LCIE Etablissement de Moirans ZI Centr'alp 170, rue de Chatagnon 38430 Moirans

RCS Grenoble 408 363 174

Tél. : +33 4 76 07 36 36 Fax : +33 4 76 55 90 88

TEST REPORT

N°: 853835-R1-E

JDE : 136952

Subject

Electromagnetic compatibility and Radio spectrum Matters (ERM) tests according to standards: FCC CFR 47 Part 15, Subpart B et C RSS-247 Issue 1.0

Issued	to
--------	----

ISKN 52. cours Jean Jaurès

SLATE

38000 GRENOBLE - FRANCE

Apparatus under test

Product
Trade mark
Manufacturer
Model under test
Serial number
FCCID
ICID
Test date
Test location
IC Test site
Test performed by
Composition of document

ISKN ISKN TS1E2 6004 & 6017 2ACQC-TS1E2 12188A-TS1E2 From August 20th to September 2nd, 2015 Moirans 6500A-1 & 6500A-3 Nathalie BUGANZA & Gaëtan Deschamps 40 pages

Modification of the last version Document issued on None September 2nd, 2015

Written by : Gaëtan Deschamps / Jonathan PAUC Tests operator

This document shall not be reproduced, except in full, without the written approval of the LCIE. This document contains results related only to the item tested. It does not imply the conformity of the whole production to the item tested .Unless otherwise specified; the decision of conformity takes into account the uncertainty of measures. This document does not anticipate any certification decision.

33, av du Général Leclerc BP 8 92266 Fontenay-aux-Roses cedex France

LCIE

Tél : +33 1 40 95 60 60 Fax : +33 1 40 95 86 56 contact@lcie.fr www.lcie.fr Société par Actions Simplifiée au capital de 15 745 984 € RCS Nanterre B 408 363 174 www.lcie.com

Page 2/40

SUMMARY

TEST PROGRAM	3
SYSTEM TEST CONFIGURATION	4
CONDUCTED EMISSION DATA	7
RADIATED EMISSION DATA	. 10
BANDWIDTH (15.247)	. 15
MAXIMUM PEAK OUTPUT POWER (15.247)	. 18
POWER SPECTRAL DENSITY (15.247)	. 21
BAND EDGE MEASUREMENT (15.247)	. 24
OCCUPIED BANDWIDTH	. 28
ANNEX 1 (GRAPHS)	. 30
UNCERTAINTIES CHART	. 40
	TEST PROGRAM

1. TEST PROGRAM

Standard:

- FCC Part 15, Subpart C 15.247
- ANSI C63.10 (2013)
- RSS-247 Issue 1.0 May 2015
- RSS-Gen Issue 4 Nov 2014
- 558074 D01 DTS Measurement Guidance v03r03

EMISSION TEST	LIMITS			RESULTS	
	Frequency	Quasi-peak value (dBµV)	Average value (dBµV)	☑ PASS	
Limits for conducted disturbance at mains ports	150-500kHz	66 to 56	56 to 46		
150kHz-30MHz	0.5-5MHz	56	46		
	5-30MHz	60	50		
Radiated emissions 9kHz-30MHz <i>CFR 47</i> §15.209 (a) <i>CFR 47</i> §15.247 (d) <i>RSS-247</i> §5.5	Measure at 300r 9kHz-490kHz : 6 Measure at 30m 490kHz-1.705MH 1.705MHz-30MH	Measure at 300m 9kHz-490kHz : 67.6dBµV/m /F(kHz) Measure at 30m 490kHz-1.705MHz : 87.6dBµV/m /F(kHz)			
Radiated emissions 30MHz-25GHz* CFR 47 §15.209 (a) CFR 47 §15.247 (d) RSS-247 §5.5 Highest frequency : 168MHz (Declaration of provider)	1.705МН2-30МН2 : 29.5 dBµV/m Measure at 3m 30MHz-88MHz : 40 dBµV/m 88MHz-216MHz : 43.5 dBµV/m 216MHz-960MHz : 46.0 dBµV/m Above 960MHz : 54.0 dBµV/m			☑ PASS □ FAIL □ NA □ NP	
Bandwidth 6dB CFR 47 §15.247 (a) (2) RSS-247 §5.2.1	At least 500kHz			☑ PASS □ FAIL □ NA □ NP	
Power spectral Density CFR 47 §15.247 (e) RSS-247 §5.2.2	Limit: 8dBm/3kHz			☑ PASS □ FAIL □ NA □ NP	
Maximum Peak Output Power CFR 47 §15.247 (b) RSS-247 §5.4.4	Limit: 30dBm Conducted or Ra	idiated measuremen	t	☑ PASS □ FAIL □ NA □ NP	
Band Edge Measurement CFR 47 §15.209 (a) CFR 47 §15.247 (d) RSS-247 §5.5	Limit: -20dBc or Radiated emissions limits in restricted bands		cted bands	☑ PASS □ FAIL □ NA □ NP	
Occupied bandwidth RSS-Gen §4.6.1	No limit			 ✓ PASS ☐ FAIL ☐ NA ☐ NP 	
Receiver Spurious Emission** RSS-Gen §4.10	See RSS-Gen §₄	4.10		□ PASS □ FAIL ☑ NA □ NP	

***§15.33:** The highest internal source of a testing device is defined like more the highest frequency generated or used in the testing device or on which the testing device works or agrees.

- If the highest frequency of the internal sources of the testing device is lower than 108 MHz, measurement must be only performed until 1GHz.

- If the highest frequency of the internal sources of the testing device ranges between 108 MHz and 500 MHz, measurement must be only performed until 2GHz.

- If the highest frequency of the internal sources of the testing device ranges between 500 MHz and 1 GHz, measurement must be only performed until 5GHz.

If the highest frequency of the internal sources of the testing device is above 1 GHz, measurement must be only performed until 5 times the highest frequency or 40 GHz, while taking smallest of both.

2.1. HARDWARE IDENTIFICATION (EUT AND AUXILIARIES):

Equipment under test (EUT): TS1E2 Serial Number: 6004 & 6017

Power supply:

During all the tests, EUT is supplied by V_{nom} : 3.7Vdc (internal battery Lithium-ion) 5V of USB port of Laptop is used to charge internal battery. For measurement with different voltage, it will be presented in test method.

Name	Туре	Rating	Reference / Sn	Comments
Charge & Communication	□ AC Ø DC □ Battery	5Vdc - USB	/	For battery charging
Internal battery	□ AC □ DC Ø Battery	3.7VDC	-	For EUT supply

Inputs/outputs - Cable:

Access	Туре	Length used (m)	Declared <3m	Shielded	Under test	Comments
Charge & Communication	USB Cable	1	M	Ŋ	A	

Auxiliary equipment used during test:

Туре	Reference	Sn	Comments
LAPTOP	TOSHIBA Satellite	TOSHIBA 2	/
Power Supply of LAPTOP	TOSHIBA PA3822U-1ACA	/	/

Page 5/40

Equipment information:

Bluetooth LE Type:	□ v4.0			⊠ v4.1	
Frequency band:	[2400 – 2483.5] MHz				
Sub-band REC7003:		Annex	: 3 (a)		
Spectrum Modulation:		⊠ DSSS (Te	ested like it)		
Number of Channel:		4	0		
Spacing channel:		2M	Hz		
Channel bandwidth:		1M	Hz		
Antenna Type:	☑ Integral	🗆 Ext	ernal	Dedicated	
Antenna connector:	□ Yes	\square	No	Temporary for test	
	☑ 1				
Transmit chains:		Single a	Intenna		
	Gain 1: 2dBi Gain 2: dBi				
Beam forming gain:	No				
Receiver chains		1			
Type of equipment:	✓ Stand-alone	🗆 Plu	ug-in	Combined	
Ad-Hoc mode:	□ Yes			⊠ No	
	Yes (Load Based)	□ Off	mode	⊠ No	
Adaptivity mode:	aptivity mode: Clear Channel Assessment Time:			μs	
	q value for Load Based Equipment:				
Duty cycle:	☐ Continuous duty ☐ Intermittent duty			🗆 100% duty	
Equipment type:	Production mo	del	🗆 Pr	e-production model	
Type of power source:	□ AC power supply	DC pow	er supply	☑ Battery (Lithium-Ion)	

CHANNEL PLAN			
Channel	Frequency (MHz)	Channel	Frequency (MHz)
Cmin: 0	2402	Cmid: 20	2442
1	2404	21	2444
2	2406	22	2446
3	2408	23	2448
4	2410	24	2450
5	2412	25	2452
6	2414	26	2454
7	2416	27	2456
8	2418	28	2458
9	2420	29	2460
10	2422	30	2462
11	2424	31	2464
12	2426	32	2466
13	2428	33	2468
14	2430	34	2470
15	2432	35	2472
16	2434	36	2474
17	2436	37	2476
18	2438	38	2478
19	2440	Cmax: 39	2480

DATA RATE				
Data Rate (Mbps) Modulation Type Worst Case Modulation				
1	GFSK	\checkmark		

Page 6/40

2.2. EUT CONFIGURATION

The EUT is set in the following modes during tests with software ("Certif_USB_sans_pos"):

- Permanent emission with modulation on a fixed channel in the data rate that produced the highest power
- Permanent reception

- The power order is set at 5dBm

There are 2 configurations tests:

- Configuration 1: EUT is powered by her internal battery and reloaded by USB with Laptop. The EUT detects the inductive pen and communicates with Laptop by Bluetooth radio.
- Configuration 2: EUT is powered by her internal battery. The EUT detects the inductive pen and communicates with Laptop by Bluetooth radio.

