

FCC 47 CFR PART 15 SUBPART C INDUSTRY CANADA RSS-210 ISSUE 8

CERTIFICATION TEST REPORT

FOR

LIGHT BULB WITH 2.4 GHz TRANSCEIVER

MODEL NUMBER: BA19-08027OMF-12CE26-1U100 (US) BA19-08027OMF-12CE26-1U200 (CANADA)

> FCC ID: 2ACQ6-A19 IC: 11481A-A19

REPORT NUMBER: R10455472-RF

ISSUE DATE: 2014-10-06

Prepared for CREE INC. 4600 SILICON DR. DURHAM, NC 27709 USA

Prepared by UL LLC 12 LABORATORY DR. RESEARCH TRIANGLE PARK, NC 27709 USA TEL: (919) 549-1400

Revision History

Rev.	Issue Date	Revisions	Revised By
	2014-10-06	Initial Issue	Jeff Moser

Page 2 of 54

TABLE OF CONTENTS

1.	AT	TESTATION OF TEST RESULTS	4
2.	TE	ST METHODOLOGY	5
3.	FA	CILITIES AND ACCREDITATION	5
4.	СА	LIBRATION AND UNCERTAINTY	5
4	.1.	MEASURING INSTRUMENT CALIBRATION	5
4	.2.	SAMPLE CALCULATION	5
4	.3.	MEASUREMENT UNCERTAINTY	5
5.	EQ	UIPMENT UNDER TEST	6
5	.1.	DESCRIPTION OF EUT	6
5	.2.	MAXIMUM OUTPUT POWER	6
5	.3.	DESCRIPTION OF AVAILABLE ANTENNAS	7
5	.4.	SOFTWARE AND FIRMWARE	7
5	.5.	WORST-CASE CONFIGURATION AND MODE	8
5	.6.	DESCRIPTION OF TEST SETUP	9
6.	TES	ST AND MEASUREMENT EQUIPMENT	.11
0.	• •		
о. 7.		TIME, DUTY CYCLE AND MEASUREMENT METHODS	
7.			.13
7 . 7	ON	TIME, DUTY CYCLE AND MEASUREMENT METHODS	13 <i>13</i>
7 . 7 7	ON . 1.	TIME, DUTY CYCLE AND MEASUREMENT METHODS ON TIME AND DUTY CYCLE RESULTS	13 13 14
7 . 7 7 7	ON .1. .1. .2.	TIME, DUTY CYCLE AND MEASUREMENT METHODS ON TIME AND DUTY CYCLE RESULTS DUTY CYCLE PLOTS	13 13 14 15
7. 7 7 7 8.	ON .1. .1. .2.	TIME, DUTY CYCLE AND MEASUREMENT METHODS ON TIME AND DUTY CYCLE RESULTS DUTY CYCLE PLOTS MEASUREMENT METHODS TENNA PORT TEST RESULTS	13 13 14 15 16
7. 7 7 7 8.	ON . 1. . 1. . 2. AN . 1. . 8. 1.	TIME, DUTY CYCLE AND MEASUREMENT METHODS ON TIME AND DUTY CYCLE RESULTS DUTY CYCLE PLOTS MEASUREMENT METHODS TENNA PORT TEST RESULTS O-QPSK (DSSS) MODE IN THE 2.4 GHz BAND 1. 6 dB BANDWIDTH	13 <i>14</i> <i>15</i> <i>16</i> <i>16</i> <i>16</i>
7. 7 7 7 8.	ON . 1. . 1. . 2. AN . 1. . 8. 1.	TIME, DUTY CYCLE AND MEASUREMENT METHODS ON TIME AND DUTY CYCLE RESULTS DUTY CYCLE PLOTS MEASUREMENT METHODS TENNA PORT TEST RESULTS O-QPSK (DSSS) MODE IN THE 2.4 GHz BAND 1. 6 dB BANDWIDTH .3. AVERAGE POWER	13 13 14 15 16 16 23
7. 7 7 7 8.	ON .1. .1. .2. AN .1. .8.1. .8.1.	TIME, DUTY CYCLE AND MEASUREMENT METHODS ON TIME AND DUTY CYCLE RESULTS DUTY CYCLE PLOTS MEASUREMENT METHODS TENNA PORT TEST RESULTS O-QPSK (DSSS) MODE IN THE 2.4 GHz BAND 1. 6 dB BANDWIDTH .3. AVERAGE POWER .4. OUTPUT POWER .5. POWER SPECTRAL DENSITY	13 14 15 16 16 23 24 26
7. 7 7 7 8.	ON . 1. . 1. . 2. AN . 1. 8.1 8.1 8.1	TIME, DUTY CYCLE AND MEASUREMENT METHODS ON TIME AND DUTY CYCLE RESULTS DUTY CYCLE PLOTS MEASUREMENT METHODS TENNA PORT TEST RESULTS O-QPSK (DSSS) MODE IN THE 2.4 GHz BAND 1. 6 dB BANDWIDTH .3. AVERAGE POWER .4. OUTPUT POWER .5. POWER SPECTRAL DENSITY	13 14 15 16 16 23 24 26
7. 7 7 7 8.	ON .1. .1. .2. AN .1. 8.1 8.1 8.1 8.1 8.1	TIME, DUTY CYCLE AND MEASUREMENT METHODS ON TIME AND DUTY CYCLE RESULTS DUTY CYCLE PLOTS MEASUREMENT METHODS TENNA PORT TEST RESULTS O-QPSK (DSSS) MODE IN THE 2.4 GHz BAND 1. 6 dB BANDWIDTH .3. AVERAGE POWER .4. OUTPUT POWER .5. POWER SPECTRAL DENSITY	13 14 15 16 16 23 24 29
7. 7 7 8. 8	ON .1. .1. .2. AN .1. 8.1 8.1 8.1 8.1 8.1	TIME, DUTY CYCLE AND MEASUREMENT METHODS ON TIME AND DUTY CYCLE RESULTS DUTY CYCLE PLOTS MEASUREMENT METHODS TENNA PORT TEST RESULTS O-QPSK (DSSS) MODE IN THE 2.4 GHz BAND 1 6 dB BANDWIDTH .3 AVERAGE POWER .4 OUTPUT POWER .5 POWER SPECTRAL DENSITY .6 OUT-OF-BAND EMISSIONS	13 13 14 15 16 23 24 24 26 29 34
7. 7 7 8. 8 9.	ON .1. .2. AN .1. 8.1 8.1 8.1 8.1 8.1 8.1 8.1 8.1	TIME, DUTY CYCLE AND MEASUREMENT METHODS ON TIME AND DUTY CYCLE RESULTS DUTY CYCLE PLOTS MEASUREMENT METHODS TENNA PORT TEST RESULTS O-QPSK (DSSS) MODE IN THE 2.4 GHz BAND 1. 6 dB BANDWIDTH .3. AVERAGE POWER .4. OUTPUT POWER .5. POWER SPECTRAL DENSITY .6. OUT-OF-BAND EMISSIONS	13 13 14 15 16 16 23 24 29 29 34
7. 7 7 8. 8 9. 9	ON .1. .2. AN .1. 8.1. 8.1. 8.1. 8.1. 8.1. 8.1. 8.1.	TIME, DUTY CYCLE AND MEASUREMENT METHODS ON TIME AND DUTY CYCLE RESULTS. DUTY CYCLE PLOTS MEASUREMENT METHODS TENNA PORT TEST RESULTS O-QPSK (DSSS) MODE IN THE 2.4 GHz BAND. 1. 6 dB BANDWIDTH. 3. AVERAGE POWER 4. OUTPUT POWER 5. POWER SPECTRAL DENSITY. 6. OUT-OF-BAND EMISSIONS DIATED TEST RESULTS LIMITS AND PROCEDURE.	13 14 15 16 16 23 24 29 34 35
7. 7 7 8. 8 9. 9 9	ON .1. .1. .2. AN 8.1. 8.1. 8.1. 8.1. 8.1. 8.1. .1. .2.	TIME, DUTY CYCLE AND MEASUREMENT METHODS ON TIME AND DUTY CYCLE RESULTS DUTY CYCLE PLOTS MEASUREMENT METHODS TENNA PORT TEST RESULTS O-QPSK (DSSS) MODE IN THE 2.4 GHz BAND 1. 6 dB BANDWIDTH 3. AVERAGE POWER 4. OUTPUT POWER 5. POWER SPECTRAL DENSITY 6. OUT-OF-BAND EMISSIONS DIATED TEST RESULTS LIMITS AND PROCEDURE TRANSMITTER ABOVE 1 GHz	13 14 15 16 16 23 24 26 29 34 35 35

