

Test report No:

NIE: 57900RAN.001A1

Assessment report RF EXPOSURE REPORT ACCORDING TO FCC 47 CFR Part 2.1091, FCC 47 CFR Part 2.1093 ISED RSS -102 Issue 5:2015

Identification of item tested	Bluetooth Low-Energy Proximity Beacon with Accelerometer
Trademark	EM Microelectronic
Model and /or type reference	EMBC22
Other identification of the product	FCC ID: 2ACQR-EMBC22 IC: 12155A-EMBC22 HW Version: V1.5 SW Version: V00 5A.00.00.01.00.00
Features	Bluetooth Low-Energy
Manufacturer (EU)	EM Microelectronic – US INC 5475 Mark Dabling Blvd, Suite 200 Colorado Springs, CO 80918
Test method requested, standard	 FCC 47 CFR Part 2.1091. Radiofrequency radiation exposure evaluation: mobile devices. FCC 47 CFR Part 2.1093. Radiofrequency radiation exposure evaluation: portable devices. ISED RSS-102 Issue 5 (2015-03) – Radio Frequency Exposure Compliance of Radiocommunication Apparatus (All Frequency Bands)
Summary	IN COMPLIANCE
Approved by (name / position & signature)	Miguel Lacave Antennas Lab Manager
Date of issue	2018-09-19
Report template No	FAN24_01

Index

Competences and guarantees	3
General conditions	3
Identification of the client	3
Document history	3
General description of the device under evaluation	4
Assessment summary	5
Appendix A: FCC RF Exposure	6
FCC RF Exposure evaluation for mobile devices	7
FCC SAR test exclusion considerations for portable devices	8
FCC Evaluation Results	10
Appendix B: ISED RF Exposure	12
ISED RF Exposure evaluation for mobile devices	13
ISED SAR test exclusion considerations	13
ISED Evaluation Results	14

Competences and guarantees

In order to assure the traceability to other national and international laboratories, DEKRA has a calibration and maintenance program for its measurement equipment.

DEKRA guarantees the reliability of the data presented in this report, which is the result of the measurements and the tests performed to the item under test on the date and under the conditions stated on the report and, it is based on the knowledge and technical facilities available at DEKRA at the time of performance of the test.

DEKRA is liable to the client for the maintenance of the confidentiality of all information related to the item under test and the results of the test.

The results presented in this Assessment Report apply only to the particular item under test established in this document.

IMPORTANT: No parts of this report may be reproduced or quoted out of context, in any form or by any means, except in full, without the previous written permission of DEKRA.

General conditions

- 1. This report is only referred to the item that has undergone the assessment.
- 2. This report does not constitute or imply on its own an approval of the product by the Certification Bodies or competent Authorities.
- 3. This document is only valid if complete; no partial reproduction can be made without previous written permission of DEKRA.
- 4. This assessment report cannot be used partially or in full for publicity and/or promotional purposes without previous written permission of DEKRA and the Accreditation Bodies.

Identification of the client

EM Microelectronic – US INC 5475 Mark Dabling Blvd, Suite 200 Colorado Springs, CO 80918

Document history

Report number	Date	Description
57900RAN.001	2018-09-13	First release
57900RAN.001A1	2018-09-19	Mobile exposure conditions have been included into the assessment

This modification test report cancels and replaces the test report 57900RAN.001

General description of the device under evaluation

The EMBC22 is a high-performance, customizable Bluetooth low energy proximity beacon with an accelerometer for tracking objects that move. Similar to the EMBC02, the EMBC22 comes in simple, easy to use coin-shape housing, and is now powered by the EM9304, the world's lowest power Bluetooth IC.

The device under evaluation is able to be used into portable and mobile exposure conditions.

The maximum conducted output power declared by the manufacturer for the device is 6.1 dBm, which corresponds to a maximum time-averaged output power of -3.90 dBm, according to its 10 % transmitting duty cycle value.

