

RADIO TEST REPORT FCC ID: 2ACPR-EV-C-101-1

Product: notebook Trade Mark: N/A Model No.: EV-C-101-1 Serial Model: N/A Report No.: SER180608006002E Issue Date: 16 Jul. 2018

Prepared for

ShenZhen Bmorn Technology Co., LTD 6/F, HengfangVerteran Industrial Park, Xingye Road, XixiangBao'an, Shenzhen, China

Prepared by

Shenzhen NTEK Testing Technology Co., Ltd. 1/F, Building E, Fenda Science Park, Sanwei Community, Xixiang Street Bao'an District, Shenzhen 518126 P.R. China Tel.: +86-755-6115 6588 Fax.: +86-755-6115 6599 Website:http://www.ntek.org.cn

TABLE OF CONTENTS

1	TES	ST RESULT CERTIFICATION	.3
2	SU	MMARY OF TEST RESULTS	.4
3	FAC	CILITIES AND ACCREDITATIONS	.5
	3.1 3.2 3.3	FACILITIES LABORATORY ACCREDITATIONS AND LISTINGS MEASUREMENT UNCERTAINTY	.5 .5 .5
4	GEI	NERAL DESCRIPTION OF EUT	.6
5	DES	SCRIPTION OF TEST MODES	.8
6	SET	TUP OF EQUIPMENT UNDER TEST	.9
	6.1 6.2 6.3	BLOCK DIAGRAM CONFIGURATION OF TEST SYSTEM SUPPORT EQUIPMENT EQUIPMENTS LIST FOR ALL TEST ITEMS	
7	TES	ST REQUIREMENTS1	3
	7.1 7.2 7.3 7.4 7.5 7.6 7.7 7.8	CONDUCTED EMISSIONS TEST	18 27 30 33 36 38

1 TEST RESULT CERTIFICATION

Applicant's name:	ShenZhen Bmorn Technology Co., LTD		
Address:	6/F, Hengfang Verteran Industrial Park, Xingye Road, Xixiang, Bao'ar Shenzhen, China		
Manufacturer's Name	ShenZhen Bmorn Technology Co., LTD		
Address:	6/F, Hengfang Verteran Industrial Park, Xingye Road, Xixiang, Bao'an, Shenzhen, China		
Product description			
Product name:	notebook		
Model and/or type reference:	EV-C-101-1		
Serial Model	N/A		

Measurement Procedure Used:

APPLICABLE STANDARDS

APPLICABLE STANDARD/ TEST PROCEDURE	TEST RESULT
FCC 47 CFR Part 2, Subpart J	
FCC 47 CFR Part 15, Subpart C	
KDB 174176 D01 Line Conducted FAQ v01r01	Complied
ANSI C63.10-2013	
FCC KDB 558074 D01 DTS Meas Guidance v04	

This device described above has been tested by Shenzhen NTEK Testing Technology Co., Ltd., and the test results show that the equipment under test (EUT) is in compliance with the FCC requirements. And it is applicable only to the tested sample identified in the report.

This report shall not be reproduced except in full, without the written approval of Shenzhen NTEK Testing Technology Co., Ltd., this document may be altered or revised by Shenzhen NTEK Testing Technology Co., Ltd., personnel only, and shall be noted in the revision of the document.

The test results of this report relate only to the tested sample identified in this report.

Date of Test	: 08 Jun. 2018 ~ Jul 16, 2018	
Testing Engineer	: Jiawen (Cheng Jiawen)	
Technical Manager	: Juson chen (Jason Chen) Sam. Chew	
Authorized Signatory	:(Sam Chen)	

2 SUMMARY OF TEST RESULTS

FCC Part15 (15.247), Subpart C							
Standard Section Test Item Verdict Remark							
15.207	Conducted Emission	PASS					
15.247 (a)(2)	6dB Bandwidth	PASS					
15.247 (b)	Peak Output Power	PASS					
15.209 (a) 15.205 (a)	Radiated Spurious Emission	PASS					
15.247 (d)	Power Spectral Density	PASS					
15.247 (d)	Band Edge Emission	PASS					
15.247 (d)	Spurious RF Conducted Emission	PASS					
15.203	Antenna Requirement	PASS					

Remark:

 "N/A" denotes test is not applicable in this Test Report.
All test items were verified and recorded according to the standards and without any deviation during the test.

3 FACILITIES AND ACCREDITATIONS

3.1 FACILITIES

All measurement facilities used to collect the measurement data are located at

1/F, Building E, Fenda Science Park, Sanwei Community, Xixiang Street, Bao'an District, Shenzhen 518126 P.R. China.

The sites are constructed in conformance with the requirements of ANSI C63.7, ANSI C63.10 and CISPR Publication 22.

3.2 LABORATORY ACCREDITATIONS AND LISTINGS

Site Description	
CNAS-Lab.	The Laboratory has been assessed and proved to be in compliance with
	CNAS-CL01:2006 (identical to ISO/IEC 17025:2005)
	The Certificate Registration Number is L5516.
IC-Registration	The Certificate Registration Number is 9270A-1.
FCC- Accredited	Test Firm Registration Number: 463705.
	Designation Number: CN1184
A2LA-Lab.	The Certificate Registration Number is 4298.01
	This laboratory is accredited in accordance with the recognized
	International Standard ISO/IEC 17025:2005 General requirements for
	the competence of testing and calibration laboratories.
	This accreditation demonstrates technical competence for a defined
	scope and the operation of a laboratory quality management system
	(refer to joint ISO-ILAC-IAF Communiqué dated 8 January 2009).
Name of Firm	Shenzhen NTEK Testing Technology Co., Ltd.
Site Location	1/F, Building E, Fenda Science Park, Sanwei Community, Xixiang
	Street, Bao'an District, Shenzhen 518126 P.R. China.

3.3 MEASUREMENT UNCERTAINTY

The reported uncertainty of measurement $y\pm U$, where expended uncertainty U is based on a standard uncertainty multiplied by a coverage factor of k=2, providing a level of confidence of approximately 95 %.

No.	Item	Uncertainty
1	Conducted Emission Test	±2.80dB
2	RF power, conducted	±0.16dB
3	Spurious emissions, conducted	±0.21dB
4	All emissions, radiated(30MHz~1GHz)	±2.64dB
5	All emissions, radiated(1GHz~6GHz)	±2.40dB
6	All emissions, radiated(>6GHz)	±2.52dB
7	Temperature	±0.5°C
8	Humidity	±2%

4 GENERAL DESCRIPTION OF EUT

Product Feature and Specification					
Equipment	notebook				
Trade Mark	N/A				
FCC ID	2ACPR-EV-C-101-1				
Model No.	EV-C-101-1				
Serial Model	N/A				
Model Difference	N/A				
Operating Frequency	2402MHz~2480MHz				
Modulation	GFSK				
Number of Channels	40 Channels				
Bluetooth Version	BT V4.0				
Antenna Type	FPC Antenna				
Antenna Gain	2 dBi				
	DC supply: DC 3.7V/5600mAh from battery or DC 5V from adapter.				
Power supply	Adapter supply: Model:SAW20-050-3000UD Input: 100-240V~50/60Hz 0.6A Output: 5V3000mA				
HW Version	Y116CR700				
SW Version	WINDOS 10 RS4				

Note: Based on the application, features, or specification exhibited in User's Manual, the EUT is considered as an ITE/Computing Device. More details of EUT technical specification, please refer to the User's Manual.

Revision History

Report No.	Version	Description	Issued Date
SER180608006002E	Rev.01	Initial issue of report	16 Jul. 2018

5 DESCRIPTION OF TEST MODES

To investigate the maximum EMI emission characteristics generates from EUT, the test system was pre-scanning tested base on the consideration of following EUT operation mode or test configuration mode which possible have effect on EMI emission level. Each of these EUT operation mode(s) or test configuration mode(s) mentioned above was evaluated respectively.

The Transmitter was operated in the normal operating mode. The TX frequency was fixed which was for the purpose of the measurements.

Test of channel included the lowest and middle and highest frequency to perform the test, then record on this report.

Those data rates (1Mbps for GFSK modulation) were used for all test.

The EUT was pretested with 3 orientations placed on the table for the radiated emission measurement -X, Y, and Z-plane. The X-plane results were found as the worst case and were shown in this report.

Carrier Frequency and Channel list:

Channel	Frequency(MHz)
0	2402
1	2404
19	2440
20	2442
38	2478
39	2480

Note: fc=2402MHz+k×2MHz k=0 to 39

The following summary table is showing all test modes to demonstrate in compliance with the standard.