Page 3 of 54

Pass

1. ATTESTATION OF TEST RESULTS

INDUSTRY CANADA RSS-GEN Issue 3

COMPANY NAME:	CREE INC. 4600 SILICON DR. DURHAM, NC 27709 USA			
EUT DESCRIPTION:	T DESCRIPTION: Lightbulb with 2.4 GHz Transceiver			
MODEL: BA19-08027OMF-12CE26-1U100 (US) BA19-08027OMF-12CE26-1U200 (CANADA)				
SERIAL NUMBER: Non-serialized units				
DATE TESTED:	2014-09-14 through 2014-09-16; 201	4-09-24; 2014-09-29		
	APPLICABLE STANDARDS			
ST	ANDARD	TEST RESULTS		
CFR 47 P	art 15 Subpart C	Pass		
INDUSTRY CANADA	A RSS-210 Issue 8 Annex 8	Pass		

UL LLC tested the above equipment in accordance with the requirements set forth in the above standards. All indications of Pass/Fail in this report are opinions expressed by UL LLC based on interpretations and/or observations of test results. Measurement Uncertainties were not taken into account and are published for informational purposes only. The test results show that the equipment tested is capable of demonstrating compliance with the requirements as documented in this report.

Note: The results documented in this report apply only to the tested sample, under the conditions and modes of operation as described herein. This document may not be altered or revised in any way unless done so by UL LLC and all revisions are duly noted in the revisions section. Any alteration of this document not carried out by UL LLC will constitute fraud and shall nullify the document. This report must not be used by the client to claim product certification, approval, or endorsement by NVLAP, NIST, any agency of the Federal Government, or any agency of any government.

Approved & Released For UL LLC By:

Mirtella

Mike Antola EMC Project Lead UL – Consumer Technology Division

Prepared By:

Jeff Moser EMC Program Manager UL – Consumer Technology Division

Page 4 of 54

2. TEST METHODOLOGY

The tests documented in this report were performed in accordance with FCC CFR 47 Part 2, FCC CFR 47 Part 15, ANSI C63.4-2003, RSS-GEN Issue 3, and RSS-210 Issue 8.

3. FACILITIES AND ACCREDITATION

The test sites and measurement facilities used to collect data are located at 12 Laboratory Dr., Research Triangle Park, NC 27709, USA.

UL LLC (RTP) is accredited by NVLAP, Laboratory Code 200246-0. The full scope of accreditation can be viewed at <u>http://ts.nist.gov/standards/scopes/2002460.htm</u>.

4. CALIBRATION AND UNCERTAINTY

4.1. MEASURING INSTRUMENT CALIBRATION

The measuring equipment utilized to perform the tests documented in this report has been calibrated in accordance with the manufacturer's recommendations, and is traceable to recognized national standards.

4.2. SAMPLE CALCULATION

Where relevant, the following sample calculation is provided:

Field Strength (dBuV/m) = Measured Voltage (dBuV) + Antenna Factor (dB/m) + Cable Loss (dB) – Preamp Gain (dB) 36.5 dBuV + 18.7 dB/m + 0.6 dB – 26.9 dB = 28.9 dBuV/m

4.3. MEASUREMENT UNCERTAINTY

Where relevant, the following measurement uncertainty levels have been estimated for tests performed on the apparatus:

Test	Uncertainty
Conducted Emissions (0.150-30MHz)	+/- 2.37 dB
Radiated Emissions (30-1000 MHz)	+/- 6.04 dB (3m)

Page 5 of 54

Uncertainty figures are valid to a confidence level of 95%.

5. EQUIPMENT UNDER TEST

5.1. DESCRIPTION OF EUT

Part Number BA19-08027OMF-12CE26 is a Light Bulb that contains a 2.4 GHz DSSS transceiver used with light fixtures. The BA19-08027OMF-12CE26 utilizes an O-QPSK modulation and a 250 kbps data rate. The Light Bulb receives signals from other devices to control the fixture.

The radio module is manufactured by Cree Inc.

Nomenclature explanation:

BA19-08027OMF-12CE26 "B" indicates "Bulb" "A19" indicates "Bulb shape" "080" indicates "800" Lumens "27" indicates the CCT (2700K color temperature) "OM" indicates "Omni directional" (beam angle) "F" indicates "Frosted"

The remaining characters are: 12CE26-1U100 12CE26-1U200

"12" indicates 120V
"C" indicates controls, i.e. Zigbee etc....
"E26" indicates the Edison base
"1" indicates the version
"U" indicates U.S. manufactured
The last 3 characters have to do with packaging and marketing (Country specific for US and Canada)

5.2. MAXIMUM OUTPUT POWER

The transmitter has a maximum conducted output power as follows:

Frequency Range	Mode	Output Power	Output Power
(MHz)		(dBm)	(mW)
2405-2480	O-QPSK	5.11	3.24

Page 6 of 54

5.3. DESCRIPTION OF AVAILABLE ANTENNAS

The radio utilizes a Monopole, chip antenna, with a maximum gain of -2.2 dBi.

5.4. SOFTWARE AND FIRMWARE

The firmware for the bulb was "fcc_test_dut_v133.elf".

There was no driver firmware.

Lastly, there was no software on laptop and was just used as a terminal window to communicate.

Page 7 of 54

5.5. WORST-CASE CONFIGURATION AND MODE

Radiated emission and power line conducted emission were performed with the EUT set to transmit at the channel with highest output power as worst-case scenario.

The fundamental of the EUT was investigated in three orthogonal orientations X,Y,Z. It was determined that the X orientation ((Bulb upright.) was found to be the worst-case orientation; therefore, all final radiated testing was performed with the EUT in X orientation. (Bulb upright.)

Page 8 of 54

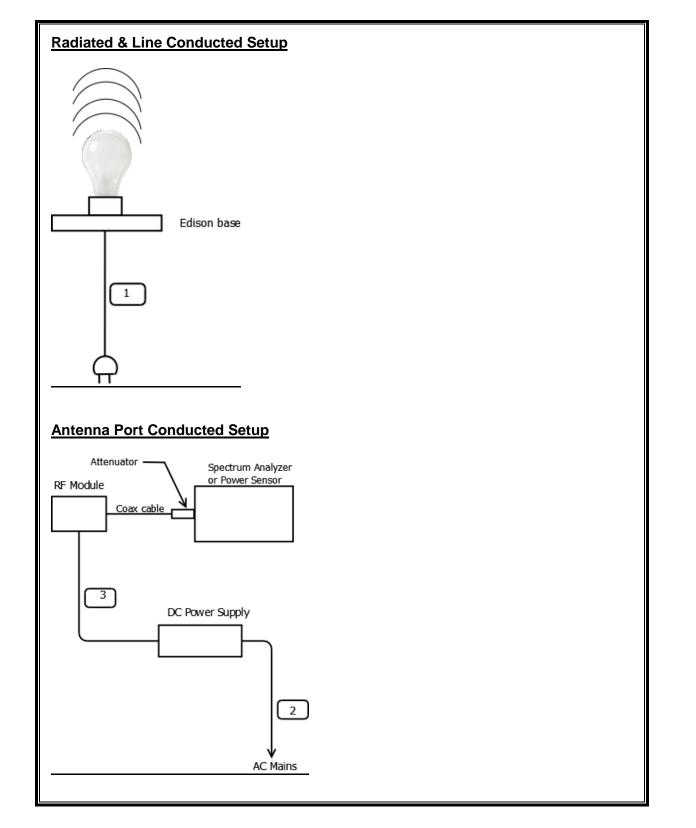
5.6. DESCRIPTION OF TEST SETUP

SUPPORT EQUIPMENT

Support Equipment List							
Description	Manufacturer	Model	Serial Number	FCC ID			
Laptop PC with USB Atmel	Dell	E6400	399P5M1	NA			
SAMR21 wireless board used to							
configure the radio module.							

