

FCC TEST REPORT for Shenzhen RDT Digital Technology Co., Ltd.

Bluetooth Headset Model No.: Nice17

Prepared for:Shenzhen RDT Digital Technology Co., Ltd.Address:4/F, Building 2, JiaAn Science & Technology Park, Liuxian 1st
Road, XinAn Street, 67th District, BaoAn, Shenzhen, China

Prepared By Address Shenzhen Anbotek Compliance Laboratory Limited
1/F., Building 1, SEC Industrial Park, No.0409 Qianhai Road, Nanshan District, Shenzhen, Guangdong, China Tel: (86) 755-26066544 Fax: (86) 755-26014772

Report Number:R011508322IDate of Test:Aug. 12~ 25, 2015Date of Report:Aug. 26, 2015

TABLE OF CONTENT

Description

Test Report

Page

1. GENERAL INFORMATION	4
1.1. Description of Device (EUT)	4
1.2. Auxiliary Equipment Used during Test	
1.3. Description of Test Facility	5
1.4. Measurement Uncertainty	5
2. TEST METHODOLOGY	6
2.1. Summary of Test Results	6
2.2. Description of Test Modes	
3. CONDUCTED EMISSION TEST	7
3.1. Block Diagram of Test Setup	7
3.2. Power Line Conducted Emission Measurement Limits (15.207)	7
3.3. Configuration of EUT on Measurement	
3.4. Operating Condition of EUT	7
3.5. Test Procedure	
3.6. Test equipment	
3.7. Power Line Conducted Emission Measurement Results	
4. FCC PART 15.247 REQUIREMENTS FOR DSSS & OFDM MODULATION	
4.1 Test Setup	
4.2 6dB Bandwidth	
4.3. Maximum Peak output power test	
4.4. Band Edges Measurement	
4.5. Peak Power Spectral Density	
4.6. Radiated Emissions.	
5. ANTENNA APPLICATION	
5.1. Antenna requirement	
5.2. Result.	
6. PHOTOGRAPH	45
6.1 Photo of Conducted Emission Test	
6.2 Photo of Radiation Emission Test	45
APPENDIX I (EXTERNAL PHOTOS)	47
APPENDIX II (INTERNAL PHOTOS)	50

TEST REPORT

Applicant		Shenzhen RDT Digital Technology Co., Ltd.
присан	•	Shehzhen KDT Digital Teenhology Co., Ltd.

Manufacturer : Shenzhen RDT Digital Technology Co., Ltd.

EUT : Bluetooth Headset

Model No.	:	Nice17
Serial No.	:	N.A.
Trade Mark	:	N.A.

Rating : DC 5V, 300mA

Measurement Procedure Used: FCC Part15 Subpart C 2014, Paragraph 15.247

The device described above is tested by Shenzhen Anbotek Compliance Laboratory Limited to determine the maximum emission levels emanating from the device and the severe levels of the device can endure and its performance criterion. The measurement results are contained in this test report and Shenzhen Anbotek Compliance Laboratory Limited is assumed full of responsibility for the accuracy and completeness of these measurements. Also, this report shows that the EUT (Equipment Under Test) is technically compliant with the FCC Part 15 Subpart C requirements.

This report applies to above tested sample only and shall not be reproduced in part without written approval of Shenzhen Anbotek Compliance Laboratory Limited.

Date of Test : Aug. 12~ 25, 2015

Prepared by :

Approved & Authorized Signer :

(Tested Engineer / Kebo Zhang)

(Project Manager / Amy Ding)

(Manager / Tom Chen)

Reviewer :

