MEASUREMENT REPORT FCC PART 15.407 / RSS-247 WLAN 802.11 a

FCC ID:	2ACS5-E90
IC:	$11554 B-E 90$

APPLICANT: Yuneec Technology Co., Limited

Application Type: Certification

Product:
3-Axis Gimbal Camera
Model No.:
E90
Brand Name: YUNEEC
FCC Classification: Unlicensed National Information Infrastructure (UNII)
FCC Rule Part(s): Part 15.407
IC Rule(s):
RSS-247 Issue 2, RSS-GEN Issue 4
Test Procedure(s):
ANSI C63.10-2013, KDB 789033 D02v01r03
Test Date:
March 20 ~ April 15, 2017

Reviewed By $: \frac{\text { Paddy Chen }}{\text { (Paddy Chen) }}$	
Approved By $:$	$\frac{\text { Cluz ker }}{\text { (Chenz Ker) }}$

The test results relate only to the samples tested.
This equipment has been shown to be capable of compliance with the applicable technical standards as indicated in the measurement report and was tested in accordance with the measurement procedures specified in KDB 789033 D02v01r03. Test results reported herein relate only to the item(s) tested.
The test report shall not be reproduced except in full without the written approval of MRT Technology (Taiwan)

Revision History

Report No.	Version	Description	Issue Date	Note
1704TW0101-U1	Rev. 01	Initial report	$04-20-2017$	Invalid
1704TW0101-U1	Rev. 02	Revised the equipment list	$05-10-2017$	Invalid
1704TW0101-U1	Rev. 03	Revised EIRP requirement	$05-11-2017$	Valid

CONTENTS

Description Page
§2.1033 General Information 5

1. INTRODUCTION 6
1.1. Scope 6
1.2. MRT Test Location 6
2. PRODUCT INFORMATION 7
2.1. Equipment Description 7
2.2. Product Specification Subjective to this Report 7
2.3. Working Frequencies for this report 7
2.4. Description of Available Antennas 7
2.5. Description of Test Software 7
2.6. Device Capabilities 8
2.7. Test Configuration 8
2.8. EMI Suppression Device(s)/Modifications 8
2.9. Labeling Requirements 9
3. DESCRIPTION OF TEST 10
3.1. Evaluation Procedure 10
3.2. AC Line Conducted Emissions 10
3.3. Radiated Emissions 11
4. ANTENNA REQUIREMENTS 12
5. TEST EQUIPMENT CALIBRATION DATE 13
6. MEASUREMENT UNCERTAINTY 14
7. TEST RESULT 15
7.1. Summary 15
7.2. 99% and 26dB Bandwidth Measurement 16
7.2.1. Test Limit 16
7.2.2. Test Procedure used 16
7.2.3. Test Setting 16
7.2.4. Test Setup 16
7.2.5. Test Result 17
7.3. 6dB Bandwidth Measurement 18
7.3.1. Test Limit 18
7.3.2. Test Procedure used 18
7.3.3. Test Setting 18
7.3.4. Test Setup 18
7.3.5. Test Result 19
7.4. Output Power Measurement 20
7.4.1. Test Limit 20
7.4.2. Test Procedure Used 20
7.4.3. Test Setting 20
7.4.4. Test Setup 20
7.4.5. Test Result 21
7.5. Power Spectral Density Measurement 22
7.5.1. Test Limit 22
7.5.2. Test Procedure Used 22
7.5.3. Test Setting 22
7.5.4. Test Setup 23
7.5.5. Test Result 24
7.6. Frequency Stability Measurement 25
7.6.1. Test Limit 25
7.6.2. Test Procedure Used 25
7.6.3. Test Setup 25
7.6.4. Test Result 26
7.7. Radiated Spurious Emission Measurement 27
7.7.1. Test Limit 27
7.7.2. Test Procedure Used 27
7.7.3. Test Setting 27
7.7.4. Test Setup 28
7.7.5. Test Result 30
7.8. Radiated Restricted Band Edge Measurement 35
7.8.1. Test Limit 35
7.8.2. Test Result of Radiated Restricted Band Edge 38
7.9. AC Conducted Emissions Measurement. 42
7.9.1. Test Limit 42
7.9.2. Test Procedure 42
7.9.3. Test Setup 43
7.9.4. Test Result 43
8. CONCLUSION 44

§2.1033 General Information

Applicant:	Yuneec Technology Co., Limited
Applicant Address:	2/F Man Shung Industrial Building, 7 Lai Yip Street, Kwun Tong, Hong Kong
Manufacturer:	Yuneec International (China) Co., Ltd.
Manufacturer Address:	No.388 East Zhengwei Road, Jinxi Town, Kunshan, Jiangsu 215324, China
Test Site:	MRT Technology (Taiwan) Co., Ltd
Test Site Address:	No. 38, Fuxing Second Rd., Guishan Dist., Taoyuan City 333, Taiwan (R.O.C)
MRT Registration No.:	153292
MRT IC Registration No.:	$21723-1$
FCC Rule Part(s):	Part 15.407
IC Rule(s):	RSS-247 Issue 2, RSS-GEN Issue 4
Model No.:	E90 $\quad \square$
Test Device Serial No.:	N/A $\quad \square$ Production \boxtimes Pre-Production \square Engineering

Test Facility / Accreditations

Measurements were performed at MRT Laboratory located in Fuxing Rd., Taoyuan, Taiwan (R.O.C)

- MRT facility is a FCC registered (MRT Reg. No. 153292) test facility with the site description report on file and is designated by the FCC as an Accredited Test Film.
- MRT facility is an IC registered (MRT Reg. No. 21723-1) test laboratory with the site description on file at Industry Canada.
- MRT Lab is accredited to ISO 17025 by the American Association for Laboratory Accreditation (TAF) under the American Association for Laboratory Accreditation Program (TAF Cert. No. 3261) in EMC, Telecommunications and Radio testing for FCC, Industry Canada, Taiwan, EU and TELEC Rules.

TAF certificate here

1. INTRODUCTION

1.1. Scope

Measurement and determination of electromagnetic emissions (EMC) of radio frequency devices including intentional and/or unintentional radiators for compliance with the technical rules and regulations of the Federal Communications Commission and the Industry Canada Certification and Engineering Bureau.

1.2. MRT Test Location

The map below shows the location of the MRT LABORATORY, its proximity to the Taoyuan City. These measurement tests were conducted at the MRT Technology (Taiwan) Co., Ltd. Facility located at No.38, Fuxing 2nd Rd., Guishan Dist., Taoyuan City 33377, Taiwan (R.O.C).

2. PRODUCT INFORMATION

2.1. Equipment Description

Product Name:	3 -Axis Gimbal Camera
Model No.:	E90
Brand Name:	YUNEEC
Operating Temperature:	$0 \sim 56^{\circ} \mathrm{C}$
Wi-Fi Specification:	802.11 a
ZigBee Specification	802.15 .4
Antenna Gain:	-3.66 dBi

2.2. Product Specification Subjective to this Report

Frequency Range:	$802.11 \mathrm{a}: 5745 \sim 5825 \mathrm{MHz}$
Channel Number:	$802.11 \mathrm{a}: 5$
Type of Modulation:	$802.11 \mathrm{a}:$ OFDM
Data Rate:	$802.11 \mathrm{a}: 6 / 9 / 12 / 18 / 24 / 36 / 48 / 54 \mathrm{Mbps}$
Maximum Average Output Power:	$802.11 \mathrm{a}: 24.85 \mathrm{dBm}$

Note: For other features of this EUT, test report will be issued separately.

