

TEST REPORT

of the accredited test laboratory

TÜV Nr.: 2022-IN-AT-TICL-E-EX-000356-FG-006

Applicant: SES-imagotag GmbH

> Kalsdorfer Strasse 12 A - 8072 Fernitz-Mellach

Electronic shelf labelling system **Product Name:** VUSION 4.2 WP

Model: EWP1-0420-A

Tested Product:

FCC-ID: 2ACQM-EWP1-0420-A

IC-ID: 12154A-EWP10420A

Manufacturer: SES-imagotag GmbH

> Kalsdorfer Strasse 12 A - 8072 Fernitz-Mellach

Output power / 1,80 mV/m average 3V DC power supply:

field strength: @ 3m distance internal battery

Frequency range: 2404,053 -Channel separation: 0,35 MHz

2479,285 MHz

Standard: FCC: 47 CFR Part 15 (eCFR 15.11.2022)

> RSS-102 Issue 5, March 2015 RSS-210 Issue 10. December 2019

TÜV AUSTRIA SERVICES GMBH

Test laboratory for EMC

Andrews Mal Ing. Andreas Malek

> examined by / Testing Laboratory **TÜV AUSTRIA SERVICES**

> > **GMBH**

22.11.2022

Ing. Michael Emminger

approved by / Testing Laboratory **TÜV AUSTRIA SERVICES GMBH**

TÜV AUSTRIA SERVICES GMBH

Office:

Deutschstrasse 10 1230 Vienna/Austria T: +43 5 0454-0 F: +43 5 0454-6505 E: ticwien@tuv.at W: www.tuv.at

Business Area Industry & Energy Austria

Technik

TÜV ®

Testing Laboratory, Inspection Body, Certification Body, Calibration Laboratory, Verifizierungsstelle

Notified Body 0408 IC 2932K-1

Non-executive **Board of Directors:** KR DI Johann Marihart

Management: DI Dr. Stefan Haas Mag. Christoph Wenninger

Registered Office: Deutschstrasse 10 1230 Vienna/Austria

Branch Offices: www.tuv.at/standorte

Company Register Court / - Number: Vienna / FN 288476 f

Bank Details: IBAN AT131200052949001066

BIC BKAUATWW VAT ATU63240488 DVR 3002476

A publication of this test report is only permitted literally.

Copying or reproduction of partial sections needs a written permission of TÜV AUSTRIA SERVICES GMBH.

The results of this test report only refer to the provided equipment.

Test Report Reference: 2022-IN-AT-TICL-E-EX-000356-FG-006 Date: 22.11.2022

Ambient temperature: 23°C

Relative humidity: 34%

Contents

	Designation	PAGE
1.	Applicant	3
2.	Description of EUT	4
3.	Standards / Final result	5
4.	Test results	
	List of measurements according to 47 CFR 15 and RSS-210	
4.1	Test object data	6
4.2	Number of channels and channel spacing	7
4.3	Duty Cycle for averaging	8
4.4	Field strength at 2400 – 2483,5 MHz	9-11
4.5	Emissions outside 2400 – 2483,5 MHz (15.209)	12-16
4.6	RF Exposure	17-19
Appendix	Designation	PAGES
1	Test equipment used	5
2	Photodocumentation	10

Test Report Reference: 2022-IN-AT-TICL-E-EX-000356-FG-006 Date: 22.11.2022

Ambient temperature: 23°C

Relative humidity: 34%

Applicant 1.

Company: SES-imagotag GmbH

Department: Product & Project Manager

Address: A – 8072 Fernitz-Mellach; Kalsdorfer Strasse 12

Contact person: Mrs. Tamara Risek Gmajnic

EUT received on: 15.11.2022

Tests were performed on: 15.11. till 18.11.2022

Ambient temperature: 23°C

Relative humidity: 34%

2. Description of EUT

EUT: Electronic shelf labelling system

Product Name: VUSION 4.2 WP

Model: EWP1-0420-A

Serial Number: Prototype

Manufacturer: SES-imagotag GmbH

A – 8072 Fernitz-Mellach; Kalsdorfer Strasse 12

Description: SES-imagotag GmbH provided the following configuration for the

measurements:

Prototype with special test-firmware for continuous transmission

Operating mode: The measurements were carried out at the following running states:

test-firmware running, transmitting continuously

Technical data EUT: 3VDC Rated voltage:

<1A Rated current: Rated frequency: DC

Mains voltage during the tests: 3VDC internal battery

Climatic conditions in Relative humidity: 34%

the emc laboratory: Temperature: 23°C Date: 22.11.2022

Ambient temperature: 23°C

3. Standards / Final result

Name	Title	Deviation	Result
Title 47 CFR Part 15 eCFR 15.11.2022	RADIO FREQUENCY DEVICES	none	OK
RSS-210 Issue 10, December 2019	Licence-Exempt Radio Apparatus: Category I Equipment	none	OK

Relative humidity: 34%

Result: Opinions and interpretation of testing laboratory

OK: EUT passed NOK: EUT failed

Test Report Reference: 2022-IN-AT-TICL-E-EX-000356-FG-006

Date: 22.11.2022

Ambient temperature: 23°C

4.1 TEST OBJECT DATA

General EUT Description

This transceiver module is working in a network consisting of a controller station, so called Accesspoint, and various displays. The Accesspoint transmits information to the displays and receives acknowledgements. This device is a display operating in the network system. The device is equipped with a passive NFC chip onboard which does not have its own rf generation. It works as tag and can also receive information from the NFC reader station.