1. GENERAL INFORMATION

1.1. Description of Device (EUT)

EUT	:	Bluetooth Headset
Model Number	:	Nice17
Test Power Supply	:	AC 120V, 60Hz and AC 240V, 60Hz for adapter/ DC 5V(With DC 3.7V Battery inside)
Frequency	:	2402~2480MHz
Modulation	:	GFSK
Channel Spacing	:	2MHz
Number of Channels	:	40
Antenna Type	:	Integrated
Antenna Gain	:	3.1 dBi
Applicant Address		Shenzhen RDT Digital Technology Co., Ltd. 4/F, Building 2, JiaAn Science & Technology Park, Liuxian 1st Road, XinAn Street, 67th District, BaoAn, Shenzhen, China
Manufacturer Address	::	Shenzhen RDT Digital Technology Co., Ltd. 4/F, Building 2, JiaAn Science & Technology Park, Liuxian 1st Road, XinAn Street, 67th District, BaoAn, Shenzhen, China
Factory Address	:	Shenzhen RDT Digital Technology Co., Ltd. 4/F, Building 2, JiaAn Science & Technology Park, Liuxian 1st Road, XinAn Street, 67th District, BaoAn, Shenzhen, China
Date of receipt	:	Aug. 12, 2015
Date of Test	:	Aug. 12~ 25, 2015

1.2. Auxiliary Equipment Used during Test

Adapter

: Manufacturer: Samsung M/N: ETA-U90CBC S/N: RT6FB17ZS/B-E Input: AC 100-240V, 50-60Hz, 0.35A Output: DC 5V, 2A

1.3. Description of Test Facility

The test facility is recognized, certified, or accredited by the following organizations:

CNAS - LAB Code: L3503

Shenzhen Anbotek Compliance Laboratory Limited., Laboratory has been assessed and in compliance with CNAS/CL01: 2006 accreditation criteria for testing laboratories (identical to ISO/IEC 17025:2005 General Requirements) for the Competence of Testing Laboratories.

FCC-Registration No.: 752021

Shenzhen Anbotek Compliance Laboratory Limited, EMC Laboratory has been registed and fully described in a report filed with the (FCC) Federal Communications Commission. The acceptance letter from the FCC is maintained in our files. Registration 752021, July 10, 2013.

IC-Registration No.: 8058A-1

Shenzhen Anbotek Compliance Laboratory Limited., EMC Laboratory has been registered and fully described in a report filed with the (IC) Industry Canada. The acceptance letter from the IC is maintained in our files. Registration 8058A, February 22, 2013.

Test Location

All Emissions tests were performed at

Shenzhen Anbotek Compliance Laboratory Limited. at 1/F., Building 1, SEC Industrial Park, No.0409 Qianhai Road, Nanshan District, Shenzhen, Guangdong, China

1.4. Measurement Uncertainty

Radiation Uncertainty	:	Ur = 4.1 dB (Horizontal) Ur = 4.3 dB (Vertical)
Conduction Uncertainty	:	Uc = 3.4dB

2. TEST METHODOLOGY

The tests documented in this report were performed in accordance with ANSI C63.10: 2013 and FCC Part 15, Paragraph 15.247.

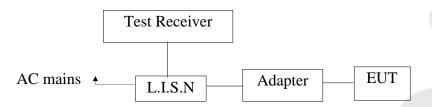
2.1. Summary of Test Results

The EUT has been tested according to the following specifications:

Standard	Test Type	Result	Notes
FCC Part 15, Paragraph 15.107, 15.207	Conducted Emission Test	PASS	Complies
FCC Part 15, Paragraph 15.247(b)(1)	Peak Output Power	PASS	Complies
FCC Part 15, Paragraph 15.247(a)(2)	6dB Bandwidth	PASS	Complies
FCC Part 15, Paragraph 15.247(c)	100kHz Bandwidth of Frequency Band Edges	PASS	Complies
FCC Part 15, Paragraph 15.209(a)(f)	Spurious Emission	PASS	Complies
FCC Part 15, Paragraph 15.247(a)(1)	Frequency Separation	-	N/A
FCC Part 15, Paragraph 15.247(a)(1)(iii)	Number of Hopping Frequency		N/A
FCC Part 15, Paragraph 15.247(a)(1)(iii)	Time of Occupancy	_	N/A
FCC Part 15, Paragraph 15.247(c)	Peak Power Density	PASS	Complies

2.2. Description of Test Modes

The EUT has been tested under operating condition. Software used to control the EUT for staying in continuous transmitting and receiving mode is programmed.


