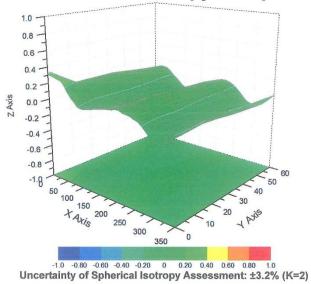

Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2218 Fax: +86-10-62304633-2209 E-mail: cttl@chinattl.com Http://www.chinattl.cn

Conversion Factor Assessment


f=1450 MHz, WGLS R14(H_convF)

f=5750 MHz, WGLS R58(H_convF)

Deviation from Isotropy in Liquid

Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2218 Fax: +86-10-62304633-2209
E-mail: cttl@chinattl.com Http://www.chinattl.cn

DASY/EASY - Parameters of Probe: EX3DV4 - SN: 7340

Other Probe Parameters

Sensor Arrangement	Triangular
Connector Angle (°)	128.7
Mechanical Surface Detection Mode	enabled
Optical Surface Detection Mode	disable
Probe Overall Length	337mm
Probe Body Diameter	10mm
Tip Length	9mm
Tip Diameter	2.5mm
Probe Tip to Sensor X Calibration Point	1mm
Probe Tip to Sensor Y Calibration Point	1mm
Probe Tip to Sensor Z Calibration Point	1mm
Recommended Measurement Distance from Surface	1.4mm

F.2 Data Acquisition Electronics

In Collaboration with CALIBRATION LABORATORY

E-mail: cttl@chinattl.com

 Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, China

 Tel: +86-10-62304633-2218
 Fax: +86-10-62304633-2209

 E-mail: cttl@chinattl.com
 Http://www.chinattl.cn

Client :

baluntek

Certificate No: Z17-97105

CALIBRATION CERTIFICATE

Object

DAE4 - SN: 685

Calibration Procedure(s)

FF-Z11-002-01

Calibration Procedure for the Data Acquisition Electronics

Calibration date:

August 02, 2017

This calibration Certificate documents the traceability to national standards, which realize the physical units of measurements(SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate.

All calibrations have been conducted in the closed laboratory facility: environment temperature(22±3) °C and humidity<70%.

Calibration Equipment used (M&TE critical for calibration)

Primary Standards ID#

Cal Date(Calibrated by, Certificate No.)

Scheduled Calibration

Process Calibrator 753

1971018

27-Jun-17 (CTTL, No.J17X05859)

June-18

Calibrated by:

Name

Function

Signature

Yu Zongying

SAR Test Engineer

Reviewed by:

Lin Hao

SAR Test Engineer

Approved by:

Qi Dianyuan

SAR Project Leader

Issued: August 03, 2017

This calibration certificate shall not be reproduced except in full without written approval of the laboratory.

Certificate No: Z17-97105

Page 1 of 3

Report No.: BL-EC1810138-701

 Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, China

 Tcl: +86-10-62304633-2218
 Fax: +86-10-62304633-2209

 E-mail: cttl@chinattl.com
 Http://www.chinattl.cn

Glossary:

DAE d

Connector angle

data acquisition electronics

information used in DASY system to align probe sensor X

to the robot coordinate system.

Methods Applied and Interpretation of Parameters:

- DC Voltage Measurement: Calibration Factor assessed for use in DASY system by comparison with a calibrated instrument traceable to national standards. The figure given corresponds to the full scale range of the voltmeter in the respective range.
- Connector angle: The angle of the connector is assessed measuring the angle mechanically by a tool inserted. Uncertainty is not required.
- The report provide only calibration results for DAE, it does not contain other performance test results.

Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2218 Fax: +86-10-62304633-2209 E-mail: cttl@chinattl.com Http://www.chinattl.cn E-mail: cttl@chinattl.com

DC Voltage Measurement

A/D - Converter Resolution nominal

High Range: 1LSB = 6.1µV, full range = -100...+300 mV

Low Range: 1LSB = 61nV, full range = -1......+3mV

DASY measurement parameters: Auto Zero Time: 3 sec; Measuring time: 3 sec

Calibration Factors	X	Υ	Z
High Range	403.797 ± 0.15% (k=2)	405.048 ± 0.15% (k=2)	404.598 ± 0.15% (k=2)
Low Range	3.98747 ± 0.7% (k=2)	3.94065 ± 0.7% (k=2)	3.93713 ± 0.7% (k=2)