I/O CABLES

	I/O Cable List								
Cable	Port	# of identical	Connector	Cable Type	Cable	Remarks			
No		ports	Туре		Length (m)				
	The follow	ving was used o	during radiate	d and line-co	onducted em	issions testing.			
1	AC	1	AC inlet	Unshielded	1	2C/18AWG line cord.			
	The follow	ving was used o	during antenn	a-port measu	urements.				
2	AC	1	AC inlet	Unshielded	1.8	AC input to DC power supply. 3C/18AWG power cord.			
3	DC	1	DC	Unshielded	NA	2-wire connection from DC power supply.			


TEST SETUP

Different BA19 Light Bulbs were provided. 1 unit was provided for Radiated Emissions testing (an external control board allowed for channel adjustment) and 1 unit was provided for Conducted Port tests.

Note, the Low and Mid Channel's output power was set for 4.0 dBm (0x00) during testing. The High Channel output power was set for -6.0 dBm (0x0C) during testing.

Page 9 of 54

SETUP DIAGRAM FOR TESTS

6. TEST AND MEASUREMENT EQUIPMENT

The following test and measurement equipment was utilized for the tests documented in this report:

Equipment ID	Description	Manufacturer	Model Number	Last Cal.	Next Cal.
SA0016	Spectrum Analyzer	Agilent Technologies	N9030A	2014-09-03	2015-09-30
PSENSOR001	Wideband Power Sensor (30MHz video bandwidth)	Rohde & Schwartz	NRP-Z81 (w/ NRP- Z3 USB adapter)	2014-09-03	2015-09-30
MM0145	Digital Multimeter	Fluke	177	2014-09-04	2016-09-30
HI0041	Temp/Humid/Pressure Meter	Cole-Parmer	99760-00	2014-02-19	2015-02-28

Wireless Conducted Measurement Equipment

Radiated Disturbance Emissions (E-field)

Equip.		,			Nevt Cel
ID	Description	Manufacturer	Model Number	Last Cal.	Next Cal.
AT0022	Log-periodic Antenna, 200 MHz to 1000 MHz	Chase	UPA6109	2014-02-18	2015-02-28
AT0025	Biconical Antenna, 30 to 300 MHz	Schaffner- Chase EMC Ltd.	VBA6106A	2014-07-01	2015-07-31
AT0062	Double-Ridged Waveguide Horn Antenna, 1 to 18 GHz	ETS Lindgren	3117	2014-07-22	2015-07-31
AT0063	Horn Antenna, 18- 26.5GHz	ARA	MWH-1826/B	2014-07-23	2015-07-31
SAC_C (Biconical 3m location)	Gain-Loss string for biconical antenna at 3m	Various	Various	2014-09-15	2015-09-30
SAC_D (Log-Periodic 3m location)	Gain-Loss string for log-periodic antenna at 3m	Various	Various	2014-07-15	2015-07-31
SAR003	Spectrum Analyzer / Receiver	Rohde & Schwarz	ESIB40 (1088.7490.40)	2014-07-14	2015-07-31
SA0015	Spectrum Analyzer / Receiver	Rohde & Schwarz	ESCI7	2014-09-03	2015-09-30
SA0016	Spectrum Analyzer	Agilent	N9030A	2014-09-03	2015-09-30
SOFTEMI	EMI Software	UL	Version 9.5	NA	NA
AMP011	RF Amp, 1-20GHz	Miteq	AMF-6D- 01002000-22-10P	2014-07-18	2015-07-31
AMP013	RF Amp, 18-40GHz	Miteq	JS44-18004000- 33-8P	2014-07-18	2015-07-31

Equip. ID	Description	Manufacturer	Model Number	Last Cal.	Next Cal.
BRF003	2.4GHz Band-reject Fileter	Microtronics	BRM50702	2014-09-03	2015-09-30
HI0034	Temp/Humid/Pressure Meter	Cole-Parmer	99760-00	2014-02-19	2015-02-28

Line Conducted Measurement Equipment

Equipment ID	Description	Manufacturer	Model Number	Last Cal.	Next Cal.
SA0015	EMI Test Receiver 9kHz-7GHz	Rohde & Schwarz	ESCI 7	2014-09-03	2015-09-30
ATA509	Coaxial cable, 20 ft., BNC -male to BNC-male	UL	RG-223	2014-07-15	2015-07-31
HI0069	Temp/Humid/Pressure Meter	Cole-Parmer	99760-00	2014-06-27	2015-06-30
SOFTEMI	EMI Software	UL	Version 9.5	NA	NA
ATA508	Transient Limiter, 0.009 to 100 MHz	Electro-Metrics	EM 7600	2014-09-03	2015-09-30
LISN003	LISN, 50-ohm/50-uH, 2- conductor, 25A	Fischer Custom Com.	FCC-LISN-50-25-2- 01-550V	2014-09-04	2015-09-30

Page 12 of 54

7. ON TIME, DUTY CYCLE AND MEASUREMENT METHODS

LIMITS

None; for reporting purposes only.

PROCEDURE

KDB 558074 Zero-Span Spectrum Analyzer Method.

7.1. ON TIME AND DUTY CYCLE RESULTS

Mode	ON Time	Period	Duty Cycle	Duty	Duty Cycle	1/B
	В		x	Cycle	Correction Factor	Minimum VBW
	(msec)	(msec)	(linear)	(%)	(dB)	(kHz)
2.4GHz Band						
O-QPSK Mode	100.000	100.000	1.000	100.00%	0.00	0.010

7.1. DUTY CYCLE PLOTS

2.4 GHz BAND

Agilent Spectrum Analyzer - Swept SA X R RF SO Q DC		SENSE:INT	ALIGNAUTO	08:44:16 PM Sep 29, 2014
	PNO: Fast IFGain:Low	→→ Trig: Free Run #Atten: 22 dB	#Avg Type: RMS	TRACE 123456 TYPE WWWWWWW DET P P NNN Mkr1 50.00 ms
10 dB/div Ref 0.00 dBm				-5.09 dBm
Log		1		
-10.0				
-20.0				
-30.0				
40.0				
-50.0				
60.0				
70.0				
-00.0				
90.0				
Center 2.440000000 GHz				Span 0 Hz ep 100.0 ms (2001 pts)

7.2. MEASUREMENT METHODS

<u>6 dB BW</u>: KDB 558074 D01 v03r02, Section 8.1.

Output Power: KDB 558074 D01 v03r02, Section 9.1.2.

Power Spectral Density: KDB 558074 D01 v03r02, Section 10.2.

Out-of-band emissions in non-restricted bands: KDB 558074 D01 v03r02, Section 11.0.

Out-of-band emissions in restricted bands: KDB 558074 D01 v03r02, Section 12.1.

Page 15 of 54

8. ANTENNA PORT TEST RESULTS

8.1. O-QPSK (DSSS) MODE IN THE 2.4 GHz BAND

8.1.1.6 dB BANDWIDTH

LIMITS

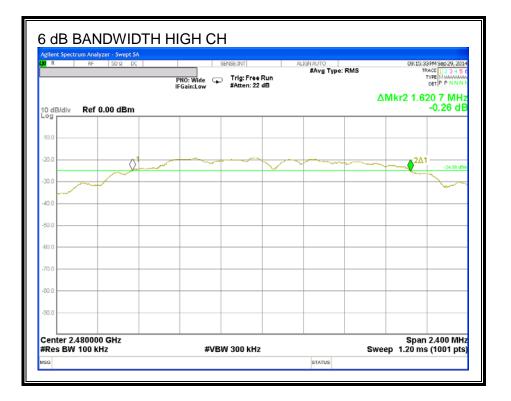
FCC §15.247 (a) (2)

IC RSS-210 A8.2 (a)

The minimum 6 dB bandwidth shall be at least 500 kHz.