The equipment specifications for the Bluetooth Low Energy technology are:

Band (MHz)	Technology	Band	Max. average RF output power (dBm)	Max. Antenna gain (dBi)	Maximum E.I.R.P. (dBm)
2402.0-2480.0	Bluetooth LE	ISM	-3.9	+1.5	-2.40

Table 1: Equipment specifications

Assessment summary

Radiofrequency radiation exposure limits										
FCC 47 CFR § 2.1091 & FCC 47 CFR § 2.1093 ISED RSS-102 Issue 5 (2015-03)										
Assessment	Assessment Band (MHz) Technology Band VERDICT (Pass/Fail)									
1	2450	Bluetooth Low Energy	ISM	Pass						

 Table 2: Assessment summary

Appendix A: FCC RF Exposure

FCC RF Exposure evaluation for mobile devices

Devices operating in standalone mobile device exposure conditions may contain a single transmitter or multiple transmitters that do not transmit simultaneously. A minimum test separation distance ≥ 20 cm is required between the antenna and radiating structures of the device and nearby persons to apply mobile device exposure limits. The distance must be at least 20 cm and fully supported by the operating and installation configurations of the transmitter and its antenna(s), according to the source-based time-averaged maximum power requirements of § 2.1091(d)(2). In cases where cable losses or other attenuations are applied to determine compliance, the most conservative operating configurations and exposure conditions must be evaluated. The minimum test separation distance required for a device to comply with mobile device exposure conditions must be clearly identified in the installation and operating instructions, for all installation and exposure conditions, to enable users and installers to comply with RF exposure requirements. For mobile devices that have the potential to operate in portable device exposure conditions, similar to the configurations described in § 2.1091(d)(4), a KDB inquiry is required to determine the SAR test requirements for demonstrating compliance.

When a device qualifies for the categorical exclusion provision of § 2.1091(c), the minimum test separation distance may be estimated, when applicable, by simple calculations according to plane-wave equivalent conditions, to ensure the transmitter and its antenna(s) can operate in manners that meet or exceed the estimated distance. The source-based time-averaged maximum radiated power, according to the maximum antenna gain, must be applied to calculate the field strength and power density required to establish the minimum test separation distance. When the estimated test separation distance becomes overly conservative and does not support compliance, MPE measurement or computational modeling may be used to determine the required minimum separation distance.

According to §1.1310 Radiofrequency radiation exposure limits, paragraph (e), the limits for Maximum Permissible Exposure (MPE) to radiofrequency electromagnetic fields are:

Magnetic field strength Electric field Frequency range (MHz) Power density Averaging time (minutes) strength (mW/cm²) (A/III) (V/m) (A) Limits for Occupational/Controlled Exposure * 100 6 03-30 614 1.63 3.0-30 1842/1 4.89/1 900/12 6 30-300 6 61.4 0.163 1.0 8 300-1.500 t/300 1.500-100.000 5 6 (B) Limits for General Population/Uncontrolled Exposure 0.3-1.34 1.63 * 100 30 1.34-30 824/1 2.19/1 180/12 30

27.5

0.073

0.2

1.0

1/1500

30

30

30

TABLE 1-LIMITS FOR MAXIMUM PERMISSIBLE EXPOSURE (MPE)

30-300

300-1,500

f = frequency in MHz * = Plane-wave equivalent power density

2018-09-19

FCC SAR test exclusion considerations for portable devices

As stated by the FCC (47 CFR §2.1093), human exposure to RF emissions from portable devices, which are defined as transmitting devices to be used so that the radiating structure(s) of the device is/are within 20 centimeters of the body of the user, must be evaluated with respect to the FCC-adopted limits for SAR.

According to FCC OET KDB 447498 D01 General RF Exposure Guidance:

Unless specifically required by the published RF exposure KDB procedures, standalone 1-g head or body and 10-g extremity SAR evaluation for general population exposure conditions, by measurement or numerical simulation, is not required when the corresponding SAR Test Exclusion Threshold condition is satisfied.

- For distances ≤ 50 mm

The 1-g and 10-g SAR test exclusion thresholds for 100 MHz to 6 GHz at test separation distances ≤ 50 mm are determined by:

[(max. power of channel, including tune-up tolerance, mW)/(min. test separation distance, mm)] \cdot [$\sqrt{f(GHz)}$] ≤ 3.0 for 1-g SAR and ≤ 7.5 for 10-g extremity SAR

Where

- f(GHz) is the RF channel transmit frequency in GHz
- Power and distance are rounded to the nearest mW and mm before calculation
- The result is rounded to one decimal place for comparison

The test exclusions are applicable only when the minimum test separation distance is \leq 50 mm and for transmission frequencies between 100 MHz and 6 GHz. When the minimum test separation distance is < 5 mm, a distance of 5 mm is applied to determine SAR test exclusion.

