

Nemko Test Report: 2015 277694 FCC 15247 **Applicant:** EM Microelectronic –US, Inc. 5475 Mark Dabling Blvd, Suite 200 Colorado Springs, CO 80918 **Equipment Under Test:** EMBC02 (E.U.T.) **FCC** Identifier: 2ACQR-EMBC02 **Industry Canada Identifier:** 12155A-EMBC02 In Accordance With: FCC Part 15, Subpart C, 15.247 and Industry Canada RSS-210, Issue 8 **Digital Transmission System Transmitter**

Tested By:

Nemko USA, Inc. 2210 Faraday Ave, Suite 150 Carlsbad, CA 92008

TESTED BY:

APPROVED BY:

David Light, Wireless Engineer

James & Morris

DATE: 11 March 2015

Number of Pages: 38

09 February 2015

DATE:

Table of Contents

SECTION 1.	SUMMARY OF TEST RESULTS	3
SECTION 2.	EQUIPMENT UNDER TEST (E.U.T.)	5
SECTION 3.	OCCUPIED BANDWIDTH	7
SECTION 4.	MAXIMUM PEAK OUTPUT POWER	12
SECTION 5	SPURIOUS EMISSIONS (CONDUCTED)	16
SECTION 6.	RADIATED EMISSIONS	21
SECTION 7.	PEAK POWER SPECTRAL DENSITY	25
SECTION 8. T	EST EQUIPMENT LIST	29
ANNEX A - TES	ST DETAILS	30
ANNEX B - TES	ST DIAGRAMS	38

Section 1. Summary of Test Results

Manufacturer: EM Microelectronic – USA, Inc.

Model No.: EMBC02

Serial No.: None

General: All measurements are traceable to national standards.

These tests were conducted on a sample of the equipment for the purpose of demonstrating compliance with Part 15, Subpart C, Paragraph 15.247 and Industry Canada RSS-210, Issue 8 for Digital Transmission Systems. Radiated tests were conducted is accordance with ANSI C63.10:2013. Radiated emissions are made on an open area test site. A description of the test facility is on file with the FCC and Industry Canada.

\boxtimes	New Submission		Production Unit
	Class II Permissive Change	\square	Pre-Production Unit

THIS TEST REPORT RELATES ONLY TO THE ITEM(S) TESTED.

THE FOLLOWING DEVIATIONS FROM, ADDITIONS TO, OR EXCLUSIONS FROM THE TEST SPECIFICATIONS HAVE BEEN MADE. See "Summary of Test Data".

NVLAP Lab Code 200116-0

Nemko USA, Inc. authorizes the above named company to reproduce this report provided it is reproduced in its entirety, for use by the company's employees only.

This report must not be used to claim product certification, approval, or endorsement by NVLAP, NIST, or any agency of the Federal Government. Nemko USA, Inc. is a NVLAP accredited laboratory.

Any use which a third party makes of this report, or any reliance on or decisions to be made based on it, are the responsibility of such third parties. Nemko USA, Inc. accepts no responsibility for damages, if any, suffered by any third party as a result of decisions made or actions based on this report. This report applies only to the items tested.

Summary of Test Data

NAME OF TEST	OF TEST PARA. NO.	
Powerline Conducted Emissions	15.207(a) / RSS-General 8.8	NA
Minimum 6 dB Bandwidth	15 247(a)(2) / RSS-210 A8 2(a)	Complie
	10.2 17 (4)(2) / 1000 210 / 10.2(4)	S
Maximum Peak Power Output	15.247(h)(3) / RSS-210.48.4(4)	Complie
	13.247(0)(3)71(80-210 A0.4(4)	S
Spurious Emissions	15 247(d) / PSS-210 A8 5	Complie
(Antenna Conducted)	13:247 (d) / 1100-210 A0:3	S
Sourious Emissions (Restricted Bands)	15.247(d)/15.200(a)/RSS-General 8.10	Complie
opundus Emissions (Restricted Banus)	13:247 (d)/13:209(a) / 13:30-0eneral 8:10	S
Peak Power Spectral Density	15 247(a) / RSS-210 A8 2(b)	Complie
reak rower opecial Density	13.247 (6) / 1100-210 A0.2(0)	S

Footnotes:

The device is battery powered.