Connector Angle

Connector Angle to be used in DASY system	161.5° ± 1 °

F.3 2450 MHz Dipole

Tel: +86-10-62304633-2079 E-mail: cttl@chinattl.com

Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2079 Fax: +86-10-62304633-2504 http://www.chinattl.cn

Certificate No:

Z17-97036

CALIBRATION CERTIFICATE

baluntek

Object

D2450V2 - SN: 952

Calibration Procedure(s)

Client

FD-Z11-003-01

Calibration Procedures for dipole validation kits

Calibration date:

March 21, 2017

This calibration Certificate documents the traceability to national standards, which realize the physical units of measurements(SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate.

All calibrations have been conducted in the closed laboratory facility: environment temperature(22±3)°C and humidity<70%.

Calibration Equipment used (M&TE critical for calibration)

Primary Standards	ID#	Cal Date(Calibrated by, Certificate No.)	Scheduled Calibration
Power Meter NRP2	101919	27-Jun-16 (CTTL, No.J16X04777)	Jun-17
Power sensor NRP-Z91	101547	27-Jun-16 (CTTL, No.J16X04777)	Jun-17
Reference Probe EX3DV4	SN 3617	23-Jan-17(SPEAG,No.EX3-3617_Jan17)	Jan-18
DAE4	SN 777	22-Aug-16(CTTL-SPEAG,No.Z16-97138)	Aug-17
Secondary Standards	ID#	Cal Date(Calibrated by, Certificate No.)	Scheduled Calibration
Signal Generator E4438C	MY49071430	13-Jan-17 (CTTL, No.J17X00286)	Jan-18
Network Analyzer E5071C	MY46110673	13-Jan-17 (CTTL, No.J17X00285)	Jan-18

Calibrated by:

Name Function Zhao Jing SAR Test Engineer Signature

Reviewed by:

Qi Dianyuan SAR Project Leader

Approved by:

Deputy Director of the laboratory Lu Bingsong

Issued: March 25, 2017.

This calibration certificate shall not be reproduced except in full without written approval of the laboratory

Certificate No: Z17-97036

Page 1 of 8

In Collaboration with

S D E A G

CAURPATION LABORATORY

Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2079 Fax: +86-10-62304633-2504 http://www.chinattl.cn

Glossary:

TSL ConvF N/A tissue simulating liquid sensitivity in TSL / NORMx,y,z not applicable or not measured

Calibration is Performed According to the Following Standards:

- a) IEEE Std 1528-2013, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", June 2013
- b) IEC 62209-1, "Procedure to measure the Specific Absorption Rate (SAR) For hand-held devices used in close proximity to the ear (frequency range of 300MHz to 3GHz)", February 2005
- c) IEC 62209-2, "Procedure to measure the Specific Absorption Rate (SAR) For wireless communication devices used in close proximity to the human body (frequency range of 30MHz to 6GHz)", March 2010
- d) KDB865664, SAR Measurement Requirements for 100 MHz to 6 GHz

Additional Documentation:

e) DASY4/5 System Handbook

Methods Applied and Interpretation of Parameters:

- Measurement Conditions: Further details are available from the Validation Report at the end
 of the certificate. All figures stated in the certificate are valid at the frequency indicated.
- Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed
 point exactly below the center marking of the flat phantom section, with the arms oriented
 parallel to the body axis.
- Feed Point Impedance and Return Loss: These parameters are measured with the dipole
 positioned under the liquid filled phantom. The impedance stated is transformed from the
 measurement at the SMA connector to the feed point. The Return Loss ensures low
 reflected power. No uncertainty required.
- Electrical Delay: One-way delay between the SMA connector and the antenna feed point.
 No uncertainty required.
- SAR measured: SAR measured at the stated antenna input power.
- SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector.
- SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result.

The reported uncertainty of measurement is stated as the standard uncertainty of Measurement multiplied by the coverage factor k=2, which for a normal distribution Corresponds to a coverage probability of approximately 95%.

Certificate No: Z17-97036

Page 2 of 8

S P E A G

Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2079 Fax: +86-10-62304633-2504 http://www.chinattl.cn

Measurement Conditions

DASY system configuration, as far as not given on page 1.