2.3. EQUIPMENT MODIFICATIONS

 \square None \square Modification:

2.4. FIELD STRENGTH CALCULATION

The field strength is calculated by adding the Antenna Factor and Cable Factor, and subtracting the Amplifier Gain (if any) from the measured reading. The basic equation with a sample calculation is as follow:

FS = RA + AF + CF - AG

- Where FS = Field Strength
 - RA = Receiver Amplitude
 - AF = Antenna Factor
 - CF = Cable Factor
 - AG = Amplifier Gain

Assume a receiver reading of 52.5dBµV is obtained. The antenna factor of 7.4 and a cable factor of 1.1 are added. The amplifier gain of 29dB is subtracted, giving a field strength of 32 dBµV/m.

 $FS = 52.5 + 7.4 + 1.1 - 29 = 32 \text{ dB}\mu\text{V/m}$

The 32 dBµV/m value can be mathematically converted to its corresponding level in μ V/m. Level in μ V/m = Common Antilogarithm [(32dBµV/m)/20] = 39.8 μ V/m.

Page 7/40

3. CONDUCTED EMISSION DATA

3.1. ENVIRONMENTAL CONDITIONS

3.2. TEST SETUP

Mains terminals

The EUT and auxiliaries are set:
☑ 80cm above the ground on the non-conducting table (Table-top equipment)
□ 10cm above the ground on isolating support (Floor standing equipment)
The distance between the EUT and the LISN is 80cm. The EUT is 40cm away for the vertical ground plane.

The EUT is powered by V_{nom} .

Measurement is performed on AC lines of AC/DC adapter of Laptop, powered through a LISN (measure)

Test setup

Page 8/40

<u>Test setup</u>

3.3. TEST METHOD

The product has been tested according to ANSI C63.4 and FCC Part 15 subpart B and C. The product has been tested with 120V/60Hz power line voltage and compared to the FCC Part 15 subpart B §15.107 and C §15.207 limits. Measurement bandwidth was 9kHz from 150kHz to 30MHz. This was followed by a Quasi-Peak, i.e. CISPR measurement for any strong signal. If the average limit is met when using a Quasi-Peak detector, the EUT shall be deemed to meet both limits and measurement with the average detector is unnecessary. The LISN (measure) is 50Ω / 50μ H. The Peak data are shown on plots in annex 1. Quasi-Peak and Average measurements are detailed in a table with frequencies and levels measured. Interconnecting cables and equipment's were moved to position that maximized emission. A summary of the worst case emissions found in all test configurations and modes is shown on the following page.

Measurements are performed on the phase (L1) and neutral (N) of power line voltage. Graphs are obtained in PEAK detection. Measures are also performed in Quasi-Peak and Average for any strong signal.

DESCRIPTION	MANUFACTURER	MODEL	N° LCIE	Cal_Date	Cal_Due
Cable + self	-	-	A5329585	06/15	06/16
Conducted emission comb generator	BARDET	-	A3169049	-	-
LISN tri-phase ESH2-Z5	RHODE & SCHWARZ	33852.19.53	C2320062	07/15	07/16
Receiver 20Hz – 8GHz	ROHDE & SCHWARZ	ESU8	A2642019	04/15	04/16
Thermo-hygrometer	KIMO	HQ210	B4206022	04/15	04/16
Transient limiter	RHODE & SCHWARZ	ESH3-Z2	A7122204	11/14	11/15

3.4. TEST EQUIPMENT LIST

3.5. DIVERGENCE, ADDITION OR SUPPRESSION ON THE TEST SPECIFICATION

☑ None

Divergence:

Page 9/40

3.6. TEST RESULTS

 Measurements are performed on the phase (L1) and neutral (N) of the power line.

 Results: (PEAK detection)

 Measure on L1:
 graph Emc#1

 Measure on N:
 graph Emc#2

(see annex 1) (see annex 1)

3.7. CONCLUSION

Conducted emission data measurement performed on the sample of the product **TS1E2**, SN: **6017**, in configuration and description presented in this test report, show levels below the FCC CFR 47 Part 15 and RSS-247 Issue 1.0 limits.

Page 10/40

4. RADIATED EMISSION DATA

4.1. ENVIRONMENTAL CONDITIONS

Date of test	:	August 26 th , 2015
rest performed by	•	Nathalie BUGANZA
Atmospheric pressure (hPa)	:	995
Relative humidity (%)	:	49
Ambient temperature (°C)	:	23

August 27th, 2015 Nathalie BUGANZA 995 45 24

4.2. TEST SETUP

The installation of EUT is identical for pre-characterization measures in a 3 meters semi- anechoic chamber and for measures on the 10 meters Open site.

The EUT and auxiliaries are set:

☑ 80cm above the ground on the non-conducting table (Table-top equipment) - Below 1GHz

- ☑ 150cm above the ground on the non-conducting table (Table-top equipment) Above 1GHz
- □ 10cm above the ground on isolating support (Floor standing equipment)

The EUT is powered by V_{nom}.

Axis XY

Test setup on OATS

Axis Z

TEST REPORT N°853835-R1-E

Page 11/40

 Aris XY
 Aris Z

 Aris XY
 Aris Z

Test setup in anechoic chamber

4.3. TEST METHOD

Pre-characterisation measurement: (9kHz - 25GHz)

A pre-scan of all the setup has been performed in a 3 meters semi-anechoic chamber for frequency from 30MHz to 25GHz. Test is performed in horizontal (H) and vertical (V) polarization, the loop antenna was rotated during the test to maximize the emission measurement. Continuous linear turntable azimuth search was performed with 360 degrees range. Measurement performed on all axis of EUT used in normal configuration.

The pre-characterization graphs are obtained in PEAK detection and PEAK/AVERAGE from 1GHz to 25GHz.

Characterization on 10 meters open site from 9kHz to 1GHz:

The product has been tested according to ANSI C63.4 (2003), FCC part 15 subpart C. Radiated Emissions were measured on an open area test site. A description of the facility is on file with the FCC. The product has been tested at a distance of **10 meters** from the antenna and compared to the FCC part 15 subpart C §15.225 limits in the frequency range 13.553MHz 13.567MHz. Measurement bandwidth was 9kHz below 30MHz and 120kHz from 30 MHz to 1GHz. Test is performed in horizontal (H) and vertical (V) polarization, the loop antenna was rotated during the test to maximize the emission measurement. The height antenna is varied from 1m to 4m. Continuous linear turntable azimuth

Page 12/40

search was performed with 360 degrees range. Measurement performed on all axis of EUT used in normal configuration. A summary of the worst case emissions found in all test configurations and modes is shown. Frequency list has been created with anechoic chamber pre-scan results.

Characterization on 3 meters full anechoic chamber from 1GHz to 25GHz:

The product has been tested at a distance of **3 meters** from the antenna and compared to the FCC part 15 subpart B §15.109 limits and C §15.209 limits. Measurement bandwidth was 1MHz from 1GHz to 25GHz.

Test is performed in horizontal (H) and vertical (V) polarization. Continuous linear turntable azimuth search was performed with 360 degrees range. Measurement performed on all axis of EUT used in normal configuration. A summary of the worst case emissions found in all test configurations and modes is shown. The height antenna is \Box On mast, varied from 1m to 4m

Fixed and centered on the EUT (EUT smaller than the beamwidth of the measurement antenna)

Frequency list has been created with anechoic chamber pre-scan results.