Nemko USA, Inc.	FCC PART 15, SUBPART C and RSS-210 Digital Transmission Systems			
EQUIPMENT: EMBC02	Test Report N	No.: 2015 277	694 FCC 15247	
Section 2. Equipment Un	der Test (E.U.	.Т.)		
General Equipment Information				
Frequency Band (MHz):	902-928	2400-2483.5	5725-5850	
		\boxtimes		
Operating Frequency of Test Sample:	2402 to 2480 Mł	Hz		
User Frequency Adjustment:	Software control	lled		
Firmware:	Version 2.7.2			

Nemko USA, Inc.	FCC PART 15,	SUBPART C and RSS-210
·	Digital Transmission System	
EQUIPMENT: EMBC02	Test Report No.:	2015 277694 FCC 15247

Description of EUT

2.4 GHz device used for tracking purposes.

System Diagram

Companion Device ie. Smartphone etc..

Section 3. Occupied Bandwidth

NAME OF TEST: Occupied Bandwidth	PARA. NO.: FCC 15.247(a)(2)
	RSS-210 A8.2(a)
TESTED BY: David Light	DATE: 06 February 2015

Test Results: Complies.

Measurement Data: See 6 dB BW plot

Measured 6 dB bandwidth: 729.5 kHz

Test Conditions:	35	%RH	
	22	°C	

Measurement Uncertainty: +/-1x10⁻⁷ ppm

Test Equipment Used: 1036

Test Report No.: 2015 277694 FCC 15247

Test Data – Occupied Bandwidth

Date: 6.FEB.2015 09:38:20

Test Report No.: 2015 277694 FCC 15247

Test Data – Occupied Bandwidth

Date: 6.FEB.2015 09:45:54

Test Report No.: 2015 277694 FCC 15247

Test Data – Occupied Bandwidth Delta 1 [T1] 30 kHz RF Att 10 dB RBW Ref Lvl -0.14 dB VBW 100 kHz 10 dBm 681.36272545 kHz SWT 11.5 ms dBm Unit 10 22.1 dB Offset ▼1 [T1] -10.19 dBm A 2.47967535 GHz dB [T1] **A** ⁻ 68 1.36272545 kHz Ma -1C -20 IN1 **IVIEW** 1MA -30 ъV лh -40 -50 town the work of the hat cherele and -60 -70 -80 -90 Center 2.48 GHz 400 kHz/ Span 4 MHz

Date: 6.FEB.2015 09:51:43

Page 10 of 39

Test Report No.: 2015 277694 FCC 15247

99% Bandwidth

Section 4. Maximum Peak Output Power

NAME OF TEST: Maximum Peak Output power	PARA. NO.: FCC 15.247(b)(3)
	RSS-210 A8.4(4)
TESTED BY: David Light	DATE: 05 February 2015

Test Results: Complies.

Measurement Data: Refer to attached data

Test Conditions:	35	%RH
	22	°C

- Measurement Uncertainty: +/-1.7 dB
- Test Equipment Used: 1036

This device was tested at +/- 15% input power per 15.31(e), with no variation in
output power.

- For battery powered equipment, the device was tested with a fresh battery per 15.31(e).
- The device was tested on three channels per 15.31(I).
- This test was performed radiated.

Digital Transmission Systems Test Report No.: 2015 277694 FCC 15247

Test Data – Peak Power

Digital Transmission Systems Test Report No.: 2015 277694 FCC 15247

Test Data – Peak Power

Digital Transmission Systems Test Report No.: 2015 277694 FCC 15247

Test Data – Peak Power

Section 5 Spurious Emissions (Conducted)

NAME OF TEST: Spurious Emissions (Conducted)	PARA. NO.: FCC 15.247 (d)
	RSS-210 A8.5
TESTED BY: David Light	DATE: 06 February

Test Results: Complies.