Relative humidity:

34%

- 2.1033 (c) Technical description
- 2.1033 (4) Type of emission: Minimum shift keying declared channel bandwidth 250 kHz 'virtual' channel spacing about 0,35 MHz. Only 11 channels from the channel plan are used, therefore the channel spacing in reality is much higher and varies from 2,45 MHz minimum up to 17,15 MHz.
- 2.1033 (5) Frequency range: 2404,053 2479,285 MHz (channel center frequencies of channel 0 up to ch. 10)
- 2.1033 (6) Power range and Controls: The maximum field strength measured is 1,80 mV/m average @ 3m distance. There is no power control or regulation.
- 2.1033 (7) Maximum output power rating: 1,80 mV/m average @ 3m distance.
- 2.1033 (8) DC Voltage and Current: 3 VDC (internal battery)

 maximum current consumption: 28,0mA during continuous transmission
- RSS-135 This standard does not apply to:
 - 1.1.(a) a receiver that scans radio frequencies for the purpose of enabling its associated transmitter to avoid transmitting in an occupied frequency but which does not have the capability of decoding the message (e.g. converting it to audio voice) contained in the radio signal

Worst case Spurious Emissions: 26,03 dBµV/m Average at 1,73825 GHz.

Tests were performed on: November 15th till 18th 2022.

Date: 22.11.2022

Ambient temperature: 23°C

4.2 Number of channels and channel spacing

§ 2.1033

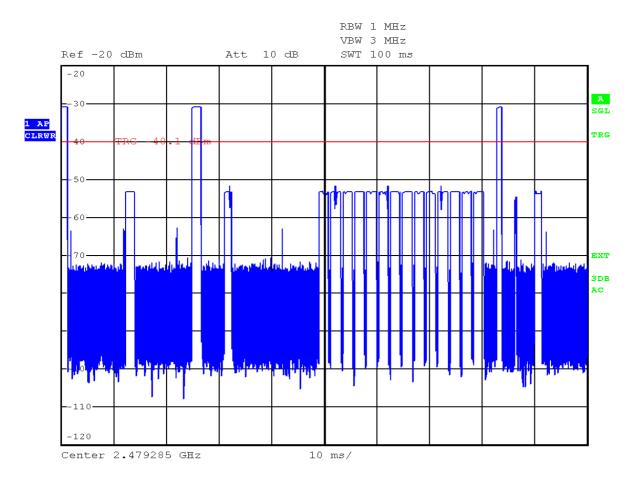
Relative humidity: 34%

Channel plan:

ESL-CH	RF-CH	f _{G2} [GHz] (26.000000 MHz) (6049109)	
СНО	12	2.404053	
CH1	29	2.410002	
CH2	63	2.421899	
CH3	71	2.424698	
CH4	120	2.441844	
CH5	141	2.449192	
CH6	177	2.461789	
CH7	199	2.469487	
CH8	213	2.474386	
CH9	220	2.476835	
CH10	227	2.479285	

Tests were performed on ESL channels 0, 4 and 10.

Test Equipment used: N/A


Ambient temperature: 23°C Relative humidity: 34%

TUV AUSTRIA

4.3 Duty Cycle measurements for averaging

§ 15.249 (e)

Mode: data transmission (worst case in 100ms)

Date: 15.NOV.2022 13:56:45

According to the timing protocol description provided by the manufacturer and attached as technical description to the application for certification, the transmission burst time was checked to not exceed the declared value. The declared value was taken for calculation, as that gives the worst case. The first transmission burst in a 100ms time frame has a length of 1,46ms, the second one is 1,97ms in length and the third one is 1,19ms, giving a duty cycle of 4,62% or an average factor of -26,7 dB.

LIMIT SUBCLAUSE 15.249(e)

(e) As shown in §15.35(b), for frequencies above 1000 MHz, the field strength limits in paragraphs (a) and (b) of this section are based on average limits. However, the peak field strength of any emission shall not exceed the maximum permitted average limits specified above by more than 20 dB under any condition of modulation. For point-to-point operation under paragraph (b) of this section, the peak field strength shall not exceed 2500 millivolts/meter at 3 meters along the antenna azimuth.

Test Equipment used: EMV-205

Test Report Reference: 2022-IN-AT-TICL-E-EX-000356-FG-006

Date: 22.11.2022

Ambient temperature: 23°C

Relative humidity: 34%

4.4 Field strength of emissions at 2400 - 2483,5 MHz

§ 15.249 (a) (c)

Operating on CH 0 (2404,053MHz)

The maximum peak value measured was 91,3 dBµV/m = 36,73 mV/m at 3m distance.

With the averaging factor calculated on page 8 of this test report of -26,7 dB the maximum average value is then $64,6 \text{ dB}\mu\text{V/m} = 1,70 \text{ mV/m}$ at 3m distance.

LIMIT

SUBCLAUSE 15.249(a) (c)

(a) Except as provided in paragraph (b) of this section, the field strength of emissions from intentional radiators operated within these frequency bands shall comply with the following:

Fundamental frequency	Field strength of fundamental (millivolts/meter)	Field strength of harmonics (microvolts/meter)
902–928 MHz	50	500
2400–2483.5 MHz	50	500
5725–5875 MHz	50	500
24.0-24.25 GHz	250	2500

⁽c) Field strength limits are specified at a distance of 3 meters.

Test Equipment used: EMV-100; EMV-101; EMV-102; EMV-103; EMV-105; EMV-110; EMV-200/1

Test Report Reference: 2022-IN-AT-TICL-E-EX-000356-FG-006

Date: 22.11.2022

Ambient temperature: 23°C

Relative humidity: 34%

Field strength of emissions at 2400 - 2483,5 MHz

§ 15.249 (a) (c)

Operating on CH 4 (2441,844 MHz)

The maximum peak value measured was 91,8 dBµV/m = 38,90 mV/m at 3m distance.

With the averaging factor calculated on page 8 of this test report of -26,7 dB the maximum average value is then 65,1 dB μ V/m = 1,80 mV/m at 3m distance.

LIMIT

SUBCLAUSE 15.249(a) (c)

(a) Except as provided in paragraph (b) of this section, the field strength of emissions from intentional radiators operated within these frequency bands shall comply with the following:

Fundamental frequency	Field strength of fundamental (millivolts/meter)	Field strength of harmonics (microvolts/meter)
902–928 MHz	50	500
2400–2483.5 MHz	50	500
5725–5875 MHz	50	500
24.0–24.25 GHz	250	2500

⁽c) Field strength limits are specified at a distance of 3 meters.