	Test Cases
Test Item	Data Rate/ Modulation
lest item	Bluetooth 4.0_LE / GFSK
AC Conducted Emission	Mode 1: normal link mode
	Mode 1: normal link mode
Radiated Test	Mode 2: Bluetooth Tx Ch00_2402MHz_1Mbps
Cases	Mode 3: Bluetooth Tx Ch19_2440MHz_1Mbps
	Mode 4: Bluetooth Tx Ch39_2480MHz_1Mbps
Conducted Test	Mode 2: Bluetooth Tx Ch00_2402MHz_1Mbps
Conducted Test Cases	Mode 3: Bluetooth Tx Ch19_2440MHz_1Mbps
Cases	Mode 4: Bluetooth Tx Ch39_2480MHz_1Mbps

Note:

1. The engineering test program was provided and the EUT was programmed to be in continuously transmitting mode.

- 2. AC power line Conducted Emission was tested under maximum output power.
- 3. For radiated test cases, the worst mode data rate 1Mbps was reported only, because this data rate has the highest RF output power at preliminary tests, and no other significantly frequencies found in conducted spurious emission.
- 4. EUT is set to continuous transmission mode. duty cycle greater than 98%.
- 5. EUT built-in battery-powered, the battery is fully-charged.

6 SETUP OF EQUIPMENT UNDER TEST

6.1 BLOCK DIAGRAM CONFIGURATION OF TEST SYSTEM

E		AC PLU	G	
		dapter		
For Radiated Test Cases				
E	UT			
For Conducted Test Cases				
	C-2			
Measureme Instrument	nt	Г		
Note:The temporary antenr his temporary antenna con			n order to perform cor	ducted tests and

6.2 SUPPORT EQUIPMENT

The EUT has been tested as an independent unit together with other necessary accessories or support units. The following support units or accessories were used to form a representative test configuration during the tests.

Item	Equipment	Mfr/Brand	Model/Type No.	Series No.	Note
E-1	notebook	N/A	EV-C-101-1	N/A	EUT
E-2	Adapter	N/A	SAW20-050-3000UD	N/A	Peripherals

Item	Cable Type	Shielded Type	Ferrite Core	Length
C-1	Power Cable	NO	NO	1.2m
C-3	RF Cable	NO	NO	0.5m

Notes:

- (1) The support equipment was authorized by Declaration of Confirmation.
- (2) For detachable type I/O cable should be specified the length in cm in [Length] column.
- (3) "YES" is means "shielded" "with core"; "NO" is means "unshielded" "without core".

6.3 EQUIPMENTS LIST FOR ALL TEST ITEMS

Radiation& Conducted Test equipment

		oocoquipinione					
Item	Kind of Equipment	Manufacturer	Type No.	Serial No.	Last calibration	Calibrated until	Calibrati on period
1	Spectrum Analyzer	Aglient	E4407B	MY45108040	2018.05.19	2019.05.18	1 year
2	Spectrum Analyzer	Agilent	N9020A	MY49100060	2017.10.26	2018.10.25	1 year
3	Spectrum Analyzer	R&S	FSV40	101417	2017.10.26	2018.10.25	1 year
4	Test Receiver	R&S	ESPI7	101318	2018.05.19	2019.05.18	1 year
5	Bilog Antenna	TESEQ	CBL6111D	31216	2018.04.08	2019.04.07	1 year
6	50Ω Coaxial Switch	Anritsu	MP59B	6200983705	2018.05.19	2020.05.18	2 year
7	Horn Antenna	EM	EM-AH-1018 0	2011071402	2018.04.08	2019.04.07	1 year
8	Amplifier	EMC	EMC051835 SE	980246	2017.08.09	2018.08.08	1 year
9	Active Loop Antenna	SCHWARZBE CK	FMZB 1519 B	055	2017.12.06	2018.12.06	1 year
10	Power Meter	DARE	RPR3006W	15I00041SN 084	2017.08.07	2018.08.06	1 year
11	Test Cable (9KHz-30MHz)	N/A	R-01	N/A	2017.04.21	2020.04.20	3 year
12	Test Cable (30MHz-1GHz)	N/A	R-02	N/A	2017.04.21	2020.04.20	3 year
13	High Test Cable(1G-40G Hz)	N/A	R-03	N/A	2017.04.21	2020.04.20	3 year
14	High Test Cable(1G-40G Hz)	N/A	R-04	N/A	2017.04.21	2020.04.20	3 year
15	Filter	TRILTHIC	2400MHz	29	2017.04.19	2020.04.18	3 year
16	temporary antenna connector (Note)	NTS	R001	N/A	N/A	N/A	N/A

Note:

We will use the temporary antenna connector (soldered on the PCB board) When conducted test And this temporary antenna connector is listed within the instrument list

AC Co	AC Conduction Test equipment								
Item	Kind of Equipment	Manufacturer	Type No.	Serial No.	Last calibration	Calibrated until	Calibration period		
1	Test Receiver	R&S	ESCI	101160	2018.05.19	2019.05.18	1 year		
2	LISN	R&S	ENV216	101313	2018.04.18	2019.04.19	1 year		
3	LISN	SCHWARZBE CK	NNLK 8129	8129245	2018.05.19	2019.05.18	1 year		
4	50Ω Coaxial Switch	ANRITSU CORP	MP59B	6200983704	2018.05.19	2020.05.18	2 year		
5	Test Cable (9KHz-30MH z)	N/A	C01	N/A	2017.04.21	2020.04.20	3 year		
6	Test Cable (9KHz-30MH z)	N/A	C02	N/A	2017.04.21	2020.04.20	3 year		
7	Test Cable (9KHz-30MH z)	N/A	C03	N/A	2017.04.21	2020.04.20	3 year		

Note: Each piece of equipment is scheduled for calibration once a year except the Aux Equipment & Test Cable which is scheduled for calibration every 2 or 3 years.

7 TEST REQUIREMENTS

7.1 CONDUCTED EMISSIONS TEST

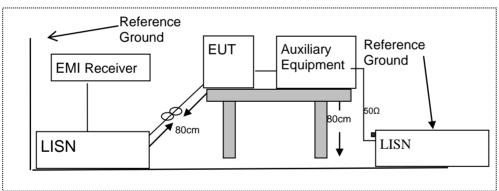
7.1.1 Applicable Standard

According to FCC Part 15.207(a) and KDB 174176 D01 Line Conducted FAQ v01r01

7.1.2 Conformance Limit

	Conducted Emission Limit				
Frequency(MHz)	Quasi-peak	Average			
0.15-0.5	66-56*	56-46*			
0.5-5.0	56	46			
5.0-30.0	60	50			

Note: 1. *Decreases with the logarithm of the frequency


2. The lower limit shall apply at the transition frequencies

3. The limit decreases in line with the logarithm of the frequency in the range of 0.15 to 0.50MHz.

7.1.3 Measuring Instruments

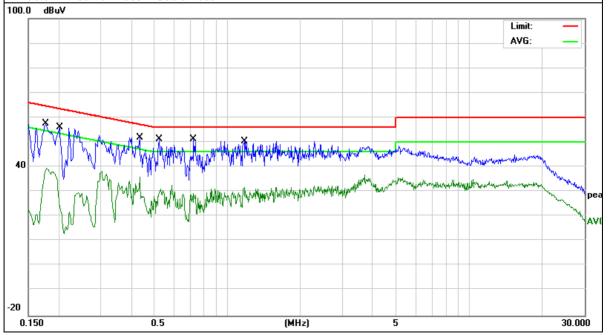
The Measuring equipment is listed in the section 6.3 of this test report.

7.1.4 Test Configuration

7.1.5 Test Procedure

According to the requirements in Section 13.1.4.1 of ANSI C63.10-2013 Conducted emissions the EUT measured in the frequency range between 0.15 MHz and 30 MHz using CISPR Quasi-Peak and average detector mode.

- 1. The EUT was placed 0.4 meter from the conducting wall of the shielding room.
- 2. The EUT was placed on a table which is 0.8m above ground plane.
- 3. Connect EUT to the power mains through a line impedance stabilization network (LISN). All other support equipments powered from additional LISN(s). The LISN provide 50 Ohm/ 50uH of coupling impedance for the measuring instrument.
- 4. Interconnecting cables that hang closer than 40 cm to the ground plane shall be folded back and forth in the center forming a bundle 30 to 40cm long.
- 5. I/O cables that are not connected to a peripheral shall be bundled in the center. The end of the cable may be terminated, if required, using the correct terminating impedance. The overall length shall not exceed 1 m.
- 6. LISN at least 80 cm from nearest part of EUT chassis.
- 7. The frequency range from 150KHz to 30MHz was searched.
- 8. Set the test-receiver system to Peak Detect Function and specified bandwidth(IF bandwidth=9KHz) with Maximum Hold Mode
- 9. For the actual test configuration, please refer to the related Item –EUT Test Photos.