Channel Low(2402MHz), Channel Middle(2440MHz) and Channel High(2480MHz) are chosen for the final testing.

3. Conducted Emission Test

3.1. Block Diagram of Test Setup

3.1.1. Block diagram of connection between the EUT and simulators

3.2. Power Line Conducted Emission Measurement Limits (15.207)

Frequency	Limits dB(µV)			
MHz	Quasi-peak Level	Average Level		
0.15 ~ 0.50	66 ~ 56*	56 ~ 46*		
0.50 ~ 5.00	56	46		
5.00 ~ 30.00	60	50		

Notes: 1. *Decreasing linearly with logarithm of frequency.

2. The lower limit shall apply at the transition frequencies.

3.3. Configuration of EUT on Measurement

The following equipments are installed on Power Line Conducted Emission Measurement to meet the commission requirement and operating regulations in a manner which tends to maximize its emission characteristics in a normal application.

3.4. Operating Condition of EUT

3.4.1. Setup the EUT and simulator as shown as Section 3.1.

- 3.4.2. Turn on the power of all equipment.
- 3.4.3. Let the EUT work in test mode (Charging) and measure it.

3.5. Test Procedure

The EUT system is connected to the power mains through a line impedance stabilization network (L.I.S.N.). This provides a 50ohm coupling impedance for the EUT system. Please refer the block diagram of the test setup and photographs. Both sides of AC line are checked to find out the maximum conducted emission. In order to find the maximum emission levels, the relative positions of equipment and all of the interface cables shall be changed according to FCC ANSI C63.10-2013 on Conducted Emission Measurement.

The bandwidth of test receiver (ESCI) set at 9KHz.

The frequency range from 150KHz to 30MHz is checked.

The test results are reported on Section 3.6.

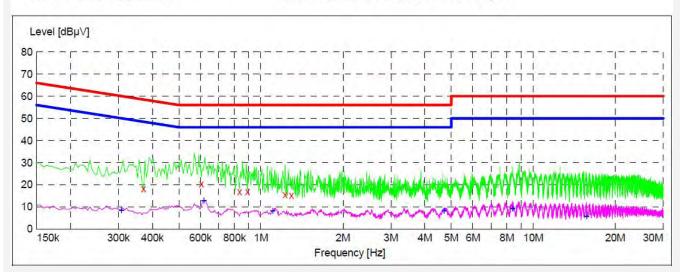
3.6. Test equipment

Item	Equipment	Manufacturer	Model No.	Serial No.	Last Cal.	Cal. Interval
1.	Two-Line V-network	Rohde & Schwarz	ENV216	100055	Apr. 17, 2015	1 Year
2.	EMI Test Receiver	Rohde & Schwarz	ESCI	100627	Apr. 17, 2015	1 Year
3.	RF Switching Unit	Compliance Direction	RSU-M2	38303	Apr. 17, 2015	1 Year

3.7. Power Line Conducted Emission Measurement Results

PASS.

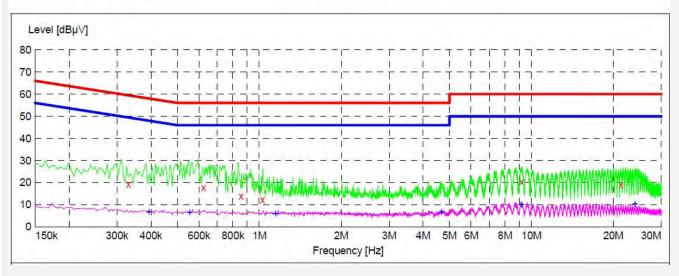
The frequency range from 150KHz to 30 MHz is investigated.


Please refer the following pages.

