

FCC Part 1 Subpart I FCC Part 2 Subpart J INDUSTRY CANADA RSS 102 ISSUE 5

RF EXPOSURE REPORT

FOR

2.4 GHz MODULAR TRANSCEIVER

MODEL NUMBER: LEA02109X0001

FCC ID: 2ACQ6-LN4 IC: 11481A-LN4

REPORT NUMBER: R10529365-RF1

ISSUE DATE: 2015-06-11

Prepared for CREE INC.
4600 SILICON DR.
DURHAM, NC 27709 USA

Prepared by
UL LLC
12 LABORATORY DR.
RESEARCH TRIANGLE PARK, NC 27709 USA
TEL: (919) 549-1400

NVLAP Lab code: 200246-0

Revision History

Rev.	Issue Date	Revisions	Revised By
	2015-06-04	Initial Issue	Jeff Moser
1	2015-06-10	Revised report references on page 5.	Jeff Moser
2	2015-06-11	Revised report to 5 cm separation	Jeff Moser

TABLE OF CONTENTS

1.	AT.	TESTATION OF TEST RESULTS	4
2.	TE	ST METHODOLOGY	5
3.	RE	FERENCES	5
4.	FA	CILITIES AND ACCREDITATION	5
5.	MA	AXIMUM PERMISSIBLE RF EXPOSURE	ε
	5.1.	FCC RULES	<i>6</i>
	5.2.	IC RULES	7
		EQUATIONS	
	5.4.	LIMITS AND IC EXEMPTION	10
6.	RF	EXPOSURE RESULTS	11

DATE: 2015-06-11

REPORT NO: R10529365-RF1 FCC ID: 2ACQ6-LN4

1. ATTESTATION OF TEST RESULTS

COMPANY NAME: CREE INC.

4600 SILICON DR.

DURHAM, NC 27709 USA

EUT DESCRIPTION: 2.4 GHz Modular Transceiver

MODEL: LEA02109X0001

SERIAL NUMBER: Non-serialized

DATE TESTED: 2015-04-02 to 2015-05-20

APPLICABLE STANDARDS

STANDARD TEST RESULTS

FCC PART 1 SUBPART I & PART 2 SUBPART J PASS

INDUSTRY CANADA RSS 102 ISSUE 5 PASS

UL LLC tested the above equipment in accordance with the requirements set forth in the above standards. All indications of Pass/Fail in this report are opinions expressed by UL LLC based on interpretations and/or observations of test results. Measurement Uncertainties were not taken into account and are published for informational purposes only. The test results show that the equipment tested is capable of demonstrating compliance with the requirements as documented in this report.

Note: The results documented in this report apply only to the tested sample, under the conditions and modes of operation as described herein. This document may not be altered or revised in any way unless done so by UL LLC and all revisions are duly noted in the revisions section. Any alteration of this document not carried out by UL LLC will constitute fraud and shall nullify the document. This report must not be used by the client to claim product certification, approval, or endorsement by NVLAP, NIST, any agency of the Federal Government, or any agency of any government.

Approved & Released For

UL Verification Services Inc./UL LLC By:

Prepared By:

Mike Ferrer

EMC Program Manager

UL - Consumer Technology Division

Jeff Moser

EMC Program Manager

UL - Consumer Technology Division

FORM NO: 03-EM-F00858

DATE: 2015-06-11

REPORT NO: R10529365-RF1 FCC ID: 2ACQ6-LN4

2. TEST METHODOLOGY

All calculations were made in accordance with FCC Parts 2.1091, 2.1093 and KDB 447498 D01 v05r02 and IC Safety Code 6, RSS 102 Issue 5.

3. REFERENCES

All measurements were made as documented in test report UL LLC R10529365-E1A and R10529365-E1B for operation in the 2.4 GHz band.

Output power, Duty cycle and Antenna gain data is excerpted from the applicable test reports.

4. FACILITIES AND ACCREDITATION

The test sites and measurement facilities used to collect data are located at 12 Laboratory Dr., Research Triangle Park, NC 27709, USA.

12 Laboratory Dr., RTP, NC 27709

The onsite chambers (A & C) are covered under Industry Canada company address code 2180C with site numbers 2180C -1 through 2180C-2, respectively.

UL LLC (RTP) is accredited by NVLAP, Laboratory Code 200246-0. The full scope of accreditation can be viewed at http://ts.nist.gov/standards/scopes/2002460.htm.

FORM NO: 03-EM-F00858

DATE: 2015-06-11

5. MAXIMUM PERMISSIBLE RF EXPOSURE

5.1. **FCC RULES**

§1.1310 The criteria listed in Table 1 shall be used to evaluate the environmental impact of human exposure to radio-frequency (RF) radiation as specified in §1.1307(b), except in the case of portable devices which shall be evaluated according to the provisions of §2.1093 of this chapter.