RESULTS

Channel	Frequency	6 dB Bandwidth	Minimum Limit
	(MHz)	(MHz)	(MHz)
Low	2405	1.54	0.5
Mid	2440	1.53	0.5
High	2480	1.62	0.5


6 dB BANDWIDTH

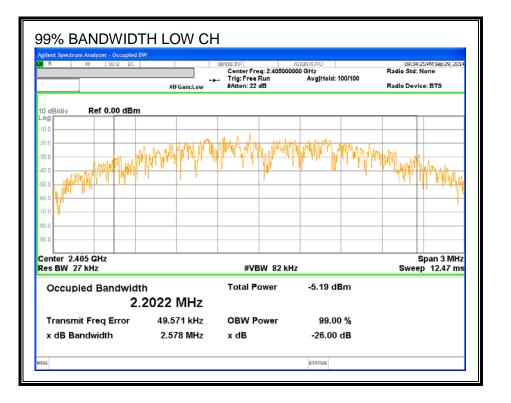
Page 17 of 54

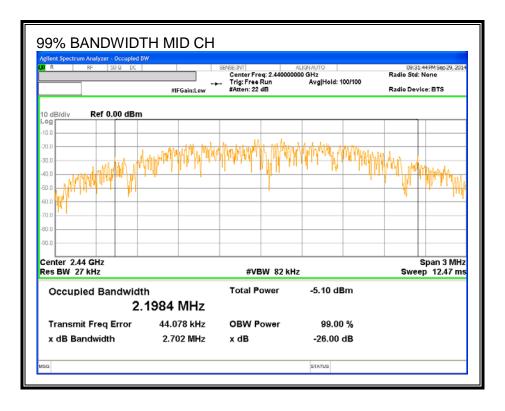
UL LLC 12 LABORATORY DR., RESEARCH TRIANGLE PARK, NC 27709 This report shall not be reproduced except in full, without the written approval of UL LLC

8.1.2. 99% BANDWIDTH

LIMITS

None; for reporting purposes only.


TEST PROCEDURE


The transmitter output is connected to the spectrum analyzer. The RBW is set to 1% to 3% of the 99 % bandwidth. The VBW is set to 3 times the RBW. The sweep time is coupled. The spectrum analyzer internal 99% bandwidth function is utilized.


RESULTS

Channel	Frequency	99% Bandwidth
	(MHz)	(MHz)
Low	2405	2.20
Middle	2440	2.20
High	2480	2.24

99% BANDWIDTH

8.1.3. AVERAGE POWER

LIMITS

None; for reporting purposes only.

TEST PROCEDURE

The transmitter output is connected to a power meter with average-power measurement capability.

The cable assembly insertion loss of 10.15 dB (including 10 dB pad and 0.15 dB cable) was entered as an offset in the power meter to allow for direct reading of power.

RESULTS

Channel	Frequency	Power
	(MHz)	(dBm)
Low	2405	4.99
Mid	2440	4.99
High	2480	-4.81

Page 23 of 54

8.1.4. OUTPUT POWER

LIMITS

FCC §15.247

IC RSS-210 A8.4

For systems using digital modulation in the 902–928 MHz, 2400–2483.5 MHz, and 5725–5850 MHz bands: 1 Watt, based on the use of antennas with directional gains that do not exceed 6 dBi. If transmitting antennas of directional gain greater than 6 dBi are used, the conducted output power from the intentional radiator shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

DIRECTIONAL ANTENNA GAIN

There is only one transmitter output therefore the directional gain is equal to the antenna gain.

TEST PROCEDURE

The transmitter output is connected to a power meter with peak-power measurement capability.

The cable assembly insertion loss of 10.15 dB (including 10 dB pad and 0.15 dB cable) was entered as an offset in the power meter to allow for direct reading of power.

Page 24 of 54

<u>RESULTS</u>

Limits

Channel	Frequency	Directional	FCC	IC	IC	Max
		Gain	Power	Power	EIRP	Power
			Limit	Limit	Limit	
	(MHz)	(dBi)	(dBm)	(dBm)	(dBm)	(dBm)
Low	2405	-2.20	30.00	30	36	30.00
Mid	2440	-2.20	30.00	30	36	30.00
High	2480	-2.20	30.00	30	36	30.00

	Duty	/ Cycle	CF (dB)	0.00
--	------	---------	---------	------

Included in Calculations of Corr'd Power

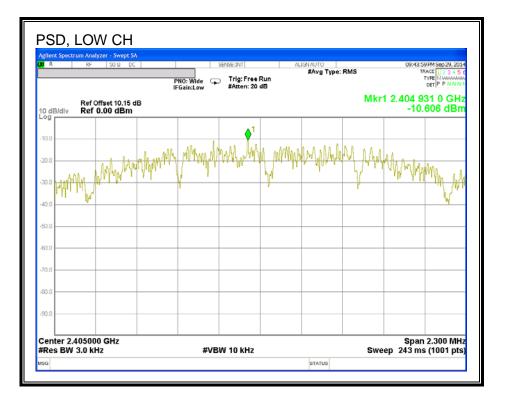
Results

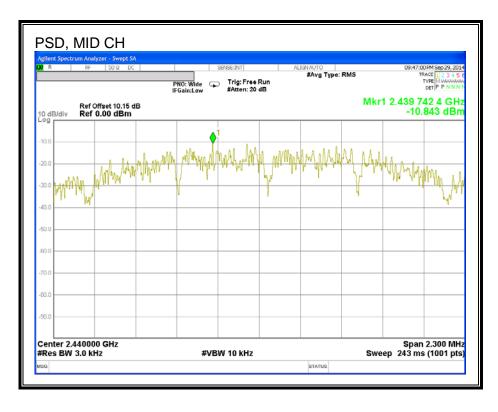
Channel	Frequency		Total	Power	Margin
		Meas	Corr'd	Limit	
		Power	Power		
	(MHz)	(dBm)	(dBm)	(dBm)	(dB)
Low	2405	5.11	5.11	30.00	-24.89
Mid	2440	5.11	5.11	30.00	-24.89
High	2480	-4.14	-4.14	30.00	-34.14

8.1.5. POWER SPECTRAL DENSITY

LIMITS

FCC §15.247


IC RSS-210 A8.2


RESULTS

Duty C	ycle CF (dB)	0.00	Included in Calculations of Corr'd PS			of Corr'd PSD
PSD Results						
Channel	Frequency	Chain 0	Total	Limit	Margin	
		Meas	Corr'd			
	(MHz)	(dBm)	PSD			
			(dBm)	(dBm)	(dB)	
Low	2405	-10.61	-10.61	8.0	-18.6	
Mid	2440	-10.84	-10.84	8.0	-18.8	
High	2480	-21.38	-21.38	8.0	-29.4	


Page 26 of 54

POWER SPECTRAL DENSITY

Page 27 of 54

8.1.6. OUT-OF-BAND EMISSIONS

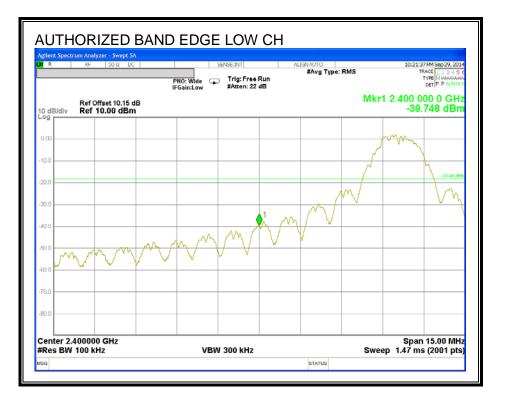
LIMITS

FCC §15.247 (d)

IC RSS-210 A8.5

In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph (b)(3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20 dB. Attenuation below the general limits specified in §15.209(a) is not required.