Test Site:	1# Shielded Room
Operating Condition:	Charging
Test Specification:	AC 120V, 60Hz for adapter
Comment:	Live Line
	Tem.:25°C Hum.:50%

SCAN TABLE: "Voltage (150K~30M) FIN" Short Description:

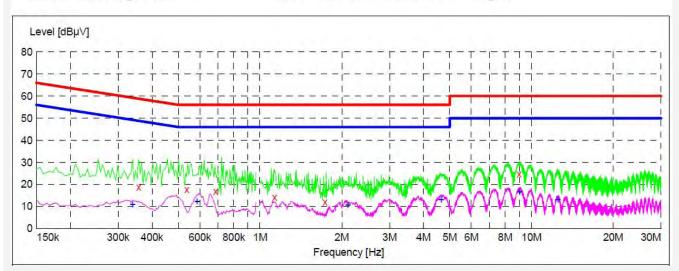
150K-30M Disturbance Voltages



-	7		+ 2.0.2 k	Marcala	BULUELO	+ + + + + + +	DP	
Frequency	Level	Transd	Limit	Margin	Detector	Line	PE	
MHz	dBµV	dB	dBµV	dB				
0 070500	10.00	00.1	5.0	10.0	0.5	T 1	CINTE	
0.370500	18.30	20.1	59	40.2	QP	L1	GND	
0.604500	20.50	20.1	56	35.5	QP	L1	GND	
0.834000	16.90	20.1	56	39.1	QP	L1	GND	
0.892500	16.90	20.1	56	39.1	QP	L1	GND	
1.225000	15.50	20.2	56	40.5	QP	L1	GND	
1.292500	15.20	20.2	56	40.8	QP	L1	GND	
1.101000	20.20	20.2	00		×-		0112	
Frequency	Level	Transd	Limit	Margin	Detector	Line	PE	
MHz	dBµV	dB	dBµV	dB				
0.307500	8.50	20.1	50	41.5	AV	L1	GND	
0.618000	12.90	20.1	46	33.1	AV	L1	GND	
1.103500	8.30	20.2	46	37.7	AV	L1	GND	
4.703500	8.30	20.5	46	37.7	AV	L1	GND	
8.389000	9.20	20.6	50	40.8	AV	L1	GND	
15.683500	5.90	20.0	50	44.1	AV	L1	GND	
10.003200	5.90	20.7	50	44.1	AV	11	GND	

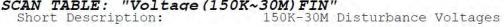
Test Site:	1# Shielded Room
Operating Condition:	Charging
Test Specification:	AC 120V, 60Hz for adapter
Comment:	Neutral Line
	Tem.:25°C Hum.:50%
	0.0141

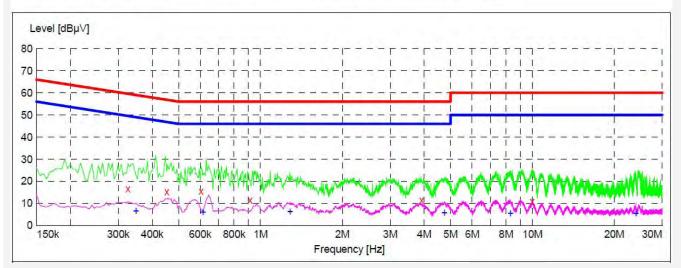
SCAN TABLE: "Voltage (150K~30M) FIN" Short Description: 150K-30M Disturbance Voltages


Frequency	Level	Transd	Limit	Margin	Detector	Line	PE	
MHz	dBµV	dB	dBµV	dB				
0.330000	19.40	20.1	60	40.1	QP	N	GND	
0.622500	17.70	20.1	56	38.3	QP	N	GND	
0.856500	13.90	20.1	56	42.1	QP	N	GND	
1.027000	12.40	20.2	56	43.6	OP	N	GND	
9.208000	20.40	20.6	60	39.6	QP	N	GND	
21.326500	19.20	20.8	60	40.8	QP	N	GND	
Frequency	Level	Transd	Limit	Margin	Detector	Line	PE	
MHz	dBµV	dB	dBµV	dB				
0.393000	7.00	20.1	48	41.0	AV	N	GND	
0.555000	6.70	20.1	46	39.3	AV	N	GND	
1.148500	6.00	20.2	46	40.0	AV	N	GND	
4.672000	6.60	20.5	46	39.4	AV	N	GND	
9.194500	10.00	20.6	50	40.0	AV	N	GND	
23.999500	10.30	20.8	50	39.7	AV	N	GND	