7.1.6 Test Results

EUT:		notebook	Č.	Model Name	:	EV-C-1	01-1		
Temperature		26 ℃		Relative Hum	nidity:	54%			
Pressure:		1010hPa		Phase :		L			
		DC 5V fro AC 120V	om Adapter /60Hz	Test Mode:	Test Mode:		Mode 1		
	1								
Frequency	Rea	ding Level	Correct Factor	Measure-ment	Lim	nits	Margin	Remar	
(MHz)	(dBµV)	(dB)	(dBµV)	(dB	μV)	(dB)	rtomar	
0.1767		47.64	9.76	57.40	64.	63	-7.23	QP	
0.1767		29.71	9.76	39.47	54.	63	-15.16	AVG	
0.2020		46.26	9.76	56.02	63.	52	-7.50	QP	
0.2020		27.91	9.76	37.67	53.	52	-15.85	AVG	
0.4340		42.14	9.74	51.88	57.	18	-5.30	QP	
0.4340		26.24	9.74	35.98	47.	18	-11.20	AVG	
0.5220		41.64	9.74	51.38	56.	00	-4.62	QP	
0.5220		22.85	9.74	32.59	46.	00	-13.41	AVG	
0.7260		41.43	9.74	51.17	56.	00	-4.83	QP	
0.7260		21.41	9.74	31.15	46.	00	-14.85	AVG	
1.1740		40.69	9.74	50.43	56.	00	-5.57	QP	
1.1740		27.17	9.74	36.91	46.	00	-9.09	AVG	

1. All readings are Quasi-Peak and Average values.

2. Factor = Insertion Loss + Cable Loss.

EUT:	note	book			Model Na	me :		EV-C-101-1	
Temperature:	26 °	С			Relative H	lumidity:		54%	
Pressure:	101	0hPa			Phase :			Ν	
Test Voltage :			om Adapter /60Hz				Mode 1		
	1								1
Frequency	Reading I	_evel	Correct Factor	Meas	sure-ment	Limits		Margin	Remark
(MHz)	(dBµ∖	/)	(dB)		(dBµV)	(dBµV))	(dB)	Remark
0.1660	42.24	ļ	9.73		51.97	65.15		-13.18	QP
0.1660	19.20)	9.73		28.93	55.15		-26.22	AVG
0.1820	42.02	2	9.73		51.75	64.39		-12.64	QP
0.1820	19.20)	9.73		28.93	54.39		-25.46	AVG
0.4380	40.77	7	9.75		50.52	57.10		-6.58	QP
0.4380	23.72	2	9.75		33.47	47.10		-13.63	AVG
0.5380	43.13	3	9.75		52.88	56.00		-3.12	QP
0.5380	23.72	2	9.75		33.47	46.00		-12.53	AVG

52.03

30.47

44.48

31.30

56.00

46.00

60.00

50.00

-3.97

-15.53

-15.52

-18.70

QP

AVG

QP

AVG

1.3300

1.3300

5.0979

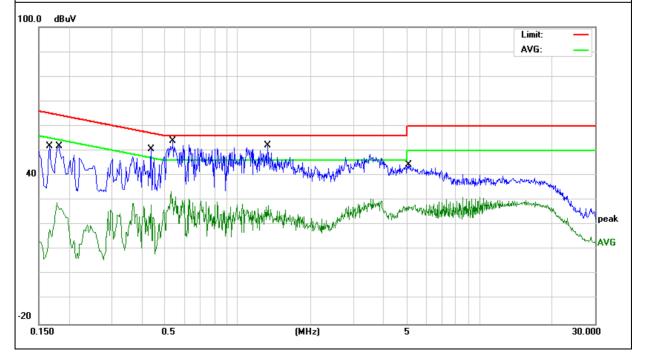
5.0979

All readings are Quasi-Peak and Average values.
Factor = Insertion Loss + Cable Loss.

42.27

20.71

34.54

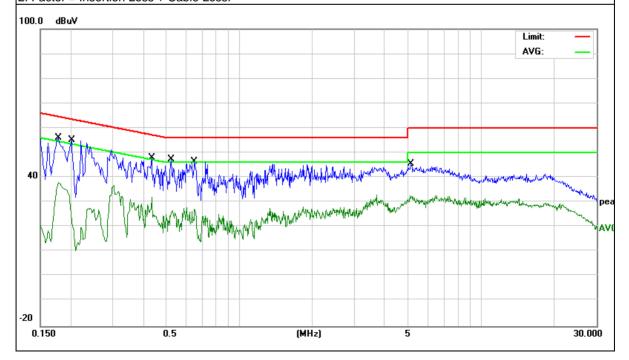

21.36

9.76

9.76

9.94

9.94

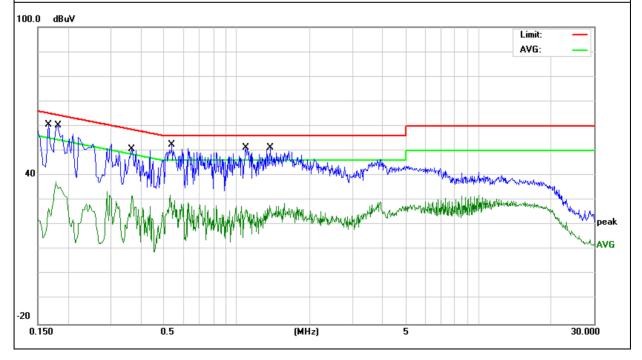


EUT:	notebook	Model Name :	EV-C-101-1
Temperature:	26 ℃	Relative Humidity:	54%
Pressure:	1010hPa	Phase :	L
LAST VAIDAA .	DC 5V from Adapter AC 240V/60Hz	Test Mode:	Mode 1

Frequency	Reading Level	Correct Factor	Measure-ment	Limits	Margin	Dement
(MHz)	(dBµV)	(dB)	(dBµV)	(dBµV)	(dB)	Remark
0.1779	46.31	9.76	56.07	64.58	-8.51	QP
0.1779	28.34	9.76	38.10	54.58	-16.48	AVG
0.2020	45.26	9.76	55.02	63.52	-8.50	QP
0.2020	21.04	9.76	30.80	53.52	-22.72	AVG
0.4339	38.14	9.74	47.88	57.18	-9.30	QP
0.4339	22.24	9.74	31.98	47.18	-15.20	AVG
0.5220	37.64	9.74	47.38	56.00	-8.62	QP
0.5220	17.01	9.74	26.75	46.00	-19.25	AVG
0.6540	36.69	9.74	46.43	56.00	-9.57	QP
0.6540	18.47	9.74	28.21	46.00	-17.79	AVG
5.1219	35.76	9.87	45.63	60.00	-14.37	QP
5.1219	23.04	9.87	32.91	50.00	-17.09	AVG

Remark:

All readings are Quasi-Peak and Average values.
Factor = Insertion Loss + Cable Loss.



EUT:		notebook			Model Name :		EV-C-101-1	EV-C-101-1	
Temperature:	perature: 26 °C			Relative Humidity:		54%			
Pressure:	Pressure: 1010hPa		Phase :		N				
		DC 5V fro AC 240V	om Adapter /60Hz		Test Mode	9:	Mode 1		
	1		[1		
Frequency	Read	ding Level	Correct Factor	Meas	sure-ment	Limits	Margin	Remark	
Frequency (MHz)		ding Level dBµV)	Correct Factor (dB)		sure-ment (dBµV)	Limits (dBµV)	Margin (dB)	- Remark	
	(0					-	- Remark QP	

0.1660	27.70	9.73	37.43	55.15	-17.72	AVG
0.1820	50.52	9.73	60.25	64.39	-4.14	QP
0.1820	27.70	9.73	37.43	54.39	-16.96	AVG
0.3660	40.85	9.75	50.60	58.59	-7.99	QP
0.3660	22.05	9.75	31.80	48.59	-16.79	AVG
0.5380	42.63	9.75	52.38	56.00	-3.62	QP
0.5380	22.22	9.75	31.97	46.00	-14.03	AVG
1.0900	41.48	9.75	51.23	56.00	-4.77	QP
1.0900	20.23	9.75	29.98	46.00	-16.02	AVG
1.3740	41.50	9.76	51.26	56.00	-4.74	QP
1.3740	22.04	9.76	31.80	46.00	-14.20	AVG

Remark:

All readings are Quasi-Peak and Average values.
Factor = Insertion Loss + Cable Loss.

7.2 RADIATED SPURIOUS EMISSION

7.2.1 Applicable Standard

According to FCC Part 15.247(d) and 15.209 and ANSI C63.10-2013

7.2.2 Conformance Limit

According to FCC Part 15.247(d): radiated emissions which fall in the restricted bands, as defined in §15.205(a), must also comply with the radiated emission limits specified in §15.209(a) (see §15.205(c)). According to FCC Part15.205, Restricted bands

MHz	MHz	GHz
16.42-16.423	399.9-410	4.5-5.15
16.69475-16.69525	608-614	5.35-5.46
16.80425-16.80475	960-1240	7.25-7.75
25.5-25.67	1300-1427	8.025-8.5
37.5-38.25	1435-1626.5	9.0-9.2
73-74.6	1645.5-1646.5	9.3-9.5
74.8-75.2	1660-1710	10.6-12.7
123-138	2200-2300	14.47-14.5
149.9-150.05	2310-2390	15.35-16.2
156.52475-156.52525	2483.5-2500	17.7-21.4
156.7-156.9	2690-2900	22.01-23.12
162.0125-167.17	3260-3267	23.6-24.0
167.72-173.2	3332-3339	31.2-31.8
240-285	3345.8-3358	36.43-36.5
322-335.4	3600-4400	(2)
	MHz 16.42-16.423 16.69475-16.69525 16.80425-16.80475 25.5-25.67 37.5-38.25 73-74.6 74.8-75.2 123-138 149.9-150.05 156.52475-156.52525 156.7-156.9 162.0125-167.17 167.72-173.2 240-285	MHzMHz16.42-16.423399.9-41016.69475-16.69525608-61416.80425-16.80475960-124025.5-25.671300-142737.5-38.251435-1626.573-74.61645.5-1646.574.8-75.21660-1710123-1382200-2300149.9-150.052310-2390156.52475-156.525252483.5-2500156.7-156.92690-2900162.0125-167.173260-3267167.72-173.23332-3339240-2853345.8-3358

20dBc in any 100 kHz bandwidth outside the operating frequency band. In case the emission fall within the restricted band specified on 15.205(a), then the 15.209(a) limit in the table below has to be followed.

