492	35.92	11.11	46.13	-10.21	AV	N	Pass
4*	1.186	32.03	11.22	56.00	-23.97	Peak	N	Pass
4**	1.186	28.20	11.22	46.00	-17.80	AV	N	Pass
5*	5.742	25.36	11.19	60.00	-34.64	Peak	N	Pass
5**	5.742	23.25	11.19	50.00	-26.75	AV	N	Pass
6*	13.030	29.47	11.06	60.00	-30.53	Peak	N	Pass
6**	13.030	25.66	11.06	50.00	-24.34	AV	N	Pass

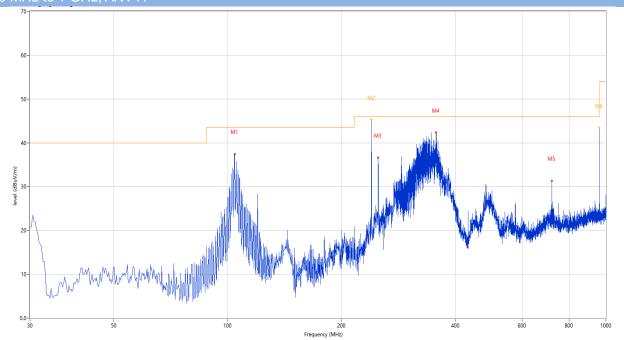
A.6 Radiated Spurious Emissions and Band Edge (Restricted-band)


Test Data

Note ¹: The symbol of "--" in the table which means not application.

Note ²: For the test data above 1 GHz, According the ANSI C63.4, where limits are specified for both average and peak (or quasi-peak) detector functions, if the peak (or quasi-peak) measured value complies with the average limit, it is unnecessary to perform an average measurement.

Note ³: The low frequency, which started from 9 kHz to 30 MHz, was pre-scanned and the result which was 20 dB lower than the limit line per 15.31(o) was not reported.


Note ⁴: The EUT is working in the Normal link mode below 1 GHz.

No.	Frequency	Results	Factor	Limit	Over Limit	Detector	Table	Height	Antenna	Verdict
	(MHz)	(dBuV/m)	(dB)	(dBuV/m)	(dB)		(Degree)	(cm)		
1	104.448	29.99	-25.66	43.5	-13.51	Peak	203.00	100	Vertical	Pass
2	199.992	24.82	-25.81	43.5	-18.68	Peak	321.00	100	Vertical	Pass
3	240.005	32.96	-24.75	46.0	-13.04	Peak	173.00	100	Vertical	Pass
4	376.775	25.58	-21.98	46.0	-20.42	Peak	350.00	100	Vertical	Pass
5	625.095	28.64	-16.06	46.0	-17.36	Peak	360.00	100	Vertical	Pass
6	959.987	37.97	-10.48	46.0	-8.03	Peak	203.00	100	Vertical	Pass

30 MHz to 1 GHz, ANT H

No.	Frequency	Results	Factor	Limit	Over Limit	Detector	Table	Height	Antenna	Verdict
	(MHz)	(dBuV/m)	(dB)	(dBuV/m)	(dB)		(Degree)	(cm)		
1	104.448	37.44	-25.66	43.5	-6.06	Peak	114.00	200	Horizontal	Pass
2	240.005	46.57	-24.75	46.0	0.57	Peak	207.00	104	Horizontal	N/A
2*	240.005	45.32	-24.75	46.0	-0.68	QP	207.00	104	Horizontal	Pass
3	249.947	36.62	-24.72	46.0	-9.38	Peak	207.00	100	Horizontal	Pass
4	355.678	42.34	-21.96	46.0	-3.66	Peak	261.00	100	Horizontal	Pass
5	719.912	31.32	-14.57	46.0	-14.68	Peak	59.00	100	Horizontal	Pass
6	960.022	45.69	-10.48	46.0	-0.31	Peak	113.00	100	Horizontal	N/A
6*	960.022	43.47	-10.48	46.0	-2.53	QP	113.00	100	Horizontal	Pass

Note 1: The spurious above 18GHz is noise only, do not show on the report.