Measurement Data: See attached plots.

 Test Conditions:
 35
 %RH

 22
 °C

Measurement Uncertainty: +/-1.7 dB

Test Equipment Used: 1036

Page 17 of 39

Low Channel 100 kHz RF Att 10 dB Delta 1 [T1] RBW Ref Lvl 300 kHz -35.32 dB VBW 10 dBm 2.42671993 GHz SWT 6.4 s Unit dBm 10 10 GHZ.47 dB 100 MHz ĠHz 1 2 V [T1] dBm A 200000 1 Hz 71993 Hz -10 -20 IN1 **1V 1MA** -30 -40 -50 manth Merit" d l År **Allori**t -60 When the has -70 -80 -90 Start 30 MHz Stop 25 GHz

Test Data – Spurious Emissions at Antenna Terminals

Date: 6.FEB.2015 09:41:23

Mid Channel 100 kHz RF Att 10 dB Delta 1 [T1] RBW Ref Lvl 300 kHz -36.57 dB VBW 10 dBm 2.46824111 GHz SWT 6.4 s Unit dBm 10 10 GHZ.24 dB 100 MHz ĠHz 1 2 V [T1] dBm A 600000 1 Hz 24111 Hz -10 -20 IN1 1M7.X **1MA** -30 -40 -50 i An Intert L -60 ant million has -70 -80 -90 Start 30 MHz Stop 25 GHz

Test Data – Spurious Emissions at Antenna Terminals

Date: 6.FEB.2015 09:47:42

Test Data – Spurious Emissions at Antenna Terminals

Upper Channel

6.FEB.2015 09:52:52

Section 6. Radiated Emissions

NAME OF TEST: Radiated Emissions	PARA. NO.: FCC 15.247 (d)
	RSS-Gen 8.10
TESTED BY: David Light	DATE: 06 February 2015

Test Results: Complies.

Measurement Data: See attached table.

Test Conditions:	30	%RH
	23	°C

Measurement Uncertainty: +/-1.7 dB

Test Equipment Used: 1016 752

Notes:

For handheld devices, the EUT was tested on three orthogona	l axis'
---	---------

The device was tested from 30 MHz to the tenth harmonic of the highest fundamental frequency per 15.33

The device was tested on three channels per 15.31(I).

All emissions within 20 dB of the specification limit are reported per 15.31(o).

<1000 MHz	RBW = 100 kHz	VBW=300 kHz	Peak detector
>1000 MHz	RBW = 1 MHz	VBW=3 MHz	Peak detector

Radiated Emissions

Meas.	Ant.	Duty	Meter	Antenna	Path	RF	Corrected	Spec.	CR/SL	Pass	
Freq.	Pol.	Cycle	Reading	Factor	Loss	Gain	Reading	limit	Diff.	Fail	
(MHz)	(H/V)	(dB)	(dBuV)	(dB)	(dB)	(dB)	(dBuV/m)	(dBuV/m)	(dB)	Unc.	Comment
											Tx 2480 MHz
2483.5	Н	0.0	52.4	28.3	5.6	25.0	61.3	74.0	-12.7	Pass	
2483.5	Н	-20.0	52.4	28.3	5.6	25.0	41.3	54.0	-12.7	Pass	
2483.5	V	0.0	42.6	28.3	5.6	25.0	51.5	74.0	-22.5	Pass	
2483.5	V	-20.0	42.6	28.3	5.6	25.0	31.5	54.0	-22.5	Pass	
4960	V	0.0	52.7	33.2	10.6	25.0	71.5	74.0	-2.5	Pass	
4960	V	-20.0	52.7	33.2	10.6	25.0	51.5	54.0	-2.5	Pass	
4960	Н	0.0	49.0	33.2	10.6	25.0	67.8	74.0	-6.2	Pass	
4960	Н	-20.0	49.0	33.2	10.6	25.0	47.8	54.0	-6.2	Pass	
											TX 2426 MHz
4852	Н	0.0	48.0	33.2	10.6	25.0	66.8	74.0	-7.2	Pass	
4852	Н	-20.0	48.0	33.2	10.6	25.0	46.8	54.0	-7.2	Pass	
4852	V	0.0	51.3	33.2	10.6	25.0	70.1	74.0	-3.9	Pass	
4852	V	-20.0	51.3	33.2	10.6	25.0	50.1	54.0	-3.9	Pass	
											TX 2402 MHz
4804	Н	0.0	49.0	33.2	10.6	25.0	67.8	74.0	-6.2	Pass	
4804	Н	-20.0	49.0	33.2	10.6	25.0	47.8	54.0	-6.2	Pass	
4804	V	0.0	49.8	33.2	10.6	25.0	68.6	74.0	-5.4	Pass	
4804	V	-20	49.8	33.2	10.6	25.0	48.6	54.0	-5.4	Pass	