Page 29 of 54

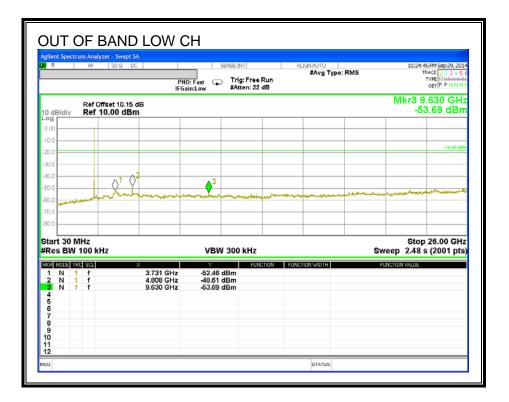

RESULTS

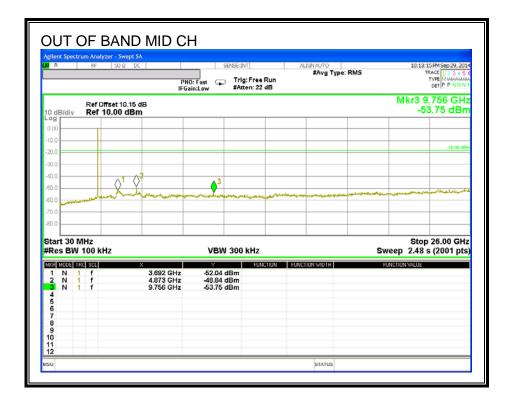
IN-BAND REFERENCE LEVEL

R RF SO Q DC	SENSE:INT	P	#Avg Type: RMS	10:10	:00 PM Sep 29, 2014 TRACE 1 2 3 4 5 6
	PNO: Wide Trig: F IFGain:Low #Atten	ree Run : 22 dB			DET P P N N N
Ref Offset 10.15 dB 0 dB/div Ref 10.00 dBm			Ν	/kr1 2.439	960 9 GHz 1.54 dBm
0.00			_		
~~~~		$\sim$		-	
10.0					-18.45 dBm
20.0					
30.0					
40.0					
50.0					
60.0					
70.0					
80.0					
Center 2,440000 GHz				Sna	n 2.300 MHz

Page 30 of 54

### LOW CHANNEL BANDEDGE





### **HIGH CHANNEL BANDEDGE**



Page 31 of 54 UL LLC 12 LABORATORY DR., RESEARCH TRIANGLE PARK, NC 27709 This report shall not be reproduced except in full, without the written approval of UL LLC

### **OUT-OF-BAND EMISSIONS**





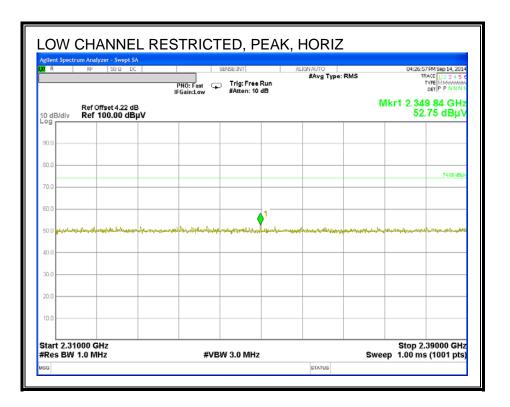
Page 32 of 54 UL LLC 12 LABORATORY DR., RESEARCH TRIANGLE PARK, NC 27709 This report shall not be reproduced except in full, without the written approval of UL LLC

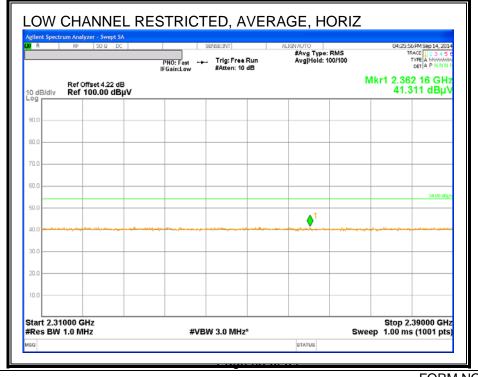
	RF   50 Q D	PNC	): Fast Tri in:Low #At	g: Free Run ten: 22 dB	ALIGNAUTO #Avg Type	RMS	10:33:45 PM Sep 29, 201 TRACE 1 2 3 4 5 TYPE MUMANA DET P P N N N
10 dB/div	Ref Offset 10.15 Ref 10.00 dBr					м	kr2 7.691 GHz -53.48 dBm
0.00							
-10.0							-18.46 dBr
-20.0							
-40.0							
-50.0						1.00 miles day	والمرضعين ومعرف والمراجع
-60.0	and want there are		and the state of the second states and the second states and the second states and the second states and the se	and a start of the	******		
-70.0							
-80.0							
Start 30 MH #Res BW 1			VBW 300	kHz		Sweep	Stop 26.00 GHz 2.48 s (2001 pts
MKR MODE TRC 1 N 1		× 3.731 GHz	Y -51,37 dBm	FUNCTION	FUNCTION WIDTH	FUNCTION	N VALUE
2 N 1	f	7.691 GHz	-53.48 dBm				
3 4 5							
6							
8							
0							

# 9. RADIATED TEST RESULTS

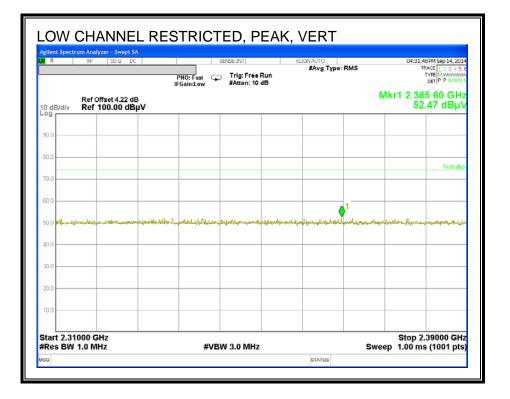
## 9.1. LIMITS AND PROCEDURE

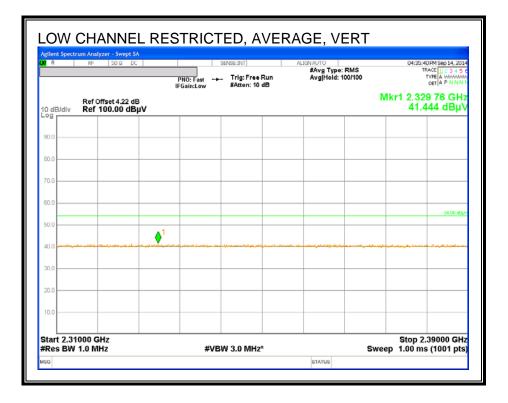
### **LIMITS**


FCC §15.205 and §15.209

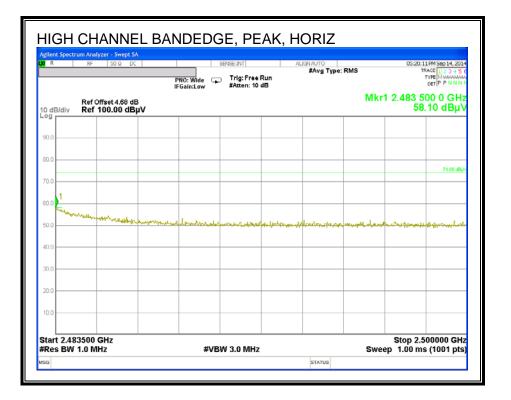

IC RSS-210 Clause 2.6 (Transmitter)

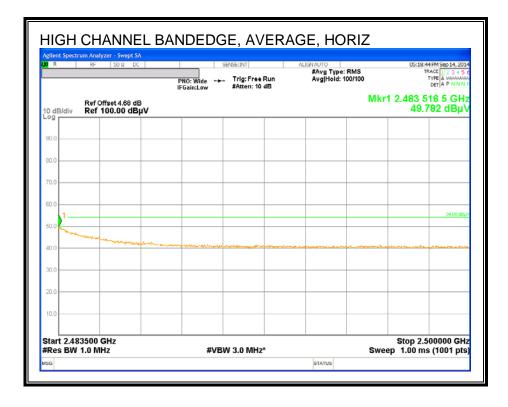
Frequency Range (MHz)	Field Strength Limit (uV/m) at 3 m	Field Strength Limit (dBuV/m) at 3 m
30 - 88	100	40
88 - 216	150	43.5
216 - 960	200	46
Above 960	500	54


## 9.2. TRANSMITTER ABOVE 1 GHz

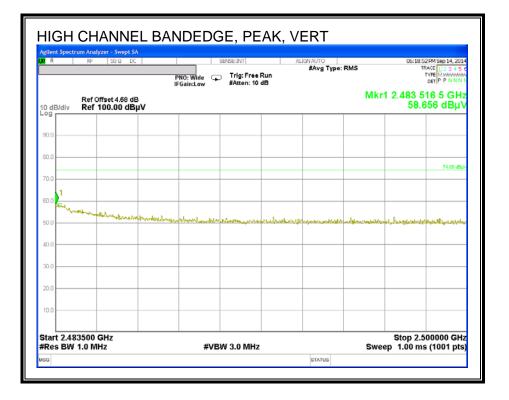

## 9.3. TX ABOVE 1 GHz O-QPSK (DSSS) IN THE 2.4 GHz BAND RESTRICTED BANDEDGE (LOW CHANNEL)

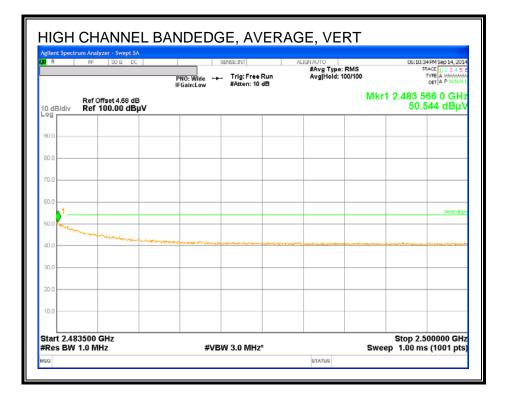




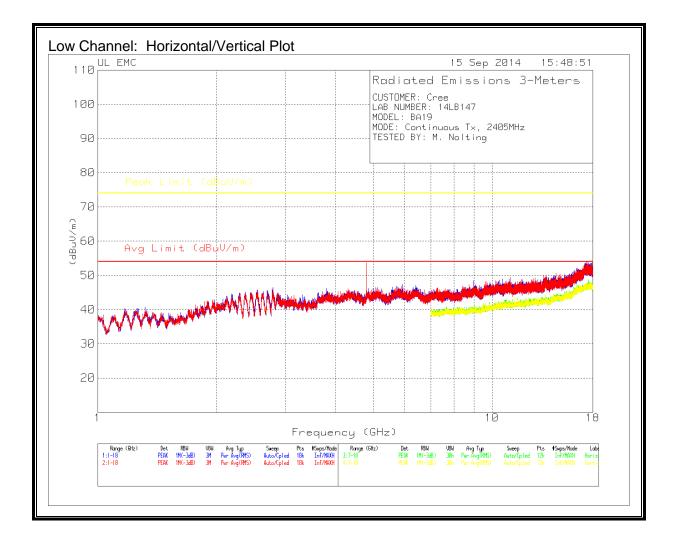


FORM NO: CCSUP4701J TEL: (919) 549-1400