Restricted Frequency(MHz)	Field Strength (µV/m)	Field Strength (dBµV/m)	Measurement Distance
0.009~0.490	2400/F(KHz)	20 log (uV/m)	300
0.490~1.705	2400/F(KHz)	20 log (uV/m)	30
1.705~30.0	30	29.5	30
30-88	100	40	3
88-216	150	43.5	3
216-960	200	46	3
Above 960	500	54	3

Limits of Radiated Emission Measurement(Above 1000MHz)

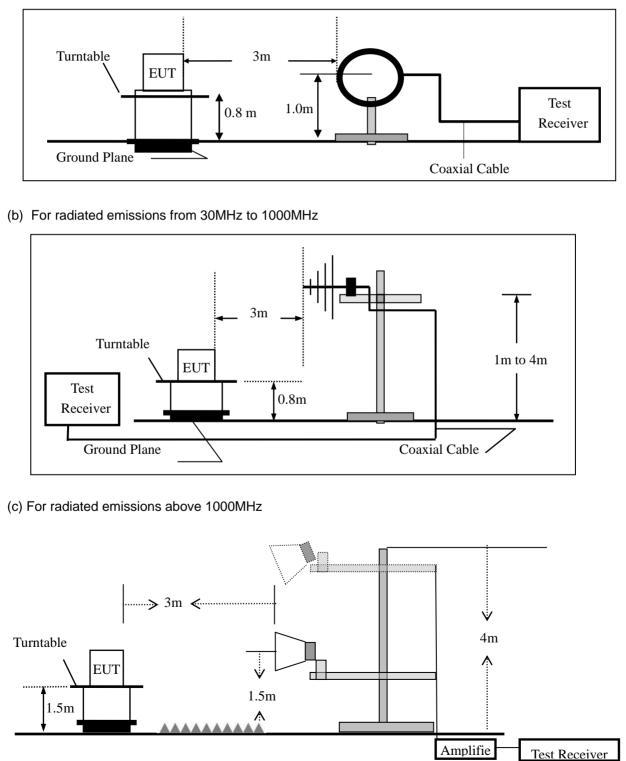
Frequency(MHz)	Class B (dBuV/m) (at 3M)				
	PEAK	AVERAGE			
Above 1000	74	54			

Remark :1. Emission level in dBuV/m=20 log (uV/m)

2. Measurement was performed at an antenna to the closed point of EUT distance of meters.

3. Distance extrapolation factor =40log(Specific distance/ test distance)(dB);

Limit line=Specific limits(dBuV) + distance extrapolation factor.



7.2.3 Measuring Instruments

The Measuring equipment is listed in the section 6.3 of this test report.

7.2.4 Test Configuration

(a) For radiated emissions below 30MHz

7.2.5 Test Procedure

The test site semi-anechoic chamber has met the requirement of NSA tolerance 4 dB according to the standards: ANSI C63.10-2013. The test distance is 3m. The setup is according to the requirements in Section 13.1.4.1 of ANSI C63.10-2013 and CAN/CSA-CEI/IEC CISPR 22.

This test is required for any spurious emission that falls in a Restricted Band, as defined in Section 15.205. It must be performed with the highest gain of each type of antenna proposed for use with the EUT. Use the following spectrum analyzer settings:

Spectrum Parameter	Setting
Attenuation	Auto
Start Frequency	1000 MHz
Stop Frequency	10th carrier harmonic
RB / VB (emission in restricted band)	1 MHz / 1 MHz for Peak, 1 MHz / 10Hz for Average

Receiver Parameter	Setting
Attenuation	Auto
Start ~ Stop Frequency	9kHz~150kHz / RB 200Hz for QP
Start ~ Stop Frequency	150kHz~30MHz / RB 9kHz for QP
Start ~ Stop Frequency	30MHz~1000MHz / RB 120kHz for QP

- a. The measuring distance of at 3 m shall be used for measurements at frequency up to 1GHz. For frequencies above 1GHz, any suitable measuring distance may be used.
- b. The EUT was placed on the top of a rotating table 0.8 m for below 1GHz and 1.5m for above 1GHz the ground at a 3 meter. The table was rotated 360 degrees to determine the position of the highest radiation.
- c. The height of the equipment or of the substitution antenna shall be 0.8 m for below 1GHz and 1.5m for above 1GHz; the height of the test antenna shall vary between 1 m to 4 m. Both horizontal and vertical polarizations of the antenna are set to make the measurement.
- d. For the radiated emission test above 1GHz: Place the measurement antenna away from each area of the EUT determined to be a source of emissions at the specified measurement distance, while keeping the measurement antenna aimed at the source of emissions at each frequency of significant emissions, with polarization oriented for maximum response. The measurement antenna may have to be higher or lower than the EUT, depending on the radiation pattern of the emission and staying aimed at the emission source for receiving the maximum signal. The final measurement antenna elevation shall be that which maximizes the emissions. The measurement antenna elevation for maximum emissions shall be restricted to a range of heights of from 1 m to 4 m above the ground or reference ground plane.
- e. The initial step in collecting conducted emission data is a spectrum analyzer peak detector mode pre-scanning the measurement frequency range. Significant peaks are then marked and then Quasi Peak detector mode re-measured.
- f. If the Peak Mode measured value compliance with and lower than Quasi Peak Mode Limit, the EUT shall be deemed to meet QP Limits and then no additional QP Mode measurement performed.
- g. For the actual test configuration, please refer to the related Item –EUT Test Photos.

Note:

Both horizontal and vertical antenna polarities were tested and performed pretest to three orthogonal axis. The worst case emissions were reported

During the radiated emission test, the Spectrum Analyzer was set with the following configurations:							
Frequency Band (MHz)	Function	Resolution bandwidth	Video Bandwidth				
30 to 1000	QP	120 kHz	300 kHz				
Ab aug 4000	Peak	1 MHz	1 MHz				
Above 1000	Average	1 MHz	10 Hz				

Note: for the frequency ranges below 30 MHz, a narrower RBW is used for these ranges but the measured value should add a RBW correction factor (RBWCF) where RBWCF [dB] =10*lg(100 [kHz]/narrower RBW [kHz]). , the narrower RBW is 1 kHz and RBWCF is 20 dB for the frequency 9 kHz to 150 kHz, and the narrower RBW is 10 kHz and RBWCF is 10 dB for the frequency 150 kHz to 30 MHz.

7.2.6 Test Results

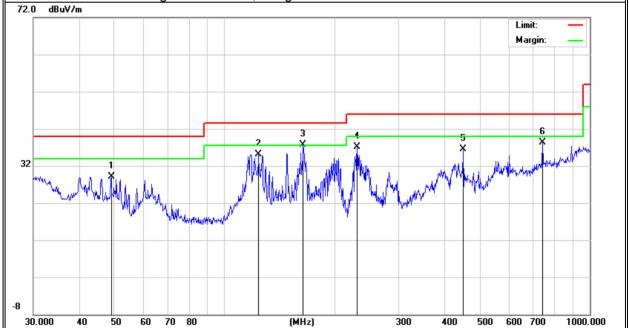
	Spurious	Emission	below 30MHz	(9KHz to 30MHz)	
--	----------	----------	-------------	-----------------	--

EUT:	notebook	Model No.:	EV-C-101-1
Temperature:	20 ℃	Relative Humidity:	48%
Test Mode:	Mode2/Mode3/Mode4	Test By:	Cheng Jiawen

Freq.	Ant.Pol.	Emission L	.evel(dBuV/m)	Limit 3	m(dBuV/m)	Over(dB)		
(MHz)	H/V	PK AV Í		PK	PK AV		AV	

Note: the amplitude of spurious emission that is attenuated by more than 20dB below the permissible limit has no need to be reported.