DASY Version	DASY52	52.8.8.1258
Extrapolation	Advanced Extrapolation	
Phantom	Triple Flat Phantom 5.1C	
Distance Dipole Center - TSL	10 mm	with Spacer
Zoom Scan Resolution	dx, dy, dz = 5 mm	
Frequency	2450 MHz ± 1 MHz	

Head TSL parameters

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	22.0 °C	39.2	1.80 mho/m
Measured Head TSL parameters	(22.0 ± 0.2) °C	39.0 ± 6 %	1.77 mho/m ± 6 %
Head TSL temperature change during test	<1.0 °C		

SAR result with Head TSL

SAR averaged over 1 cm^3 (1 g) of Head TSL	Condition	
SAR measured	250 mW input power	13.0 mW / g
SAR for nominal Head TSL parameters	normalized to 1W	52.4 mW /g ± 20.8 % (k=2)
SAR averaged over 10 cm ³ (10 g) of Head TSL	Condition	
SAR measured	250 mW input power	6.04 mW / g
SAR for nominal Head TSL parameters	normalized to 1W	24.3 mW /g ± 20.4 % (k=2)

Body TSL parameters
The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Body TSL parameters	22.0 °C	52.7	1.95 mho/m
Measured Body TSL parameters	(22.0 ± 0.2) °C	52.3 ± 6 %	1.93 mho/m ± 6 %
Body TSL temperature change during test	<1.0 °C	PESSE	222

SAR result with Body TSL

SAR averaged over 1 cm^3 (1 g) of Body TSL	Condition	
SAR measured	250 mW input power	12.6 mW / g
SAR for nominal Body TSL parameters	normalized to 1W	50.5 mW /g ± 20.8 % (k=2)
SAR averaged over 10 cm ³ (10 g) of Body TSL	Condition	
SAR measured	250 mW input power	5.82 mW / g
SAR for nominal Body TSL parameters	normalized to 1W	23.3 mW /g ± 20.4 % (k=2)

Certificate No: Z17-97036

S P E A G
CALIBRATION LABORATORY

Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2079 Fax: +86-10-62304633-2504 http://www.chinattl.cn

Appendix (Additional assessments outside the scope of CNAS L0570)

Antenna Parameters with Head TSL

Impedance, transformed to feed point	52.0Ω+ 5.94jΩ
Return Loss	- 24.3dB

Antenna Parameters with Body TSL

Impedance, transformed to feed point	48.7Ω+ 6.25jΩ	
Return Loss	- 23.8dB	

General Antenna Parameters and Design

Electrical Delay (one direction)	1.257 ns
----------------------------------	----------

After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured.

The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard.

No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged.

Additional EUT Data

Manufactured by	SPEAG
-----------------	-------

Certificate No: Z17-97036

Page 4 of 8

S P e a g

Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2079 Fax: +86-10-62304633-2504 http://www.chinattl.cn

DASY5 Validation Report for Head TSL

Date: 03.21.2017

Test Laboratory: CTTL, Beijing, China

DUT: Dipole 2450 MHz; Type: D2450V2; Serial: D2450V2 - SN: 952

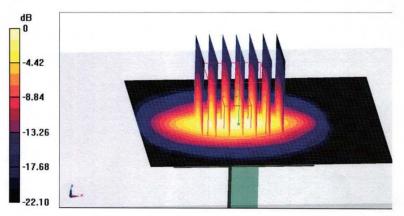
Communication System: UID 0, CW; Frequency: 2450 MHz; Duty Cycle: 1:1 Medium parameters used: f = 2450 MHz; $\sigma = 1.768$ S/m; $\epsilon r = 39.02$; $\rho = 1000$ kg/m3

Phantom section: Right Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007)

DASY5 Configuration:

- Probe: EX3DV4 SN3617; ConvF(7.74, 7.74, 7.74); Calibrated: 1/23/2017;
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn777; Calibrated: 8/22/2016
- Phantom: Triple Flat Phantom 5.1C; Type: QD 000 P51 CA; Serial: 1161/1
- Measurement SW: DASY52, Version 52.8 (8); SEMCAD X Version 14.6.10 (7372)


Dipole Calibration/Zoom Scan (7x7x7) (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 104.6 V/m; Power Drift = 0.02 dB