Test Equipment used: EMV-100; EMV-101; EMV-102; EMV-103; EMV-105; EMV-110; EMV-200/1

Test Report Reference: 2022-IN-AT-TICL-E-EX-000356-FG-006

Date: 22.11.2022

Ambient temperature: 23°C

Relative humidity: 34%

Field strength of emissions at 2400 - 2483,5 MHz

§ 15.249 (a) (c)

Operating on CH 10 (2479,285 MHz)

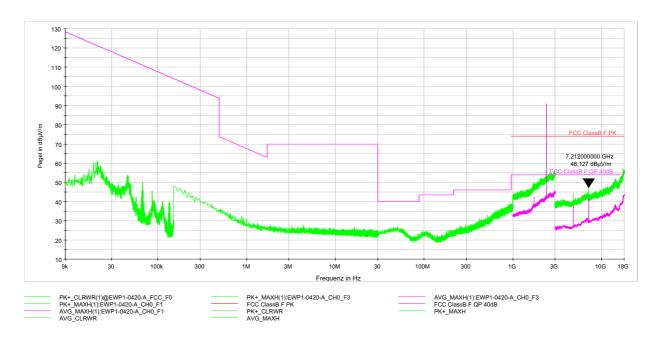
The maximum peak value measured was 91,5 dB μ V/m = 37,58 mV/m at 3m distance.

With the averaging factor calculated on page 8 of this test report of -26,7 dB the maximum average value is then $64,8 \text{ dB}\mu\text{V/m} = 1,74 \text{ mV/m}$ at 3m distance.

LIMIT

SUBCLAUSE 15.249(a) (c)

(a) Except as provided in paragraph (b) of this section, the field strength of emissions from intentional radiators operated within these frequency bands shall comply with the following:


Fundamental frequency	Field strength of fundamental (millivolts/meter)	Field strength of harmonics (microvolts/meter)
902–928 MHz	50	500
2400–2483.5 MHz	50	500
5725–5875 MHz	50	500
24.0–24.25 GHz	250	2500

⁽c) Field strength limits are specified at a distance of 3 meters.

Test Equipment used: EMV-100; EMV-101; EMV-102; EMV-103; EMV-105; EMV-110; EMV-200/1

4.5 Emissions outside 2400 - 2483,5 MHz § 15.249 (d) (e) Channel 0 (2404,053 MHz) - average values above 1 GHz are shown in magenta - green = peak

Worst case Emission: 48,13 dBµV/m Peak at 7212 MHz giving 21,43 dBµV/m average with the factor described on page 8.

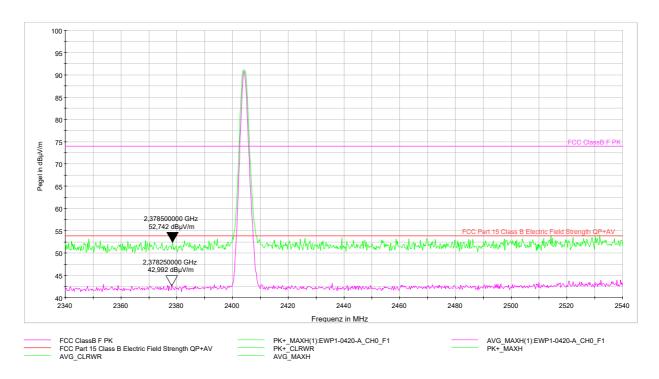
LIMIT SUBCLAUSE 15.249(d) (e) (15.209)

- (d) Emissions radiated outside of the specified frequency bands, except for harmonics, shall be attenuated by at least 50 dB below the level of the fundamental or to the general radiated emission limits in §15.209, whichever is the lesser attenuation.
- (e) As shown in §15.35(b), for frequencies above 1000 MHz, the field strength limits in paragraphs (a) and (b) of this section are based on average limits. However, the peak field strength of any emission shall not exceed the maximum permitted average limits specified above by more than 20 dB under any condition of modulation. For point-to-point operation under paragraph (b) of this section, the peak field strength shall not exceed 2500 millivolts/meter at 3 meters along the antenna azimuth.

Frequency (MHz)	Field strength (microvolts/meter)	Measurement distance (meters)
0.009-0.490	2400/F(kHz)	300
0.490-1.705	24000/F(kHz)	30
1.705-30.0	30	30
30–88	100**	3
88–216	150**	3
216–960	200**	3
Above 960	500	3

Test Equipment used:

EMV-100; EMV-101; EMV-102; EMV-103; EMV-105; EMV-110; EMV-111; EMV-112; EMV-200/1; NT-416 Remark: Although the measurements were made up to the 10th harmonic (25 GHz) the frequency range above 18 GHz is not automatized, so no graphs are available. Nevertheless no emissions above noise level were found in the frequency range above 18 GHz.


DN: FM-INE-EMV-EMC-0100a en 2022-IN-AT-TICL-E-EX-000356-FG-006.docx Rev04

Page 12 of 19

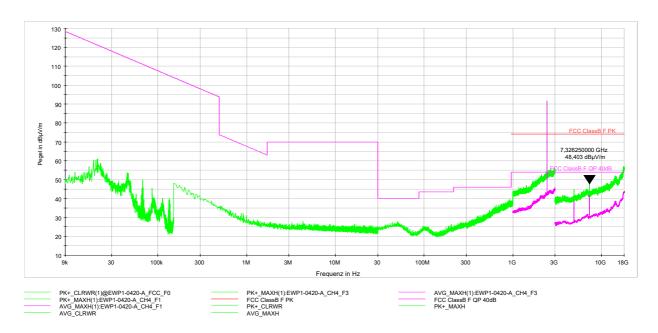
34% Relative humidity:

Emissions outside 2400 - 2483,5 MHz § 15.249 (d) (e) Channel 0 (2404,053 MHz) - band edge requirement - average values are in magenta - green = peak

Nearest Band Edge: 2390 MHz

SUBCLAUSE 15.249(d) (e) (15.209) LIMIT

- (d) Emissions radiated outside of the specified frequency bands, except for harmonics, shall be attenuated by at least 50 dB below the level of the fundamental or to the general radiated emission limits in §15.209, whichever is the lesser attenuation.
- (e) As shown in §15.35(b), for frequencies above 1000 MHz, the field strength limits in paragraphs (a) and (b) of this section are based on average limits. However, the peak field strength of any emission shall not exceed the maximum permitted average limits specified above by more than 20 dB under any condition of modulation. For point-to-point operation under paragraph (b) of this section, the peak field strength shall not exceed 2500 millivolts/meter at 3 meters along the antenna azimuth.