DESCRIPTION	MANUFACTURER	MODEL	N° LCIE	Cal_Date	Cal_Due
Amplifier 0.1MHz – 1300 MHz	HEWLETT PACKARD	8447D	A7085009	10/14	10/15
Antenna Bi-Log XWing	TESEQ	CBL6144	C2040146	11/14	11/16
Emission Cable	MICRO-COAX	6GHz	A5329654	04/15	04/16
Emission Cable	MICRO-COAX	6GHz	A5329655	04/15	04/16
Emission Cable	MICRO-COAX	6GHz	A5329656	04/15	04/16
Semi-Anechoic chamber #2	SIEPEL	-	D3044015	03/15	03/16
Radiated emission comb generator	BARDET	-	A3169050	-	-
HF Radiated emission comb generator	LCIE SUD EST	-	A3169088	-	-
Spectrum Analyzer 9kHz - 6GHz	ROHDE & SCHWARZ	FSL6	A2642049	11/14	11/15
Thermo-hygrometer (C2)	LACROSS Techn.	WS-2357	B4206015	08/14	08/15
Turntable controller (Cage#2)	ETS Lingren	Model 2066	F2000393	-	-
Turntable chamber (Cage#2)	ETS Lingren	Model 2165	F2000404	-	-
Table	LCIE	-	F2000438	-	-
Antenna Bi-log	CHASE	CBL6111A	C2040051	04/14	04/16
Cable	SUCOFLEX	106G	A5329061	03/15	03/16
Cable (OATS)	-	-	A5329623	10/14	10/15
OATS	-	-	F2000409	09/14	09/15
Receiver 20-1000MHz	ROHDE & SCHWARZ	ESVS30	A2642006	05/15	05/16
Thermo-hygrometer	KIMO	HQ210	B4206022	04/15	04/16
Turntable / Mast controller (OATS)	ETS Lindgren	Model 2066	F2000372	-	-
Antenna mast (OATS)	ETS Lindgren	2071-2	F2000392	-	-
Turntable (OATS)	ETS Lindgren	Model 2187	F2000403	-	-
Table	LCIE	-	F2000445	-	-

4.4. TEST EQUIPMENT LIST

4.5. DIVERGENCE, ADDITION OR SUPPRESSION ON THE TEST SPECIFICATION

☑ None

□ Divergence:

4.6. TEST RESULTS

4.6.1. Pre-characterization at 3 meters [30MHz-1GHz]

See graphs for 30MHz-1GHz:

Graph identifier		Polarization	EUT position	Commen	ts
Emr#	1	Vertical / Horizontal	Axis XY	Mode USB	See annex 1
Emr#	2	Vertical / Horizontal	Axis Z	Mode USB	See annex 1
Emr#	3	Vertical / Horizontal	Axis XY	Mode Bluetooth	See annex 1
Emr#	4	Vertical / Horizontal	Axis Z	Mode Bluetooth	See annex 1

4.6.2. Pre-characterization at 3 meters [1GHz-2GHz]

See graphs for 1GHz-2GHz:

Graph identifier		Polarization	EUT position	Commen	ts
Emr#	5	Vertical / Horizontal	Axis XY	Mode USB	See annex 1
Emr#	6	Vertical / Horizontal	Axis Z	Mode USB	See annex 1
Emr#	7	Vertical / Horizontal	Axis XY	Mode Bluetooth	See annex 1
Emr#	8	Vertical / Horizontal	Axis Z	Mode Bluetooth	See annex 1

4.6.3. Characterization on 10 meters open site from 30MHz to 1GHz

Worst case final data result:

Frequency list has been created with semi-anechoic chamber pre-scan results. Measurements are performed using a QUASI-PEAK detection.

No	Frequency (MHz)	Limit QPeak (dBµV/m)	Measure QPeak (dBµV/m)	Margin QPeak (dB)	Angle Table (°)	Pol. Ant.	Ht. Ant. (cm)	FC (dB)	Configuration EUT	Remark
1	53.568	40.0	31.0	-9.0	0	V	100	8.8	1	
2	193.993	43.5	35.2	-8.3	0	V	100	11.2	1	Due to Laptop
3	258.688	46.0	44.1	-1.9	70	V	100	15.5	1	Due to Laptop
4	258.688	46.0	44.6	-1.4	300	Н	400	15.5	1	Due to Laptop
5	323.368	46.0	41.2	-4.8	61	Н	310	16.9	1	Due to Laptop
6	323.368	46.0	43.5	-2.5	300	V	100	16.9	1	Due to Laptop
7	388.078	46.0	37.2	-8.8	61	V	100	19.2	1	Due to Laptop
8	388.078	46.0	43.3	-2.7	270	Н	270	19.2	1	Due to Laptop
9	517.655	46.0	41.2	-4.8	0	Н	300	22.4	1	Due to Laptop
		•	•							
10	193.993	43.5	29.1	-14.4	0	V	100	11.2	2	
11	258.642	46.0	23.3	-22.7	270	V	100	15.5	2	
12	258.661	46.0	29.6	-16.4	40	Н	400	15.5	2	
13	323.388	46.0	30.8	-15.2	0	Н	400	16.9	2	
14	323.388	46.0	30.6	-15.4	0	V	400	16.9	2	
15	517.605	46.0	33.4	-12.6	180	V	340	22.4	2	
16	517.605	46.0	33.7	-12.3	0	Н	400	22.4	2	

Note: Measure have been done at 10m distance and corrected according to requirements of 15.209.e) (M@3m = M@10m+10.5dB)

Page 14/40

4.6.4. Characterization on 3meters anechoic chamber from 1GHz to 25GHz

Worst case final data result:

The frequency list is created from the results obtained during the pre-characterization in anechoic chamber. Measurements are performed using a PEAK and AVERAGE detection.

No	Frequency (MHz)	Limit Peak (dBµV/m)	Measure Peak (dBµV/m)	Margin Peak (dB)	Limit Average (dBµV/m)	Measure Average (dBµV/m)	Margin Average (dB)	Angle Table (°)	Pol. Ant.	Ht. Ant. (cm)	FC (dB)	Remark
1	4804.000	74.0	57.2	-16.8	54.0	43.0	-11.0	270	V	100	36.3	Configuration 1
2	4884.000	74.0	57.5	-16.5	54.0	42.7	-11.3	290	V	100	36.5	Configuration 1
3	4960.000	74.0	58.0	-16.0	54.0	43.3	-10.7	280	V	100	36.7	Configuration 1
4	7328.000	74.0	62.5	-11.5	54.0	42.7	-11.3	330	V	100	40.5	Configuration 1
5	7440.000	74.0	59.2	-14.8	54.0	42.1	-11.9	320	V	100	40.7	Configuration 1

Note: Measures have been done at 3m distance.

4.7. CONCLUSION

Radiated emission data measurement performed on the sample of the product **TS1E2**, SN: **6017**, in configuration and description presented in this test report, show levels below the FCC CFR 47 Part 15 and RSS-247 Issue 1.0 limits.

Page 15/40

5. BANDWIDTH (15.247)

5.1. TEST CONDITIONS

Date of test	:A
Test performed by	:0
Atmospheric pressure (hPa)	:9
Relative humidity (%)	:3
Ambient temperature (°C)	:2

:August 21st, 2015 :G.Deschamps :999 :32 :22

5.2. SETUP

☑ Conducted measurement:

The EUT is turned ON and connected to measurement instrument; the center frequency of the spectrum analyzer is set to the fundamental frequency. The captured power is measured and recorded; the measurement is repeated until all frequencies required were complete.

Offset: Attenuator+cable 10.1dB

□ Radiated measurement:

The EUT is placed in an anechoic chamber; the center frequency of the spectrum analyzer is set to the fundamental frequency. The captured power is measured and recorded; the measurement is repeated until all frequencies required were complete, a delta marker is used to measure the frequency difference as the emission bandwidth.

Measurement Procedure: §8.1 Option 1 (DTS Measurement Guidance)

- 1. Set resolution bandwidth (RBW) = 100kHz.
- 2. Set the video bandwidth (VBW) \geq 3 x RBW.
- 3. Detector = Peak.
- 4. Trace mode = max hold.
- 5. Sweep = auto couple.
- 6. Allow the trace to stabilize.

7. Measure the maximum width of the emission that is constrained by the frequencies associated with the two outermost amplitude points (upper and lower) that are attenuated by 6 dB relative to the maximum level measured in the fundamental emission. Compare the resultant bandwidth with the RBW setting of the analyzer.