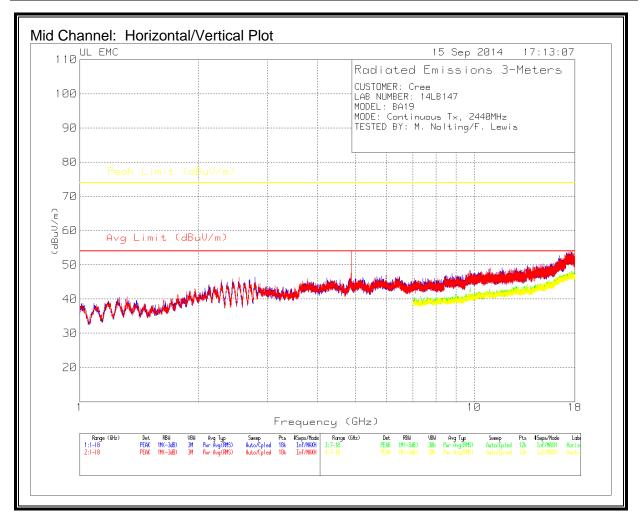


#### **AUTHORIZED BANDEDGE (HIGH CHANNEL)**



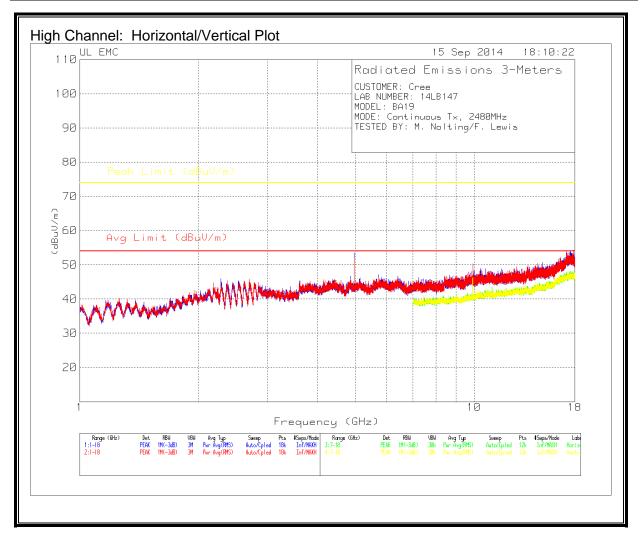



FORM NO: CCSUP4701J TEL: (919) 549-1400



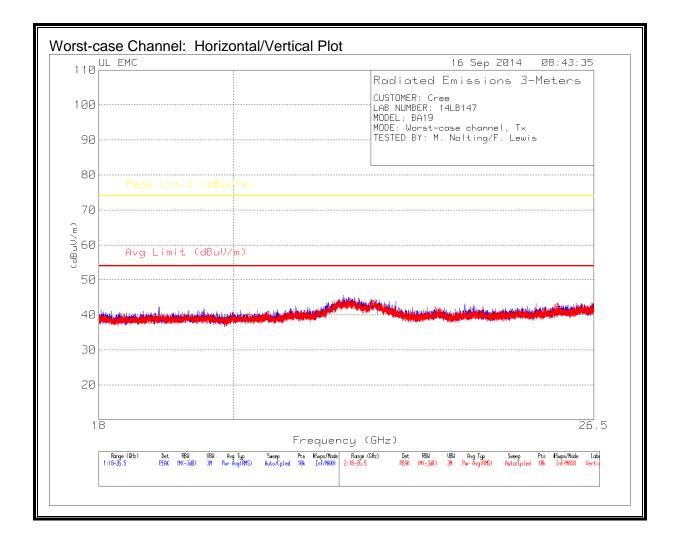



#### HARMONICS AND SPURIOUS EMISSIONS: 1-18GHz




Page 39 of 54

LAB NUMBE MODEL: BA											
	inuous Tx, 24	105MHz									
TESTED BY:	,	10011112									
	J										
Freq (GHz)	Meter Reading [dBuV]	Detector	Antenna Factor [dB/m]	Gain/Loss [dB]		Average Limit [dBuV/m]	Margin [dB]	Peak Limit [dBuV/m]	Margin [dB]	Antenna Polarity	In Restricted Band?
4.809	55.56	PK2	34.1	-35.4	54.3	-	-	74.0	-19.7	Н	Y
4.809	49.09	MAv1	34.1	-35.4	47.8	54.0	-6.2	-	-	Н	Y
3.797	47.45	PK2	33.4	-36.1	44.8	-	-	74.0	-29.2	Н	Y
3.806	36.52	MAv1	33.5	-36.1	33.9	54.0	-20.1	-	-	Н	Y
8.949	43.28	PK	36.2	-31.1	48.4	-	-	-	-	Н	N
4.811	57.51	PK2	34.1	-35.4	56.2	-	-	74.0	-17.8	V	Y
4.811	50.95	MAv1	34.1	-35.4	49.7	54.0	-4.3	-	-	V	Y
9.627	42.26	PK	36.8	-30.9	48.2	-	-	-	-	V	N
11.146	40.51	PK2	37.8	-29.5	48.8	-	-	74.0	-25.2	V	Y
11.147	28.84	MAv1	37.8	-29.5	37.1	54.0	-16.8	-	-	V	Y
PK - Peak de	etector										

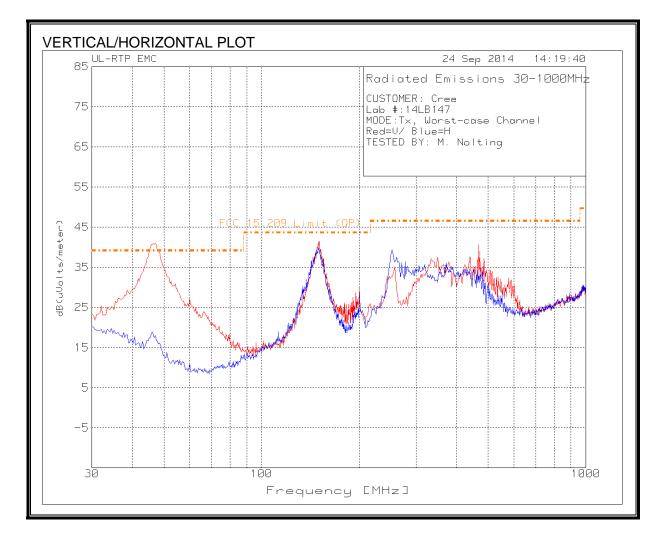



CUSTOMER											
LAB NUMBE MODEL: BA											
	inuous Tx, 24	140MH <del>7</del>									
	M. Nolting/F										
TEOTED DI	. w. roning/i	. 201110									
Freq (GHz)	Meter Reading [dBuV]	Detector	Antenna Factor [dB/m]	Gain/Loss [dB]		Average Limit [dBuV/m]	Margin [dB]	Peak Limit [dBuV/m]	Margin [dB]	Antenna Polarity	In Restricted Band?
4.879	54.59	PK2	34.1	-35.4	53.3	-	-	74.0	-20.7	Н	Y
4.879	48.06	MAv1	34.1	-35.4	46.8	54.0	-7.2	-	-	Н	Y
9.764	42.19	PK	37.0	-30.9	48.3	-	-	-	-	Н	Ν
10.927	40.18	PK2	37.7	-29.7	48.2	-	-	74.0	-25.8	н	Y
10.928	29.09	MAv1	37.7	-29.7	37.1	54.0	-16.9	-	-	Н	Y
4.879	57.05	PK2	34.1	-35.4	55.8	-	-	74.0	-18.2	V	Y
4.879	51.06	MAv1	34.1	-35.4	49.8	54.0	-4.2	-	-	V	Y
9.759	42.36	PK	37.0	-30.9	48.5	-	-	-	-	V	Ν
11.020	40.40	PK2	37.7	-29.5	48.6	-		74.0	-25.4	V	Y
11.018	29.15	MAv1	37.7	-29.5	37.4	54.0	-16.6	-	-	V	Y
PK - Peak de	etector										
	58074 Metho	d: Maximum	Peak								



CUSTOMER											
MODEL: BA											
MODE: Cont	,										
TESTED BY:	M. Nolting/F	. Lewis									
Freq (GHz)	Meter Reading [dBuV]	Detector	Antenna Factor [dB/m]	Gain/Loss [dB]		Average Limit [dBuV/m]	Margin [dB]	Peak Limit [dBuV/m]	Margin [dB]	Antenna Polarity	In Restricted Band?
4.959	54.79	PK2	34.1	-35.2	53.7	-	-	74.0	-20.3	Н	Y
4.959	48.39	MAv1	34.1	-35.2	47.3	54.0	-6.7	-	-	Н	Y
7.439	44.03	PK2	35.7	-31.4	48.3	-	-	74.0	-25.6	Н	Y
7.439	33.46	MAv1	35.7	-31.4	37.8	54.0	-16.2	-	-	Н	Y
9.919	43.84	PK	37.1	-30.6	50.3	-	-	-	-	Н	N