Test Site:	1# Shielded Room
Operating Condition:	Charging
Test Specification:	AC 240V, 60Hz for adapter
Comment:	Live Line
	Tem.:25℃ Hum.:50%

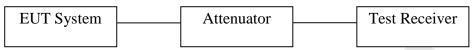
SCAN TABLE: "Voltage (150K~30M) FIN" Short Description:


150K-30M Disturbance Voltages



Frequency	Level	Transd	Limit	Margin	Detector	Line	PE	
MHz	dBµV	dB	dBµV	dB				
0.357000	18.70	20.1	59	40.1	OP	L1	GND	
0.537000	17.60	20.1	56	38.4	QP	L1	GND	
0.685500	17.00	20.1	56	39.0	QP	L1	GND	
1.130500	14.30	20.2	56	41.7	QP	L1	GND	
1.733500	12.00	20.3	56	44.0	QP	L1	GND	
8.992000	24.80	20.6	60	35.2	QP	L1	GND	
Frequency	Level	Transd	Limit	Margin	Detector	Line	PE	
MHz	dBµV	dB	dBµV	dB				
0.339000	10.90	20.1	49	38.3	AV	L1	GND	
0.586500	12.30	20.1	46	33.7	AV	L1	GND	
2.102500	10.60	20.3	46	35.4	AV	L1	GND	
4.649500	13.20	20.5	46	32.8	AV	L1	GND	
9.041500	16.60	20.6	50	33.4	AV	L1	GND	
12.520000	13.10	20.7	50	36.9	AV	L1	GND	

Test Site:	1# Shielded Room
Operating Condition:	Charging
Test Specification:	AC 240V, 60Hz for adapter
Comment:	Neutral Line
	Tem.:25℃ Hum.:50%
SCAN TABLE: "Voltage (150K~	SOM) FTN"



Frequency MHz	Level dBµV	Transd dB	Limit dBµV	Margin dB	Detector	Line	PE	
0.325500	16.60	20.1	60	43.0	QP	N	GND	
0.451500	15.20	20.1	57	41.6	QP	N	GND	
0.604500	15.50	20.1	56	40.5	QP	N	GND	
0.915000	11.60	20.1	56	44.4	QP	N	GND	
3.911500	11.60	20.4	56	44.4	QP	N	GND	
9.968500	11.00	20.6	60	49.0	QP	N	GND	
Frequency	Level	Transd	Limit	Margin	Detector	Line	PE	
MHz	dBµV	dB	dBµV	dB				
0.348000	6.50	20.1	49	42.5	AV	N	GND	
0.613500	6.20	20.1	46	39.8	AV	N	GND	
1.283500	6.40	20.2	46	39.6	AV	N	GND	
4.735000	5.70	20.5	46	40.3	AV	N	GND	
8.303500	5.50	20.5	50	44.5	AV	N	GND	
23.999500	5.60	20.8	50	44.4	AV	N	GND	

4. FCC Part 15.247 Requirements for DSSS & OFDM Modulation

4.1 Test Setup

4.2 6dB Bandwidth

a. Limit

For the direct sequence systems, the minimum 6dB bandwidth shall be at least 500kHz.

b. Test Procedure

- 1. Place the EUT on the table and set it in the transmitting mode.
- 2. Remove the antenna from the EUT and then connect a low loss RF cable from the antenna port
- to the spectrum analyzer.
- 3. Set the spectrum analyzer as:

RBW = 100 kHz, $VBW \ge 3 RBW = 300 kHz$,

Detector= Peak

Trace mode= Max hold.

Sweep- auto couple.