TABLE 1-LIMITS FOR MAXIMUM PERMISSIBLE EXPOSURE (MPE)

Frequency range (MHz)	Electric field Magnetic field Power den strength (V/m) (A/m) (mW/cm²		Power density (mW/cm²)	Averaging time (minutes)					
(A) Lim	(A) Limits for Occupational/Controlled Exposures								
0.3–3.0 3.0–30 30–300 300–1500 1500–100,000	614 1842/f 61.4	1.63 4.89# 0.163	*(100) *(900/f²) 1.0 f/300 5	6 6 6 6					
(B) Limits	for General Populati	on/Uncontrolled Exp	oosure						
0.3–1.34	614 824/f	1.63 2.19/f	*(100) *(180/f²)	30 30					

TABLE 1—LIMITS FOR MAXIMUM PERMISSIBLE EXPOSURE (MPE)—Continued

Frequency range (MHz)	Electric field strength (V/m)	Magnetic field strength (A/m)	Power density (mW/cm²)	Averaging time (minutes)
30–300	27.5	0.073	0.2	30
300-1500			f/1500	30
1500–100,000			1.0	30

f = frequency in MHz

exposure or can not exercise control over their exposure.

^{* =} Plane-wave equivalent power density

NOTE 1 TO TABLE 1: Occupational/controlled limits apply in situations in which persons are exposed as a consequence of their
employment provided those persons are fully aware of the potential for exposure and can exercise control over their exposure.

Limits for occupational/controlled exposure also apply in situations when an individual is transient through a location where occupational/controlled limits apply provided he or she is made aware of the potential for exposure.

NOTE 2 TO TABLE 1: General population/uncontrolled exposures apply in situations in which the general public may be exposed, or in which persons that are exposed as a consequence of their employment may not be fully aware of the potential for
exposure or can not exercise control over their exposure.

5.2. IC RULES

IC Safety Code 6, Section 2.2.1 (a) A person other than an RF and microwave exposed worker shall not be exposed to electromagnetic radiation in a frequency band listed in Column 1 of the below table, if the field strength exceeds the value given in Column 2 or 3 of the below table, when averaged spatially and over time, or if the power density exceeds the value given in Column 4 of the below table, when averaged spatially and over time.

Table 4: RF Field Strength Limits for Devices Used by the General Public (Uncontrolled Environment)

Frequency Range (MHz)	Electric Field (V/m rms)	Magnetic Field (A/m rms)	Power Density (W/m²)	Reference Period (minutes)
$0.003 - 10^{21}$	83	90	-	Instantaneous*
0.1-10	-	0.73/ f	-	6**
1.1-10	87/ f ^{0.5}	-	-	6**
10-20	27.46	0.0728	2	6
20-48	58.07/ f ^{0.25}	$0.1540/f^{0.25}$	8.944/ f ^{0.5}	6
48-300	22.06	0.05852	1.291	6
300-6000	$3.142 f^{0.3417}$	$0.008335 f^{0.3417}$	$0.02619f^{0.6834}$	6
6000-15000	61.4	0.163	10	6
15000-150000	61.4	0.163	10	616000/ f ^{1.2}
150000-300000	$0.158 f^{0.5}$	$4.21 \times 10^{-4} f^{0.5}$	6.67 x 10 ⁻⁵ f	616000/ f ^{1.2}

Note: f is frequency in MHz.

DATE: 2015-06-11

^{*}Based on nerve stimulation (NS).

^{**} Based on specific absorption rate (SAR).

5.3. EQUATIONS

POWER DENSITY

Power density is given by:

 $S = EIRP / (4 * Pi * D^2)$

Where

S = Power density in mW/cm^2 EIRP = Equivalent Isotropic Radiated Power in mW D = Separation distance in cm

Power density in units of mW/cm^2 is converted to units of W/m^2 by multiplying by 10.

DISTANCE

Distance is given by:

D = SQRT (EIRP / (4 * Pi * S))

Where

D = Separation distance in cm EIRP = Equivalent Isotropic Radiated Power in mW S = Power density in mW/cm²

SOURCE-BASED DUTY CYCLE

Where applicable (for example, multi-slot cell phone applications) a duty cycle factor may be applied.

Source-based time-averaged EIRP = (DC / 100) * EIRP

Where

DC = Duty Cycle in %, as applicable EIRP = Equivalent Isotropic Radiated Power in W

FORM NO: 03-EM-F00858

DATE: 2015-06-11

MIMO AND COLOCATED TRANSMITTERS (IDENTICAL LIMIT FOR ALL TRANSMITTERS)

For multiple chain devices, and colocated transmitters operating simultaneously in frequency bands where the limit is identical, the total power density is calculated using the total EIRP obtained by summing the EIRP (in linear units) of each transmitter.