Page 16/40

5.3. TEST EQUIPMENT LIST

DESCRIPTION	MANUFACTURER	MODEL	N° LCIE	Cal_Date	Cal_Due
Attenuator 10dB	JFW	-	A7122166	10/14	10/15
Cable 2m	-	-	A5329703	11/14	11/15
Spectrum analyzer	ROHDE & SCHWARZ	FSV 30	A4060050	01/15	01/16
Thermo-hygrometer (C3)	OREGON	BAR206	B4204078	04/15	04/16
Thermo-hygrometer (PM2)	OREGON	BAR916HG-G	B4206011	04/14	04/15

5.4. DIVERGENCE, ADDITION OR SUPPRESSION ON THE TEST SPECIFICATION

☑ None

 \Box Divergence:

Page 17/40

5.5. TEST SEQUENCE AND RESULTS

5.6. CONCLUSION

Bandwidth measurement performed on the sample of the product **TS1E2**, SN: **6004**, in configuration and description presented in this test report, show levels below the FCC CFR 47 Part 15 and RSS-247 Issue 1.0 limits.

Page 18/40

6. MAXIMUM PEAK OUTPUT POWER (15.247)

6.1. TEST CONDITIONS

Date of test	:August 21 st , 2015
l est performed by	:G.Deschamps
Atmospheric pressure (hPa)	:999
Relative humidity (%)	:32
Ambient temperature (°C)	:22

6.2. SETUP

☑ Conducted measurement:

The EUT is turned ON and connected to measurement instrument; the center frequency of the spectrum analyzer is set to the fundamental frequency.

:

Offset: Attenuator+cable 10.1dB

□ Radiated measurement:

The EUT is placed in an anechoic chamber; the center frequency of the spectrum analyzer is set to the fundamental frequency.

The product has been tested at a distance of 3 meters from the antenna. Continuous linear turntable azimuth search was performed with 360 degrees range. Measurement performed on 3 axis of EUT. A summary of the worst case emissions found in all test configurations and modes is shown on following table. The captured power is measured and recorded; the measurement is repeated until all frequencies required were complete.

To demonstrate compliance with peak output power requirement of section 15.247 (b), the transmitter's peak output power is calculated using the following equation:

$$E = \frac{\sqrt{30 PG}}{d}$$

Where:

- E is the measured maximum fundamental field strength in V/m.

- G is the numeric gain of the transmitting antenna with reference to an isotropic radiator.

- d is the distance in meters from which the field strength was measured.

- P is the power in watts for which you are solving: $(E_d)^2$

$$P = \frac{(Ed)}{30G}$$

Maximum peak conducted output power

One of the following procedures may be used to determine the maximum peak conducted output power of a DTS EUT. ● Ø *RBW* ≥ *DTS bandwidth* §9.1.1 (*DTS Measurement Guidance*)

This procedure shall be used when the measurement instrument has available a resolution bandwidth that is greater than the DTS bandwidth.

a) Set the RBW \geq DTS bandwidth.

b) Set VBW \geq 3 x RBW.

- c) Set span ≥ 3 x RBW
- d) Sweep time = auto couple.

e) Detector = peak.

f) Trace mode = max hold.

g) Allow trace to fully stabilize.

h) Use peak marker function to determine the peak amplitude level.

• □ Integrated band power method

This procedure may be used when the maximum available RBW of the measurement instrument is less than the DTS bandwidth.

a) Set the RBW = 1 MHz.

b) Set the VBW \geq 3 x RBW

c) Set the span \geq 1.5 x DTS bandwidth.

d) Detector = peak.

e) Sweep time = auto couple.

f) Trace mode = max hold.

g) Allow trace to fully stabilize.

h) Use the instrument's band/channel power measurement function with the band limits set equal to the DTS bandwidth edges

6.3. TEST EQUIPMENT LIST

DESCRIPTION	MANUFACTURER	MODEL	N° LCIE	Cal_Date	Cal_Due
Attenuator 10dB	JFW	-	A7122166	10/14	10/15
Cable 2m	-	-	A5329703	11/14	11/15
Spectrum analyzer	ROHDE & SCHWARZ	FSV 30	A4060050	01/15	01/16
Thermo-hygrometer (C3)	OREGON	BAR206	B4204078	04/15	04/16
Thermo-hygrometer (PM2)	OREGON	BAR916HG-G	B4206011	04/14	04/15

6.4. DIVERGENCE, ADDITION OR SUPPRESSION ON THE TEST SPECIFICATION

☑ None

 \Box Divergence:

Page 20/40

6.5. TEST SEQUENCE AND RESULTS

Modulation:

Channel	Cha Freq (M	annel uency IHz)	Peak Outpu (dBm	t Power ı)	Power Limit (dBm)		
Cmin	24	402	4.18		30.0		
Cmid	24	442	4.27	•	30.	0	
Cmax	24	480	4.19		30.	0	
Spectrum Ref Level 10.00 dBm Offset 1	D.10 dB ● RBW 1 MHz 1 ms ● VBW 3 MHz Mode Su	/00D	Ref Level 10.00 dBm Offse	et 10.10 dB • RBW 1 MHz	Mada Swoon		
AP View		1[1] 4	AP View		MM1[1]	4.27 dBm	
0 dBm	¥	2.401726	550 GHz			2.44222580 GHz	
-10 dBm			të dBm				
-20 dBm			-20 dBm				
-30 dBm			-30 dBm				
-40 dBm			-40 dBm				
-50 dBm			-50 dBm				
-70 dBm			-70 dBm				
-80 dBm			-80 dBm				
CF 2.402 GHz	691 pts	Span 3.	.0 MHz CF 2.442 GHz	691 p	ts	Span 3.0 MHz	
N	Spectrur Ref Level Att	n 10.00 dBm Offset 10.10 dB • RBV 15 dB SWT 1 ms • VBV	V 1 MHz V 3 MHz Mode Sweep				
	0 dBm	M1	M1[1]	4.19 dBm 2.47972650 GHz			
	10 dBm-						
	-20 dBm						
	-30 dBm						
	-40 dBm						
	-50 dBm						
	-60 dBm						
	-70 dBm						
	CE 3 49 0		501 ptc	Span 2 0 MUs			
	LCF 2.48 G	112	031 hrs	apan a.u MHZ j			

6.6. CONCLUSION

Maximum Peak Output Power measurement performed on the sample of the product **TS1E2**, SN: **6004**, in configuration and description presented in this test report, show levels below the FCC CFR 47 Part 15 and RSS-247 Issue 1.0 limits.

7. POWER SPECTRAL DENSITY (15.247)

7.1. TEST CONDITIONS

Date of test:AuguTest performed by:G.DeAtmospheric pressure (hPa):992Relative humidity (%):32Ambient temperature (°C):23

:August 31st, 2015 :G.Deschamps :992 :32 ·23

7.2. SETUP

☑ Conducted measurement:

The EUT is turned ON and connected to measurement instrument; the center frequency of the spectrum analyzer is set to the fundamental frequency.

Offset: Attenuator+cable 10.1dB

□ Radiated measurement:

The EUT is placed in an anechoic chamber; the center frequency of the spectrum analyzer is set to the fundamental frequency.

The product has been tested at a distance of 3 meters from the antenna. Continuous linear turntable azimuth search was performed with 360 degrees range. Measurement performed on 3 axis of EUT. A summary of the worst case emissions found in all test configurations and modes is shown on following table. The captured power is measured and recorded; the measurement is repeated until all frequencies required were complete.

To demonstrate compliance with peak output power requirement of section 15.247 (b), the transmitter's peak output power is calculated using the following equation:

$$E = \frac{\sqrt{30 PG}}{d}$$

Where:

- E is the measured maximum fundamental field strength in V/m.

- G is the numeric gain of the transmitting antenna with reference to an isotropic radiator.

- d is the distance in meters from which the field strength was measured.

- P is the power in watts for which you are solving: $(E_d)^2$

$$P = \frac{(E d)}{30G}$$

Page 22/40

Measurement Procedure PKPSD: §10.2 (DTS Measurement Guidance)

a) Set analyzer center frequency to DTS channel center frequency.

- b) Set the span to 1.5 times the DTS bandwidth.
- c) Set the RBW to: 3 kHz.
- d) Set the VBW \geq 3 x RBW.
- e) Detector = peak.
- f) Sweep time = auto couple.
- g) Trace mode = max hold.
- h) Allow trace to fully stabilize.
- i) Use the peak marker function to determine the maximum amplitude level within the RBW.
- j) If measured value exceeds limit, reduce RBW (no less than 3 kHz) and repeat.