FCC PART 15, SUBPART C and RSS-210

EQUIPMENT: EMBC02

Digital Transmission Systems Test Report No.: 2015 277694 FCC 15247

Duty Cycle (continued)

20 log (0.84/100) = -42.5 dB

Section 7. Peak Power Spectral Density

NAME OF TEST: Peak Power Spectral Density	PARA. NO.: FCC 15.247(e)
	RSS-210 A8.2(b)
TESTED BY: David Light	DATE: 06 February 2105

Test Results:Complies.Measurement Data:See attached data..Test Conditions:35 %RH
22 °C

- Measurement Uncertainty: +/-1.7 dB
- Test Equipment Used: 1036

Peak Power Spectral Density

1.3 dBm – 15.2 dB = -13.9 dBm

Peak Power Spectral Density

Mid Channel

0.7 dBm – 15.2 dB = -14.5 dBm

Peak Power Spectral Density

-0.2 dBm – 15.2 dB = -15.4 dBm

Section 8. Test Equipment List

Asset Tag	Description	Manufacturer	Model	Serial #	Last Cal	Next Cal
752	Antenna,	EMCO	3115	4943	19-Feb-2014	19-Feb-2015
	DRWG					
E1029	Preamplifier	A.H. Systems,	PAM-0118	343	12-Aug-2014	12-Aug-2015
	(20MHz to	Inc.				
	18GHz)					
1036	Spectrum	Rohde &	FSEK30	830844/006	15-Jul-2013	15-Jul-2015
	Analyzer	Schwartz				
1480	Antenna,	Schaffner-	CBL6111C	2572	02-Apr-2014	02-Apr-2015
	Bilog	Chase				

Nemko USA, Inc.

EQUIPMENT: EMBC02

ANNEX A - TEST DETAILS

Nemko USA, Inc.

NAME OF TEST: Maximum Peak Output Power	PARA. NO.: FCC 15.247(b)(3)
	RSS-210 A8.2(4)

Minimum Standard: The maximum peak output power shall not exceed 1 watt.

If transmitting antennas of directional gain greater than 6 dBi are used, the power shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

Systems operating in the 2400-2483.5 MHz band that are used exclusively for fixed, point to point operation may employ transmitting antennas with directional gain greater than 6 dBi provided the maximum peak output power is reduced by 1 dB for every 3 dB that the directional gain of the antenna exceed 6 dBi.

Systems operating in the 5725 – 5850 MHz band that are used exclusively for fixed, point-to-point operation may employ transmitting antennas with directional gain greater than 6 dBi without any corresponding reduction in transmitter peak output power.

Measurement Method

5.2.1 Maximum Peak Conducted Output Power Level

§15.247(b)(3) specifies that the maximum peak conducted output power for DTS transmitters in any of the three authorized frequency bands is 1 watt (30 dBm). The following procedures can be used to determine the maximum peak conducted output power from a DTS EUT using a spectrum analyzer.

5.2.1.1 Measurement Procedure PK1:

- 1. This procedure requires availability of a spectrum analyzer resolution bandwidth that is \geq EBW.
- 2. Set the RBW \geq EBW.
- 3. Set VBW \geq 3 x RBW.
- 4. Set span = zero.
- 5. Sweep time = auto couple.
- 6. Detector = peak.
- 7. Trace mode = max hold.
- 8. Allow trace to fully stabilize.
- 9. Use peak marker function to determine the peak amplitude level within the fundamental emission.