2.3. Working Frequencies for this report

Channel	Frequency	Channel	Frequency	Channel	Frequency
149	5745 MHz	153	5765 MHz	157	5785 MHz
161	5805 MHz	165	5825 MHz	--	--

2.4. Description of Available Antennas

Antenna Type	Manufacturer	Frequency Band (GHz)	Max Peak Gain (dBi)
Omni-directional Antenna	Yuneec International (China) Co., Ltd.	5.8	-3.66

2.5. Description of Test Software

The test utility software used during testing was engineering directive ordered by applicant.

2.6. Device Capabilities

This device contains the following capabilities:
5GHz WLAN (NII)
Note: 5 GHz (NII) operation is possible in 20MHz channel bandwidths. The maximum achievable duty cycle was determined based on measurements performed on a spectrum analyzer in zero-span mode with RBW $=8 \mathrm{MHz}$, VBW $=50 \mathrm{MHz}$, and detector $=$ average per the guidance of Section B)2)b) of KDB 789033 D02v01r03. The RBW and VBW were both greater than 50/T, where T is the minimum transmission duration, and the number of sweep points across T was greater than 100. The duty cycles are as follows:

2.7. Test Configuration

The 3-Axis Gimbal Camera was tested per the guidance of KDB 789033 D02v01r03. ANSI C63.10-2013 was used to reference the appropriate EUT setup for radiated spurious emissions testing and AC line conducted testing.

2.8. EMI Suppression Device(s)/Modifications

No EMI suppression device(s) were added and/or no modifications were made during testing.

2.9. Labeling Requirements

Per 2.1074 \& 15.19; Docket 95-19

The label shall be permanently affixed at a conspicuous location on the device; instruction manual or pamphlet supplied to the user and be readily visible to the purchaser at the time of purchase.
However, when the device is so small wherein placement of the label with specified statement is not practical, only the FCC ID must be displayed on the device per Section 15.19(a)(5). Please see attachment for FCC ID label and label location.

RSP-100 Issue 11 Section 3

The manufacturer, importer or distributor shall meet the labelling requirements set out in this section for every unit:
(i) prior to marketing in Canada, for products manufactured in Canada
(ii) prior to importation into Canada, for imported products

For information regarding the e-labelling option, see Notice 2014-DRS1003. The label for the certified product represents the manufacturer's or importer's compliance with Innovation, Science and Economic Development Canada's (ISED) regulatory requirements.
Please see attachment for IC label and label location.

3. DESCRIPTION OF TEST

3.1. Evaluation Procedure

The measurement procedures described in the American National Standard for Testing Unlicensed Wireless Devices (ANSI C63.10-2013), and the guidance provided in KDB 789033 D02v01r03 were used in the measurement of the 3-Axis Gimbal Camera.
Deviation from measurement procedure
None

3.2. AC Line Conducted Emissions

The line-conducted facility is located inside an $8^{\prime} \times 4{ }^{\prime} \times 4$ ' shielded enclosure. A $1 \mathrm{~m} \times 2 \mathrm{~m}$ wooden table 80 cm high is placed 40 cm away from the vertical wall and 80 cm away from the sidewall of the shielded room. Two 10kHz-30MHz, 50』/50uH Line-Impedance Stabilization Networks (LISNs) are bonded to the shielded room floor. Power to the LISNs is filtered by external high-current high-insertion loss power line filters. These filters attenuate ambient signal noise from entering the measurement lines. These filters are also bonded to the shielded enclosure.

The EUT is powered from one LISN and the support equipment is powered from the second LISN. All interconnecting cables more than 1 meter were shortened to a 1 meter length by non-inductive bundling (serpentine fashion) and draped over the back edge of the test table. All cables were at least 40 cm above the horizontal reference ground-plane. Power cables for support equipment were routed down to the second LISN while ensuring that that cables were not draped over the second LISN.
Sufficient time for the EUT, support equipment, and test equipment was allowed in order for them to warm up to their normal operating condition. The RF output of the LISN was connected to the receiver and exploratory measurements were made to determine the frequencies producing the maximum emission from the EUT. The receiver was scanned from 150 kHz to 30 MHz . The detector function was set to peak mode for exploratory measurements while the bandwidth of the analyzer was set to 9 kHz . The EUT, support equipment, and interconnecting cables were arranged and manipulated to maximize each emission. Each emission was also maximized by varying: power lines, the mode of operation or data exchange speed, or support equipment whichever determined the worst-case emission. Once the worst case emissions have been identified, the one EUT cable configuration/arrangement and mode of operation that produced these emissions are used for final measurements on the same test site. The analyzer is set to CISPR quasi-peak and average detectors with a 9 kHz resolution bandwidth for final measurements.

An extension cord was used to connect to a single LISN which powered by EUT. The extension cord was calibrated with LISN, the impedance and insertion loss are compliance with the requirements as stated in ANSI C63.10-2013.

Line conducted emissions test results are shown in Section 7.9.

3.3. Radiated Emissions

The radiated test facilities consisted of an indoor 3 meter semi-anechoic chamber used for final measurements and exploratory measurements, when necessary. The measurement area is contained within the semi-anechoic chamber which is shielded from any ambient interference. For measurements above 1 GHz absorbers are arranged on the floor between the turn table and the antenna mast in such a way so as to maximize the reduction of reflections. For measurements below 1 GHz , the absorbers are removed. A MF Model 210SS turntable is used for radiated measurement. It is a continuously rotatable, remote controlled, metallic turntable and 2 meters (6.56 ft) in diameter. The turn table is flush with the raised floor of the chamber in order to maintain its function as a ground plane. An 80 cm high PVC support structure is placed on top of the turntable.
For all measurements, the spectrum was scanned through all EUT azimuths and from 1 to 4 meter receive antenna height using a broadband antenna from 30 MHz up to the upper frequency shown in 15.33(b)(1) depending on the highest frequency generated or used in the device or on which the device operates or tunes. For frequencies above 1 GHz , linearly polarized double ridge horn antennas were used. For frequencies below 30 MHz , a calibrated loop antenna was used. When exploratory measurements were necessary, they were performed at 1 meter test distance inside the semi-anechoic chamber using broadband antennas, broadband amplifiers, and spectrum analyzers to determine the frequencies and modes producing the maximum emissions. Sufficient time for the EUT, support equipment, and test equipment was allowed in order for them to warm up to their normal operating condition. The test set-up for frequencies below 1 GHz was placed on top of the 0.8 meter high, 1×1.5 meter table; and test set-up for frequencies $1-40 \mathrm{GHz}$ was placed on top of the 1.5 meter high, 1×1.5 meter table. The EUT, support equipment, and interconnecting cables were arranged and manipulated to maximize each emission. Appropriate precaution was taken to ensure that all emissions from the EUT were maximized and investigated. The system configuration, clock speed, mode of operation or video resolution, if applicable, turntable azimuth, and receive antenna height was noted for each frequency found.