Frequency (MHz)	Field strength (microvolts/meter)	Measurement distance (meters)
0.009-0.490	2400/F(kHz)	300
0.490-1.705	24000/F(kHz)	30
1.705–30.0	30	30
30–88	100**	3
88–216	150**	3
216–960	200**	3
Above 960	500	3

Test Equipment used:

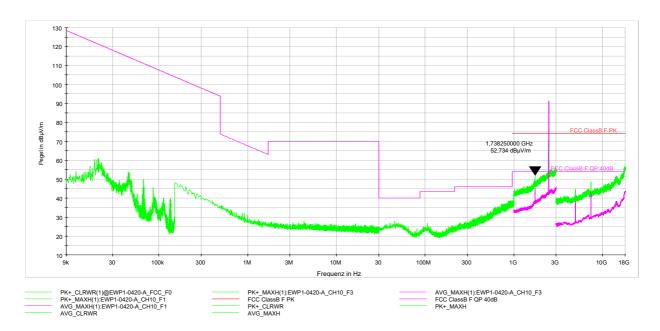
EMV-100; EMV-101; EMV-102; EMV-103; EMV-105; EMV-110; EMV-111; EMV-112; EMV-200/1; NT-416

Emissions outside 2400 – 2483,5 MHz § 15.249 (d) (e) Channel 4 (2441,844 MHz) – average values above 1 GHz are shown in magenta – green = peak

Worst case Emission: $48,40 \text{ dB}\mu\text{V/m}$ Peak at 7326,25 MHz giving $21,70 \text{ dB}\mu\text{V/m}$ average with the factor described on page 8.

LIMIT SUBCLAUSE 15.249(d) (e) (15.209)

- (d) Emissions radiated outside of the specified frequency bands, except for harmonics, shall be attenuated by at least 50 dB below the level of the fundamental or to the general radiated emission limits in §15.209, whichever is the lesser attenuation.
- (e) As shown in §15.35(b), for frequencies above 1000 MHz, the field strength limits in paragraphs (a) and (b) of this section are based on average limits. However, the peak field strength of any emission shall not exceed the maximum permitted average limits specified above by more than 20 dB under any condition of modulation. For point-to-point operation under paragraph (b) of this section, the peak field strength shall not exceed 2500 millivolts/meter at 3 meters along the antenna azimuth.


Frequency (MHz)	Field strength (microvolts/meter)	Measurement distance (meters)
0.009-0.490	2400/F(kHz)	300
0.490-1.705	24000/F(kHz)	30
1.705-30.0	30	30
30–88	100**	3
88–216	150**	3
216–960	200**	3
Above 960	500	3

Test Equipment used:

EMV-100; EMV-101; EMV-102; EMV-103; EMV-105; EMV-110; EMV-111; EMV-112; EMV-200/1; NT-416 Remark: Although the measurements were made up to the 10th harmonic (25 GHz) the frequency range above 18 GHz is not automatized, so no graphs are available. Nevertheless no emissions above noise level were found in the frequency range above 18 GHz.

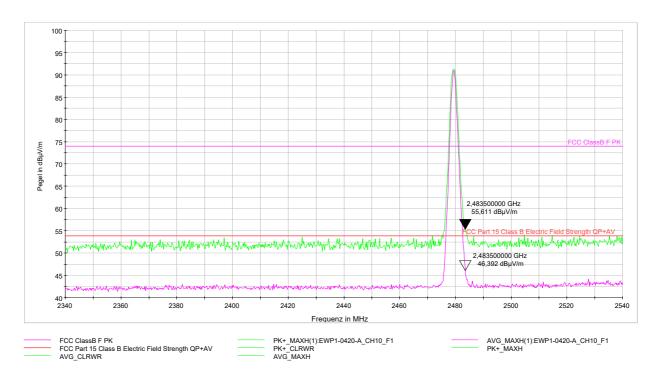
Emissions outside 2400 – 2483,5 MHz § 15.249 (d) (e) Channel 10 (2479,285 MHz) – average values above 1 GHz are shown in magenta – green = peak

Worst case Emission: $52,73 \text{ dB}\mu\text{V/m}$ Peak at 1738,25 MHz giving $26,03 \text{ dB}\mu\text{V/m}$ average with the factor described on page 8.

LIMIT SUBCLAUSE 15.249(d) (e) (15.209)

- (d) Emissions radiated outside of the specified frequency bands, except for harmonics, shall be attenuated by at least 50 dB below the level of the fundamental or to the general radiated emission limits in §15.209, whichever is the lesser attenuation.
- (e) As shown in §15.35(b), for frequencies above 1000 MHz, the field strength limits in paragraphs (a) and (b) of this section are based on average limits. However, the peak field strength of any emission shall not exceed the maximum permitted average limits specified above by more than 20 dB under any condition of modulation. For point-to-point operation under paragraph (b) of this section, the peak field strength shall not exceed 2500 millivolts/meter at 3 meters along the antenna azimuth.

Frequency (MHz)	Field strength (microvolts/meter)	Measurement distance (meters)
0.009-0.490	2400/F(kHz)	300
0.490-1.705	24000/F(kHz)	30
1.705-30.0	30	30
30–88	100**	3
88–216	150**	3
216–960	200**	3
Above 960	500	3


Test Equipment used:

EMV-100; EMV-101; EMV-102; EMV-103; EMV-105; EMV-110; EMV-111; EMV-112; EMV-200/1; NT-416 Remark: Although the measurements were made up to the 10th harmonic (25 GHz) the frequency range above 18 GHz is not automatized, so no graphs are available. Nevertheless no emissions above noise level were found in the frequency range above 18 GHz.