5.2.1.2 Measurement Procedure PK2:

1. This procedure provides an integrated measurement alternative when the maximum available RBW < EBW.

- 2. Set the RBW = 1 MHz.
- 3. Set the VBW = 3 MHz.
- 4. Set the span to a value that is 5-30 % greater than the EBW.
- 5. Detector = peak.
- 6. Sweep time = auto couple.
- 7. Trace mode = max hold.
- 8. Allow trace to fully stabilize.

9. Use the spectrum analyzer's integrated band power measurement function with band limits set equal to the EBW band edges (for some analyzers, this may require a manual override to ensure use of peak detector). If the spectrum analyzer does not have a band power function, sum the spectrum levels (in linear power units) at 1 MHz intervals extending across the EBW of the spectrum.

5.2.2 Maximum Conducted (Average) Output Power Level

§15.247(b)(3) permits the maximum conducted output power to be measured as an alternative to a peak power measurement to demonstrate compliance to the one watt (30 dBm) output power limit. The maximum conducted output power is the highest total transmit power occurring in any mode when averaged over the EUT EBW. This measurement requires that the EUT be configured to transmit continuously (at a minimum duty cycle of 98%) at full power over the measurement duration. Time intervals during which the transmitter is off or transmitting at reduced power levels shall not be included.

The spectrum analyzer must be capable of utilizing a number of measurement points in each sweep that is greater than or equal to twice the span/RBW in order to ensure bin-to-bin spacing of \leq RBW/2 so that narrowband signals are not lost between frequency bins (the use of a greater number of measurement points than the minimum requirement is recommended).

The following procedures are acceptable for determining the maximum conducted output power with a spectrum analyzer.

5.2.2.1 Measurement Procedure AVG1 (power averaging over the EBW with slow sweep speed):

1. Set the analyzer span to 5-30% greater than the EBW.

- 2. Set the RBW = 1 MHz.
- 3. Set the VBW \geq 3 MHz.
- 4. Detector = power average (RMS).
- 5. Ensure that the number of measurement points in the sweep $\ge 2 \times (\text{span/RBW})$.

6. Manually set the sweep time to: \geq 10 x (number of measurement points in sweep) x (transmission symbol period).

7. Perform the measurement over a single sweep.

8. Use the spectrum analyzer's integrated band power measurement function with band limits set equal to the EBW band edges to determine the maximum conducted output power of the EUT over the EBW.

Note: If the analyzer does not have a band power function, sum the spectral levels (in linear power units) at 1 MHz intervals extending across the entire EBW.

5.2.2.2 Measurement Procedure AVG2 (trace averaging over the EBW):

1. Set the analyzer span to 5-30% greater than the EBW.

- 2. Set the RBW = 1 MHz.
- 3. Set the VBW \geq 3 MHz.
- 4. Ensure that the number of measurement points in the sweep $\ge 2 \times (\text{span/RBW})$.
- 5. Sweep time = auto couple.
- 6. Detector = power averaging (RMS) or sample.
- 7. Employ trace averaging in power averaging (RMS) mode over a minimum of 100 traces.

8. Use the spectrum analyzer's integrated band power measurement function with band limits set equal to the EBW band edges to determine the maximum conducted output power of the EUT over the EBW. If the analyzer does not have a band power function, sum the spectral levels (in linear power units) at 1 MHz intervals extending across the entire EBW.

Nemko USA, Inc.

EQUIPMENT: EMBC02

NAME OF TEST: Occupied Bandwidth	PARA. NO.: FCC 15.247(a)(2)
	RSS-210 A8.2(a)

Minimum Standard:Systems using digital modulation techniques may
operate in the 902-928 MHz, 2400-2483.5 MHz, and
5725-5850 MHz bands. The minimum 6 dB
bandwidth shall be at least 500 kHz.