4.961	53.79	PK2	34.1	-35.2	52.7	-	-	74.0	-21.3	V	Y
4.961	46.93	MAv1	34.1	-35.2	45.8	54.0	-8.1	-	-	V	Y
7.442	43.53	PK2	35.7	-31.4	47.8	-	-	74.0	-26.1	V	Y
7.442	33.19	MAv1	35.7	-31.4	37.5	54.0	-16.5	-	-	V	Y
9.923	43.46	PK	37.1	-30.6	50.0	-	-	-	-	V	Ν
PK - Peak de	etector										
PK2 - KDB55	58074 Metho	d: Maximum	Peak								

#### HARMONICS AND SPURIOUS EMISSIONS: 18-26GHz




Page 45 of 54

CUSTOMER:											
AB NUMBE	R: 14LB147										
NODEL: BA	19										
AODE: Wors	st-case chan	nel, Tx									
ESTED BY:	M. Nolting/F	. Lewis									
Freq (GHz)	Meter Reading [dBuV]	Detector	Antenna Factor [dB/m]	Gain/Loss [dB]	•	Average Limit [dBuV/m]	Margin [dB]	Peak Limit [dBuV/m]	Margin [dB]	Antenna Polarity	In Restricted Band?
18.869	48.21	PK	32.5	-38.8	41.9	54.0	-12.1	74.0	-32.1	Н	Y
21.789	47.38	PK	36.4	-38.2	45.6	-	-	-	-	Н	Ν
23.945	46.56	PK2	33.7	-37.5	42.8	-	-	74.0	-31.2	Н	Y
23.948	35.52	MAv1	33.7	-37.5	31.7	54.0	-22.3	-	-	Н	Y
18.856	47.40	PK	32.4	-38.8	41.0	54.0	-13.0	74.0	-33.0	V	Y
22.061	46.88	PK2	36.9	-38.3	45.5	-	-	74.0	-28.5	V	Y
22.060	35.89	MAv1	36.9	-38.3	34.5	54.0	-19.5	-	-	V	Y
25.749	45.16	PK	34.0	-35.7	43.5	-	-	-	-	V	N
PK - Peak de	etector										

# 9.4. WORST-CASE BELOW 1 GHz

SPURIOUS EMISSIONS 30 TO 1000 MHz (WORST-CASE CONFIGURATION, HORIZONTAL)



Page 47 of 54

CUSTOMER	: Cree								
Lab #:14LB1	47								
MODE:Tx, W	/orst-case C	hannel							
Red=V/ Blue	=H								
TESTED BY:	M. Nolting								
Freq (MHz)	Meter Reading [dBuV]	Detector	Antenna Factor [dB/m]	Gain/Loss [dB]	0	15.209 QP Limit [dBuV/m]	Margin [dB]	Antenna Polarity	In Restricted Band?
46.633	51.77	QP	11.1	-25.8	37.1	-	-	V	N
149.900	47.15	QP	14.3	-24.6	36.9	43.5	-6.7	V	Y
257.715	50.95	PK	12.2	-28.0	35.2	46.4	-11.3	V	Y
349.098	50.05	PK	14.7	-27.2	37.6	-	-	V	N
438.878	47.80	PK	16.5	-26.7	37.6	-	-	V	N
466.015	37.46	QP	16.8	-26.6	27.7	-	-	V	N
149.808	47.33	QP	14.3	-24.6	37.0	-	-	Н	N
149.900	47.31	QP	14.3	-24.6	37.0	43.5	-6.5	Н	Y
252.906	50.12	QP	12.1	-28.1	34.1	46.4	-12.3	Н	Y
261.217	48.46	QP	12.2	-28.0	32.7	46.4	-13.7	Н	Y
371.543	48.19	PK	14.9	-27.0	36.1	-	-	Н	N
450.100	43.95	PK	17.0	-26.7	34.3	-	-	Н	N

# **10. AC POWER LINE CONDUCTED EMISSIONS**

## LIMITS

FCC §15.207 (a)

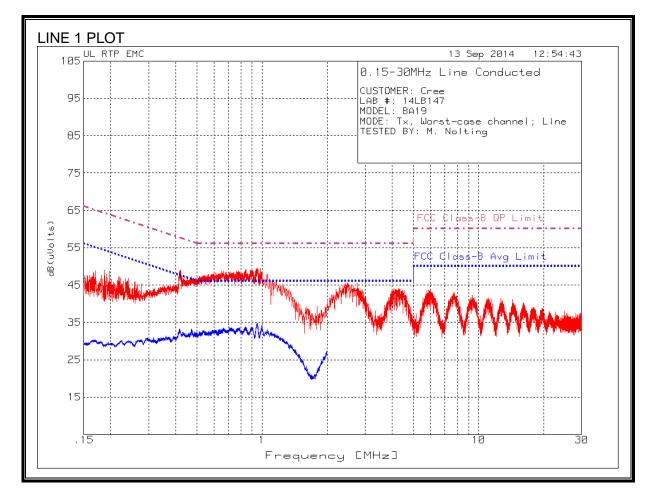
RSS-Gen 7.2.2

Frequency of Emission (MHz)	Conducted I	Limit (dBuV)
	Quasi-peak	Average
0.15-0.5	66 to 56 *	56 to 46 *
0.5-5	56	46
5-30	60	50

Decreases with the logarithm of the frequency.

### TEST PROCEDURE

The EUT is placed on a non-conducting table 40 cm from the vertical ground plane and 80 cm above the horizontal ground plane. The EUT is configured in accordance with ANSI C63.4.