Distance extrapolation factor =20log(Specific distance/ test distance)(dB); Limit line=Specific limits(dBuV) + distance extrapolation factor


■ Spurious Emission below 1GHz (30MHz to 1GHz)

All the modulation modes have been tested, and the worst result was report as below:

EUT:	notebook	Model Name :	EV-C-101-1
Temperature:	20 ℃	Relative Humidity:	48%
Pressure:	1010hPa	Test Mode:	Mode 1
Test Voltage :	DC 3.7V		

Polar	Frequency	Meter Reading	Factor	Emission Level	Limits	Margin	Remark
(H/V)	(MHz)	(dBuV)	(dB)	(dBuV/m)	(dBuV/m)	(dB)	
V	49.0144	18.91	10.25	29.16	40.00	-10.84	QP
V	124.1329	21.86	13.29	35.15	43.50	-8.35	QP
V	164.3300	26.19	11.44	37.63	43.50	-5.87	QP
V	230.9068	24.88	12.17	37.05	46.00	-8.95	QP
V	451.1349	16.07	20.43	36.50	46.00	-9.50	QP
V	742.2586	10.82	27.58	38.40	46.00	-7.60	QP
Remark	:						

Absolute Level= ReadingLevel+ Factor, Margin= Absolute Level - Limit

Polar	Frequency	Meter Reading	Factor	Emission Level	Limits	Margin	Remark
(H/V)	(MHz)	(dBuV)	(dB)	(dBuV/m)	(dBuV/m)	(dB)	rtoman
Н	31.3992	5.95	18.40	24.35	40.00	-15.65	QP
Н	148.9625	23.26	12.84	36.10	43.50	-7.40	QP
Н	230.9068	26.09	12.17	38.26	46.00	-7.74	QP
Н	297.2241	19.52	15.79	35.31	46.00	-10.69	QP
Н	446.4141	17.56	20.34	37.90	46.00	-8.10	QP
Н	744.8659	10.85	27.55	38.40	46.00	-7.60	QP
						Limit: Margin:	_
32	man and Millin day	murraman	2 X M		5 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	6 X X Luthur an	La contraction of the second s
8 30.000	40 50 60	70 80	(MH		300 400 5	00 600 700	1000.000

■ Spuriou	us Emissio	on Above	1GHz (10	Hz to	25GI	Hz)					
EUT:	EUT: notebook Model No.: EV-C-101-1										
Temperatu	re:	20 ℃			Rela	lative Humidity: 48%					
Test Mode:		Mode2/	/ Mode4		Test	By:		Che	eng Jiawer	า	
Frequenc y	Read Level	Cable loss	Antenna Factor	Prea Fac	•	Emission Level	Limit	ts	Margin	Remark	Comment
(MHz)	(dBµV)	(dB)	dB/m	(dE	3)	(dBµV/m)	(dBµV	′/m)	(dB)		
			Low	Chan	nel (2	402 MHz)-	Above	1G			
4839.80	63.16	5.21	35.59	44.	30	59.66	74.0	0	-14.34	Pk	Vertical
4839.80	43.52	5.21	35.59	44.	30	40.02	54.0	0	-13.98	AV	Vertical
7206.60	63.03	6.48	36.27	44.		61.18	74.0		-12.82	Pk	Vertical
7206.60	48.04	6.48	36.27	44.	60	46.19	54.0	0	-7.81	AV	Vertical
4804.78	66.76	5.21	35.55	44.	30	63.22	74.0	0	-10.78	Pk	Horizontal
4804.78	47.48	5.21	35.55	44.	30	43.94	54.0	0	-10.06	AV	Horizontal
7206.40	65.00	6.48	36.27	44.	52	63.23	74.00		-10.77	Pk	Horizontal
7206.40	43.91	6.48	36.27	44.		42.14	54.00		-11.86	AV	Horizontal
			Mid	Chanr	nel (2	440 MHz)-/	Above ?	1G			
4880.54	64.07	5.21	35.66	44.	20	60.74	74.0	0	-13.26	Pk	Vertical
4880.54	44.85	5.21	35.66	44.	20	41.52	54.0	0	-12.48	AV	Vertical
7320.87	62.67	7.10	36.50	44.	43	61.84	74.0	0	-12.16	Pk	Vertical
7320.87	44.00	7.10	36.50	44.	43	43.17	54.0	0	-10.83	AV	Vertical
4880.29	62.99	5.21	35.66	44.	20	59.66	74.0	0	-14.34	Pk	Horizontal
4880.29	46.95	5.21	35.66	44.	20	43.62	54.0	0	-10.38	AV	Horizontal
7320.74	64.91	7.10	36.50	44.	43	64.08	74.0	0	-9.92	Pk	Horizontal
7320.74	44.16	7.10	36.50	44.	43	43.33	54.0	0	-10.67	AV	Horizontal
			High	Chanı	nel (2	480 MHz)-	Above	1G			
4960.27	62.84	5.21	35.52	44.	21	59.36	74.0	0	-14.64	Pk	Vertical
4960.27	44.46	5.21	35.52	44.	21	40.98	54.0	0	-13.02	AV	Vertical
7440.89	63.17	7.10	36.53	44.	60	62.20	74.0	0	-11.80	Pk	Vertical
7440.89	44.57	7.10	36.53	44.	60	43.60	54.0	0	-10.40	AV	Vertical
4960.39	64.10	5.21	35.52	44.	21	60.62	74.0	0	-13.38	Pk	Horizontal
4960.39	43.83	5.21	35.52	44.	21	40.35	54.0	0	-13.65	AV	Horizontal
7440.69	64.75	7.10	36.53	44.	60	63.78	74.0	0	-10.22	Pk	Horizontal
7440.69	45.91	7.10	36.53	44.	60	44.94	54.0	0	-9.06	AV	Horizontal

Note: (1) All Readings are Peak Value (VBW=3MHz) and AV Value (VBW=10Hz). (2) Emission Level= Antenna Factor + Cable Loss + Read Level - Preamp Factor

(2) Emission Level= Antenna Factor + Cable Loss + Read Level - Preamp Factor(3)All other emissions more than 20dB below the limit.

Report No.:SER180608006002E

Spurious Emission in Restricted Band 2310-2390MHz and 2483.5-2500MHz												
EUT:		notebool	ĸ	ſ	Model No.:			EV-0	EV-C-101-1			
Temperatu	Temperature: 20 ℃			F	Relative Humidity:			48%				
Test Mode	st Mode: Mode2/ Mode4			-	Test E	By:		Cheng Jiawen				
Frequenc		Cable	Antenna		amp	Emission	Lim	its	Margin	Detector		
у (Reading	Loss	Factor	Fac		Level	(15)			-	Comment	
(MHz)	(dBµV)	(dB)	dB/m	(d	dB) (dBµV/m) (dBµV		//m)	(dB)	Туре			
GFSK												
2310.00	65.29	2.97	27.80	43.	.80	52.26	74	1	-21.74	Pk	Horizontal	
2310.00	45.30	2.97	27.80	43.	.80	32.27	54	1	-21.73	AV	Horizontal	
2310.00	67.30	2.97	27.80	43.	.80 54.27		74	1	-19.73	Pk	Vertical	
2310.00	48.13	2.97	27.80	43.	.80	35.10	54	1	-18.90	AV	Vertical	
2390.00	66.13	3.14	27.21	43.	.80	52.68	74	1	-21.32	Pk	Vertical	
2390.00	49.49	3.14	27.21	43.	.80	36.04	54	1	-17.96	AV	Vertical	
2390.00	67.20	3.14	27.21	43.	.80	53.75	74	1	-20.25	Pk	Horizontal	
2390.00	48.40	3.14	27.21	43.	.80	34.95	54	1	-19.05	AV	Horizontal	
2483.50	69.11	3.58	27.70	44.	.00	56.39	74	1	-17.61	Pk	Vertical	
2483.50	46.89	3.58	27.70	44.	.00	34.17	54	1	-19.83	AV	Vertical	
2483.50	70.11	3.58	27.70	44.	.00	57.39	74	1	-16.61	Pk	Horizontal	
2483.50	49.42	3.58	27.70	44.	.00	36.70	54	1	-17.30	AV	Horizontal	

Note: (1) All other emissions more than 20dB below the limit.

EUT:		n	otebook		Model N	No.:	E	V-C-101-1			
Tempe	erature:	2	0 °C		Relative	e Humidity:	4	48%			
Test M	est Mode: Mode2/ Mode4			Test By	Test By: 0			Cheng Jiawen			
r											
	Frequenc y	Read g Lev		Antenn a	Preamp Factor	Emission Level	Limi	ts Margin	Detecto r	_	
	(MHz)	(dBµ\	V) (dB)	dB/m	(dB)	(dBµ V/m)	(dBj V/m		Туре	Comment	
	3260	63.47	7 4.04	29.57	44.70	52.38	74	-21.62	Pk	Vertical	
	3260	48.36	6 4.04	29.57	44.70	37.27	54	-16.73	AV	Vertical	
	3260	66.83	3 4.04	29.57	44.70	55.74	74	-18.26	Pk	Horizontal	
	3260	47.49	9 4.04	29.57	44.70	36.40	54	-17.60	AV	Horizontal	
	3332	63.59	9 4.26	29.87	44.40	53.32	74	-20.68	Pk	Vertical	
	3332	43.98	8 4.26	29.87	44.40	33.71	54	-20.29	AV	Vertical	
	3332	63.68	8 4.26	29.87	44.40	53.41	74	-20.59	Pk	Horizontal	
	3332	47.32	2 4.26	29.87	44.40	37.05	54	-16.95	AV	Horizontal	
	17797	47.0 ⁻	1 10.99	43.95	43.50	58.45	74	-15.55	Pk	Vertical	
	17797	34.7	1 10.99	43.95	43.50	46.15	54	-7.85	AV	Vertical	
	17788	46.55	5 11.81	43.69	44.60	57.45	74	-16.55	Pk	Horizontal	
	17788	32.1 ²	1 11.81	43.69	44.60	43.01	54	-10.99	AV	Horizontal	

Spurious Emission in Restricted Band 3260MMHz-18000MHz

Note: (1) All other emissions more than 20dB below the limit.