Method Of Measurement:

5.1.1 EBW Measurement Procedure:

- 1. Set resolution bandwidth (RBW) = 1-5 % of the emission bandwidth (EBW).
- 2. Set the video bandwidth (VBW) \ge 3 x RBW.
- 3. Detector = Peak.
- 4. Trace mode = max hold.
- 5. Sweep = auto couple.
- 6. Allow the trace to stabilize.

7. Measure the maximum width of the emission that is constrained by the frequencies associated with the two outermost amplitude points (upper and lower) that are attenuated by 6 dB relative to the maximum level measured in the fundamental emission. Compare the resultant bandwidth with the RBW setting of the analyzer. Readjust RBW and repeat measurement as needed until the RBW/EBW ratio is 1-5 %.

5.1.2 Alternate EBW Measurement Procedure:

The automatic bandwidth measurement capability of a spectrum analyzer may be employed if it implements the functionality described above (*e.g.*, RBW = 1-5% of EBW, VBW \geq 3 x RBW, peak detector with maximum hold). When using this capability, care should be taken to ensure that the bandwidth measurement is not influenced by any nulls in the fundamental emission.

	-	
Tuning range	Number of channels tested	Channel location in band
1 MHz or less	1	middle
1 to 10 MHz	2	top and bottom
more than 10 MHz	3	top, middle, bottom

Number of channels tested:

NAME OF TEST: Spurious Emissions(conducted)	PARA. NO.: FCC 15.247(d)
	RSS-210 A8.5

Minimum Standard: In any 100kHz bandwidth outside the frequency band in which the transmitter is operating, emissions shall be at least 20 dB below the fundamental emission or shall not exceed the following field strength limits. Emissions falling in the restricted bands of 15.205 shall not exceed the following field strength limits:

5.4.1.1 Measurement Procedure – Reference Level

- 1. Set the RBW = 100 kHz.
- 2. Set the VBW \geq 300 kHz.
- 3. Set the span to 5-30 % greater than the EBW.
- 4. Detector = peak.
- 5. Sweep time = auto couple.
- 6. Trace mode = max hold.
- 7. Allow trace to fully stabilize.

8. Use the peak marker function to determine the maximum power level in any 100 kHz band segment within the fundamental EBW. Next, determine the power in 100 kHz band segments outside of the authorized frequency band using the following measurement:

5.4.1.2 Measurement Procedure - Unwanted Emissions

- 1. Set RBW = 100 kHz.
- 2. Set VBW ≥ 300 kHz.
- 3. Set span to encompass the spectrum to be examined.
- 4. Detector = peak.
- 5. Trace Mode = max hold.
- 6. Sweep = auto couple.

7. Allow the trace to stabilize (this may take some time, depending on the extent of the span).

Ensure that the amplitude of all unwanted emissions outside of the authorized frequency band (excluding restricted frequency bands) is attenuated by at least the minimum requirements specified above.

Number of channels tested:

Tuning range	Number of channels tested	Channel location in band
1 MHz or less	1	Middle
1 to 10 MHz	2	top and bottom
more than 10 MHz	3	top, middle, bottom

NAME OF TEST: Radiated Spurious Emissions	PARA. NO.: FCC 15.247(c)
	RSS-General 7.2.2

Minimum Standard: In any 100kHz bandwidth outside the frequency band in which the transmitter is operating, emissions shall be at least 20 dB below the fundamental emission or shall not exceed the following field strength limits:

Emissions falling in the restricted bands of 15.205 shall not exceed the following field strength limits:

Frequency (MHz)	Field Strength (μV/m @ 3m)	Field Strength (dB @ 3m)
30 - 88	100	40.0
88 - 216	150	43.5
216 - 960	200	46.0
Above 960	500	54.0