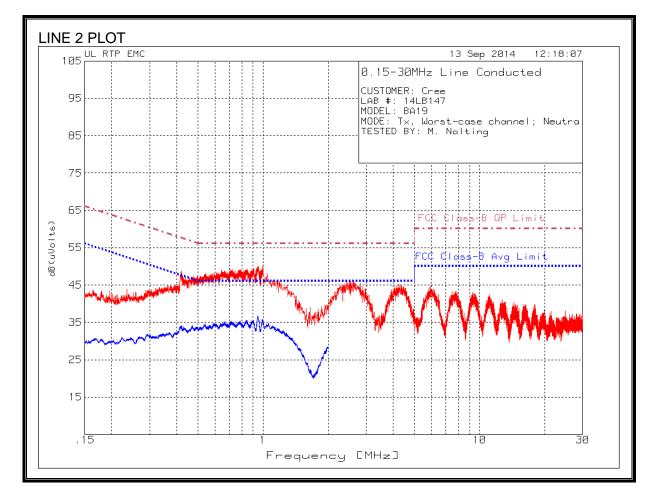

The receiver is set to a resolution bandwidth of 9 kHz. Peak detection is used unless otherwise noted as quasi-peak or average.

Line conducted data is recorded for both NEUTRAL and HOT lines.

Page 49 of 54

#### **RESULTS**

#### LINE 1 RESULTS




**Note:** Blue trace is a reduced video-bandwidth scan to determine presence of narrow-band emissions.

Page 50 of 54

LINE 1 TA	BULAR	DATA							
CUSTOMER	Cree								
LAB #: 14LB									
MODEL: BA									
MODE: Tx, V		channel: I	ine						
TESTED BY									
IESILD DI	. W. Nonnų	J							
		,	ļ ,			FCC	,	FCC	
Test	Meter		1		RF Line	15.207		15.207	
Frequency	Reading		1	Cable	Voltage	(QP)	Margin	(AV)	Margin
[MHz]	[dBuV]	Detector*	LISN [dB]	Loss [dB]	[dBuV]	[dBuV]	[dB]	[dBuV]	[dB]
0.1870	26.99	QP	0.3	9.4	36.7	64.2	-27.5	· · ·	-
0.2246	28.07	QP	0.2	9.4	37.7	62.6	-24.9	·	
0.4160	33.73	QP	0.1	9.5	43.3	57.5	-14.2	-	-
0.9490	34.78	QP	0.0	9.5	44.3	56.0	-11.7	-	-
0.9957	33.45	QP	0.0	9.5	43.0	56.0	-13.1	-	-
2.5490	29.95	QP	0.0	9.5	39.5	56.0	-16.6	-	-
4.3154	28.62	QP	0.0	9.5	38.1	56.0	-17.9	-	-
0.1870	18.36	CAV	0.3	9.4	28.1	-	-	54.2	-26.1
0.2246	19.85	CAV	0.2	9.4	29.5	-	-	52.6	-23.2
0.4160	23.25	CAV	0.1	9.5	32.9	-	-	47.5	-14.7
0.9490	24.69	CAV	0.0	9.5	34.2	-	-	46.0	-11.8
0.9957	23.69	CAV	0.0	9.5	33.2	-	-	46.0	-12.8
2.5490	21.22	CAV	0.0	9.5	30.7	-	-	46.0	-15.3
4.3154	20.13	CAV	0.0	9.5	29.6	-	-	46.0	-16.4

## LINE 2 RESULTS



**Note:** Blue trace is a reduced video-bandwidth scan to determine presence of narrow-band emissions.

Page 52 of 54

LINE 2 TA	BULAR	DATA							
CUSTOMER	Cree								
LAB #: 14LB147									
MODEL: BA19									
MODE: Tx,		- channel: N	Jeutral						
TESTED BY			1001101						
ILSILD DI		J							
, ,					,	FCC		FCC	
Test	Meter				<b>RF</b> Line	15.207	1	15.207	
Frequency	Reading			Cable	Voltage	(QP)	Margin	(AV)	Margin
[MHz]	[dBuV]	Detector*	LISN [dB]	Loss [dB]	[dBuV]	[dBuV]	[dB]	[dBuV]	[dB]
0.4177	33.21	QP	0.1	9.5	42.8	57.5	-14.7	-	-
0.9480	34.96	QP	0.0	9.5	44.5	56.0	-11.5	-	-
0.9979	33.66	QP	0.0	9.5	43.2	56.0	-12.8	-	-
2.5486	30.99	QP	0.0	9.5	40.5	56.0	-15.5	-	
4.2499	29.76	QP	0.0	9.5	39.3	56.0	-16.7	-	-
5.9997	29.08	QP	0.1	9.4	38.6	60.0	-21.4	-	-
<u> </u>	<u> </u>	<u> </u>							
0.4177	24.00	CAV	0.1	9.5	33.6	-	-	47.5	-13.9
0.9480	26.48	CAV	0.0	9.5	36.0	<u> </u>	<u> </u>	46.0	-10.0
0.9979	25.50	CAV	0.0	9.5	35.0		<u> </u>	46.0	-11.0
2.5486	23.26	CAV	0.0	9.5	32.8	-	-	46.0	-13.2
4.2499	22.53	CAV	0.0	9.5	32.0	-	-	46.0	-14.0
5.9997	21.73	CAV	0.1	9.4	31.2	-	-	50.0	-18.8

# **END OF REPORT**