Peak SAR (extrapolated) = 27.0 W/kg

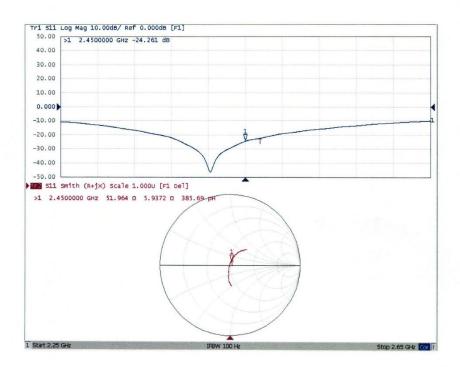
SAR(1 g) = 13 W/kg; SAR(10 g) = 6.04 W/kg

Maximum value of SAR (measured) = 21.7 W/kg

0 dB = 21.7 W/kg = 13.36 dBW/kg

Certificate No: Z17-97036

Page 5 of 8



CALIBRATION LABORATORY

Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2079 Fax: +86-10-62304633-2504 http://www.chinattl.cn

Impedance Measurement Plot for Head TSL

S P E A G

Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2079 Fax: +86-10-62304633-2504 http://www.chinattl.cn

DASY5 Validation Report for Body TSL

Date: 03.21.2017

Test Laboratory: CTTL, Beijing, China

DUT: Dipole 2450 MHz; Type: D2450V2; Serial: D2450V2 - SN: 952

Communication System: UID 0, CW; Frequency: 2450 MHz; Duty Cycle: 1:1 Medium parameters used: f = 2450 MHz; $\sigma = 1.931$ S/m; $\epsilon_r = 52.27$; $\rho = 1000$ kg/m³

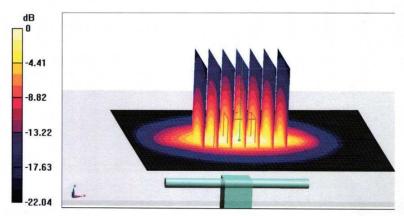
Phantom section: Center Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007)

DASY5 Configuration:

- Probe: EX3DV4 SN3617; ConvF(7.8, 7.8, 7.8); Calibrated: 1/23/2017;
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn777; Calibrated: 8/22/2016
- Phantom: Triple Flat Phantom 5.1C; Type: QD 000 P51 CA; Serial: 1161/1
- Measurement SW: DASY52, Version 52.8 (8); SEMCAD X Version 14.6.10 (7372)

Dipole Calibration/Zoom Scan (7x7x7) (7x7x7)/Cube 0: Measurement grid: dx=5mm,


dy=5mm, dz=5mm

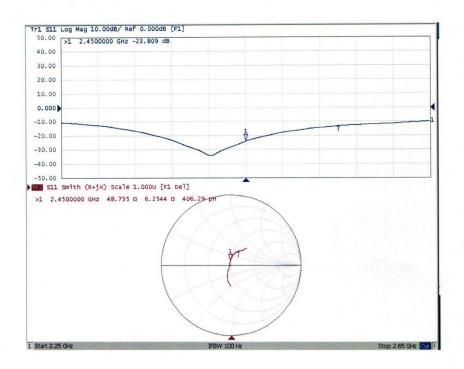
Reference Value = 96.07 V/m; Power Drift = -0.04 dB

Peak SAR (extrapolated) = 26.4 W/kg

SAR(1 g) = 12.6 W/kg; SAR(10 g) = 5.82 W/kg

Maximum value of SAR (measured) = 20.9 W/kg

0 dB = 20.9 W/kg = 13.20 dBW/kg



S P E A G CALIBRATION LABORATORY

Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2079 Fax: +86-10-62304633-2504 http://www.chinattl.cn

Impedance Measurement Plot for Body TSL

F.4 5GHz Dipole

Client

baluntek

Certificate No:

Z17-97083

CALIBRATION CERTIFICATE

Object

D5GHzV2 - SN: 1200

Calibration Procedure(s)

FD-Z11-003-01

Calibration Procedures for dipole validation kits

Calibration date:

June 29, 2017

This calibration Certificate documents the traceability to national standards, which realize the physical units of measurements(SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate.

All calibrations have been conducted in the closed laboratory facility: environment temperature (22 \pm 3) $^{\circ}$ C and humidity < 70%.