7.3 6DB BANDWIDTH

7.3.1 Applicable Standard

According to FCC Part 15.247(a)(2) and KDB 558074 DTS 01 Meas. Guidance v04

7.3.2 Conformance Limit

The minimum permissible 6dB bandwidth is 500 kHz.

7.3.3 Measuring Instruments

The Measuring equipment is listed in the section 6.3 of this test report.

7.3.4 Test Setup

Please refer to Section 6.1 of this test report.

7.3.5 Test Procedure

The testing follows KDB 558074 DTS 01 Meas. Guidance v04

The RF output of EUT was connected to the spectrum analyzer by RF cable and attenuator.

The path loss was compensated to the results for each measurement.

Set to the maximum power setting and enable the EUT transmit continuously.

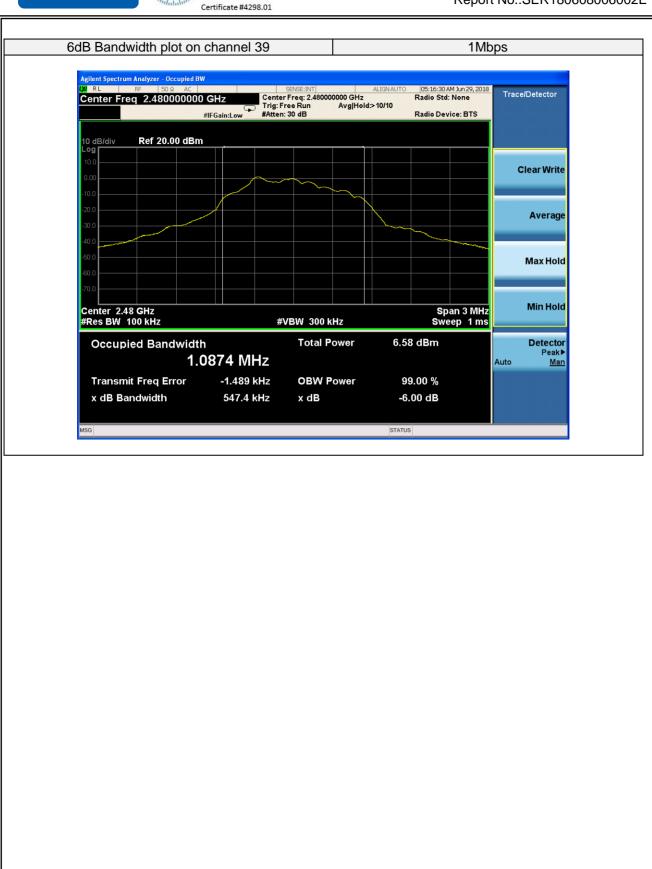
The EUT was operating in controlled its channel.

Use the following spectrum analyzer settings:

- a) Set RBW = 100 kHz.
- b) Set the video bandwidth (VBW) \ge 3*RBW.
- c) Detector = Peak.
- d) Trace mode = max hold.
- e) Sweep = auto couple.
- f) Allow the trace to stabilize.

g) Measure the maximum width of the emission that is constrained by the frequencies associated with the two outermost amplitude points (upper and lower frequencies) that are attenuated by 6 dB relative to the maximum level measured in the fundamental emission.

7.3.6 Test Results


EUT:	notebook	Model No.:	EV-C-101-1
Temperature:	20 ℃	Relative Humidity:	48%
Test Mode:	Mode2/Mode3/Mode4	Test By:	Cheng Jiawen

Channel	Frequency (MHz)	6dB bandwidth (kHz)	Limit (kHz)	Result
Low	2402	706.4	≥500	Pass
Middle	2440	546.1	≥500	Pass
High	2480	547.4	≥500	Pass

7.4 PEAK OUTPUT POWER

7.4.1 Applicable Standard

According to FCC Part 15.247(b)(3) and KDB 558074 DTS 01 Meas. Guidance v04

7.4.2 Conformance Limit

The maximum peak conducted output power of the intentional radiator for systems using digital modulation in the 2400 - 2483.5 MHz bands shall not exceed: 1 Watt (30dBm). If transmitting antenna of directional gain greater than 6dBi is used, the peak output power from the intentional radiator shall be reduced below the above stated value by the amount in dB that the directional gain of the antenna exceeds 6 dBi. In case of point-to-point operation, the limit has to be reduced by 1dB for every 3dB that the directional gain of the antenna exceeds 6dBi.

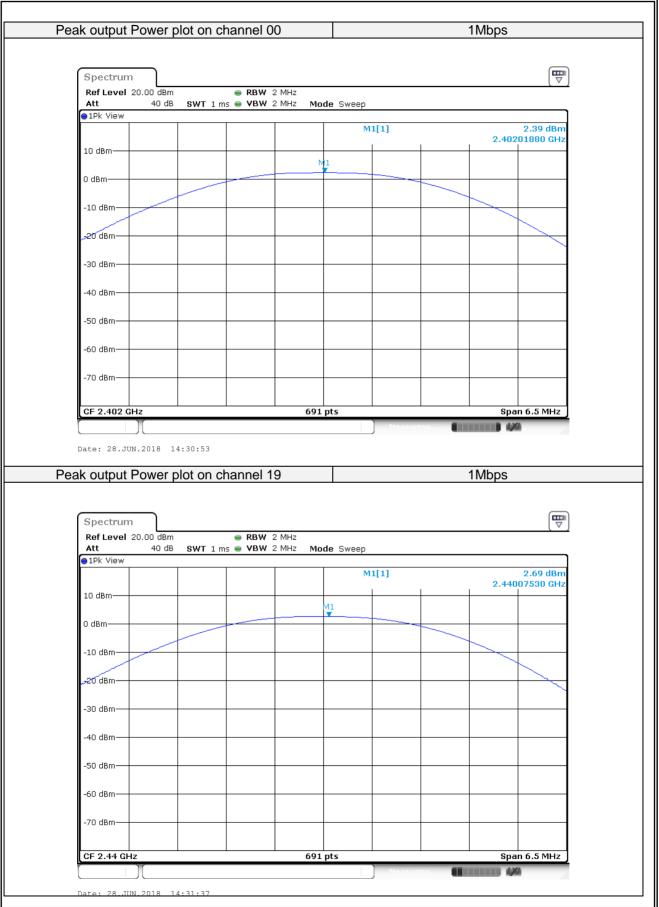
7.4.3 Measuring Instruments

The Measuring equipment is listed in the section 6.3 of this test report.

7.4.4 Test Setup

Please refer to Section 6.1 of this test report.

7.4.5 Test Procedure


The testing follows KDB 558074 DTS 01 Meas. Guidance v04 The RF output of EUT was connected to the spectrum analyzer by RF cable and attenuator. The path loss was compensated to the results for each measurement. Set to the maximum power setting and enable the EUT transmit continuously. The EUT was operating in controlled its channel. Use the following spectrum analyzer settings: Set the RBW \geq DTS bandwidth. Set VBW =3*RBW. Set the span \geq 3*RBW Set Sweep time = auto couple. Set Detector = peak. Set Trace mode = max hold. Allow trace to fully stabilize. Use peak marker function to determine the peak amplitude level.