34% Relative humidity:

Emissions outside 2400 - 2483,5 MHz § 15.249 (d) (e) Channel 10 (2479,285 MHz) - band edge requirement - average values are in magenta - green = peak

Nearest Band Edge: 2483,5 MHz

SUBCLAUSE 15.249(d) (e) (15.209) LIMIT

- (d) Emissions radiated outside of the specified frequency bands, except for harmonics, shall be attenuated by at least 50 dB below the level of the fundamental or to the general radiated emission limits in §15.209, whichever is the lesser attenuation.
- (e) As shown in §15.35(b), for frequencies above 1000 MHz, the field strength limits in paragraphs (a) and (b) of this section are based on average limits. However, the peak field strength of any emission shall not exceed the maximum permitted average limits specified above by more than 20 dB under any condition of modulation. For point-to-point operation under paragraph (b) of this section, the peak field strength shall not exceed 2500 millivolts/meter at 3 meters along the antenna azimuth.

Frequency (MHz)	Field strength (microvolts/meter)	Measurement distance (meters)
0.009-0.490	2400/F(kHz)	300
0.490-1.705	24000/F(kHz)	30
1.705–30.0	30	30
30–88	100**	3
88–216	150**	3
216–960	200**	3
Above 960	500	3

Test Equipment used:

EMV-100; EMV-101; EMV-102; EMV-103; EMV-105; EMV-110; EMV-111; EMV-112; EMV-200/1; NT-416

www.tuv.at | info@tuv.at | TÜV ®

Ambient temperature: 23°C

Relative humidity: 34%

4.6 RF Exposure

§ 1.1307(b)(3)(i)(A)

Title 47 §1.1307(b)(3)(i):

- (3) Determination of exemption. (i) For single RF sources (i.e., any single fixed RF source, mobile device, or portable device, as defined in paragraph (b)(2) of this section): A single RF source is exempt if:
- (A) The available maximum time-averaged power is no more than 1 mW, regardless of separation distance. This exemption may not be used in conjunction with other exemption criteria other than those in paragraph (b)(3)(ii)(A) of this section. Medical implant devices may only use this exemption and that in paragraph (b)(3)(ii)(A);

max. Tx power [mW] (from conducted and ERP measurement)	Duty cycle [%] (see 4.3)	max. time-averaged power [mW]	§1.1307(b)(3)(i)(A) limit [mW]
1,13	4.62	0,052	1

The maximum time-averaged power is less than 1 mW.

The device is an exempt RF device as per Title 47 §1.1307(b)(3)(i)(A).

ERP measurement:	urement: Effective radiated power (mW)			
Test condition		CH 0 (2404,053MHz)		
T _{nom} 23 °C	V _{nom} (3)V	0,25	0,28	0,26

EIRP measurement:		Effective isotropically radiated power (mW)				
Test condition				CH 10 (2479,285MHz)		
T _{nom} 23 °C	V _{nom} (3)V	0,41	0,46	0,43		

Conducted mea	surement		conducted power (mW)				
-	Test condition	CH 0 (2404,053MHz)					
T _{nom} 23 °C	V _{nom} (3)V	1,13	1,12	1,10			

Maximum Gain deriv conducted measurer		Maximum Gain (dBi)			
Test condition		CH 0 (2404,053MHz)			
T _{nom} 23 °C	V _{nom} (3)V	-4,44	-3,9	-4,13	

Test Report Reference: 2022-IN-AT-TICL-E-EX-000356-FG-006

Date: 22 11 2022

Ambient temperature: 23°C

RSS-102, Issue 5 RF Exposure

2.5.1 Exemption Limits for Routine Evaluation – SAR Evaluation

SAR evaluation is required if the separation distance between the user and/or bystander and the antenna and/or radiating element of the device is less than or equal to 20 cm, except when the device operates at or below the applicable output power level (adjusted for tune-up tolerance) for the specified separation distance defined in Table 1.

Relative humidity:

34%

Table 1: SAR evaluation – Exemption limits for routine evaluation based on frequency and separation distance

Frequency	Exemption Limits (mW)								
(MHz)	At separation distance of ≤5 mm	At separation distance of 10 mm	At separation distance of 15 mm	At separation distance of 20 mm	At separation distance of 25 mm				
≤300	71 mW	101 mW	132 mW	162 mW	193 mW				
450	52 mW	70 mW	88 mW	106 mW	123 mW				
835	17 mW	30 mW	42 mW	55 mW	67 mW				
1900	7 mW	10 mW	18 mW	34 mW	60 mW				
2450	4 mW	7 mW	15 mW	30 mW	52 mW				
3500	2 mW	6 mW	16 mW	32 mW	55 mW				
5800	1 mW	6 mW	15 mW	27 mW	41 mW				

Frequency	Exemption Limits (mW)								
(MHz)	At separation distance of 30 mm	At separation distance of 35 mm	At separation distance of 40 mm	At separation distance of 45 mm	At separation distance of ≥50 mm				
≤300	223 mW	254 mW	284 mW	315 mW	345 mW				
450	141 mW	159 mW	177 mW	195 mW	213 mW				
835	80 mW	92 mW	105 mW	117 mW	130 mW				
1900	99 mW	153 mW	225 mW	316 mW	431 mW				
2450	83 mW	123 mW	173 mW	235 mW	309 mW				
3500	86 mW	124 mW	170 mW	225 mW	290 mW				
5800	56 mW	71 mW	85 mW	97 mW	106 mW				

Output power level shall be the higher of the maximum conducted or equivalent isotropically radiated power (e.i.r.p.) source-based, time-averaged output power. For controlled use devices where the 8 W/kg for 1 gram of tissue applies, the exemption limits for routine evaluation in Table 1 are multiplied by a factor of 5. For limb-worn devices where the 10 gram value applies, the exemption limits for routine evaluation in Table 1 are multiplied by a factor of 2.5. If the operating frequency of the device is between two frequencies located in Table 1, linear interpolation shall be applied for the applicable separation distance. For test separation distance less than 5 mm, the exemption limits for a separation distance of 5 mm can be applied to determine if a routine evaluation is required.