Calibration Equipment used (M&TE critical for calibration)

Primary Standards	ID#	Cal Date(Calibrated by, Certificate No.)	Scheduled Calibration
Power Meter NRVD	102083	22-Sep-16 (CTTL, No.J16X06809)	Sep-17
Power sensor NRV-Z5	100595	22-Sep-16 (CTTL, No.J16X06809)	Sep-17
ReferenceProbe EX3DV4	SN 7433	26-Sep-16(SPEAG,No.EX3-7433_Sep16)	Sep-17
DAE4	SN 1331	19-Jan-17(CTTL-SPEAG,No.Z17-97015)	Jan-18
Secondary Standards	ID#	Cal Date(Calibrated by, Certificate No.)	Scheduled Calibration
Signal Generator E4438C	MY49071430	13-Jan-17 (CTTL, No.J17X00286)	Jan-18
NetworkAnalyzer E5071C	MY46110673	13-Jan-17 (CTTL, No.J17X00285)	Jan-18
	l .		

	Name	Function	Signature
Calibrated by:	Zhao Jing	SAR Test Engineer	基 着
Reviewed by:	Lin Hao	SAR Test Engineer	#136
Approved by:	Qi Dianyuan	SAR Project Leader	and.

Issued: July 1, 2017

This calibration certificate shall not be reproduced except in full without written approval of the laboratory.

Certificate No: Z17-97083

Page 1 of 14

Glossary:

TSL tissue simulating liquid
ConvF sensitivity in TSL / NORMx,y,z
N/A not applicable or not measured

Calibration is Performed According to the Following Standards:

- a) IEEE Std 1528-2013, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", June 2013
- b) IEC 62209-1, "Measurement procedure for assessment of specific absorption rate of human exposure to radio frequency fields from hand-held and body-mounted wireless communication devices- Part 1: Device used next to the ear (Frequency range of 300MHz to 6GHz)", July 2016
- c) IEC 62209-2, "Procedure to measure the Specific Absorption Rate (SAR) For wireless communication devices used in close proximity to the human body (frequency range of 30MHz to 6GHz)", March 2010
- d) KDB865664, SAR Measurement Requirements for 100 MHz to 6 GHz

Additional Documentation:

e) DASY4/5 System Handbook

Methods Applied and Interpretation of Parameters:

- Measurement Conditions: Further details are available from the Validation Report at the end
 of the certificate. All figures stated in the certificate are valid at the frequency indicated.
- Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed
 point exactly below the center marking of the flat phantom section, with the arms oriented
 parallel to the body axis.
- Feed Point Impedance and Return Loss: These parameters are measured with the dipole
 positioned under the liquid filled phantom. The impedance stated is transformed from the
 measurement at the SMA connector to the feed point. The Return Loss ensures low
 reflected power. No uncertainty required.
- Electrical Delay: One-way delay between the SMA connector and the antenna feed point.
 No uncertainty required.
- SAR measured: SAR measured at the stated antenna input power.
- SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector.
- SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result.

The reported uncertainty of measurement is stated as the standard uncertainty of Measurement multiplied by the coverage factor k=2, which for a normal distribution Corresponds to a coverage probability of approximately 95%.

Certificate No: Z17-97083

Page 2 of 14

Measurement Conditions

DASY system configuration, as far as not given on page 1.

DASY Version	DASY52	52.10.0.1446
Extrapolation	Advanced Extrapolation	
Phantom	Triple Flat Phantom 5.1C	
Distance Dipole Center - TSL	10 mm	with Spacer
Zoom Scan Resolution	dx, dy = 4 mm, dz = 1.4 mm	Graded Ratio = 1.4 (Z direction)
Frequency	5250 MHz ± 1 MHz 5600 MHz ± 1 MHz 5750 MHz ± 1 MHz	

Head TSL parameters at 5250 MHz
The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	22.0 °C	35.9	4.71 mho/m
Measured Head TSL parameters	(22.0 ± 0.2) °C	35.8 ± 6 %	4.63 mho/m ± 6 %
Head TSL temperature change during test	<1.0 °C		

SAR result with Head TSL at 5250 MHz

SAR averaged over 1 cm^3 (1 g) of Head TSL	Condition	
SAR measured	100 mW input power	7.63 mW / g
SAR for nominal Head TSL parameters	normalized to 1W	76.2 mW /g ± 24.4 % (k=2)
SAR averaged over 10 cm ³ (10 g) of Head TSL	Condition	
SAR measured	100 mW input power	2.18 mW / g
SAR for nominal Head TSL parameters	normalized to 1W	21.8 mW /g ± 24.2 % (k=2)