- 4. Mark the peak frequency and –6dB (upper and lower) frequency.
- 5. Repeat until all the rest channels are investigated.

c. Test Setup See 4.1

d. Test Equipment

Item	Equipment	Manufacturer	Model No.	Serial No.	Last Cal.	Cal. Interval
1.	. Spectrum Analysis Agilent		E4407B	US39390582	Apr. 17, 2015	1 Year
2.	Preamplifier	Instruments corporation	EMC01183 0	980100	Apr. 17, 2015	1 Year
3.	EMI Test Receiver	Rohde & Schwarz	ESPI	101604	Apr. 17, 2015	1 Year
4.	Double Ridged Horn Antenna	Instruments corporation	GTH-0118	351600	Apr. 20, 2015	1 Year
5.	Bilog Broadband Antenna	Schwarzbeck	VULB9163	VULB 9163-289	Apr. 20, 2015	1 Year
6.	Pre-amplifier	SONOMA	310N	186860	Apr. 17, 2015	1 Year
7.	EMI Test Software EZ-EMC	SHURPLE	N/A	N/A	N/A	N/A

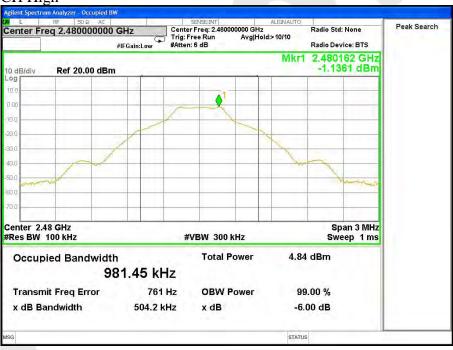
e. Test Results

Pass.

f. Test Data

Channel	Frequency (MHz)	Bandwidth (kHz)	Limit (kHz)	Results
Low	2402	505.3		Pass
Mid	2440	509.1	>500	Pass
High	2480	504.2		Pass

Test Plots See the following page.


B -7.00 dB			SE:INT		ALIGNAUTO			Deals Dearsh
		Center Fre Trig: Free	eq: 2.402000	0000 GHz Avg Hold:	>10/10	Radio Std	: None	Peak Search
	#IFGain:Low	#Atten: 6 c		Avginoid.	~ 10/10	Radio Dev	vice: BTS	
dB/div Ref 20.00 d	Bm				Mkr1		62 GHz 12 dBm	
		-		1	-			
0								
0					-	-		
a		1	~					
ó			-		-			
0	1							
	10				X			
					~	N.		
° not		1.				2	anna anna	
0						-		
0								
nter 2.402 GHz					-		an 3 MHz	
es BW 100 kHz		#VB	W 300 k	Hz		Swe	eep 1 ms	
Occupied Bandwi	dth		Total Po	wer	1.91	dBm		
	988.88 kH	Ηz						
Transmit Freq Error	825	Hz	OBW Po	ower	99	.00 %		
	505.3 k	Hz	x dB		-6.	00 dB		

CH Mid

CH High

4.3. Maximum Peak output power test

a. Limit

The maximum peak output power of the intentional radiator shall not exceed the following: 1. For systems using digital modulation in the bands of 902-928 MHz, 2400-2483.5 MHz, and 5725-5850 MHz: 1 watt (30dBm).

2. Except as shown in paragraphs (b)(3) (i), (ii) and (iii) of this section, if transmitting antenna of directional gain greater than 6 dBi are used the peak output power from the intentional radiator shall be reduced below the stated values in paragraphs (b)(1) or (b)(2) of this section, as appropriate, by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

b. Configuration of Measurement

c. Test Procedure

This test was according the kDB 558074 9.1.2:

1. This procedure shall be used when the measurement instrument has available a resolution bandwidth that is greater than the DTS bandwidth.