7.4.6 Test Results

EUT:	notebook	Model No.:	EV-C-101-1
Temperature:	20 ℃	Relative Humidity:	48%
Test Mode:	Mode2/Mode3/Mode4	Test By:	Cheng Jiawen

Test Channel	Frequency (MHz)	Power Setting	Peak Output Power (dBm)	LIMIT (dBm)	Verdict
			1Mbps		
00	2402	Default	2.39	30	PASS
19	2440	Default	2.69	30	PASS
39	2480	Default	2.79	30	PASS

	Ref Level 20.00 dBm • RBW 2 MHz Att 40 dB SWT 1 ms • VBW 2 MHz IPk View 0 dBm 0 dBm 2.48000940 GHz I0 dBm M1 1 2.79 dBm -10 dBm M1 - - -20 dBm - - - -30 dBm - - - -50 dBm - - - -70 dBm - -	k output Pow	ver plot on chan	nel 39		1M	ops
Att 40 dB SWT 1 ms VBW 2 MHz Mode Sweep DPk View	Att 40 dB SWT 1 ms VBW 2 MH2 Mode Sweep DIPk View 0 M1[1] 2.79 dBm 10 dBm 0 M1 2.48000940 GHz 0 dBm M1 0 0 -10 dBm M1 0 0 -20 dBm 0 0 0 -30 dBm 0 0 0 -50 dBm 0 0 0 -60 dBm 0 0 0 -70 dBm 0 0 0		dem	RBW 2 MHz			
10 dBm M1[1] 2.79 dBm 10 dBm M1 0 0 dBm M1 0 -10 dBm M1 0 -20 dBm -30 dBm -30 dBm -30 dBm -40 dBm -40 dBm -50 dBm -50 dBm -50 dBm -60 dBm -60 dBm -60 dBm -70 dBm -70 dBm -70 dBm -70 dBm -70 dBm -70 dBm -70 dBm -70 dBm -70 dBm	10 dBm M1[1] 2.79 dBm 10 dBm M1 0 0 dBm M1 0 -10 dBm M1 0 -20 dBm -30 dBm -30 dBm -30 dBm -40 dBm -40 dBm -50 dBm -50 dBm -50 dBm -60 dBm -60 dBm -60 dBm -70 dBm -70 dBm -70 dBm -70 dBm -70 dBm -70 dBm -70 dBm -70 dBm -70 dBm	Att 4	40 dB SWT 1 ms 🖷	VBW 2 MHz Mode	9 Sweep		
10 dBm M1 0 dBm M1 -10 dBm -10 dBm -20 dBm -10 dBm -30 dBm -10 dBm -50 dBm -10 dBm -50 dBm -10 dBm -60 dBm -10 dBm -70 dBm -10 dBm -70 dBm -10 dBm -70 dBm -10 dBm	10 dBm M1 0 dBm M1 -10 dBm -10 dBm -20 dBm -10 dBm -30 dBm -10 dBm -50 dBm -10 dBm -50 dBm -10 dBm -60 dBm -10 dBm -70 dBm -10 dBm -70 dBm -10 dBm -70 dBm -10 dBm	DIAK Alem			M1[1]		2.79 dBm
0 dBm 10 -10 dBm -10 -20 dBm -10 -30 dBm -10 -30 dBm -10 -30 dBm -10 -30 dBm -10 -40 dBm -10 -50 dBm -10 -60 dBm -10 -70 dBm -10	0 dBm 10 -10 dBm -10 -20 dBm -10 -30 dBm -10 -30 dBm -10 -30 dBm -10 -30 dBm -10 -40 dBm -10 -50 dBm -10 -60 dBm -10 -70 dBm -10	10 dBm					2.48000940 GHz
10 dBm 20 dBm -20 dBm	10 dBm 20 dBm -20 dBm			M1			
-20 dBm -30 dBm -40 dBm -40 dBm -50 dBm -50 dBm -60 dBm -70	-20 dBm -30 dBm -40 dBm -40 dBm -50 dBm -50 dBm -60 dBm -70	0 dBm					
-30 dBm -40 dBm -50 dBm -50 dBm -60 dBm -70	-30 dBm -40 dBm -50 dBm -50 dBm -60 dBm -70	-10 dBm	$ \rightarrow $				~
-30 dBm -40 dBm -50 dBm -50 dBm -60 dBm -70	-30 dBm -40 dBm -50 dBm -50 dBm -60 dBm -70	90 d0 m					
-40 dBm -50 dBm -60 dBm -70	-40 dBm -50 dBm -60 dBm -70	20 UBIII					
-50 dBm -60 dBm -70 dBm -70 dBm CF 2.48 GHz 691 pts Span 6.5 MHz Measuring.	-50 dBm -60 dBm -70 dBm -70 dBm CF 2.48 GHz 691 pts Span 6.5 MHz Measuring	-30 dBm					
-50 dBm -60 dBm -70	-50 dBm -60 dBm -70 dBm -70 dBm CF 2.48 GHz 691 pts Span 6.5 MHz Measuring	-40 dBm					
-60 dBm -70 dBm -70 dBm CF 2.48 GHz 691 pts Span 6.5 MHz Measuring	-60 dBm -70 dBm -70 dBm CF 2.48 GHz 691 pts Span 6.5 MHz Measuring						
-70 dBm	-70 dBm CF 2.48 GHz 691 pts Span 6.5 MHz Measuring	-50 dBm					
CF 2.48 GHz 691 pts Span 6.5 MHz	CF 2.48 GHz 691 pts Span 6.5 MHz	-60 dBm					
CF 2.48 GHz 691 pts Span 6.5 MHz	CF 2.48 GHz 691 pts Span 6.5 MHz						
Measuring (11111)	Measuring 🚺 🖬 👘	70 dPm					
		-70 dBm					
		CF 2.48 GHz	18 14:32:14	691 pt	ts Measu	Ploa	
			8 14:32:14	691 pt	ts Moart	ring	
		CF 2.48 GHz	18 14:32:14	691 pt	ts Neast	Ping	
		CF 2.48 GHz	18 14:32:14	691 pt	ts Neasu	Pino	
		CF 2.48 GHz	.8 14:32:14	691 pt	ts Moard	rina	
		CF 2.48 GHz	18 14:32:14	691 pt	ts Mean		
		CF 2.48 GHz	18 14:32:14	691 pt	ts		
		CF 2.48 GHz	.8 14:32:14	691 pt	ts		
		CF 2.48 GHz	18 14:32:14	691 pt	ts		
		CF 2.48 GHz	.8 14:32:14	691 pt	ts		
		CF 2.48 GHz	.8 14:32:14	691 pt	ts		
		CF 2.48 GHz	.8 14:32:14	691 pt	ts		
		CF 2.48 GHz	.8 14:32:14	691 pt	ts		

7.5 POWER SPECTRAL DENSITY

7.5.1 Applicable Standard

According to FCC Part 15.247(e) and KDB 558074 DTS 01 Meas. Guidance v04

7.5.2 Conformance Limit

The transmitter power spectral density conducted from the transmitter to the antenna shall not be greater than 8 dBm in any 3 kHz band during any time interval of continuous transmission.

7.5.3 Measuring Instruments

The Measuring equipment is listed in the section 6.3 of this test report.

7.5.4 Test Setup

Please refer to Section 6.1 of this test report.

7.5.5 Test Procedure

The testing follows Measurement Procedure 10.2 Method AVGPSD of FCC KDB Publication No. 558074 D01 DTS Meas. Guidance v04

This procedure shall be used if maximum peak conducted output power was used to demonstrate compliance, and is optional if the maximum conducted (average) output power was used to demonstrate compliance.

The RF output of EUT was connected to the spectrum analyzer by RF cable and attenuator.

The path loss was compensated to the results for each measurement.

Set to the maximum power setting and enable the EUT transmit continuously.

The EUT was operating in controlled its channel.

a) Set analyzer center frequency to DTS channel center frequency.

b) Set the span to 1.5*DTS bandwidth.

c) Set the RBW to: $3 \text{ kHz} \leq \text{RBW} \leq 100 \text{ kHz}$.

- d) Set the VBW \geq 3 RBW.
- e) Detector = peak.
- f) Sweep time = auto couple.

g) Trace mode = max hold.

- h) Allow trace to fully stabilize.
- i) Use the peak marker function to determine the maximum amplitude level within the RBW.
- j) If measured value exceeds limit, reduce RBW (no less than 3 kHz) and repeat.

7.5.6 Test Results

EUT:	notebook		Model No.:		EV-C-101-1	
Temperature:	20 ℃		Relative Hu	midity:	48%	
Test Mode:	Mode2/Mod	le3/Mode4	Test By:		Cheng Jiawen	
	Frequency	Dowo	Donsity		Limit	
Test Channel	(MHz)	Power Density (dBm/3KHz)		(dBm/3KHz)		Verdic
			1Mbps		,	
00	2402		7.03		8	PASS
19 39	2440 2480		6.62 6.27		8	PASS PASS
	2400	- 1	0.27		0	FA33
Power spe	ctral density plot o	on channel 0	0		1Mbp	DS
	pectrum Analyzer - Swept SA RF 50 Ω AC		SENSE:INT	ALIGN AUTO	05:22:45 AM Jun 29, 2018	
Marke	r 1 2.401702000000 G	Hz NO: Far 🕞 Trig: F	Avg ree Run	Type: Log-Pwr	TRACE 1 2 3 4 5 6 TYPE M	Peak Search
	IF		: 30 dB	Mkr4	2.401 702 GHz	Next Peak
10 dB/d Log	iv Ref 20.00 dBm				-17.03 dBm	
10.0						Next Pk Right
0.00						
-10.0						Next Pk Left
-20.0		AMA ADAAA	1 MAAAAA	1		Marker Delta
-30.0				MAR AV	MM nm.	
-40.0			, r		W MM	
-50.0				¥	<u>۲</u>	Mkr→CF
-30.0						
-60.0						Mkr→RefLvl
-70.0						
						More
	r 2.4020000 GHz 3W 3.0 kHz	#VBW 10 kH;	Z	Sweep	Span 1.000 MHz 105 ms (1001 pts)	1 of 2
MSG				STATUS		

7.6 CONDUCTED BAND EDGE MEASUREMENT

7.6.1 Applicable Standard

According to FCC Part 15.247(d) and KDB 558074 DTS 01 Meas. Guidance v04

7.6.2 Conformance Limit

In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph (b)(3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20 dB.