Approximate SAR Test Exclusion Power Thresholds at Selected Frequencies and Test Separation Distances are illustrated in the following Table:

MHz	5	10	15	20	25	30	35	40	45	50	mm
150	39	77	116	155	194	232	271	310	349	387	
300	27	55	82	110	137	164	192	219	246	274	
450	22	45	67	89	112	134	157	179	201	224	_
835	16	33	49	66	82	98	115	131	148	164	SAR Test
900	16	32	47	63	79	95	111	126	142	158	
1500	12	24	37	49	61	73	86	98	110	122	Exclusion
1900	11	22	33	44	54	65	76	87	98	109	Threshold
2450	10	19	29	38	48	57	67	77	86	96	(mW)
3600	8	16	24	32	40	47	55	63	71	79	
5200	7	13	20	26	33	39	46	53	59	66	
5400	6	13	19	26	32	39	45	52	58	65	
5800	6	12	19	25	31	37	44	50	56	62	

Table 3: SAR Test Exclusion Thresholds for 100 MHz - 6 GHz and ≤ 50 mm

- For distances > 50 mm

For 100 MHz to 6 GHz frequencies and for test separation distances > 50 mm, the SAR test exclusion threshold is determined according to the following:

- 1) [Power allowed at numeric threshold for 50 mm in table 1) + (test separation distance 50 mm)-(f(MHz)/150)] mW, at 100 MHz to 1500 MHz
- 2) [Power allowed at numeric threshold for 50 mm in table 1) + (test separation distance 50 mm)-10] mW, at > 1500 MHz and \leq 6 GHz

Approximate SAR test exclusion power thresholds at selected frequencies and test separation distances are illustrated in the following table

MHz	50	60	70	80	90	100	110	120	130	140	150	160	170	180	190	mm
100	474	481	487	494	501	507	514	521	527	534	541	547	554	561	567	
150	387	397	407	417	427	437	447	457	467	477	487	497	507	517	527	
300	274	294	314	334	354	374	394	414	434	454	474	494	514	534	554	
450	224	254	284	314	344	374	404	434	464	494	524	554	584	614	644	
835	164	220	275	331	387	442	498	554	609	665	721	776	832	888	943	SAR Test
900	158	218	278	338	398	458	518	578	638	698	758	818	878	938	998	Exclusion
1500	122	222	322	422	522	622	722	822	922	1022	1122	1222	1322	1422	1522	Threshold
1900	109	209	309	409	509	609	709	809	909	1009	1109	1209	1309	1409	1509	(mW)
2450	96	196	296	396	496	596	696	796	896	996	1096	1196	1296	1396	1496	
3600	79	179	279	379	479	579	679	779	879	979	1079	1179	1279	1379	1479	
5200	66	166	266	366	466	566	666	766	866	966	1066	1166	1266	1366	1466	
5400	65	165	265	365	465	565	665	765	865	965	1065	1165	1265	1365	1465	
5800	62	162	262	362	462	562	662	762	862	962	1062	1162	1262	1362	1462	

Table 4: SAR Test Exclusion Thresholds for 100 MHz - 6 GHz and > 50 mm

- For frequencies below 100 MHz

The following may be considered for SAR test exclusion:

- 1) For test separation distances > 50 mm and < 200 mm, the power threshold at the corresponding test separation distance at 100 MHz in step b) is multiplied by [1 + log(100/f(MHz))]
- 2) For test separation distances \leq 50 mm, the power threshold determined by the equation in c) 1) for 50 mm and 100 MHz is multiplied by $\frac{1}{2}$

Approximate SAR test exclusion power thresholds at selected frequencies and test separation distances are illustrated in the following table

MHz	< 50	50	60	70	80	90	100	110	120	130	140	150	160	170	180	190	mm
100	237	474	481	487	494	501	507	514	521	527	534	541	547	554	561	567	
50	308	617	625	634	643	651	660	669	677	686	695	703	712	721	729	738	
10	474	948	961	975	988	1001	1015	1028	1041	1055	1068	1081	1095	1108	1121	1135	mW
1	711	1422	1442	1462	1482	1502	1522	1542	1562	1582	1602	1622	1642	1662	1682	1702	IIIVV
0.1	948	1896	1923	1949	1976	2003	2029	2056	2083	2109	2136	2163	2189	2216	2243	2269	
0.05	1019	2039	2067	2096	2125	2153	2182	2211	2239	2268	2297	2325	2354	2383	2411	2440	
0.01	1185	2370	2403	2437	2470	2503	2537	2570	2603	2637	2670	2703	2737	2770	2803	2837	