THE SPECTRUM WAS SEARCHED TO THE 10th HARMONIC

15.205 Restricted Barlds			
MHz	MHz	MHz	GHz
0.09-0.11	16.42-16.423	399.9-410	4.5-5.25
0.495-0.505	16.69475-16.69525	608-614	5.35-5.46
2.1735-2.1905	16.80425-16.80475	960-1240	7.25-7.75
4.125-4.128	25.5-25.67	1300-1427	8.025-8.5
4.17725-4.17775	37.5-38.25	1435-1626.5	9.0-9.2
4.20725-4.20775	73-74.6	1645.5-1646.5	9.3-9.5
6.125-6.218	74.8-75.2	1660-1710	10.6-12.7
6.26775-6.26825	108-121.94	1718.8-1722.2	13.25-13.4
6.31175-6.31225	123-138	2200-2300	14.47-14.5
8.291-8.294	149.9-150.05	2310-2390	15.35-16.2
8.362-8.366	156.52475-156.52525	2483.5-2500	17.7-21.4
8.37625-8.38675	156.7-156.9	2655-2900	22.01-23.12
8.41425-8.41475	162.0125-167.17	3260-3267	23.6-24.0
12.29-12.293	167.72-173.2	3332-3339	31.2-31.8
12.51975-12.52025	240-285	3345.8-3358	36.43-36.5
12.57675-12.57725	322-335.4	3600-4400	Above 38.6
13.36-13.41	1718		

15.205 Restricted Bands

Number of channels tested:

Tuning range	Number of channels tested	Channel location in band
1 MHz or less	1	middle
1 to 10 MHz	2	top and bottom
more than 10 MHz	3	top, middle, bottom

NAME OF TEST: Transmitter Power Density	PARA. NO.: FCC 15.247(d)
	RSS-210 A8.2(b)

Minimum Standard: The transmitted power density averaged over any 1 second interval shall not be greater than +8 dBm in any 3 kHz bandwidth.

Method Of Measurement:

5.3.1 Measurement Procedure PKPSD:

1. Use this procedure when the maximum peak conducted output power in the fundamental emission is used to demonstrate compliance.

2. Set the RBW = 100 kHz.

- 3. Set the VBW \geq 300 kHz.
- 4. Set the span to 5-30 % greater than the EBW.
- 5. Detector = peak.
- 6. Sweep time = auto couple.
- 7. Trace mode = max hold.
- 8. Allow trace to fully stabilize.

9. Use the peak marker function to determine the maximum power level in any 100 kHz band segment within the fundamental EBW.

10. Scale the observed power level to an equivalent value in 3 kHz by adjusting (reducing) the measured power by a bandwidth correction factor (BWCF) where

BWCF = $10\log (3 \text{ kHz}/100 \text{ kHz} = -15.2 \text{ dB}).$

11. The resulting peak PSD level must be \leq 8 dBm.

5.3.2 Measurement Procedure AVGPSD:

1. Use this procedure when the maximum conducted output power in the fundamental emission is used to demonstrate compliance. The EUT must be configured to transmit continuously at full power over the measurement duration.

2. Set the analyzer span to 5-30% greater than the EBW.

- 3. Set the RBW = 100 kHz.
- 4. Set the VBW \geq 300 kHz.
- 5. Detector = power average (RMS).

6. Ensure that the number of measurement points in the sweep $\ge 2 \times \text{span/RBW}$ (use of a greater

number of measurement points than this minimum requirement is recommended).

7. Manually set the sweep time to: \geq 10 x (number of measurement points in sweep) x (transmission symbol period).

8. Perform the measurement over a single sweep.

9. Use the peak marker function to determine the maximum level in any 100 kHz band segment within the fundamental EBW.

10. Scale the observed power level to an equivalent level in 3 kHz by adjusting (reducing) the measured power by a bandwidth correction factor (BWCF) where

BWCF = $10\log (3 \text{ kHz}/100 \text{ kHz} = -15.2 \text{ dB}).$

11. The resulting PSD level must be $\leq 8 \text{ dBm}$

Nemko USA, Inc.

EQUIPMENT: EMBC02

ANNEX B - TEST DIAGRAMS

Test Site for Radiated Emissions

Peak Power at Antenna Terminals Minimum 6 dB Bandwidth Peak Power Spectral Density Spurious Emissions (conducted)