Final measurements were made in the semi-anechoic chamber using calibrated, linearly polarized broadband and horn antennas. The test setup was configured to the setup that produced the worst case emissions. The spectrum analyzer was set to investigate all frequencies required for testing to compare the highest radiated disturbances with respect to the specified limits. The turntable containing the EUT was rotated through 360 degrees and the height of the receive antenna was varied 1 to 4 meters and stopped at the azimuth and height producing the maximum emission. Each emission was maximized by changing the orientation of the EUT through three orthogonal planes and changing the polarity of the receive antenna, whichever produced the worst-case emissions. According to 3dB Beam-Width of horn antenna, the horn antenna should be always directed to the EUT when rising height.

4. ANTENNA REQUIREMENTS

Excerpt from $\$ 15.203$ of the FCC Rules/Regulations:

"An intentional radiator antenna shall be designed to ensure that no antenna other than that furnished by the responsible party can be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator shall be considered sufficient to comply with the provisions of this section."

- The antenna of the 3-Axis Gimbal Camera is permanently attached.
- There are no provisions for connection to an external antenna.

Conclusion:

The 3-Axis Gimbal Camera unit complies with the requirement of $\S 15.203$.

5. TEST EQUIPMENT CALIBRATION DATE

Radiated Disturbance - AC1

Instrument	Manufacturer	Type No.	Asset No.	Cali. Interval	Cali. Due Date
Acitve Loop Antenna	SCHWARZBECK	FMZB 1519B	MRTTWA00002	1 year	2018.04 .06
Broadband TRILOG Antenna	SCHWARZBECK				

Conducted Test Equipment - SR2

Instrument	Manufacturer	Type No.	Asset No.	Cali. Interval	Cali. Interval
EMI Test Receiver	R\&S	ESR3	MRTTWA00009	1 year	2018.03 .16
EXA Signal Analyzer	Keysight	N9010A	MRTTWA00012	1 year	2017.07 .11
Power Sensor	Keysight	U2021XA	MRTTWA00014	1 year	2018.03 .18
Programmable Humidity Chamber TEN BILLION	TTH-B3UP	MRTTWA00036	1 year	2018.03 .16	

EMI Test Software

Software	Manufacturer	Version No.
e3	Audix	9.160520 a
EMI	Quietek	V3

6. MEASUREMENT UNCERTAINTY

Where relevant, the following test uncertainty levels have been estimated for tests performed on the EUT as specified in CISPR 16-4-2. This uncertainty represents an expanded uncertainty expressed at approximately the 95% confidence level using a coverage factor of $\mathrm{k}=2$.

7. TEST RESULT

7.1. Summary

Product Name:
FCC Classification:
Data Rate:

3-Axis Gimbal Camera
Unlicensed National Information Infrastructure (UNII)
6 Mbps for 802.11a;

FCC Section(s)	RSS Section(s)	Test Description	Test Limit	Test Condition	Test Result	Reference
15.407(a)	RSS-247 §6.2	99% \& 26dB Bandwidth	N/A	Conducted	Pass	Section 7.2
15.407(e)	$\begin{gathered} \text { RSS-247 } \\ \text { §6.2.4 } \end{gathered}$	6dB Bandwidth	$\geq 500 \mathrm{kHz}$		Pass	Section 7.3
15.407(a) (3)	$\begin{gathered} \text { RSS-247 } \\ \S 6.2 .4 \end{gathered}$	Maximum Conducted Output Power	$\leq 30 \mathrm{dBm}$ U-NII-3 Detail see section 7.4		Pass	Section 7.4
		Maximum E.I.R.P	$\begin{aligned} & \text { For } 5470 \sim 5725 \mathrm{MHz} \\ & \leq 30 \mathrm{dBm} \text { or } 17+10 \\ & \log 10(99 \% \mathrm{~B}) \end{aligned}$			
$\begin{gathered} 15.407(a) \\ (3),(5) \end{gathered}$	$\begin{gathered} \text { RSS-247 } \\ \S 6.2 .4 \end{gathered}$	Peak Power Spectral Density	$\leq 30 \mathrm{dBm} / 500 \mathrm{kHz}$		Pass	Section 7.5
15.407(g)	RSS-Gen [8.11]	Frequency Stability	N/A		Pass	Section 7.6
$\begin{gathered} \text { 15.407(b) } \\ \text { (4)(i) } \end{gathered}$	$\begin{gathered} \text { RSS-247 } \\ \S 6.2 .4 \end{gathered}$	Undesirable Emissions	$\leq-27 \mathrm{dBm} / \mathrm{MHz}$ EIRP Detail see section 7.8		Pass	$\begin{gathered} \text { Section } \\ 7.7 \& 7.8 \end{gathered}$
$\begin{gathered} 15.205 \\ 15.209 \\ 15.407(\mathrm{~b}) \\ (4),(5),(6), \end{gathered}$ (7)	$\begin{gathered} \text { RSS-247 } \\ \S 6.2 .4 \end{gathered}$	General Field Strength Limits (Restricted Bands and Radiated Emission Limits)	Emissions in restricted bands must meet the radiated limits detailed in 15.209	Radiated		
15.207	RSS-Gen [8.8]	AC Conducted Emissions 150 kHz - 30 MHz	< FCC 15.207 limits	Line Conducted	Pass	Section 7.9

Note: The analyzer plots shown in this section were all taken with a correction table loaded into the analyzer. The correction table was used to account for the losses of the cables and attenuators used as part of the system to connect the EUT to the analyzer at all frequencies of interest.

7.2. 99% and 26dB Bandwidth Measurement

7.2.1. Test Limit

N/A

7.2.2. Test Procedure used

KDB 789033 D02v01r03 - Section C. 1

7.2.3. Test Setting

1. The analyzers' automatic bandwidth measurement capability was used to perform the 26 dB bandwidth measurement. The " X " dB bandwidth parameter was set to $X=26$. The automatic bandwidth measurement function also has the capability of simultaneously measuring the 99% occupied bandwidth. The bandwidth measurement was not influenced by any intermediated power nulls in the fundamental emission.
2. RBW = approximately 1% of the emission bandwidth.
3. VBW $\geq 3 \times$ RBW.
4. Detector $=$ Peak.
5. Trace mode = max hold.

7.2.4. Test Setup

7.2.5. Test Result

Product	3-Axis Gimbal Camera	Temperature	$24^{\circ} \mathrm{C}$
Test Engineer	Kevin	Relative Humidity	53%
Test Site	SR2	Test Date	$2017 / 04 / 03$

Test Mode	Data Rate	Channel No.	Frequency (MHz)	26 dB Bandwidth (MHz)	99% Bandwidth (MHz)
802.11 a	6 Mbps	149	5745	35.96	21.22
802.11 a	6 Mbps	157	5785	37.27	21.02
802.11 a	6 Mbps	165	5825	38.10	21.36

7.3. 6dB Bandwidth Measurement

7.3.1. Test Limit

The minimum 6 dB bandwidth shall be at least 500 kHz .