1 GHz to 18 GHz, ANT V Band IV 11a Low channel

No.	Frequency	Results	Factor	Limit	Over Limit	Detector	Table	Height	Antenna	Verdict
	(MHz)	(dBuV/m)	(dB)	(dBuV/m)	(dB)		(Degree)	(cm)		
1	1260.000	38.73	-16.22	68.2	-29.47	Peak	351.00	100	Vertical	Pass
1**	1260.000	28.78	-16.22	54.0	-25.22	AV	351.00	100	Vertical	Pass
2	2018.500	42.44	-14.21	68.2	-25.76	Peak	154.00	100	Vertical	Pass
2**	2018.500	25.22	-14.21	54.0	-28.78	AV	154.00	100	Vertical	Pass
3	5182.000	53.15	-1.93	68.2	-15.05	Peak	54.00	100	Vertical	Pass
3**	5182.000	44.49	-1.93	54.0	-9.51	AV	54.00	100	Vertical	Pass
4	5749.000	106.89	-0.72	68.2	38.69	Peak	140.00	100	Vertical	N/A
4**	5749.000	103.53	-0.72	54.0	49.53	AV	140.00	100	Vertical	N/A
5	11490.750	56.78	7.67	74.0	-17.22	Peak	147.00	100	Vertical	Pass
5**	11490.750	39.82	7.67	54.0	-14.18	AV	147.00	100	Vertical	Pass
6	14375.500	54.36	12.65	68.2	-13.84	Peak	42.00	100	Vertical	Pass
6**	14375.500	43.67	12.65	54.0	-10.33	AV	42.00	100	Vertical	Pass

1 GHz to 18 GHz, ANT H Band IV 11a Low channel

No.	Frequency	Results	Factor	Limit	Over Limit	Detector	Table	Height	Antenna	Verdict
	(MHz)	(dBuV/m)	(dB)	(dBuV/m)	(dB)		(Degree)	(cm)		
1	1333.000	40.11	-15.91	74.0	-33.89	Peak	44.00	100	Horizontal	Pass
1**	1333.000	24.19	-15.91	54.0	-29.81	AV	44.00	100	Horizontal	Pass
2	2411.000	44.96	-11.83	68.2	-23.24	Peak	71.00	100	Horizontal	Pass
2**	2411.000	24.15	-11.83	54.0	-29.85	AV	71.00	100	Horizontal	Pass
3	2820.000	44.00	-9.17	74.0	-30.00	Peak	71.00	100	Horizontal	Pass
3**	2820.000	31.39	-9.17	54.0	-22.61	AV	71.00	100	Horizontal	Pass
4	5748.000	107.06	-0.75	68.2	38.86	Peak	160.00	100	Horizontal	N/A
4**	5748.000	102.85	-0.75	54.0	48.85	AV	160.00	100	Horizontal	N/A
5	11490.750	51.84	7.67	74.0	-22.16	Peak	347.00	100	Horizontal	Pass
5**	11490.750	39.73	7.67	54.0	-14.27	AV	347.00	100	Horizontal	Pass
6	14598.250	54.33	12.46	68.2	-13.87	Peak	190.00	100	Horizontal	Pass
6**	14598.250	44.60	12.46	54.0	-9.40	AV	190.00	100	Horizontal	Pass

1 GHz to 18 GHz, ANT V Band IV 11a MID channel

No.	Frequency	Results	Factor	Limit	Over Limit	Detector	Table	Height	Antenna	Verdict
	(MHz)	(dBuV/m)	(dB)	(dBuV/m)	(dB)		(Degree)	(cm)		
1	1621.000	42.58	-16.40	74.0	-31.42	Peak	18.00	100	Vertical	Pass
1**	1621.000	32.33	-16.40	54.0	-21.67	AV	18.00	100	Vertical	Pass
2	2000.000	47.21	-14.12	68.2	-20.99	Peak	358.00	100	Vertical	Pass
2**	2000.000	32.03	-14.12	54.0	-21.97	AV	358.00	100	Vertical	Pass
3	2458.500	44.42	-11.79	68.2	-23.78	Peak	229.00	100	Vertical	Pass
3**	2458.500	30.86	-11.79	54.0	-23.14	AV	229.00	100	Vertical	Pass
4	5783.000	108.61	-1.21	68.2	40.41	Peak	159.00	100	Vertical	N/A
4**	5783.000	100.97	-1.21	54.0	46.97	AV	159.00	100	Vertical	N/A
5	10712.500	50.87	6.90	74.0	-23.13	Peak	141.00	100	Vertical	Pass
5**	10712.500	41.93	6.90	54.0	-12.07	AV	141.00	100	Vertical	Pass
6	14590.000	56.04	12.45	68.2	-12.16	Peak	77.00	100	Vertical	Pass
6**	14590.000	48.08	12.45	54.0	-5.92	AV	77.00	100	Vertical	Pass