For medical implants devices, the exemption limit for routine evaluation is set at 1 mW. The output power of a medical implants device is defined as the higher of the conducted or e.i.r.p to determine whether the device is exempt from the SAR evaluation.

Test Report Reference: 2022-IN-AT-TICL-E-EX-000356-FG-006

Date: 22.11.2022 Ambient temperature: 23°C

Relative humidity: 34%

RSS-102 2.5.1 Exemption calculation

Frequency (MHz)	cond. P (mW)	max. EIRP (mW)	Duty Cycle (1)	Avg. cond. P (mW)	Avg. EIRP (mW)	separation distance (mm)	Limit (mW)	
2404.053	1,13	0,41	0,0462	0,052	0,019	10	18.15	ОК
2441.844	1,12	0,46	0,0462	0,052	0,021	10	17.64	OK
2479.285	1,10	0,43	0,0462	0,051	0,020	10	17.43	ОК

^{*)} Calculations are done for a minimum separaton distance of 1 cm and limb worn exposure. The distance is derived from the device casing. It is conservative, as customers are not expected to touch electronic shelf labels for extended periods of time.

The time-averaged output power is below the exemption limit for routine evaluation.

Appendix 1 Test equipment used

Anechoic Chamber with 3m measurement distance	NT-100	Ant. tripod for EN61000-4-3 Model TP1000A	NT-156	Division: Industry & Energy
Stripline according to ISO 11452-5	NT-108	Power quality analyzer Fluke 1760 (complete set)	NT-160 - NT-173	
MA4000 - Antenna mast 1 - 4 m height	NT-110/1	Spectrumanalyzer – FSP7 9 kHz – 7 GHz	NT-200	Test report number:
DS - Turntable 0 - 400 ° Azimuth	NT-111/1	ESCI - Test receiver 9 kHz - 7 GHz	NT-203/1	2022-IN-AT-TICL-E-EX- 000356-FG-006
CO3000 Controller Mast+Turntable	NT-112/1	ESR – Test receiver 20 Hz – 26,5 GHz	NT-207/1	Page: 1 of 5
HUF-Z3 - Log. Per. Antenna 200 - 1000 MHz	NT-121	Digital Radio Tester CMW500	NT-208/1	Date: 22.11.2022
FMZB1513 - Loop Antenna 9 kHz - 30 MHz	NT-122/1	Noise-gen., ITU-R 559-2 20 Hz – 20 kHz	NT-209	
HFH-Z6 - Rod Antenna 9 kHz - 30 MHz	NT-123	CMTA - Radiocommunication analyzer; 0,1 - 1000 MHz	NT-210	
Dipole Antenna VHA9103 30 - 300 MHz	NT-124/1a	3271 - Spectrum analyzer 100 Hz - 26,5 GHz	NT-211	
Dipole Antenna UHA9105 300 - 1000 MHz	NT-124/1b	Digital Radio Tester Aeroflex 3920	NT-212/1	
3115 - Horn Antenna 1 - 18 GHz (immunity)	NT-125	Mixer M28HW 26,5 GHz - 40 GHz	NT-214	
3116 - Horn Antenna 18 - 40 GHz	NT-126	RubiSource T&M Timing reference	NT-216	
SAS-200/543 - Bicon. Antenna 20 MHz - 300 MHz	NT-127	Radiocommunicationanalyzer SWR 1180 MD	NT-217	
AT-1080 - Log. Per. Antenna 80 - 1000 MHz	NT-128	Mixer FS-Z60 40 GHz – 60 GHz	NT-218/1	
HK-116 - bicon. Antenna 20 MHz - 300 MHz	NT-129	Mixer FS-Z90 60 GHz – 90 GHz	NT-219/1	
HK-116 - bicon. Antenna 20 MHz - 300 MHz	NT-130	DSO9104 Digital scope	NT-220/1	
3146 - Log. Per. Antenna 200 – 1000 MHz	NT-131	TPS 2014 Digital scope	NT-222	
VULB 9163 Trilog Antenna 30 – 3000 MHz	NT-131/1	Artificial Ear according to IEC 60318	NT-224	
Loop Antenna H-Field	NT-132	1 kHz Sound calibrator	NT-225	
Horn Antenna 500 MHz - 2900 MHz	NT-133	SRM-3006 Spectrumanalyzer	NT-233/1a	
Horn Antenna 500 MHz - 6000 MHz	NT-133/1	E-field probe SRM 75 MHz – 3 GHz	NT-234	
Log. per. Antenna 800 MHz - 2500 MHz	NT-134	Field Meter NBM-500 incl. E- and H-Field probes	NT-240a-e	
Log. per. Antenna 800 MHz - 2500 MHz	NT-135	Magnetometer HP-01	NT-241/1	
BiConiLog Antenna 26 MHz – 2000 MHz	NT-137	EFA-3 H-field- / E-field probe	NT-243	
Conical Dipol Antenna PCD8250	NT-138	EHP-50F H-field- / E-field probe	NT-243/1	
HF 906 - Horn Antenna 1 - 18 GHz (emission)	NT-139	Field Meter EMR-200 100 kHz – 3 GHz	NT-244	
HZ-1 Antenna tripod	NT-150	E-field probe 100 kHz – 3 GHz	NT-245	
BN 1500 Antenna tripod	NT-151	H-field probe 300 kHz – 30 MHz	NT-246	