7.3. TEST EQUIPMENT LIST

DESCRIPTION	MANUFACTURER	MODEL	N° LCIE	Cal_Date	Cal_Due
Attenuator 10dB	JFW	-	A7122166	10/14	10/15
Cable 2m	-	-	A5329703	11/14	11/15
Spectrum analyzer	ROHDE & SCHWARZ	FSV 30	A4060050	01/15	01/16
Thermo-hygrometer (C3)	OREGON	BAR206	B4204078	04/15	04/16
Thermo-hygrometer (PM2)	OREGON	BAR916HG-G	B4206011	04/14	04/15

7.4. DIVERGENCE, ADDITION OR SUPPRESSION ON THE TEST SPECIFICATION

🗹 None

 \Box Divergence:

Page 23/40

7.5. TEST SEQUENCE AND RESULTS

Modulation:

7.6. CONCLUSION

Power Spectral Density measurement performed on the sample of the product **TS1E2**, SN: **6004**, in configuration and description presented in this test report, show levels below the FCC CFR 47 Part 15 and RSS-247 Issue 1.0 limits.

Page 24/40

8. BAND EDGE MEASUREMENT (15.247)

8.1. TEST CONDITIONS

Date of test:August 31st, 2015Test performed by:G.DeschampsAtmospheric pressure (hPa):992Relative humidity (%):32Ambient temperature (°C):23

8.2. LIMIT

RF antenna conducted test: § 11 (DTS Measurement Guidance)

Set RBW = 100 kHz, Video bandwidth (VBW) > RBW, scan up through 10th harmonic. All harmonics/spurs must be at least 20 dB down from the highest emission level within the authorized band as measured with a 100 kHz RBW. Note: If the device complies with the use of power option 2 the attenuation under this paragraph shall be 30 dB instead of 20 dB. *For -20dBc limit, lowest power output level is considered, worst case.*

Radiated emission test: § 12 (DTS Measurement Guidance)

Applies to harmonics/spurs that fall in the restricted bands listed in Section 15.205. The maximum permitted average field strength is listed in Section 15.209. For measurements above 1 GHz, set RBW = 1MHz, VBW = 10 Hz, Sweep: Auto. If the emission is pulsed, modify the unit for continuous operation; use the settings shown above, then correct the reading by subtracting the peak-average correction factor, derived from the appropriate duty cycle calculation. See results in Radiated emissions section before.

8.3. SETUP

The EUT is placed in an anechoic chamber; levels have been corrected to be in compliant with Peak Output Power measurement. The EUT is turn ON; the graphs of the restrict frequency band are recorded with a display line indicating the highest level and other the 20dB offset below to show compliance with 15.247 (d) and 15.205. The emissions in restricted bands are compared to 15.209 limits.

RBW: 100kHz

VBW: 300kHz

Page 25/40

8.4. TEST EQUIPMENT LIST

DESCRIPTION	MANUFACTURER	MODEL	N° LCIE	Cal_Date	Cal_Due
Attenuator 10dB	JFW	-	A7122166	10/14	10/15
Cable 2m	-	-	A5329703	11/14	11/15
Spectrum analyzer	ROHDE & SCHWARZ	FSV 30	A4060050	01/15	01/16
Thermo-hygrometer (C3)	OREGON	BAR206	B4204078	04/15	04/16
Thermo-hygrometer (PM2)	OREGON	BAR916HG-G	B4206011	04/14	04/15

8.5. DIVERGENCE, ADDITION OR SUPPRESSION ON THE TEST SPECIFICATION

 \square None \square Divergence:

8.6. TEST SEQUENCE AND RESULTS

Offset: Attenuator+cable 10.1dB

Worst case in Cmin and display line at -18.25dBm

TEST REPORT N°853835-R1-E

Page 26/40

Intervent 12.1 Box Offers 11.0 Box With 01 Made Handle State 100 Prime V W	Spectru	m										Spectrun	1)								
Bit Wer	Ref Lev Att	el 10.10	dBm 5 dB	Offset : SWT	l0.10 dB 👄 1 ms 👄	RBW 100 ki VBW 300 ki	Hz Hz Mode	Sweep				Ref Leve	10.10 dBm 15 dB	Offset 1 SWT	1 ms 👄	RBW 100 kH VBW 300 kH	iz Iz Mode	Sweep			
$ \begin{array}{ $	●1Pk View											• 1Pk View									
8 above 9 above							м	1[1]		1	-58.26 dBm 50.000 kHz						м	1[1]			59.41 dBm 150.0 kHz
	0 dBm								-	+		0 dBm									
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $																					
30 m 1.120 m	-10 dBm—	+										-10 dBm									
	20. d8m-	D1 -18	.250	dBm								20. dBm	D1 -18.250	dBm							
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	-20 UBIII-											-20 UBIII									
1 1	-30 dBm-											-30 dBm									
1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0																					
000 0000 0000 000 000 <td< td=""><td>-40 d8m</td><td><u> </u></td><td>~</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>-40 dBm</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></td<>	-40 d8m	<u> </u>	~									-40 dBm									
30 30 <td< td=""><td></td><td></td><td></td><td></td><td></td><td>m</td><td>ma</td><td></td><td></td><td></td><td></td><td></td><td>m was</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></td<>						m	ma						m was								
do an	-50 dBm—								mmm	un.		-50 dBm	- V ~	man a		0					
Mark	-60 dBm-									mule	mannen	1 -60-#8m		· www.	haven	Mynn	hu				
10 0 m 10 m	-00 0011											N			mber ~	· ·	"huro	howwer	Men mon	hornor	Janhand
a dam od am od am <td< td=""><td>-70 dBm—</td><td>_</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>-70 dBm</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></td<>	-70 dBm—	_										-70 dBm									
40 dm 00 dm <td< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></td<>																					
Bit of 9.0 bit Bit of 10.0 bits B	-80 dBm—	-							-			-80 dBm									
Start 2.0 BHz OT 15.0.0 MHz Stop 15.0.0 MH																					
Spectrum	Start 9.0	kHz			1	691	pts			Stop	150.0 kHz	Start 150.	0 kHz			691	pts			Stop	30.0 MHz
Spectrum Spectrum <th< th=""><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th>_</th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th></th<>													_								
Spectrum C Spectrum Spectrum <td>0</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>Ē</td> <td></td>	0										Ē										
Att Did be more than 10.0 m	Spectrur	n L	d D	041	0.10.40.0.1	DOM: 100 H	-					Spectrun		061		PRUL LOG IN	-				
9 Pk Vaw 9 Pk Vaw <td< td=""><td>er Leve</td><td>n 10.10 1</td><td>5 dB</td><td>SWT</td><td>9.7 ms 👄 '</td><td>VBW 300 kF</td><td>HZ HZ Mode</td><td>Sweep</td><td></td><td></td><td></td><td> Att </td><td>15 dB</td><td>SWT</td><td>12 ms 👄</td><td>VBW 300 ki</td><td>HZ HZ Mode</td><td>Sweep</td><td></td><td></td><td></td></td<>	er Leve	n 10.10 1	5 dB	SWT	9.7 ms 👄 '	VBW 300 kF	HZ HZ Mode	Sweep				 Att 	15 dB	SWT	12 ms 👄	VBW 300 ki	HZ HZ Mode	Sweep			
odds multi -3/2 dim 90 m <	⊖1Pk View											⊖1Pk View									
0 dBn							M	4[1]		-	57.21 dBm 37.53 MHz						м	4[1]		1.	67.39 dBm 00000 GHz
-10 dm	0 dBm						M	1[1]			53.91 dBm	0 dBm					M	1[1]			67.39 dBm
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	-10 dBm	-	-					r		1	91.10 MHz	-10 dBm								1.	00000 GHz
-30 dm	-20 dBm-	D1 -18.	250 d	dBm								-20 dBm-	D1 -18.250	dBm							
30 dBm																					
-10 dm - <td>-30 dBm</td> <td></td> <td>-30 dBm</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>	-30 dBm											-30 dBm									
3-0 dth - </td <td>-40 dBm</td> <td></td> <td>+</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>-40 dBm</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>	-40 dBm		+									-40 dBm									
-00 dBm	-50 dBm											-50 dBm									
-0.0 dBm -0.0 dBm <td< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>M4</td><td>60 ID</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></td<>											M4	60 ID									
70 dBm 0 <td>-60 dBm</td> <td>للم جانوبا</td> <td>.84.1</td> <td>and down</td> <td></td> <td>handreder</td> <td>water du .</td> <td>materia</td> <td>anniaman</td> <td>Mundrahuman</td> <td>Inter Touther</td> <td>-60 dBm</td> <td>يعاريبا وماد</td> <td>the barries</td> <td>يعميران ارزر</td> <td>and month was</td> <td>and obtain</td> <td> same anadoli</td> <td>mound</td> <td>an manual and</td> <td>Augenter March</td>	-60 dBm	للم جانوبا	.84.1	and down		handreder	water du .	materia	anniaman	Mundrahuman	Inter Touther	-60 dBm	يعاريبا وماد	the barries	يعميران ارزر	and month was	and obtain	same anadoli	mound	an manual and	Augenter March
Both Image: Start 30.0 MHz Image: Start 30.0 MHz Start 30.0 MHz Start 10.0 Hz Start	-70 dBm—	annua.	-	and one of the	1							-70 dBm	C.14-40-40-404	-Admittan (s. and	Andrew of the			30			
Start 30.0 MHz 691 pts 691 pts 691 pts 691 pts 691 pts 691 pts 800 pl.2 (2 pts) Warker Type Ref Trc X-value Function Function Result Mater Mil 1 901.1 MHz -53.91 dBm Function Result Mater Mater Mater Mater Mil 1 901.1 MHz -53.91 dBm Function Result Mater Mater Mater Mater Mater Start 30.0 MHz -67.39 dBm Function Result Function Result Function Result Mater Mater </td <td>-80 dBm-</td> <td></td> <td>-80 dBm</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>	-80 dBm-											-80 dBm									
Start 1.0 GHz G91 pts Stop 1.0 GHz Stort 1.0 GHz Stop 2.2 GHz Marker Marker Marker Marker Marker Type Ref Trc X-value Function Result Marker M1 1 01.0 GHz 55.0 1 dBm Marker Marker Marker M3 1 10.70 MHz -56.13 dBm Marker Marker Marker Marker Marker Spectrum With 1 10.0 GHz -67.39 dBm Marker																					
Marker Type Ref Tro X-value Y-value Function Result M1 1 91.1 MHz -53.76 dbm -53.76 dbm -67.39 dbm -67.39 dbm - M3 1 107.9 MHz -55.71 dbm -	Start 30.0	MHz				691	pts			Sto	p 1.0 GHz	Start 1.0 0	Hz			691	pts			Sto	p 2.2 GHz
Implified Production Function Function Function Function M1 1 10.049 10.044 10.044 10.044 10.044 M2 1 10.049 10.044 10.044 10.044 M3 1 10.75 Mt2 1 10.044 -67.39 M4 1 937.53 Mt2 -57.21 04m -67.39 Spectrum Implified Mt4 1 10.044 -67.39 Spectrum Implified 045 -67.39 04m 048m 01.048 WT 1.044 042 042 048m 10.048 SWT 1.044 042 042 048m 10.048 WT 048m -07.39 04m -10 d8m -01.128 -01.048 Ref Level 10.10 d8 RBW 100 kHz -01.048 -01.198 WT 1.1 ms VBW 300 kHz -01.997340 CHz -01.048 -01.192.50 d8m -01.192.50 d8m -01.192.50 d8m -01.192.50 d8m	Marker	af Tre		V-valuo	1	Y-valuo	Eune	tion	Eup	ction Recult		Marker	f	V-value		V-valuo	Eupo	tion	Eupr	tion Pecult	
M2 1 100.89 MHz -55.75 dBm M3 1 10.79 MHz -55.13 dBm M4 1 10.0 Hz -67.39 dBm M4 1 10.0 Hz -67.39 dBm M4 1 10.0 Hz -67.39 dBm Spectrum M2 1 1.0 GHz -67.39 dBm Spectrum M3 1 10.0 Hz -67.39 dBm Spectrum M3 1 10.0 Hz -67.39 dBm Att 15 dB SWT 1.1 ms VBW 300 kHz Mode Sweep 10 dBm 1 0 0 dBm 1 -30 dBm 10 dBm 01 -18.250 dBm 01 -18.250 dBm 01 -18.250 dBm 01 -18.250 dBm 30 dBm 30 dBm 30 dBm 30 dBm 30 dBm	M1	1		91.	1 MHz	-53.91 dB	m		T unit	ccion Result		M1	1	1	.0 GHz	-67.39 dB	m		- T unit	AIOII RESUL	
M3 1 10 bH2 -97.39 dBm Spectrum Image: Spectrum Image: Spectrum Image: Spectrum Ref Level 10.10 dBm Offset 10.10 dBm RBW 100 kHz Image: Spectrum 10 dBm 1 10 dBm Image: Spectrum Image: Spectrum 0 dBm 1 10 dBm 10 dBm Image: Spectrum Image: Spectrum 10 dBm 1.0 dBm 0 dBm Image: Spectrum Image: Spectrum 10 dBm 1.0 dBm 0 dBm Image: Spectrum Image: Spectrum 20 dBm 1.0 dBm 1.0 dBm Image: Spectrum Image: Spectrum 20 dBm 1.0 dBm 1.0 dBm Image: Spectrum Image: Spectrum 20 dBm 1.0 dBm 1.0 dBm 1.0 dBm Image: Spectrum 20 dBm 1.0 dBm 1.0 dBm 1.0 dBm Image: Spectrum 30 dBm 1.0 dBm 1.0 dBm 1.0 dBm Image: Spectrum	M2	1		100.8	9 MHz	-53.76 dB	m					M2	1	1	.0 GHz	-67.39 dB	m				
Spectrum Spectrum Ref Level 10.10 dbm Offset 10.10 db RBW 100 kHz Att 15 db SWT 1.9 ms VBW 300 kHz Att 15 db SWT 1.1 ms VBW 300 kHz Att 16 db SWT 1.1 ms VBW 300 kHz Att 16 db SWT 1.1 ms VBW 300 kHz 0 dbm 0 dbm 0 dbm 1.1 ms VBW 300 kHz -10 dbm 0 dbm 0 dbm -10 dbm -10 dbm -10 dbm -20 dbm 01 -18.250 dbm -10 dbm -10 dbm -10 dbm -10 dbm -30 dbm -30 dbm -30 dbm -30 dbm -30 dbm -30 dbm	M3 M4	1		937.5	9 MHZ 3 MHZ	-56.13 dBi -57.21 dBi	m m					M3 M4	1	1	0 GHz	-67.39 dB	m m				
Ref Level 10.10 dbm Offset 10.10 db RBW 100 kHz Ref Level 10.10 dbm Offset 10.10 db RBW 100 kHz Att 15 db SWT 1.9 ms VBW 300 kHz Mode Sweep Att 15 db SWT 1.1 ms VBW 300 kHz Mode Sweep Att 15 db SWT 1.1 ms VBW 300 kHz Mode Sweep Att 15 db SWT 1.1 ms VBW 300 kHz Mode Sweep Att 16 dbm 0 db	Spectrup										Ē	Spectru	2								
Att 15 dB SWT 1.9 ms VBW 300 kHz Mode Sweep 1Pk View Image: Supervision of the	Ref Leve	· L 10.10 d	Bm	Offset 10).10 dB 📻 R	BW 100 kH	2				(⊽)	Ref Leve	 1 10.10 dBn	n Offset	10.10 dB 👄	RBW 100 4	Hz				(∀)
91Pk View 61Pk View 30.400 dem 0 dem 10 dem 10 dem 10 dem 20 dem 11.8250 dem 10 dem	Att	15	dB	SWT	1.9 ms 🖷 V	'BW 300 kH	z Mode	Sweep				e Att	15 di	SWT	1.1 ms 👄	VBW 300	Hz Mode	Sweep			
0 dBm	1Pk View											⊖1Pk View									
0 dBm - 0 dBm																	Ň	11[1]		2.3	-39.40 dBm 997340 GHz
10 dBm 0 dBm 0 dBm 10 dBm	0 dBm		+									0 dBm		-	-	+		+	+	+	M
10 dBm 01 -18.250 dBm																					
20 dBm 01 -18.250 dBm 20 -30 dBm	-10 dBm		+									-10 dBm-								+	
-20 dBm	00 40	D1 -18.2	50 di	Bm								00 dber	D1 -18.250	I dBm							
-30 dBm	-20 u8M											-20 GBM									
	-30 dBm											-30 dBm					-			+-	m

40 dB

-50 dBm

-60 dBm-

-70 dBm

-80 dBm

Start 2.39 GHz

Stop 2.39 GHz

warman washer and warmer Mansall and all all

Δ

F1

Stop 2.402 GHz

m

691 pts

no

.A.