Head TSL parameters at 5600 MHz

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	22.0 °C	35.5	5.07 mho/m
Measured Head TSL parameters	(22.0 ± 0.2) °C	36.2 ± 6 %	4.96 mho/m ± 6 %
Head TSL temperature change during test	<1.0 °C		

SAR result with Head TSL at 5600 MHz

SAR averaged over 1 cm^3 (1 g) of Head TSL	Condition	
SAR measured	100 mW input power	8.23 mW / g
SAR for nominal Head TSL parameters	normalized to 1W	82.6 mW /g ± 24.4 % (k=2)
SAR averaged over 10 cm ³ (10 g) of Head TSL	Condition	
SAR measured	100 mW input power	2.35 mW / g
SAR for nominal Head TSL parameters	normalized to 1W	23.6 mW /g ± 24.2 % (k=2)

Head TSL parameters at 5750 MHz

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	22.0 °C	35.4	5.22 mho/m
Measured Head TSL parameters	(22.0 ± 0.2) °C	36.2 ± 6 %	5.11 mho/m ± 6 %
Head TSL temperature change during test	<1.0 °C		

SAR result with Head TSL at 5750 MHz

SAR averaged over 1 cm^3 (1 g) of Head TSL	Condition	
SAR measured	100 mW input power	8.05 mW / g
SAR for nominal Head TSL parameters	normalized to 1W	80.8 mW /g ± 24.4 % (k=2)
SAR averaged over 10 cm ³ (10 g) of Head TSL	Condition	
SAR measured	100 mW input power	2.28 mW / g
SAR for nominal Head TSL parameters	normalized to 1W	22.9 mW /g ± 24.2 % (k=2)

Body TSL parameters at 5250 MHz The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Body TSL parameters	22.0 °C	48.9	5.36 mho/m
Measured Body TSL parameters	(22.0 ± 0.2) °C	48.1 ± 6 %	5.42 mho/m ± 6 %
Body TSL temperature change during test	<1.0 °C		

SAR result with Body TSL at 5250 MHz

SAR averaged over 1 cm^3 (1 g) of Body TSL	Condition	
SAR measured	100 mW input power	7.54 mW / g
SAR for nominal Body TSL parameters	normalized to 1W	75.2 mW /g ± 24.4 % (k=2)
SAR averaged over 10 cm ³ (10 g) of Body TSL	Condition	
SAR measured	100 mW input power	2.13 mW / g
SAR for nominal Body TSL parameters	normalized to 1W	21.2 mW /g ± 24.2 % (k=2)

Body TSL parameters at 5600 MHz

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Body TSL parameters	22.0 °C	48.5	5.77 mho/m
Measured Body TSL parameters	(22.0 ± 0.2) °C	47.6 ± 6 %	5.77 mho/m ± 6 %
Body TSL temperature change during test	<1.0 °C		

SAR result with Body TSL at 5600 MHz

SAR averaged over 1 cm^3 (1 g) of Body TSL	Condition	
SAR measured	100 mW input power	7.82 mW / g
SAR for nominal Body TSL parameters	normalized to 1W	77.9 mW /g ± 24.4 % (k=2)
SAR averaged over 10 $$ cm^3 (10 g) of Body TSL	Condition	
SAR measured	100 mW input power	2.20 mW / g
SAR for nominal Body TSL parameters	normalized to 1W	21.9 mW /g ± 24.2 % (k=2)

Body TSL parameters at 5750 MHz The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Body TSL parameters	22.0 °C	48.3	5.94 mho/m
Measured Body TSL parameters	(22.0 ± 0.2) °C	47.5 ± 6 %	5.84 mho/m ± 6 %
Body TSL temperature change during test	<1.0 °C		

SAR result with Body TSL at 5750 MHz

SAR averaged over 1 cm^3 (1 g) of Body TSL	Condition	
SAR measured	100 mW input power	7.53 mW / g
SAR for nominal Body TSL parameters	normalized to 1W	75.0 mW /g ± 24.4 % (k=2)
SAR averaged over 10 cm^3 (10 g) of Body TSL	Condition	
SAR measured	100 mW input power	2.12 mW / g
SAR for nominal Body TSL parameters	normalized to 1W	21.1 mW /g ± 24.2 % (k=2)

Appendix (Additional assessments outside the scope of CNAS L0570)