Appendix 1 (continued) Test equipment used

E-field probe 3 MHz – 18 GHz	NT-247	Prana N-MT 500 - RF-Amplifier 80 - 1000 MHz / 500 W	NT-332/1	Division: Industry & Energy
H-field probe 27 MHz – 1 GHz	NT-248	BBA150 RF-Amplifier 1 GHz - 6 GHz	NT-333/1	, 0,
ELT-400 1 Hz – 400 kHz	NT-249	APA01 – RF-Amplifier 0,5 GHz – 2,5 GHz	NT-334	Test report number:
MDS 21 - Absorbing clamp 30 - 1000 MHz	NT-250	Preamplifier 1 GHz - 4 GHz	NT-335	2022-IN-AT-TICL-E-EX- 000356-FG-006
FCC-203I EM Injection clamp	NT-251	Preamplifier for GPS MKU 152 A	NT-336	Page: 2 of 5
FCC-203I-DCN Ferrite decoupling network	NT-252	Preamplifier 1 GHz – 18 GHz	NT-337/1	Date: 22.11.2022
PR50 Current Probe	NT-253	DC Block 10 MHz – 18 GHz Model 8048	NT-338	
i310s Current Probe	NT-254/1	2-97201 Electronic load	NT-341	
Fluke 87 V True RMS Multimeter	NT-260	TSX3510P - Power supply 0-30 V / 0 - 10 A	NT-344	
Model 2000 Digital Multimeter	NT-261	TSX3510P - Power supply 0-30 V / 0 - 10 A	NT-345	
Fluke 87 V Digital Multimeter	NT-262/1	VDS 200 Mobil-impuls-generator	NT-350	
ESH2-Z5-U1 Artificial mains network 4x25A	NT-300	LD 200 Mobil-impuls-generator	NT-351	
ESH3-Z5-U1 Artificial mains network 2x10A	NT-301	MPG 200 Mobil-Impuls-Generators	NT-352	
ESH3-Z6-U1 Artificial mains network 1x100A	NT-302	EFT 200 Mobil-impuls-generator	NT-353	
ESH3-Z6-U1 Artificial mains network 1x100A	NT-302a	AN 200 S1 Artificial Network	NT-354	
EZ10 T-Artificial Network	NT-305	FP-EFT 32M 3 ph. Coupling filter (Burst)	NT-400/1	
SMG - Signal generator 0,1 - 1000 MHz	NT-310	PHE 4500 - Mains impedance network	NT-401	
SMA100A - Signal generator 9 kHz - 6 GHz	NT-310/1	IP 6.2 Coupling filter for data lines (Surge)	NT-403	
RefRad Reference generator	NT-312	TK 9421 High Power Volt. Probe 150 kHz - 30 MHz	NT-409	
SMP 02 Signal generator 10 MHz - 20 GHz	NT-313	ESH2-Z3 - Probe 9 kHz - 30 MHz	NT-410	
40 MHz Arbitrary Generator TGA1241	NT-315	IP 4 - Capacitive clamp (Burst)	NT-411	
Artificial mains network NSLK 8127-PLC	NT-316	Highpass-Filter 100 MHz – 3 GHz	NT-412	
PSURGE 4.1 Surge generator	NT-324	Highpass-Filter 600 MHz – 4 GHz	NT-413	
IMU4000 Immunity test system	NT- 325/1a-e	Highpass-Filter 1250 MHz – 4 GHz	NT-414	
VCS 500-M6 Surge-Generator	NT-326	Highpass-Filter 1800 MHz – 16 GHz	NT-415	
Oscillatory Wave Simulator incl. Coupling networks	NT- 328a+b+c			
BTA-250 - RF-Amplifier 9 kHz - 220 MHz / 250 W	NT-330			

Appendix 1 (continued) Test equipment used

RF-Attenuator 10 dB DC – 18 GHz / 50 W	NT-417/1	SW 9605 - Current probe 150 kHz – 30 MHz	NT-465/1	Division: Industry & Energy
RF-Attenuator 6 dB DC – 18 GHz / 50 W	NT-418	95242-1 – Current probe 1 MHz – 400 MHz	NT-468	
RF-Attenuator 3 dB DC – 18 GHz / 50 W	NT-419	94106-1L-1 – Current probe 100 kHz – 450 MHz	NT-471	Test report number:
RF-Attenuator 20 dB DC - 1000 MHz / 25 W	NT-421	WHKX12-2700-3000-18000 3 GHz Highpass filter	NT-472	2022-IN-AT-TICL-E-EX- 000356-FG-006
RF-Attenuator 30 dB DC - 1000 MHz / 1 W	NT-423	WHKX10-3870-4500-18000 4,5 GHz Highpass filter	NT-473	Page: 3 of 5
RF-Attenuator 30 dB	NT-424	CDN S9 USB3.0 Coupling decoupling network	NT-474	Date: 22.11.2022
RF-Attenuator 6 dB DC - 1000 MHz / 1 W	NT-425	CDN S2 XLR3-1 Coupling decoupling network	NT-475	
RF-Attenuator 6 dB DC - 1000 MHz / 1 W	NT-426	CDN S8 RJ45 Coupling decoupling network	NT-476	
RF-Attenuator 6 dB	NT-428	GA 1240 Power amplifier according to EN 61000-4-16	NT-480	
RF-Attenuator 0 dB - 81 dB	NT-429	Coupling networks according to EN 61000-4-16	NT-481 - NT-483	
WRU 27 - Band blocking 27 MHz	NT-430	Van der Hoofden Test Head	NT-484	
WHJ450C9 AA - High pass 450 MHz	NT-431	WRCJV12-5820-5850-5950-5980 5,9 GHz Band Reject Filter	NT-490	
	NT-432	WHKX10-5670-6300-18000 6 GHz Highpass filter	NT-491	
RF-Load 150 W	NT-433	WHK12-935-1000-7000 1 GHz Highpass filter	NT-492	
Impedance transducer 1:4; 1:9; 1:16	NT-435	EMC Video/Audiosystem	NT-511/1	
	NT-436	EMC32 Version 10.60.20 Test software	NT-520/1	
RF-Attenuator DC – 18 GHz 6 dB	NT-437	SRM-TS Version 1.3 software for SRM-3000	NT-522	
RF-Attenuator DC – 18 GHz 10 dB	NT-438	SRM-TS Version 1.3.1 software for SRM-3006	NT-522/1	
RF-Attenuator DC – 18 GHz 20 dB	NT-439	Spitzenberger und Spies Test software V4.1	NT-525	
I+P 7780 Directional coupler 100 - 2000 MHz	NT-440	Vertical coupling plane (ESD)	NT-531	
ESH3-Z2 - Pulse limiter 9 kHz - 30 MHz	NT-441	Test cable #4 for EN 61000-4-6	NT-553	
Power Divider 6 dB/1 W/50 Ohm	NT-443	Test cable #3 for conducted emission	NT-554	
Directional coupler 0,1 MHz – 70 MHz	NT-444	Test cable #5+#6 ESD-cable (2x470k)	NT-555 + NT-556	
Directional coupler 0,1 MHz – 70 MHz	NT-445	Test cable #8 Sucoflex 104EA	NT-559	
Tube imitations according to EN 55015	NT-450	Test cable #9 (for outdoor measurements)	NT-580	
FCC-801-M3-16A Coupling decoupling network	NT-458	Test cable #10 (for outdoor measurements)	NT-581	
FCC-801-M2-50A Coupling decoupling network	NT-459	Test cable #13 Sucoflex 104PE	NT-584	
FCC-801-M5-25 Coupling decoupling network	NT-460	Test cable #21 for SRM-3000	NT-592	
	NT-463	Shield chamber	NT-600	
	NT-464	Climatic chamber	M-1200	