7.6.3 Measuring Instruments

The Measuring equipment is listed in the section 6.3 of this test report.

7.6.4 Test Setup

Please refer to Section 6.1 of this test report.

7.6.5 Test Procedure

The testing follows FCC KDB Publication No. 558074 D01 DTS Meas. Guidance v04.

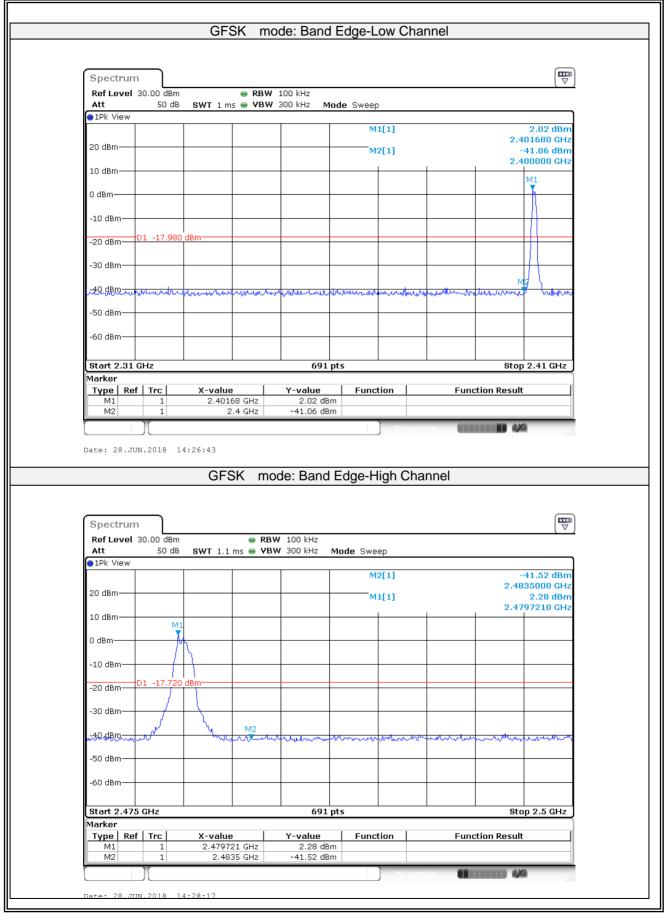
The RF output of EUT was connected to the spectrum analyzer by RF cable and attenuator.

The path loss was compensated to the results for each measurement.

Set to the maximum power setting and enable the EUT transmit continuously.

The EUT was operating in controlled its channel.

Set RBW to 100 kHz and VBW of spectrum analyzer to 300 kHz with a convenient frequency span including 100 kHz bandwidth from band edge.


Measure the highest amplitude appearing on spectral display and set it as a reference level. Plot the graph with marking the highest point and edge frequency.

Repeat above procedures until all measured frequencies were complete.

7.6.6 Test Results

EUT:	notebook	Model No.:	EV-C-101-1
Temperature:	20 ℃	Relative Humidity:	48%
Test Mode:	Mode2/Mode4	Test By:	Cheng Jiawen

7.7 SPURIOUS RF CONDUCTED EMISSIONS

7.7.1 Conformance Limit

1. Below -20dB of the highest emission level in operating band.

2. Fall in the restricted bands listed in section 15.205. The maximum permitted average field strength is listed in section 15.209.

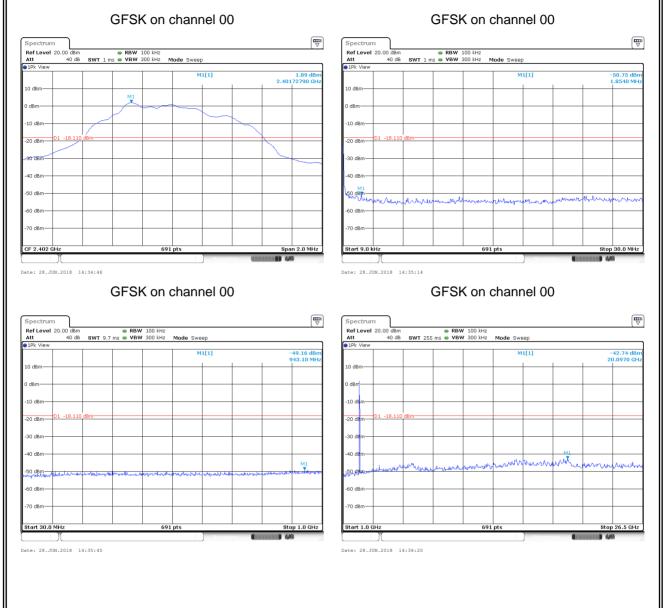
7.7.2 Measuring Instruments

The Measuring equipment is listed in the section 6.3 of this test report.

7.7.3 Test Setup

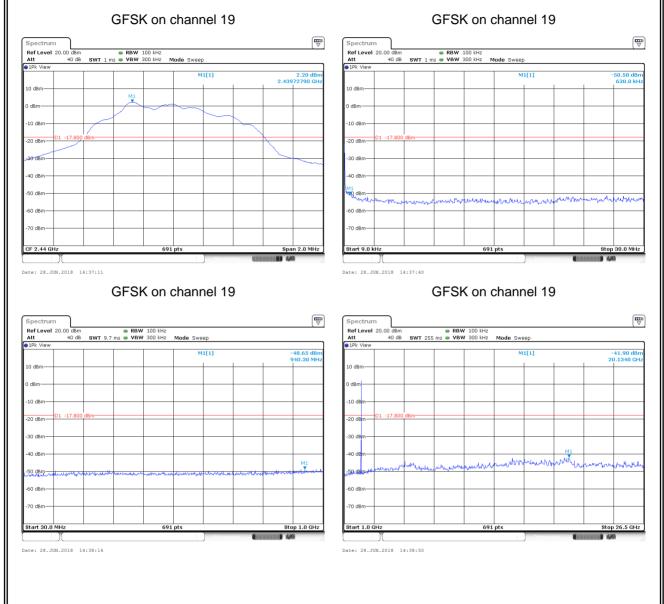
Please refer to Section 6.1 of this test report.

7.7.4 Test Procedure

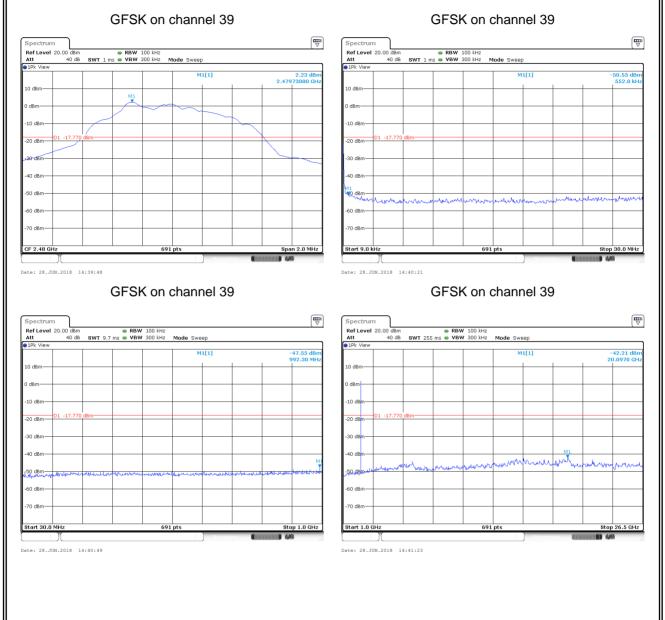

The Spurious RF conducted emissions compliance of RF radiated emission should be measured by following the guidance in ANSI C63.10-2013 with respect to maximizing the emission by rotating the EUT, measuring the emission while the EUT is situated in three orthogonal planes (if appropriate), adjusting the measurement antenna height and polarization etc. Set RBW=100kHz and VBW= 300KHz to measure the peak field strength , and measure frequeny range from 9KHz to 26.5GHz.

7.7.5 Test Results

Remark: The measurement frequency range is from 9KHz to the 10th harmonic of the fundamental frequency. The lowest, middle and highest channels are tested to verify the spurious emissions and bandege measurement data.



Test Plot



Test Plot

Test Plot

7.8 ANTENNA APPLICATION

7.8.1 Antenna Requirement

15.203 requirement: For intentional device, according to 15.203: an intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device.

7.8.2 Result

The EUT antenna is permanent attached FPC antenna(Gain:2dBi). It comply with the standard requirement.

END OF REPORT