Antenna Parameters with Head TSL at 5250 MHz

Impedance, transformed to feed point	48.2Ω - 4.57jΩ	
Return Loss	- 26.0dB	

Antenna Parameters with Head TSL at 5600 MHz

Impedance, transformed to feed point	55.2Ω + 2.14jΩ
Return Loss	- 25.4dB

Antenna Parameters with Head TSL at 5750 MHz

Impedance, transformed to feed point	50.6Ω - 3.25jΩ	
Return Loss	- 29.7dB	

Antenna Parameters with Body TSL at 5250 MHz

Impedance, transformed to feed point	47.9Ω - 2.79jΩ	
Return Loss	- 29.0dB	

Antenna Parameters with Body TSL at 5600 MHz

Impedance, transformed to feed point	$55.3\Omega + 3.88j\Omega$	
Return Loss	- 24.1dB	

Antenna Parameters with Body TSL at 5750 MHz

Impedance, transformed to feed point	51.9Ω - 2.20jΩ	
Return Loss	- 30.9dB	

Report No.: BL-EC1810138-701

Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2079 Fax: +86-10-62304633-2504 http://www.chinattl.cn

General Antenna Parameters and Design

Electrical Delay (one direction)	1.315 ns
Lieutical Delay (one direction)	1.010110

After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured.

The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard. No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged.

Additional EUT Data

Manufactured by	SPEAG

DASY5 Validation Report for Head TSL

Date: 06.29.2017

Test Laboratory: CTTL, Beijing, China

DUT: Dipole 5GHz; Type: D5GHzV2; Serial: D5GHzV2 - SN: 1200

Communication System: CW; Frequency: 5250 MHz, Frequency: 5600 MHz, Frequency: 5750 MHz,

Medium parameters used: f = 5250 MHz; σ = 4.633 mho/m; ϵ r = 35.82; ρ = 1000 kg/m3, Medium parameters used: f = 5600 MHz; σ = 4.957 mho/m; ϵ r = 36.23; ρ = 1000 kg/m3, Medium parameters used: f = 5750 MHz; σ = 5.107 mho/m; ϵ r = 36.17; ρ = 1000 kg/m3,

Phantom section: Left Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007)

DASY5 Configuration:

- Probe: EX3DV4 SN7433; ConvF(5.13,5.13,5.13); Calibrated: 2016/9/26, ConvF(4.59,4.59,4.59); Calibrated: 2016/9/26, ConvF(4.66,4.66,4.66); Calibrated: 2016/9/26,
- · Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn1331; Calibrated: 2017/1/19
- Phantom: Triple Flat Phantom 5.1C; Type: QD 000 P51 CA; Serial: 1161/3
- Measurement SW: DASY52, Version 52.10 (0); SEMCAD X Version 14.6.10 (7417)

Dipole Calibration /Pin=100mW, d=10mm, f=5250 MHz/Zoom Scan,

dist=1.4mm (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm

Reference Value = 67.36 V/m; Power Drift = -0.04 dB

Peak SAR (extrapolated) = 30.2 W/kg

SAR(1 g) = 7.63 W/kg; SAR(10 g) = 2.18 W/kg Maximum value of SAR (measured) = 18.0 W/kg

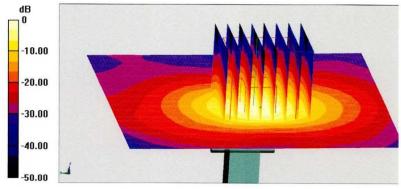
Dipole Calibration /Pin=100mW, d=10mm, f=5600 MHz/Zoom Scan,

dist=1.4mm (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm

Reference Value = 54.3 V/m; Power Drift = 0.01 dB

Peak SAR (extrapolated) = 33.9 W/kg

SAR(1 g) = 8.23 W/kg; SAR(10 g) = 2.35 W/kgMaximum value of SAR (measured) = 19.4 W/kg