7.3.2. Test Procedure used

KDB 789033 D02v01r03 - Section C. 2

7.3.3. Test Setting

1. Set center frequency to the nominal EUT channel center frequency.
2. $\mathrm{RBW}=100 \mathrm{kHz}$.
3. VBW $\geqq 3 \times$ RBW.
4. Detector $=$ Peak.
5. Trace mode = max hold .
6. Sweep = auto couple .
7. Allow the trace to stabilize.
8. Measure the maximum width of the emission that is constrained by the frequencies associated with the two outermost amplitude points (upper and lower frequencies) that are attenuated by 6 dB relative to the maximum level measured in the fundamental emission.

7.3.4. Test Setup

7.3.5. Test Result

Product	3-Axis Gimbal Camera	Temperature	$23^{\circ} \mathrm{C}$
Test Engineer	Kevin	Relative Humidity	52%
Test Site	SR2	Test Date	$2017 / 04 / 03$

Test Mode	Data Rate	Channel No.	Frequency (MHz)	6dB Bandwidth (MHz)	Limit (MHz)	Result
802.11a	6 Mbps	149	5745	15.76	≥ 0.5	Pass
802.11a	6 Mbps	157	5785	16.29	≥ 0.5	Pass
802.11 a	6 Mbps	165	5825	16.31	≥ 0.5	Pass

7.4. Output Power Measurement

7.4.1. Test Limit

For the band $5.725-5.85 \mathrm{GHz}$, the maximum conducted output power over the frequency band of operation shall not exceed $1 \mathrm{~W}(30 \mathrm{dBm})$.

If transmitting antennas of directional gain greater than 6 dBi are used, the maximum conducted output power shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6dBi.

7.4.2. Test Procedure Used

KDB 789033 D02v01r03 - Section E) 3) b) Method PM-G

7.4.3. Test Setting

Average power measurements were perform only when the EUT was transmitting at its maximum power control level using a broadband power meter with a pulse sensor. The power meter implemented triggering and gating capabilities which were set up such that power measurements were recorded only during the ON time of the transmitter. The trace was averaged over 100 traces to obtain the final measured average power.

7.4.4. Test Setup

7.4.5. Test Result

Product	3-Axis Gimbal Camera	Temperature	$22^{\circ} \mathrm{C}$
Test Engineer	Kevin	Relative Humidity	54%
Test Site	SR2	Test Date	$2017 / 03 / 25$

Power output test was verified over all data rates of each mode shown as below table.

Test Mode	Bandwidth	Channel	Frequency (MHz)	Data Rate/ MCS	Average Power (dBm)
802.11 a	20	157	5785	6 Mbps	23.13
				24 Mbps	22.95
			54 Mbps	22.68	

Test Result of Average Output Power

Test Mode	Data Rate	Channel No.	Freq. (MHz)	Average Power (dBm)	Power Limit (dBm)	Result
11 a	6 Mbps	149	5745	24.85	≤ 30.00	Pass
11 a	6 Mbps	157	5785	23.13	≤ 30.00	Pass
11 a	6 Mbps	165	5825	18.09	≤ 30.00	Pass

Note 1: EIRP (dBm) = Average Power (dBm) + Antenna Gain (dBi),
EIRP should be less than 36 dBm .
Note 2: $\operatorname{EIRP}(\mathrm{dBm})=24.85 \mathrm{dBm}-3.66 \mathrm{dBi}=21.19 \mathrm{dBm} \ll 36 \mathrm{dBm}$.

7.5. Power Spectral Density Measurement

7.5.1. Test Limit

For the band $5.725-5.85 \mathrm{GHz}$, the maximum power spectral density shall not exceed 30 dBm in any $500-\mathrm{kHz}$ band.

If transmitting antennas of directional gain greater than 6 dBi are used, the peak power spectral density shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi .

7.5.2. Test Procedure Used

KDB 789033 D02v01r03 - Section F

7.5.3. Test Setting

1. Analyzer was set to the center frequency of the UNII channel under investigation
2. Span was set to encompass the entire 26 dB EBW of the signal.
3. RBW $=1 \mathrm{MHz}$, if measurement bandwidth of Maximum PSD is specified in 500 kHz , RBW $=100 \mathrm{kHz}$
4. $\mathrm{VBW}=3 \mathrm{MHz}$
5. Number of sweep points $\geq 2 \times$ (span / RBW)
6. Detector = power averaging (Average)
7. Sweep time = auto
8. Trigger = free run
9. Use the peak search function on the instrument to find the peak of the spectrum and record its value.
10.Add $10 * \log (1 / x)$, where x is the duty cycle, to the measured power in order to compute the average power during the actual transmission times (because the measurement represents an average over both the on and off times of the transmission). For example, add $10 * \log (1 / 0.25)=$ 6 dB if the duty cycle is 25 percent.
10. When the measurement bandwidth of Maximum PSD is specified in 500 kHz , add a constant factor $10^{*} \log (500 \mathrm{kHz} / 100 \mathrm{kHz})=7 \mathrm{~dB}$ to the measured result

7.5.4. Test Setup

7.5.5. Test Result

Product	3-Axis Gimbal Camera	Temperature	$22^{\circ} \mathrm{C}$
Test Engineer	Kevin	Relative Humidity	54%
Test Site	SR2	Test Date	$2017 / 04 / 03$

Test Mode	Data Rate	Channel No.	Freq. (MHz)	PSD $(\mathrm{dBm} /$ $\mathrm{MHz})$	Duty Cycle $(\%)$	Constant Factor	Final PSD $(\mathrm{dBm} / \mathrm{MHz})$	PSD Limit $(\mathrm{dBm} / \mathrm{MHz})$	Result
802.11 a	6 Mbps	149	5745	2.703	94.93	6.99	9.92	≤ 30.00	Pass
802.11 a	6 Mbps	157	5785	1.199	94.93	6.99	8.41	≤ 30.00	Pass
802.11 a	6 Mbps	165	5825	0.051	94.93	6.99	7.27	≤ 30.00	Pass

Note 1: When EUT duty cycle $\geq 98 \%$, the Final PSD ($\mathrm{dBm} / \mathrm{MHz}$) $=$ PSD ($\mathrm{dBm} / \mathrm{MHz}$).
Note 2: When EUT duty cycle $<98 \%$, the Total PSD $(\mathrm{dBm} / \mathrm{MHz})=\mathrm{PSD}(\mathrm{dBm} / \mathrm{MHz})+10 \star \log (1 /$ Duty Cycle $)$.

7.6. Frequency Stability Measurement

7.6.1. Test Limit

Manufactures of U-NII devices are responsible for ensuring frequency stability such that an emission is maintained within the band of operation under all conditions of normal operation as specified in the user's manual.