40 d

50 dB

60 di

-70 dBm

80 di

Start 2.2 GHz

Aurander

many

691 pts

TEST REPORT N°853835-R1-E

Page 27/40

8.7. CONCLUSION

Band Edge Measurement performed on the sample of the product **TS1E2**, SN: **6004**, in configuration and description presented in this test report, show levels below the FCC CFR 47 Part 15 and RSS-247 Issue 1.0 limits.

Page 28/40

9. OCCUPIED BANDWIDTH

9.1. TEST CONDITIONS

Date of test	:Augus
Test performed by	:G.Des
Atmospheric pressure (hPa)	:992
Relative humidity (%)	:32
Ambient temperature (°C)	:23

:August 31st, 2015 :G.Deschamps :992 :32

9.2. SETUP

☑ Conducted measurement:

The EUT is turned ON and connected to measurement instrument; the center frequency of the spectrum analyzer is set to the fundamental frequency. The captured power is measured and recorded; the measurement is repeated until all frequencies required were complete.

Offset: Attenuator+cable 10.1dB

□ Radiated measurement:

The EUT is turned ON and connected to measurement instrument; the center frequency of the spectrum analyzer is set to the fundamental frequency. The captured power is measured and recorded; the measurement is repeated until all frequencies required were complete.

Measurement Procedure:

- a) RBW shall be in the range of 1% to 5% of the anticipated occupied bandwidth
- b) Set the video bandwidth (VBW) \ge 3 x RBW
- c) SPAN = Capture all products of the modulation process
- d) Detector = Peak.
- e) Trace mode = max hold.
- f) Sweep = auto couple.
- g) Allow the trace to stabilize.
- h) OBW 99% function of spectrum analyzer used

Page 29/40

9.3. TEST EQUIPMENT LIST

DESCRIPTION	MANUFACTURER	MODEL	N° LCIE	Cal_Date	Cal_Due
Attenuator 10dB	JFW	-	A7122166	10/14	10/15
Cable 2m	-	-	A5329703	11/14	11/15
Spectrum analyzer	ROHDE & SCHWARZ	FSV 30	A4060050	01/15	01/16
Thermo-hygrometer (C3)	OREGON	BAR206	B4204078	04/15	04/16
Thermo-hygrometer (PM2)	OREGON	BAR916HG-G	B4206011	04/14	04/15

9.4. DIVERGENCE, ADDITION OR SUPPRESSION ON THE TEST SPECIFICATION

 \square None \square Divergence:

9.5. TEST SEQUENCE AND RESULTS

Channel	Channel Frequency (MHz)		99% (Occupied Bandwidth (MHz)	
Cmin	2402		1.070		
Cmid	2442			1.085	
Cmax	2480			1.085	
Spectrum Ref Level 10.00 dBm Offset 10.10 dB # Att 15 dB SWT 1 ms N		Spectrum Ref Level 10.00 Att 1	dBm Offset 10.10 dB - RBW 100 kB 5 dB SWT 1 ms - VBW 300 kB	Hz Hz Mode Sweep	
● 1AP View 0 dBm -10 dBm -20 dBm -20 dBm -30 dBm -40 dBm -40 dBm -70 dBm -70 dBm -80 dBm -80 dBm -80 dBm -80 dBm	M1 M1[1] 3. 2.40175 2.40175 1.070917 T T T T T T T T T T T T T			M1[1] -53.00 dBm 2.4370000 GHz 1.005303502 MHz 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	
	Spectrum	100 kuz]	
	Att 15 dB SWT 1 ms e VBV	/ 300 kHz Mode Sweep	· · · · · · · · · · · · · · · · · · ·	1	
	0 dBm	M1 M1[1] Occ Bw	3.40 dBm 2.4797400 GHz 1.085383502 MHz		
	-20 dBm				
	-40 dBm				
	-70 dBm				
	CF 2.48 GHz	691 pts	Span 10.0 MHz		

Page 30/40

10. ANNEX 1 (GRAPHS)

Frequency (MHz)	Mes.Peak (dBµV)	Mes.QPeak (dBµV)	LimQP (dBµV)	Mes.QPeak- LimQP (dB)	Mes.Avg (dBµV)	LimAvg (dBµV)	Mes.Avg- LimAvg (dB)
0.182	52.09	48.7	64.39	-15.7	27.43	54.39	-26.96
0.19	51.55	48.95	64.04	-15.09	31.5	54.04	-22.54

Page 31/40

Frequency	Mes.Peak	Mes.QPeak	LimQP	Mes.QPeak-	Mes.Avg	LimAvg	Mes.Avg-
(MHz)	(dBµV)	(dBµV)	(dBµV)	LimQP (dB)	(dBµV)	(dBµV)	LimAvg (dB)
0.186	49.82	47.1	64.21	-17.12	29.05	54.21	-25.16
0.19	49.53	46.78	64.04	-17.25	29.63	54.04	-24.41

Page 32/40

Frequency (MHz)	Peak (dBµV/m)	LimQP (dBµV/m)	Peak-LimQP (dB)	Polarization
194.016	34.86	43.5	-8.64	Horizontal (*)
258.48	41.98	46	-4.02	Horizontal (*)
323.48	42.5	46	-3.5	Horizontal (*)
388.36	42.77	46	-3.23	Horizontal (*)
517.68	38.03	46	-7.97	Horizontal (*)
53.562	35.83	40	-4.17	Vertical
194.203	32.61	43.5	-10.89	Vertical (*)
258.76	39.12	46	-6.88	Vertical (*)
322.8	38.91	46	-7.09	Vertical (*)
323.44	39.68	46	-6.32	Vertical (*)

Page 33/40

Frequency (MHz)	Peak (dBµV/m)	LimQP (dBµV/m)	Peak-LimQP (dB)	Polarization
194.152	34.3	43.5	-9.2	Horizontal (*)
258.28	44.31	46	-1.69	Horizontal (*)
323.28	45.28	46	-0.72	Horizontal (*)
388.16	43.95	46	-2.05	Horizontal (*)
517.84	37.9	46	-8.1	Horizontal (*)
56.231	30.47	40	-9.53	Vertical
194.118	31.18	43.5	-12.32	Vertical (*)
258.88	40.94	46	-5.06	Vertical (*)
323.28	39.77	46	-6.23	Vertical (*)
517.68	38.33	46	-7.67	Vertical (*)

Page 34/40

Frequency (MHz)	Peak (dBµV/m)	LimQP (dBµV/m)	Peak-LimQP (dB)	Polarization
194.152	34.88	43.5	-8.62	Horizontal (*)
258.96	39.6	46	-6.4	Horizontal (*)
323.64	44.14	46	-1.86	Horizontal (*)
388.6	44.44	46	-1.56	Horizontal (*)
517.24	37.89	46	-8.11	Horizontal (*)
194.101	33.07	43.5	-10.43	Vertical (*)
258.68	38.51	46	-7.49	Vertical (*)
323.48	40.33	46	-5.67	Vertical (*)
388.2	38.57	46	-7.43	Vertical (*)

Page 35/40

Frequency (MHz)	Peak (dBµV/m)	LimQP (dBµV/m)	Peak-LimQP (dB)	Polarization
194.067	30.68	43.5	-12.82	Horizontal (*)
259.04	37.34	46	-8.66	Horizontal (*)
323.72	41.96	46	-4.04	Horizontal (*)
194.05	31.5	43.5	-12	Vertical (*)
258.76	38.48	46	-7.52	Vertical (*)
323.48	41.33	46	-4.67	Vertical (*)
388.16	38.3	46	-7.7	Vertical (*)