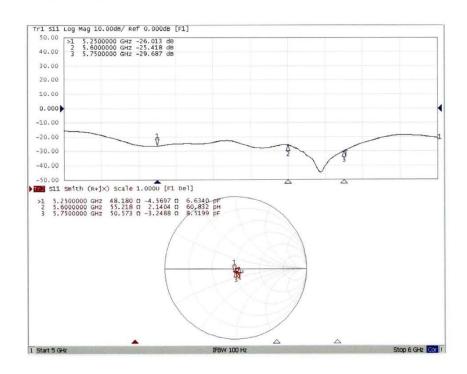

Dipole Calibration /Pin=100mW, d=10mm, f=5750 MHz/Zoom Scan,

dist=1.4mm (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm

Reference Value = 54.85 V/m; Power Drift = 0.02 dB

Peak SAR (extrapolated) = 33.6 W/kg

SAR(1 g) = 8.05 W/kg; SAR(10 g) = 2.28 W/kg Maximum value of SAR (measured) = 19.7 W/kg



0 dB = 19.7 W/kg = 12.94 dBW/kg

Impedance Measurement Plot for Head TSL

DASY5 Validation Report for Body TSL

Date: 06.28.2017

Test Laboratory: CTTL, Beijing, China

DUT: Dipole 5GHz; Type: D5GHzV2; Serial: D5GHzV2 - SN: 1200

Communication System: CW; Frequency: 5250 MHz, Frequency: 5600 MHz, Frequency: 5750 MHz,

Medium parameters used: f = 5250 MHz; σ = 5.418 mho/m; ϵr = 48.07; ρ = 1000 kg/m3, Medium parameters used: f = 5600 MHz; σ = 5.767 mho/m; ϵr = 47.59; ρ = 1000 kg/m3, Medium parameters used: f = 5750 MHz; σ = 5.844 mho/m; ϵr = 47.51; ρ = 1000 kg/m3,

Phantom section: Center Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007)

DASY5 Configuration:

- Probe: EX3DV4 SN7433; ConvF(4.68,4.68,4.68); Calibrated: 2016/9/26, ConvF(3.98,3.98,3.98); Calibrated: 2016/9/26,ConvF(4.35,4.35,4.35); Calibrated: 2016/9/26,
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn1331; Calibrated: 2017/1/19
- Phantom: Triple Flat Phantom 5.1C; Type: QD 000 P51 CA; Serial: 1161/3
- Measurement SW: DASY52, Version 52.10 (0); SEMCAD X Version 14.6.10 (7417)

Dipole Calibration /Pin=100mW, d=10mm, f=5250 MHz/Zoom Scan,

dist=1.4mm (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm

Reference Value = 39.45 V/m; Power Drift = -0.04 dB

Peak SAR (extrapolated) = 29.1 W/kg

SAR(1 g) = 7.54 W/kg; SAR(10 g) = 2.13 W/kg

Maximum value of SAR (measured) = 17.7 W/kg

Dipole Calibration /Pin=100mW, d=10mm, f=5600 MHz/Zoom Scan,

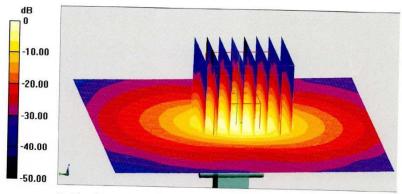
dist=1.4mm (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm

Reference Value = 62.62 V/m; Power Drift = -0.05 dB

Peak SAR (extrapolated) = 32.9 W/kg

SAR(1 g) = 7.82 W/kg; SAR(10 g) = 2.2 W/kg

Maximum value of SAR (measured) = 18.7 W/kg

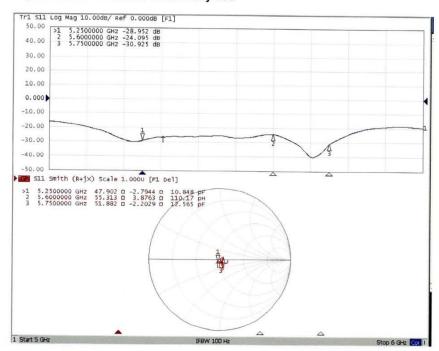

Dipole Calibration /Pin=100mW, d=10mm, f=5750 MHz/Zoom Scan,

dist=1.4mm (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm

Reference Value = 63.40 V/m; Power Drift = 0.04 dB

Peak SAR (extrapolated) = 31.3 W/kg

SAR(1 g) = 7.53 W/kg; SAR(10 g) = 2.12 W/kgMaximum value of SAR (measured) = 18.5 W/kg



0 dB = 18.5 W/kg = 12.67 dBW/kg

Impedance Measurement Plot for Body TSL

Certificate No: Z17-97083

Page 14 of 14