7.6.2. Test Procedure Used

Frequency Stability Under Temperature Variations:

The equipment under test was connected to an external AC or DC power supply and input rated voltage. RF output was connected to a frequency counter or spectrum analyzer via feed through attenuators. The EUT was placed inside the temperature chamber. Set the spectrum analyzer RBW low enough to obtain the desired frequency resolution and measure EUT $20^{\circ} \mathrm{C}$ operating frequency as reference frequency. Turn EUT off and set the chamber temperature to highest. After the temperature stabilized for approximately 30 minutes recorded the frequency. Repeat step measure with $10^{\circ} \mathrm{C}$ decreased per stage until the lowest temperature reached.

Frequency Stability Under Voltage Variations:

Set chamber temperature to $20^{\circ} \mathrm{C}$. Use a variable AC power supply / DC power source to power the EUT and set the voltage to rated voltage. Set the spectrum analyzer RBW low enough to obtain the desired frequency resolution and recorded the frequency.
Reduce the input voltage to specify extreme voltage variation ($\pm 15 \%$) and endpoint, record the maximum frequency change.

7.6.3. Test Setup

7.6.4. Test Result

Test Engineer	Kevin	Temperature	$-30 \sim 50^{\circ} \mathrm{C}$
Test Time	$2017 / 04 / 15$	Relative Humidity	$48 \sim 55 \%$ RH
Test Mode	5180 MHz (Carrier Mode)	Test Site	SR2

Voltage (\%)	Power (VAC)	Temp (${ }^{\circ} \mathrm{C}$)	Frequency Tolerance (ppm)			
			0 minutes	2 minutes	5 minutes	10 minutes
100\%	15.2	-30	7.89	10.46	11.26	9.62
		-20	8.74	12.46	13.22	11.02
		-10	10.79	11.09	13.53	12.07
		0	12.57	13.78	15.52	16.45
		+ 10	14.67	15.81	16.74	18.64
		+ 20 (Ref)	15.90	17.75	19.29	19.66
		+ 30	15.67	16.84	18.72	18.98
		+ 40	16.04	17.15	19.74	19.53
		+ 50	15.95	16.89	19.66	19.67
115\%	17.48	+20	15.75	16.97	19.46	19.03
85\%	12.92	+20	15.69	17.14	19.58	19.83

Note: Frequency Tolerance (ppm) $=\{[$ Measured Frequency (Hz) - Declared Frequency (Hz)]/
Declared Frequency (Hz)\} *10 ${ }^{6}$.

7.7. Radiated Spurious Emission Measurement

7.7.1. Test Limit

All out of band emissions appearing in a restricted band as specified in Section 15.205 of the Title 47 CFR must not exceed the limits shown in Table per Section 15.209 \& Section 8.10 of the RSS-Gen Issue 4 must not exceed the limits shown in Table per Section 8.9.

| FCC Part $\mathbf{1 5}$ Subpart C Paragraph 15.209 \& RSS-Gen Issue4 Section 8.9 | |
| :---: | :---: | :---: | | Frequency
 $[\mathrm{MHz}]$ | Field Strength
 $[\mathrm{uV} / \mathrm{m}]$ | Measured Distance
 [Meters] |
| :---: | :---: | :---: |
| $0.009-0.490$ | $2400 / \mathrm{F}(\mathrm{kHz})$ | 300 |
| $0.490-1.705$ | $24000 / \mathrm{F}(\mathrm{kHz})$ | 30 |
| $1.705-30$ | 30 | 30 |
| $30-88$ | 100 | 3 |
| $88-216$ | 150 | 3 |
| $216-960$ | 200 | 3 |
| Above 960 | 500 | 3 |

7.7.2. Test Procedure Used

KDB 789033 D02v01r03 - Section G

7.7.3. Test Setting

Peak Measurements above 1GHz

1. Analyzer center frequency was set to the frequency of the radiated spurious emission of interest
2. $\mathrm{RBW}=1 \mathrm{MHz}$
3. $\mathrm{VBW}=3 \mathrm{MHz}$
4. Detector $=$ peak
5. Sweep time = auto couple
6. Trace mode $=$ max hold
7. Trace was allowed to stabilize

Quasi-Peak Measurements below 1GHz

1. Analyzer center frequency was set to the frequency of the radiated spurious emission of interest
2. Span was set greater than 1 MHz
3. $\mathrm{RBW}=120 \mathrm{kHz}$
4. Detector $=$ CISPR quasi-peak
5. Sweep time = auto couple
6. Trace was allowed to stabilize

Average Measurements above 1GHz (Method AD)

1. Analyzer center frequency was set to the frequency of the radiated spurious emission of interest
2. $\mathrm{RBW}=1 \mathrm{MHz}$
3. $\mathrm{VBW}=3 \mathrm{MHz}$
4. Detector = power average (Average)
5. Number of measurement points $=1001$ (Number of points must be $>2 \times$ span/RBW)
6. Sweep time = auto
7. Trace was averaged over at 100 sweeps

7.7.4. Test Setup

 $\underline{9 k H z} \sim 30 \mathrm{MHz}$ Test Setup:
$\underline{30 \mathrm{MHz} \sim 1 \mathrm{GHz} \text { Test Setup: }}$

$1 \mathrm{GHz} \sim 18 \mathrm{GHz}$ Test Setup:

$18 \mathrm{GHz} \sim 40 \mathrm{GHz}$ Test Setup:

7.7.5. Test Result

Test Mode:	802.11 a	Test Site:	AC1
Test Channel:	149	Test Engineer:	Alex Ma
Remark:	1. Average measurement was not performed if peak level lower than average limit.	2. Other frequency was 20dB below limit line within 1-18GHz, there is not show in the report.	

Mark	Frequency (MHz)	Reading Level $(\mathrm{dB} \mu \mathrm{V})$	Factor (dB)	Measure Level $(\mathrm{dB} \mu \mathrm{V} / \mathrm{m})$	Limit $(\mathrm{dB} \mu \mathrm{V} / \mathrm{m})$	Margin (dB)	Detector	Polarization
	9364.0	36.3	10.5	46.8	74.0	-27.2	Peak	Horizontal
	11489.0	42.0	12.8	54.8	74.0	-19.2	Peak	Horizontal
	11489.0	29.0	12.8	41.8	54.0	-12.2	Average	Horizontal
$*$	14889.0	37.9	15.0	52.9	68.2	-15.3	Peak	Horizontal
$*$	17235.0	47.6	15.9	63.5	68.2	-4.7	Peak	Horizontal
	9330.0	34.9	10.4	45.3	74.0	-28.7	Peak	Vertical
	11489.0	43.0	12.8	55.8	74.0	-18.2	Peak	Vertical
	11489.0	33.9	12.8	46.7	54.0	-7.3	Average	Vertical
$*$	14651.0	36.7	15.7	52.4	68.2	-15.8	Peak	Vertical
$*$	17235.0	46.0	15.9	61.9	68.2	-6.3	Peak	Vertical
Note 1: "*" is not in restricted band, its limit is -27dBm/MHz. At a distance of 3 meters, the field strength								
limit in $\mathrm{dB} \mu \mathrm{V} / \mathrm{m}$ can be determined by adding a "conversion" factor of 95.2dB to the EIRP limit of								
-27dBm/MHz to obtain the limit for out of band spurious emissions.								
Note 2: Measure Level (dB $\mu \mathrm{V} / \mathrm{m}$) = Reading Level (dB $\mu \mathrm{V}$) + Factor (dB)								
Factor (dB) = Cable Loss (dB) + Antenna Factor (dB/m) - Pre_Amplifier Gain (dB)								