1 GHz to 18 GHz, ANT H Band IV 11a MID channel

No.	Frequency	Results	Factor	Limit	Over Limit	Detector	Table	Height	Antenna	Verdict
	(MHz)	(dBuV/m)	(dB)	(dBuV/m)	(dB)		(Degree)	(cm)		
1	1346.000	38.31	-15.65	74.0	-35.69	Peak	288.00	100	Horizontal	Pass
1**	1346.000	27.20	-15.65	54.0	-26.80	AV	288.00	100	Horizontal	Pass
2	2000.000	46.61	-14.12	68.2	-21.59	Peak	31.00	100	Horizontal	Pass
2**	2000.000	32.03	-14.12	54.0	-21.97	AV	31.00	100	Horizontal	Pass
3	2429.000	45.06	-12.37	68.2	-23.14	Peak	72.00	100	Horizontal	Pass
3**	2429.000	39.44	-12.37	54.0	-14.56	AV	72.00	100	Horizontal	Pass
4	5780.000	108.87	-1.18	68.2	40.67	Peak	31.00	100	Horizontal	N/A
4**	5780.000	102.11	-1.18	54.0	48.11	AV	31.00	100	Horizontal	N/A
5	11435.750	51.59	6.76	74.0	-22.41	Peak	69.00	100	Horizontal	Pass
5**	11435.750	42.65	6.76	54.0	-11.35	AV	69.00	100	Horizontal	Pass
6	14570.750	56.97	11.86	68.2	-11.23	Peak	194.00	100	Horizontal	Pass
6**	14570.750	47.06	11.86	54.0	-6.94	AV	194.00	100	Horizontal	Pass

1 GHz to 18 GHz, ANT V Band IV 11a HIGH channel

No.	Frequency	Results	Factor	Limit	Over Limit	Detector	Table	Height	Antenna	Verdict
	(MHz)	(dBuV/m)	(dB)	(dBuV/m)	(dB)		(Degree)	(cm)		
1	1621.000	41.07	-16.40	74.0	-32.93	Peak	361.00	100	Vertical	Pass
1**	1621.000	33.46	-16.40	54.0	-20.54	AV	361.00	100	Vertical	Pass
2	2000.000	46.34	-14.12	68.2	-21.86	Peak	345.00	100	Vertical	Pass
2**	2000.000	33.71	-14.12	54.0	-20.29	AV	345.00	100	Vertical	Pass
3	2428.500	46.14	-12.37	68.2	-22.06	Peak	54.00	100	Vertical	Pass
3**	2428.500	40.44	-12.37	54.0	-13.56	AV	54.00	100	Vertical	Pass
4	5830.000	109.25	-0.89	68.2	41.05	Peak	158.00	100	Vertical	N/A
4**	5830.000	101.83	-0.89	54.0	47.83	AV	158.00	100	Vertical	N/A
5	10822.500	51.26	7.17	74.0	-22.74	Peak	188.00	100	Vertical	Pass
5**	10822.500	41.52	7.17	54.0	-12.48	AV	188.00	100	Vertical	Pass
6	14567.999	56.20	11.77	68.2	-12.00	Peak	107.00	100	Vertical	Pass
6**	14567.999	47.40	11.77	54.0	-6.60	AV	107.00	100	Vertical	Pass