Total EIRP = (EIRP1) + (EIRP2) + ... + (EIRPn)

where

EIRPx = Source-based time-averaged EIRP of chain x or transmitter x

The total EIRP is then used to calculate the Power Density or the Distance as applicable.

MIMO AND COLOCATED TRANSMITTERS

For multiple colocated transmitters operating simultaneously in frequency bands where different limits apply:

The Power Density at the specified separation distance is calculated for each transmitter chain or transmitter.

The fraction of the exposure limit is calculated for each chain or transmitter as (Power Density of chain or transmitter) / (Limit applicable to that chain or transmitter).

The fractions are summed.

Compliance is established if the sum of the fractions is less than or equal to one.

FORM NO: 03-EM-F00858

5.4. LIMITS AND IC EXEMPTION

RF EXPOSURE LIMITS – GENERAL PUBLIC (UNCONTROLLED ENVIRONMENTS)

FCC:

For operation in the PCS band, the 2.4 GHz band and the 5 GHz bands:

From FCC §1.1310 Table 1 (B), the maximum value of S = 1.0 mW/cm^2

IC:

For operation in the 300-6000 MHz band:

Power Density = $0.02619f^{0.6834}W/m^2$

Power Density (2.4 GHz) = $0.02619(2400)^{0.6834}$ = 4.4 W/m^2 Note – Lowest frequency that would yield the lowest limit was used.

INDUSTRY CANADA EXEMPTION

RSS-102 Clause 2.5.1 RF exposure evaluation is required if the separation distance between the user and the device's radiating element is less than or equal to 20 cm, except when the device operates as follows:

Table 1: SAR evaluation - exemption limits for routine evaluation based on frequency and separation distance.

	Exemption Limits (mW)								
Frequency MHz	At separation distance of ≤5mm	At separation distance of 10mm	At separation distance of 15mm	At separation distance of 20mm	At separation distance of 25mm				
≤300	71 mW	101 mW	132 mW	162 mW	193 mW				
450	52 mW	70 mW	88 mW	106 mW	123 mW				
835	17 mW	30 mW	42 mW	55 mW	67 mW				
1900	7 mW	10 mW	18 mW	34 mW	60 mW				
2450	4 mW	7 mW	15 mW	30 mW	52 mW				
3500	2 mW	6 mW	16 mW	32 mW	55 mW				
5800	1 mW	6 mW	15 mW	27 mW	41 mW				

	Exemption Limits (mW)							
Frequency MHz	At separation distance of 30mm	At separation distance of 35mm	At separation distance of 40mm	At separation distance of 45mm	At separation distance of ≥50mm			
≤300	223 mW	254 mW	284 mW	315 mW	345 mW			
450	141 mW	159 mW	177 mW	195 mW	213 mW			
835	80 mW	92 mW	105 mW	117 mW	130 mW			
1900	99 mW	153 mW	225 mW	316 mW	431 mW			
2450	83 mW	123 mW	173 mW	235 mW	309 mW			
3500	86 mW	124 mW	170 mW	225 mW	290 mW			
5800	56 mW	71 mW	85 mW	97 mW	106 mW			

DATE: 2015-06-11

6. RF EXPOSURE RESULTS

In the table(s) below, Power and Gain are entered in units of dBm and dBi respectively and conversions to linear forms are used for the calculations.

(Single chain transmitters, no colocation, <20 cm MPE distance)

Antenna	Tx	Frequency	Avg Output power		Separation	Calculated
Antenna	1 X	(MHz)	dBm	mW	distances (mm)	Threshold
ZigBee	ZigBee	2480	6.00	4	50	0.1

		Frequency	Max Avg Output power		Antenna Gain	EIRP
Antenna	Tx	(MHz)	dBm	mW	(dBi)	(mW)
ZigBee	ZigBee	2480	6.00	4.00	1.7	5.9

Note - Power values are maximum rated per the chip levels listed in the operational description.

Notes:

- For MPE the new KDB 447498 requires the calculations to use the maximum rated power; that power should be declared by the manufacturer, and should not be lower than the measured power. If the power has a tolerance then we also need to check that the measured power is within the tolerance.
- 2) The manufacturer configures output power so that the maximum power, after accounting for manufacturing tolerances, will never exceed the maximum power level measured.
- 3) The output power in the tables above is the maximum power per chain among various channels and various modes within the specific band.
- 4) The antenna gain in the tables above is the maximum antenna gain among various channels within the specified band.

END OF REPORT

FORM NO: 03-EM-F00858