Test Mode:	802.11 a	Test Site:	AC1
Test Channel:	157	Test Engineer:	Alex Ma
Remark:	1. Average measurement was not performed if peak level lower than average limit.	2. Other frequency was 20dB below limit line within 1-18GHz, there is not show in the report.	

| Mark | Frequency
 (MHz) | Reading
 Level
 $(\mathrm{dB} \mu \mathrm{V})$ | Factor
 (dB) | Measure
 Level
 $(\mathrm{dB} \mu \mathrm{V} / \mathrm{m})$ | Limit
 $(\mathrm{dB} \mu \mathrm{V} / \mathrm{m})$ | Margin
 (dB) | Detector |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | Polarization \mid

Note 1: "*" is not in restricted band, its limit is $-27 \mathrm{dBm} / \mathrm{MHz}$. At a distance of 3 meters, the field strength limit in $\mathrm{dB} \mu \mathrm{V} / \mathrm{m}$ can be determined by adding a "conversion" factor of 95.2 dB to the EIRP limit of $-27 \mathrm{dBm} / \mathrm{MHz}$ to obtain the limit for out of band spurious emissions.
Note 2: Measure Level $(\mathrm{dB} \mu \mathrm{V} / \mathrm{m})$ = Reading Level $(\mathrm{dB} \mu \mathrm{V})$ + Factor (dB)
Factor $(\mathrm{dB})=$ Cable Loss $(\mathrm{dB})+$ Antenna Factor $(\mathrm{dB} / \mathrm{m})$ - Pre_Amplifier Gain (dB)

Test Mode:	802.11 a	Test Site:	AC1
Test Channel:	165	Test Engineer:	Alex Ma
Remark:	1. Average measurement was not performed if peak level lower than average limit.	2. Other frequency was 20dB below limit line within 1-18GHz, there is not show in the report.	

Mark	Frequency (MHz)	Reading Level $(\mathrm{dB} \mu \mathrm{V})$	Factor (dB)	Measure Level $(\mathrm{dB} \mu \mathrm{V} / \mathrm{m})$	Limit $(\mathrm{dB} \mu \mathrm{V} / \mathrm{m})$	Margin (dB)	Detector	Polarization
	9330.0	35.5	10.4	45.9	74.0	-28.1	Peak	Horizontal
	11642.0	37.2	12.4	49.6	74.0	-24.4	Peak	Horizontal
$*$	14685.0	36.7	15.7	52.4	68.2	-15.8	Peak	Horizontal
$*$	17464.5	38.1	17.2	55.3	68.2	-12.9	Peak	Horizontal
	9381.0	35.3	10.5	45.8	74.0	-28.2	Peak	Vertical
	11650.5	37.5	12.3	49.8	74.0	-24.2	Peak	Vertical
$*$	14719.0	37.5	15.6	53.1	68.2	-15.1	Peak	Vertical
$*$	17464.5	38.8	17.2	56.0	68.2	-12.2	Peak	Vertical

Note 1: "*" is not in restricted band, its limit is $-27 \mathrm{dBm} / \mathrm{MHz}$. At a distance of 3 meters, the field strength limit in $\mathrm{dB} \mu \mathrm{V} / \mathrm{m}$ can be determined by adding a "conversion" factor of 95.2 dB to the EIRP limit of $-27 \mathrm{dBm} / \mathrm{MHz}$ to obtain the limit for out of band spurious emissions.
Note 2: Measure Level $(\mathrm{dB} \mu \mathrm{V} / \mathrm{m})=$ Reading Level $(\mathrm{dB} \mu \mathrm{V})$ + Factor (dB)
Factor (dB) = Cable Loss (dB) + Antenna Factor (dB/m) - Pre_Amplifier Gain (dB)

The worst case of Radiated Emission below 1GHz:

Site: AC1	Time: 2017/04/11-20:40
Limit: FCC_Part15.209_RE(3m)	Engineer: Kevin
Probe: VULB 9168_20-2000MHz	Polarity: Horizontal
EUT: 3-Axis Gimbal Camera	Power: By Battery

Worst Mode: Transmit by 802.11a at channel 5745 MHz

No	Flag	Mark	Frequency (MHz)	Measure Level $(\mathrm{dBuV} / \mathrm{m})$	Reading Level (dBuV)	Over Limit (dB)	Limit $(\mathrm{dBuV} / \mathrm{m})$	Factor (dB)	Type
1			128.455	28.990	15.356	-14.510	43.500	13.634	QP
2			167.740	28.929	14.460	-14.571	43.500	14.469	QP
3			215.755	28.891	17.242	-14.609	43.500	11.649	QP
4		$*$	359.800	33.426	17.757	-12.574	46.000	15.669	QP
5			647.890	32.014	10.666	-13.986	46.000	21.348	QP
6			791.935	32.516	9.337	-13.484	46.000	23.179	QP

Note 1: Measure Level $(\mathrm{dB} \mu \mathrm{V} / \mathrm{m})=$ Reading Level $(\mathrm{dB} \mu \mathrm{V})+$ Factor (dB)
Factor $(\mathrm{dB})=$ Cable Loss $(\mathrm{dB})+$ Antenna Factor $(\mathrm{dB} / \mathrm{m})$
Note 2: The test trace is same as the ambient noise and the amplitude of the emissions are attenuated more than 20 dB below the permissible (the test frequency range: $9 \mathrm{kHz} \sim 30 \mathrm{MHz}, 18 \mathrm{GHz} \sim 40 \mathrm{GHz}$), therefore no data appear in the report.

Site: AC1	Time: 2017/04/11-20:47
Limit: FCC_Part15.209_RE(3m)	Engineer: Kevin
Probe: VULB 9168_20-2000MHz	Polarity: Vertical
EUT: 3-Axis Gimbal Camera	Power: By Battery

Worst Mode: Transmit by 802.11a at channel 5745 MHz

No	Flag	Mark	Frequency (MHz)	Measure Level $(\mathrm{dBuV} / \mathrm{m})$	Reading Level (dBuV)	Over Limit (dB)	Limit $(\mathrm{dBuV} / \mathrm{m})$	Factor (dB)	Type
1			71.710	28.477	17.247	-11.523	40.000	11.230	QP
2			128.940	25.962	12.300	-17.538	43.500	13.662	QP
3			215.755	30.223	18.574	-13.277	43.500	11.649	QP
4		$*$	359.800	36.229	20.560	-9.771	46.000	15.669	QP
5			547.890	32.857	13.431	-13.143	46.000	19.427	QP
6			791.935	34.126	10.947	-11.874	46.000	23.179	QP

Note 1: Measure Level $(\mathrm{dB} \mu \mathrm{V} / \mathrm{m})=$ Reading Level $(\mathrm{dB} \mu \mathrm{V})+$ Factor (dB)
Factor $(\mathrm{dB})=$ Cable Loss $(\mathrm{dB})+$ Antenna Factor $(\mathrm{dB} / \mathrm{m})$
Note 2: The test trace is same as the ambient noise and the amplitude of the emissions are attenuated more than 20dB below the permissible (the test frequency range: $9 \mathrm{kHz} \sim 30 \mathrm{MHz}, 18 \mathrm{GHz} \sim 40 \mathrm{GHz}$), therefore no data appear in the report.