Table 5: SAR Test Exclusion Thresholds for frequencies < 100 MHz

FCC Evaluation Results

1) Mobile Exposure conditions

In order to perform the assessment, the following equations have been used for the calculations; these equations are accurate in the far-field of an antenna and will over-predict power density in the near field, where they could be used for making a "worst case" or conservative prediction:

Power density:
$$S[mW/cm^2] = \frac{P_{E.I.R.P.}[mW]}{4\Pi R[cm]^2}$$

Minimum compliance distance:
$$R_{\min}[cm] = \sqrt{\frac{P_{E.I.R.P.}[mW]}{4\Pi S[mW/cm^2]}}$$

Where:

S = power density

 $P_{\scriptscriptstyle E.I.R.P.}$ = Equivalent isotropically radiated power

R = distance to the center of radiation of the antenna (evaluation distance)

 $R_{\rm min}$ = distance to the center of radiation of the antenna

	I
Maximum average output power (dBm):	-3.9
Maximum antenna Gain (dBi):	1.5
Minimum use distance (cm):	20.0
Worst Case Frequency (MHz):	2402.0
Maximum EIRP (dBm):	-2.4
Maximum EIRP (mW):	0.58
General population - Power density limit (mW/cm²):	1.0

Power density at minimum use distance:

Power density (mW/cm ²):	0.00011
General population - Power density limit (mW/cm ²):	1.0
Verdict for general population:	PASS

The power density level for this transmission mode is below general population exposure power density limit.

Minimum compliance distance for this technology:

Minimum compliance distance for general population (cm):	0.21
Minimum use distance (cm):	20.0
Verdict for general population:	PASS

The minimum use distance is greater than general population exposure minimum compliance distance

2) Portable Exposure conditions

The maximum time-averaged output power for device is -3.90 (dBm), therefore the evaluation according to a minimum intended use distance of 5 mm will be as follow:

Technology	Max. Av Output Pov	U	Min. Test Distance	Freq.	Result	Test Exclusion	
	(dBm)	(mW)	(mm)	(0112)		LACIUSIOII	
Bluetooth LE	-3.90	0.407	5	2.48	0.13	Pass	

Table 6: Evaluation Result

The computed 0.13 is < 3.0, so according to KDB 447498 D01 – General RF Exposure Guidance, this mode qualifies for Standalone SAR test exclusion for 1-g SAR and 10-g Extremity SAR.

Appendix B: ISED RF Exposure

ISED RF Exposure evaluation for mobile devices

According to RSS-102 Issue 5, Paragraph "4. Exposure Limits", Industry of Canada has adopted the RF field strength limits established in Health Canada's RF exposure guideline, Safety code 6:

Table 4: RF Field Strength Limits for Devices Used by the General Public (Uncontrolled Environment)

Frequency Range	Electric Field	Magnetic Field	Power Density	Reference Period	
(MHz)	(V/m rms)	(A/m rms)	(W/m^2)	(minutes)	
0.003-10 ²¹	83	90	-	Instantaneous*	
0.1-10	-	0.73/f	-	6**	
1.1-10	87/ f ^{0.5}	-	-	6**	
10-20	27.46	0.0728	2	6	
20-48	58.07/ f ^{0.25}	$0.1540/f^{0.25}$	8.944/ f ^{0.5}	6	
48-300	22.06	0.05852	1.291	6	
300-6000	$3.142 f^{0.3417}$	$0.008335 f^{0.3417}$	$0.02619f^{0.6834}$	6	
6000-15000	61.4	0.163	10	6	
15000-150000	61.4	0.163	10	616000/ f ^{1.2}	
150000-300000	$0.158 f^{0.5}$	$4.21 \times 10^{-4} f^{0.5}$	6.67 x 10 ⁻⁵ f	616000/ f ^{1.2}	

Note: f is frequency in MHz.