TUV AUSTRIA

Appendix 1 (continued) Test equipment used

	Anashais Chambar	EMV 100		HE Ampflifior 0 kHz 225 MHz	EMV-300/1	Division:
	Anechoic Chamber 3 m / 5 m measuring distance	EMV-100		HF- Ampflifier 9 kHz-225 MHz BBL200		Industry & Energy
	Turntabel 6 m diameter	EMV-101		HF- Amplifier 80 -1000 MHz BBA150	EMV-301	
	Antenna mast + controller	EMV-102+ EMV-103		HF- Amplifier 0,8 - 6 GHz BBA150	EMV-302	Test report number: 2022-IN-AT-TICL-E-EX-
	EMC Video/Audiosystem	EMV-104		High Power Ant. 20-200 MHz HPBA-2510	EMV-303/1	000356-FG-006 Page: 4 of 5
	EMC Software EMC32 Version 10.60.20	EMV-105		High Power Ant. 20-200 MHz S12018-21	EMV-303/2	Date: 22.11.2022
	Hornantenna 1 – 18 GHz HF 907	EMV-110		Log.per Antenna 80-2700 MHz STLP 9128 E special	EMV-304	
	Antennapre.amp. 1 – 18 GHz BBV 9718 D	EMV-111/1		Log.per Antenna 0,7 – 9 GHz	EMV-305	
	Trilog Antenna 30-3000 MHz VULB9163	EMV-112		STLP9149 HF- Ampflifier 9 kHz-250 MHz	EMV-306	
	Monopol 9 kHz – 30 MHz VAMP 9243	EMV-113		BBA150 (low noise) ISO11451-2 TLS	EMV-307	
	Antennapre.amp 18 – 40 GHz BBV 9721	EMV-114		10 kHz – 30 MHz Load Dump Generator	EMV-350	
	Hornantenna 200 – 2000 MHz AH-220	EMV-115		LD 200N Ultra Compact Symulator	EMV-351	
	DC Artificial Network PVDC 8300	EMV-150		UCS 200N100 Automotive Power fail module	EMV-352	
	AC Artificial Network NNLK 8121 RC	EMV-151		PFM 200N100.1 Voltage Drop Symulator	EMV-353	
	AC Artificial Network NNLK 140	EMV- 153a-d		VDS 200Q100 Arb. Generator	EMV-354	
	EMI Receiver ESW44	EMV-200/1		AutoWave Ultra Compact Symulator	EMV-355	
	Signalgenerator 9 kHz – 40 GHz N5173B	EMV-201		UCS 500N7 Coupling decoupling network	EMV-356	
	GPS Frequency normal B-88	EMV-202		CNI 503B7 / 32 A Coupling decoupling network	EMV-357	
	DC Power supply N5745A	EMV-203	_	CNI 503B7 / 63 A Telecom Surge Generator	EMV-358	
	Spektrum Analyzator	EMV-205		TSurge 7		
	FSV40 Thd Multimeter	EMV-206		Coupling decoupling network CNI 508N2	EMV-359	
	Model 2015 Poweramplifier	EMV-	Ц	Coupling decoupling network CNV 504N2.2	EMV-360	
	PAS15000 Inrush Current Source	207/abc EMV-		Immunity generator NSG4060/NSG4060-1	EMV-361	
_	Arbgenerator	208/abc EMV-209		Coupling network CDND M316-2	EMV-362	
	Sycore Harmonics/Flicker analyzer	EMV-210		Coupling network CT419-5	EMV-363	
	ARS 16/3			ESD Generator NSG 437	EMV-364	
	Power Supply Regatron AC	EMV-214		Pulse Limiter VTSD 9561-F BNC	EMV-405	
	Power Supply Regatron DC	EMV-215		Transient emission BSM200N40+BS200N100	EMV- 450+451	
	Harmonics/Flicker analyser Zimmer	EMV-216		Cap. Coupling Clamp	EMV-455	
	Flicker Impedanz Newtons4th 753	EMV-218		HFK Mag. Field System	EMV-	
	Comemso	EMV-219		MS100N+MC26100+MC2630	456-458	

www.tuv.at | info@tuv.at | TÜV ®

Appendix 1 (continued) Test equipment used

Coupling network EMV-459 CDN M2-100A ☐ Coupling network EMV-460 CDN M3-32A Coupling network CDN M5-100A EMV-461 EMV-462 ☐ Current Clamp CIP 9136A □ DC Artificial Network EMV-464+465 HV-AN 150 EMV-466 ☐ Coupling Clamp EM 101 ☐ Decoupling Clamp EMV-467 FTC 101 EMV-469/2 Power attenuator 10 dB / 250 Watt ☐ HV AMN EMV-472 NNHV 8123 800A ☐ HV AMN EMV-473

NNHV 8123 800A

Division: Industry & Energy

Test report number: 2022-IN-AT-TICL-E-EX-000356-FG-006

Page: 5 of 5

Date: 22.11.2022