7.8. Radiated Restricted Band Edge Measurement

7.8.1. Test Limit

For 15.205 requirement:

Radiated emissions which fall in the restricted bands, as defined in Section 15.205(a) of FCC part 15, must also comply with the radiated emission limits specified in Section 15.209(a).

Frequency (MHz)	Frequency (MHz)	Frequency (MHz)	Frequency (GHz)
$0.090-0.110$	$16.42-16.423$	$399.9-410$	$4.5-5.15$
${ }^{1} 0.495-0.505$	$16.69475-16.69525$	$608-614$	$5.35-5.46$
$2.1735-2.1905$	$16.80425-16.80475$	$960-1240$	$7.25-7.75$
$4.125-4.128$	$25.5-25.67$	$1300-1427$	$8.25-8.5$
$4.17725-4.17775$	$37.5-38.25$	$1435-1626.5$	$9.0-9.2$
$4.20725-4.20775$	$73-74.6$	$1645.5-1646.5$	$9.3-9.5$
$6.215-6.218$	$74.8-75.2$	$1660-1710$	$10.6-12.7$
$6.26775-6.26825$	$108-121.94$	$1718.8-1722.2$	$13.25-13.4$
$6.31175-6.31225$	$123-138$	$2200-2300$	$14.47-14.5$
$8.291-8.294$	$149.9-150.05$	$2310-2390$	$15.35-16.2$
$8.362-8.366$	$156.52475-156.525$	$2483.5-2500$	$17.7-21.4$
$8.37625-8.38675$	$156.7-156.9$	$2690-2900$	$22.01-23.12$
$8.41425-8.41475$	$162.0125-167.17$	$3260-3267$	$23.6-24.0$
$12.29-12.293$	$167.72-173.2$	$3332-3339$	$31.2-31.8$
$12.51975-12.52025$	$240-285$	$3345.8-3358$	$36.43-36.5$
$12.57675-12.57725$	$322-335.4$	$3600-4400$	$\left(^{2}\right)$
$13.36-13.41$		--	--

For 15.407(b) requirement:

All emissions shall be limited to a level of $-27 \mathrm{dBm} / \mathrm{MHz}$ at 75 MHz or more above or below the band edge increasing linearly to $10 \mathrm{dBm} / \mathrm{MHz}$ at 25 MHz above or below the band edge, and from 25 MHz above or below the band edge increasing linearly to a level of $15.6 \mathrm{dBm} / \mathrm{MHz}$ at 5 MHz above or below the band edge, and from 5 MHz above or below the band edge increasing linearly to a level of $27 \mathrm{dBm} / \mathrm{MHz}$ at the band edge.

Refer to KDB 789033 D02v01r03 G)2)c), as specified in § $15.407(\mathrm{~b})$, emissions above 1000 MHz that are outside of the restricted bands are subject to a maximum emission limit of $-27 \mathrm{dBm} / \mathrm{MHz}$ (or $-17 \mathrm{dBm} / \mathrm{MHz}$ as specified in § 15.407 (b)(4)). However, an out-of-band emission that complies with both the peak and average limits of § 15.209 is not required to satisfy the $-27 \mathrm{dBm} / \mathrm{MHz}$ or -17 $\mathrm{dBm} / \mathrm{MHz}$ maximum emission limit.

All out of band emissions appearing in a restricted band as specified in Section 15.205 of the Title 47 CFR must not exceed the limits shown in Table per Section 15.209.

FCC Part 15 Subpart C Paragraph 15.209		
Frequency $[\mathrm{MHz}]$	Field Strength $[\mathrm{uV} / \mathrm{m}]$	Measured Distance [Meters]
$0.009-0.490$	$2400 / \mathrm{F}(\mathrm{kHz})$	300
$0.490-1.705$	$24000 / \mathrm{F}(\mathrm{kHz})$	30
$1.705-30$	30	30
$30-88$	100	3
$88-216$	150	3
$216-960$	200	3
Above 960	500	

For RSS-Gen Section 8.10 requirement:

Radiated emissions which fall in the restricted bands, as defined in Section 8.10 of RSS-Gen, must also comply with the radiated emission limits specified in Section 8.9.

$\begin{gathered} \hline \text { Frequency } \\ (\mathrm{MHz}) \end{gathered}$	$\begin{gathered} \hline \text { Frequency } \\ (\mathrm{MHz}) \end{gathered}$	$\begin{gathered} \hline \text { Frequency } \\ (\mathrm{GHz}) \end{gathered}$
0.009-0.110	240-285	9.0-9.2
2.1735-2.1905	322-335.4	9.3-9.5
3.020-3.026	399.9-410	10.6-12.7
4.125-4.128	608-614	13.25-13.4
4.17725-4.17775	960-1427	14.47-14.5
4.20725-4.20775	1435-1626.5	15.35-16.2
5.677-5.683	1645.5-1646.5	17.7-21.4
6.215-6.218	1660-1710	22.01-23.12
6.26775-6.26825	1718.8-1722.2	23.6-24.0
6.31175-6.31225	2200-2300	31.2-31.8
8.291-8.294	2310-2390	36.43-36.5
8.362-8.366	2655-2900	Above 38.6
8.37625-8.38675	3260-3267	--
8.41425-8.41475	3332-3339	
12.29-12.293	334.5-3358	
12.51975-12.52025	3500-4400	
12.57675-12.57725	4500-5150	
13.36-13.41	5350-5460	
16.42-16.423	7250-7750	
16.69475-16.69525	8025-8500	
16.80425-16.80475	--	
25.5-25.67		
37.5-38.25		
73-74.6		
74.8-75.2		
108-138		
156.52475-156.525225		
156.7-156.9		

7.8.2. Test Result of Radiated Restricted Band Edge

Site: AC1	Time: 2017/04/07-00:27
Limit: FCC_Part15.407_RE(3m)	Engineer: Kevin
Probe: BBHA9120D_1-18GHz	Polarity: Horizontal
EUT: 3-Axis Gimbal Camera	Power: By Battery
Test Mode: Transmit by 802.11a at channel 5745 MHz	

No	Flag	Mark	Frequency (MHz)	Measure Level $(\mathrm{dBuV} / \mathrm{m})$	Reading Level (dBuV)	Over Limit (dB)	Limit $(\mathrm{dBuV} / \mathrm{m})$	Factor (dB)	Type
1		$*$	5641.415	65.209	27.424	-8.791	74.000	37.785	PK
2			5650.000	63.357	25.570	-10.643	74.000	37.787	PK
3			5700.000	75.168	37.276	-30.032	105.200	37.892	PK
4			5720.000	78.139	40.170	-32.661	110.800	37.970	PK
5			5725.000	85.466	47.476	-36.734	122.200	37.990	PK
6			5738.105	112.039	73.995	$\mathrm{~N} / \mathrm{A}$	N / A	38.044	PK