ISED SAR test exclusion considerations

According to "RSS-102 Issue 5 (2015-03) – Radio Frequency Exposure Compliance of Radiocommunication Apparatus (All Frequency Bands)", paragraph "2.5.1 Exemption Limits for Routine Evaluation – SAR Evaluation", the device operates below the applicable output power level (adjusted for tune-up tolerance) for the specified separation distance defined in Table 1:

Table 1: SAR evaluation – Exemption limits for routine evaluation based on frequency and separation distance^{4,5}

Frequency	Exemption Limits (mW)					
(MHz)	At separation At separation		At separation	At separation	At separation	
	distance of	distance of	distance of	distance of	distance of	
	≤5 mm	10 mm	15 mm	20 mm	25 mm	
≤300	71 mW	101 mW	132 mW	162 mW	193 mW	
450	52 mW	70 mW	88 mW	106 mW	123 mW	
835	17 mW	30 mW	42 mW	55 mW	67 mW	
1900	7 mW	10 mW	18 mW	34 mW	60 mW	
2450	4 mW	7 mW	15 mW	30 mW	52 mW	
3500	2 mW	6 mW	16 mW	32 mW	55 mW	
5800	1 mW	6 mW	15 mW	27 mW	41 mW	

Output power level shall be the higher of the maximum conducted or equivalent isotropically radiated power (e.i.r.p.) source-based, time-averaged output power. For controlled use devices where the 8 W/kg for 1 gram of tissue applies, the exemption limits for routine evaluation in Table 1 are multiplied by a factor of 5. For limbworn devices where the 10 gram value applies, the exemption limits for routine evaluation in Table 1 are multiplied by a factor of 2.5. If the operating frequency of the device is between two frequencies located in Table 1, linear interpolation shall be applied for the applicable separation distance. For test separation distance less than 5 mm, the exemption limits for a separation distance of 5 mm can be applied to determine if a routine evaluation is required.

^{*}Based on nerve stimulation (NS).

^{**} Based on specific absorption rate (SAR).

ISED Evaluation Results

1) Mobile Exposure conditions

In order to perform the assessment, the following equations have been used for the calculations; these equations are accurate in the far-field of an antenna and will over-predict power density in the near field, where they could be used for making a "worst case" or conservative prediction:

Power density:
$$S[W/m^2] = \frac{P_{E.I.R.P.}[W]}{4\Pi R[m]^2}$$

Minimum compliance distance:
$$R_{\min}[m] = \sqrt{\frac{P_{E.I.R.P.}[W]}{4\Pi S[W/m^2]}}$$

Where:

S = power density

 $P_{E,L,R,P}$ = Equivalent isotropically radiated power

R = distance to the center of radiation of the antenna (evaluation distance)

 $R_{\rm min}$ = distance to the center of radiation of the antenna

Maximum average output power (dBm):	-3.9	
Maximum antenna gain (dBi):	1.5	
Minimum use distance (m):	0.2	
Worst Case Frequency (MHz):	2402.0	
Maximum EIRP (dBm):	-2.4	
Maximum EIRP (W):	0.0006	
General public - Power density limit (W/m²):	5.35	

Power density at minimum use distance:

Power density (W/m²):	0.0011
General public - Power density limit (W/m²):	5.35
Verdict for general public:	PASS

The power density level for this transmission mode is below general public power density limit.

Minimum compliance distance for this technology:

Minimum compliance distance for general public (m):	0.003
Minimum use distance (m):	0.2
Verdict for general public:	PASS

The minimum use distance is greater than general public minimum compliance distance.

2) Portable Exposure conditions

According to paragraph "2.5.1 Exemption Limits for Routine Evaluation – SAR Evaluation", the exemption limits for the applicable separation distance have been calculated by linear interpolation for the following operating frequencies:

Frequency (MHz)	Distance (mm)	Exemption Limits (mW)
2402	5	4.26
2440	5	4.05
2480	5	3.95

Table 7: ISED Exemption Limits

The maximum radiated average power of the device is -2.40 dBm, which corresponds to 0.58 mW. For an intended use distance of 5 mm, the evaluation for the applicable output power levels and exemption limits for each operating frequency and technology will be as follow:

Technology	Frequency (MHz)	Max. average Output Power (dBm)	Antenna Gain (dBi)	Max. E.I.R.P (dBm)	Max. E.I.R.P (mW)	ISED Exemption Limits (mW)	Verdict
	2402	-3.90	1.5	-2.40	0.58	4.26	Pass
Bluetooth LE	2440	-3.90	1.5	-2.40	0.58	4.05	Pass
	2480	-3.90	1.5	-2.40	0.58	3.95	Pass

Table 8: ISED Evaluation Result

As all operating frequencies comply with SAR Test Exclusion Thresholds, according to the standard "ISED RSS-102 Issue 5 (2015-03)", SAR testing is not required.