Page 36/40

	RADIATED EMISSIONS									
Graph na	ame: Emr#	5	Test con	figuration:						
Limit:	FCC	CFR47 Part15C	/11.1/1							
Class:			(H+V) - U	15B >1GHZ -	- AXIS X Y					
		Frequency range: [1GHz - 2G	Hz]						
Antenna	polarization: Horiz	ontal & Vertical	RBW :	1MHz						
Azimuth	0° - 3	60°	VBW :	3MHz						
100 dBµV/m					FCC/FCC CFR47 Part15C - Classe: - Moyenne/3.0m/ FCC/FCC CFR47 Part15C - Classe: - GCréte/3.0m/ FCC/FCC CFR47 Part15C - Classe: - Créte/3.0m/ Mes.Peak (Horizontale) Mes.Peak (Verticale) Mes.Avg (Horizontale) Mes.Avg (Verticale)					
					Part15C - Class - Orêty Part15C - Class - Moyenny					
	toutent the transformation and the second	letter souther and and have been al	and the second state of the	MMU you hali who mante you have have have have have have have have	March					
0	9Hz	Fréquence	e (MHz)		2GHz					
		Spurious em	issions							

Frequency (MHz)	Peak (dBµV/m)	LimM (dBµV/m)	Peak-LimM (dB)	Polarization
1663.1	41.42	54	-12.58	Horizontal (*)
1665.6	44.04	54	-9.96	Vertical (*)

Page 37/40

	RADIATED	EMISSIONS			
Graph name:	Emr#6	Test con	figuration:		
Limit:	FCC CFR47 Part15C	(H±)/) - I		- Avie 7	
Class:		(11+0) - C			
Frequency range: [1GHz - 2GHz]					
Antenna polarization:	Horizontal & Vertical	RBW :	1MHz		
Azimuth:	0° - 360°	VBW :	3MHz		
100 dBµV/m				FCC/FCC CFR47 Part15C - Classe: - Moyenne/3.0m/ FCC/FCC CFR47 Part15C - Classe: - Qcréte/3.0m/ FCC/FCC CFR47 Part15C - Classe: - Créte/3.0m/ Mes.Peak (Horizontale) Mes.Peak (Verticale) Mes.Avg (Verticale) Mes.Avg (Verticale)	
				Part15C - Class - Crété	
Harriston and Marson M.	and the Mary Mary Sond and the second and the secon	Lass A. M. Martin Martin	hand the advertised of the second	Mart Martin Martin Martin Contract of the second decomentation	
0 - 1GHz		Fréquence (MHz)		2GHz	
	Spurious	s emissions			

Frequency (MHz)	Peak (dBµV/m)	LimM (dBµV/m)	Peak-LimM (dB)	Polarization
1663.7	43.23	54	-10.77	Horizontal (*)
1665	41.56	54	-12.44	Vertical (*)

Page 38/40

Graph name: Emr#7 Test configuration: Limit: FCC CFR47 Part15C (H+V) - BT >1GHz – Axis XY Class: rrequency range: [1GHz - 2GHz] Antenna polarization: Horizontal & Vertical RBW : 1MHz Azimuth: 0° - 360° VBW : 3MHz PCC/FCC CFR47 Part15C - Classe: - Order PCC/FCC CFR47 Part15C - Classe: - Order PCC/FCC CFR47 Part15C - Classe: - Order Mes Peak (Horizontal) Mes Peak (Horizontal) Mes Peak (Vertical) Mes Peak (Vertical) Mes Peak (Vertical) Mes Peak (Vertical) Mes Peak (Vertical) Mes Peak (Vertical)
Limit: FCC CFR47 Part15C Class: (H+V) - BT >1GHz - Axis XY Frequency range: [1GHz - 2GHz] Antenna polarization: Horizontal & Vertical RBW : 1MHz Azimuth: 0° - 360° VBW : 3MHz FCC/FCC CFR47 Part15C - Classe: - Order FCC/FCC CFR47 Part15C - Classe: - Order Mes Peak (Horizontale) Mes Peak (Horizontale) Mes Peak (Verticale) Mes Peak (Verticale) Mes Ag (Horizontale) Mes Ag (Horizontale)
(H+V) - BT > IGHZ - AXIS XY Frequency range: [1GHz - 2GHz] Antenna polarization: Horizontal & Vertical RBW : 1MHz Azimuth: 0° - 360° VBW : 3MHz FCO/FCC CFR47 Part15C - Classe: - Moyer FCO/FCC CFR47 Part15C - Classe: - Or/et Mes. Peak (Vertical) Mes. Peak (Verticale) Mes. Peak (Verticale) Mes. Peak (Verticale) Mes. Peak (Verticale) Mes. Peak (Verticale)
Frequency range: [1GHz - 2GHz] Antenna polarization: Horizontal & Vertical RBW : 1MHz Azimuth: 0° - 360° VBW : 3MHz FCC/FCC CFR47 Part15C - Classe: - More Octed for the set (Horizontale) Mes Peak (Horizontale) Mes Peak (Verticale) Mes Peak (Verticale) Mes Peak (Verticale)
Antenna polarization: Horizontal & Vertical RBW : 1MHz Azimuth: 0° - 360° VBW : 3MHz FCC/FCC CFR47 Part15C - Classe: - Advertical FCC/FCC CFR47 Part15C - Classe: - Advertical FCC/FCC CFR47 Part15C - Classe: - Order Mes. Peak (Horizontale) Mes. Peak (Verticale) Mes. Peak (Verticale) Mes. Ag (Verticale) Mes. Ag (Verticale)
Azimuth: 0° - 360° VBW : 3MHz
FCC/FCC CFR47 Part15C - Classe: - Moye FCC/FCC CFR47 Part15C - Classe: - Ocrè FCC/FCC CFR47 Part15C - Classe: - Crète Mes.Peak (Horizontale) Mes.Peak (Verticale) Mes.Ag (Horizontale)
100 dBµV/m
Part15C - Class
And the week of the second of
0 1GHz Fréquence (MHz)

Frequency (MHz)	Peak (dBµV/m)	LimM (dBµV/m)	Peak-LimM (dB)	Polarization
1662.6	41.01	54	-12.99	Horizontal (*)
1661.2	42.57	54	-11.43	Vertical (*)

Page 39/40

	RADIATED	EMISSIONS		
Graph name:	Emr#8	Test con	figuration	1:
Limit:	FCC CFR47 Part15C	(H+)/) - B	T \1CH7	Avic 7
Class:		(11+0) - L		
	Frequency rang	ge: [1GHz - 2G	Hz]	
Antenna polarization:	Horizontal & Vertical	RBW :	1MHz	
Azimuth:	0° - 360°	VBW :	3MHz	
100 dBµV/m				FCC/FCC CFR47 Part15C - Classe: - Moyenne/3.0m/ FCC/FCC CFR47 Part15C - Classe: - QCréte/3.0m/ FCC/FCC CFR47 Part15C - Classe: - Créte/3.0m/ Mes.Peak (Horizontale) Mes.Peak (Verticale) Mes.Peak (Verticale) Mes.Avg (Verticale) Mes.Avg (Verticale)
				Part 15C - Class - Créte
Hotel Marshel Marsheld	nd Ward William and the second of the second s	augustall books and a subsectively all	trill fall and here well	wheel the west when a some and a second
0 . 1GHz		Fréquence (MHz)		2GHz
	Spurious	emissions		

Frequency (MHz)	Peak (dBµV/m)	LimM (dBµV/m)	Peak-LimM (dB)	Polarization
1664.9	41.79	54	-12.21	Horizontal (*)
1662.3	48.8	54	-5.2	Vertical (*)

Page 40/40

11. UNCERTAINTIES CHART

Type de mesure / Kind of measurement	Incertitude élargie Iaboratoire / Wide uncertainty Iaboratory (k=2) ± x	Incertitude limite du CISPR / CISPR uncertainty limit ± y
Mesure des perturbations conduites en tension sur le réseau d'énergie Measurement of conducted disturbances in voltage on the power port	3.57 dB	3.6 dB
Mesure des perturbations conduites en tension sur le réseau de télécommunication Measurement of conducted disturbances in voltage on the telecommunication port.	3.28 dB	A l'étude / Under consid.
Mesure des perturbations discontinues conduites en tension Measurement of discontinuous conducted disturbances in voltage	3.47 dB	3.6 dB
Mesure des perturbations conduites en courant Measurement of conducted disturbances in current	2.90 dB	A l'étude / Under consid.
Mesure du champ électrique rayonné sur le site en espace libre de Moirans Measurement of radiated electric field on the Moirans open area test site	5.07 dB	5.2 dB

Les valeurs d'incertitudes calculées du laboratoire étant inférieures aux valeurs d'incertitudes limites établies par la norme, la conformité de l'échantillon est établie directement par les niveaux limites applicables. / The uncertainty values calculated by the laboratory are lower than limit uncertainty values defined by the standard. The conformity of the sample is directly established by the applicable limits values.