Note: Measure Level $(\mathrm{dB} \mu \mathrm{V} / \mathrm{m})=$ Reading Level $(\mathrm{dB} \mu \mathrm{V})+$ Factor (dB)
Factor $(\mathrm{dB})=$ Cable Loss $(\mathrm{dB})+$ Antenna Factor $(\mathrm{dB} / \mathrm{m})$

Site: AC1	Time: 2017/04/07-00:41
Limit: FCC_Part15.407_RE(3m)	Engineer: Kevin
Probe: BBHA9120D_1-18GHz	Polarity: Vertical
EUT: 3-Axis Gimbal Camera	Power: By Battery
Test Mode: Transmit by 802.11a at channel 5745 MHz	

No	Flag	Mark	Frequency (MHz)	Measure Level $(\mathrm{dBuV} / \mathrm{m})$	Reading Level (dBuV)	Over Limit (dB)	Limit $(\mathrm{dBuV} / \mathrm{m})$	Factor (dB)	Type
1		$*$	5607.672	65.605	27.890	-8.395	74.000	37.715	PK
2			5650.000	63.183	25.396	-10.817	74.000	37.787	PK
3			5700.000	73.168	35.276	-32.032	105.200	37.892	PK
4			5720.000	76.560	38.591	-34.240	110.800	37.970	PK
5			5725.000	82.477	44.487	-39.723	122.200	37.990	PK
6			5738.930	111.623	73.576	$\mathrm{~N} / \mathrm{A}$	N / A	38.047	PK

Note: Measure Level $(\mathrm{dB} \mu \mathrm{V} / \mathrm{m})=$ Reading Level $(\mathrm{dB} \mu \mathrm{V})+$ Factor (dB)
Factor $(\mathrm{dB})=$ Cable Loss $(\mathrm{dB})+$ Antenna Factor $(\mathrm{dB} / \mathrm{m})$

Site: AC1	Time: 2017/04/07-00:43
Limit: FCC_Part15.407_RE(3m)	Engineer: Kevin
Probe: BBHA9120D_1-18GHz	Polarity: Horizontal
EUT: 3-Axis Gimbal Camera	Power: By Battery
Test Mode: Transmit by 802.11a at channel 5825 MHz	

No	Flag	Mark	Frequency (MHz)	Measure Level $(\mathrm{dBuV} / \mathrm{m})$	Reading Level (dBuV)	Over Limit (dB)	Limit $(\mathrm{dBuV} / \mathrm{m})$	Factor (dB)	Type
1			5818.455	107.859	69.531	$\mathrm{~N} / \mathrm{A}$	N / A	38.329	PK
2			5850.000	67.870	29.417	-54.330	122.200	38.454	PK
3			5855.000	66.259	27.794	-44.541	110.800	38.465	PK
4			5875.000	64.934	26.437	-40.266	105.200	38.497	PK
5			5925.000	65.696	27.163	-8.304	74.000	38.533	PK
6		$*$	5944.328	66.565	28.058	-7.435	74.000	38.507	PK

Note: Measure Level $(\mathrm{dB} \mu \mathrm{V} / \mathrm{m})=$ Reading Level $(\mathrm{dB} \mu \mathrm{V})$ + Factor (dB)
Factor $(\mathrm{dB})=$ Cable Loss $(\mathrm{dB})+$ Antenna Factor $(\mathrm{dB} / \mathrm{m})$

Site: AC1	Time: 2017/04/07-00:51
Limit: FCC_Part15.407_RE(3m)	Engineer: Kevin
Probe: BBHA9120D_1-18GHz	Polarity: Vertical
EUT: 3-Axis Gimbal Camera	Power: By Battery
Test Mode: Transmit by 802.11a at channel 5825 MHz	

No	Flag	Mark	Frequency (MHz)	Measure Level $(\mathrm{dBuV} / \mathrm{m})$	Reading Level (dBuV)	Over Limit (dB)	Limit $(\mathrm{dBuV} / \mathrm{m})$	Factor (dB)	Type
1			5818.748	107.375	69.045	$\mathrm{~N} / \mathrm{A}$	N / A	38.330	PK
2			5850.000	67.799	29.346	-54.401	122.200	38.454	PK
3			5855.000	66.980	28.515	-43.820	110.800	38.465	PK
4			5875.000	64.921	26.424	-40.279	105.200	38.497	PK
5			5925.000	65.566	27.033	-8.434	74.000	38.533	PK
6		$*$	5943.937	66.516	28.008	-7.484	74.000	38.508	PK

Note: Measure Level $(\mathrm{dB} \mu \mathrm{V} / \mathrm{m})=$ Reading Level $(\mathrm{dB} \mu \mathrm{V})+$ Factor (dB)
Factor $(\mathrm{dB})=$ Cable Loss $(\mathrm{dB})+$ Antenna Factor $(\mathrm{dB} / \mathrm{m})$

7.9. AC Conducted Emissions Measurement

7.9.1. Test Limit

FCC Part 15.207 \& RSS-Gen Issue 4 Section 8.8 Limits		
Frequency (MHz)	QP $(\mathrm{dB} \mu \mathrm{V})$	AV $(\mathrm{dB} \mu \mathrm{V})$
$0.15-0.50$	$66-56$	$56-46$
$0.50-5.0$	56	46
$5.0-30$	60	50

Note 1: The lower limit shall apply at the transition frequencies.
Note 2: The limit decreases linearly with the logarithm of the frequency in the range 0.15 MHz to 0.5 MHz .

7.9.2. Test Procedure

The EUT was setup according to ANSI C63.4, 2014 and tested according to KDB 789033 for compliance to FCC 47CFR 15.247 requirements. The EUT was placed on a platform of nominal size, 1 m by 1.5 m , raised 80 cm above the conducting ground plane. The vertical conducting plane was located 40 cm to the rear of the EUT. All other surfaces of EUT were at least 80 cm from any other grounded conducting surface. The EUT and simulators are connected to the main power through a line impedance stabilization network (LISN). The LISN provides a $50 \mathrm{ohm} / 50 \mathrm{uH}$ coupling impedance for the measuring equipment. The peripheral devices are also connected to the main power through a LISN. (Please refer to the block diagram of the test setup and photographs) Each current-carrying conductor of the EUT power cord, except the ground (safety) conductor, was individually connected through a LISN to the input power source.

The excess length of the power cord between the EUT and the LISN receptacle were folded back and forth at the center of the lead to form a bundle not exceeding 40 cm in length.

Conducted emissions were investigated over the frequency range from 0.15 MHz to 30 MHz using a receiver bandwidth of 9 kHz .

7.9.3. Test Setup

7.9.4. Test Result

The EUT is powered by battery, so this test item is not applicable.

8. CONCLUSION

The data collected relate only the item(s) tested and show that the 3-Axis Gimbal Camera is in compliance with Part 15E of the FCC Rules and ISED Rules.