1 GHz to 18 GHz, ANT H Band IV 11a HIGH channel

No.	Frequency	Results	Factor	Limit	Over Limit	Detector	Table	Height	Antenna	Verdict
	(MHz)	(dBuV/m)	(dB)	(dBuV/m)	(dB)		(Degree)	(cm)		
1	1197.500	41.97	-17.14	74.0	-32.03	Peak	294.00	100	Horizontal	Pass
1**	1197.500	24.92	-17.14	54.0	-29.08	AV	294.00	100	Horizontal	Pass
2	1999.500	45.06	-14.34	68.2	-23.14	Peak	16.00	100	Horizontal	Pass
2**	1999.500	29.94	-14.34	54.0	-24.06	AV	16.00	100	Horizontal	Pass
3	2460.000	44.15	-11.53	68.2	-24.05	Peak	46.00	100	Horizontal	Pass
3**	2460.000	38.57	-11.53	54.0	-15.43	AV	46.00	100	Horizontal	Pass
4	5818.000	109.16	-0.98	68.2	40.96	Peak	51.00	100	Horizontal	N/A
4**	5818.000	100.11	-0.98	54.0	46.11	AV	51.00	100	Horizontal	N/A
5	11405.500	51.26	7.12	74.0	-22.74	Peak	59.00	100	Horizontal	Pass
5**	11405.500	42.59	7.12	54.0	-11.41	AV	59.00	100	Horizontal	Pass
6	14581.750	56.08	12.24	68.2	-12.12	Peak	320.00	100	Horizontal	Pass
6**	14581.750	47.99	12.24	54.0	-6.01	AV	320.00	100	Horizontal	Pass

A.6.2 Band Edge (Restricted-band)

Test Band	Mode	Channel	Verdict
Band IV	802.11a	Low	Pass
Band IV	802.11a	High	Pass

Test Plots

802.11a Band IV LOW CHANNEL

802.11a Band IV HIGH CHANNE

Keysight Spectrum Analyzer - Swept SA B R L RF PRESEL 50 Q AC DIT REF SOURCE OFF ALIGN AUTO LIGHT 11:04:04 AM		Keysight Spectrum Analyzer - Swept SA SA INT REF SOURCE OFF ALIGN AUTO LIGHT 10:01:21 AM Jul 16, 2020 RL RF PRESEL 50 Ω AC	- 6 E
Marker 1 5.65000000000 GHz PASS NFE PROFisst Trig: Free Run Avg(Hold:>101/101 Tree ProFisst Control ProFisst	Trace/Detector	Marker 2 5.950594500000 GHz PNO: Fast C Trig: Free Run Avg Hold:>100/100 TRACE 25.151	Marker Select Marker
Ref Offset -2.35 dB Mkr1 5.650 000 GHz 10 dB/dlv Ref 110.00 dBµV 51.154 dBµV	1*	Ref Offset -0.94 dB Mkr2 5.950 59 GHz 10 dB/div Ref 106.05 dBμV 61.182 dBμV	2
Trace 1 Pass 00 00 00	Clear Write	200 Trace 1 Pass	Normal
700 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Trace Average		Delta
4800 3800 2800	Max Hold	36.0	Fixed₿
Start 5,60000 GHz Stop 5,72500 GHz #Res BW 1.0 MHz #VBW 3.0 MHz Sweep 1.000 ms (1001 pts) work Mode Tre, SoL X Y Function Filler Function walle	Min Hold	Start 5.85000 GHz Stop 5.99925 GHz #Res BW 1.0 MHz #VBW 3.0 MHz Sweep 1.000 ms (1001 pts) WRK MODE TRCI SCI X Y FUNCTION FUNCTION WDF1 FUNCTION VALUE ~	Of
N 1 f 5.650 000 GHz 51.154 dBµV	View Blank Trace On	1 N 1 f 5.925 00 GHz 57.790 dBuV N 1 f 5.960 59 GHz 61.182 dBuV 3 4 5 5 5 5 GHz 61.182 dBuV	Properties►
	More 1 of 3		More 1 of 2
ISG		MSG STATUS	

ANNEX B TEST SETUP PHOTOS

Please refer the document "BL-EC2060327-AR.PDF".

ANNEX C EUT EXTERNAL PHOTOS

Please refer the document "BL-EC2060327-AW.PDF".

ANNEX D EUT INTERNAL PHOTOS

Please refer the document "BL-EC2060327-AI.PDF".

--END OF REPORT--