- 2. Set the RBW \geq DTS bandwidth.
- 3. Set the VBW \geq 3*RBW.
- 4. Set the span ≥ 3 *RBW.
- 5. Detector = peak.
- 6. Sweep time = auto couple.
- 7. Trace mode = max hold.
- 8. Allow trace to fully stabilize.
- 9. Use peak marker function to determine the peak amplitude level.

d. Test Equipment

Same as the equipment listed in 4.2.

e. Test Results

Pass.

g. Test Data

Channel	annel Frequency Maximum transmit power		Li	mit	Result
Channel	(MHz)	(dBm)	(dBm)	(watts)	Result
Low	2402	1.281			Pass
Mid	2440	1.528	30	1	Pass
High	2480	2.069			Pass

CH Mid

4.4. Band Edges Measurement

a. Limit

According to \$15.247(c), in any 100 kHz bandwidth outside the frequency bands in which the spread spectrum intentional radiator in operating, the radio frequency power that is produced by the intentional radiator shall be at least 20dB below that in the 100kHz bandwidth within the band that contains the highest level of the desired power, In addition, radiated emissions which fall in the restricted bands, as defined in \$15.205(a), must also comply with the radiated emission limits specified in 15.209(a).

b. Test Procedure

- 1. Conducted Method:
- 1) Set RBW=100KHz, VBW=300KHz
- 2) Detector=peak
- 3) Sweep time= auto
- 4) Trace mode=max hold.
- 2. Radiated Method:
- 1) For below 1GHz: The EUT is placed on a turntable, which is 0.8m above the ground plane. The EUT is tested in 9*6*6 Chamber.

For above 1GHz: The EUT is placed on a turntable, which is 1.5m above the ground plane. The EUT is tested in 9*6*6 Chamber.

- 2) The turntable shall be rotated for 360 degrees to determine the position of maximum emission level.
- 3) EUT is set 3m away from the receiving antenna, which is varied from 1m to 4m to find out the highest emission.
- 4) Set both RBW and VBW of spectrum analyzer to 100kHz with a convenient frequency span including 100kHz bandwidth from band edge, check the emission of EUT. If pass then set Spectrum Analyzer as below:

For below 1GHz:

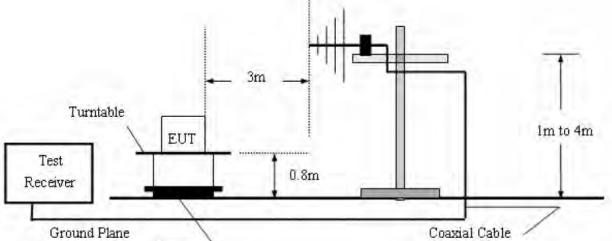
The resolution bandwidth and video bandwidth of test receiver/ spectrum analyzer is 120kHz. Detector: **Quasi-Peak**

For above 1GHz Peak measurement:

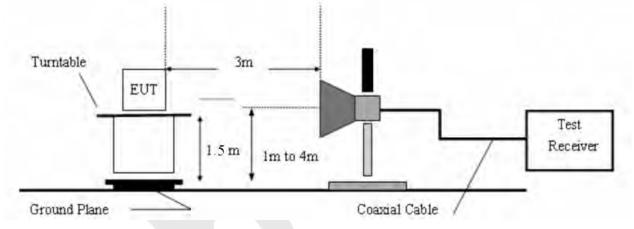
The resolution bandwidth of test receiver/ spectrum analyzer is 1MHz and video bandwidth is 3MHz.

Detector: Peak

For above 1GHz average measurement:


The resolution bandwidth of test receiver/ spectrum analyzer is 1MHz and the video bandwidth is 1kHz.

Detector: Peak


5) Repeat the procedures until all the PEAK and AVERAGE versus POLARIZATION are measured.

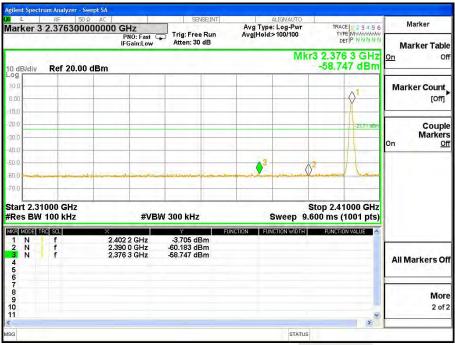
30M to 1G emissions:

1G to 40G emissions:

c. Test Equipment

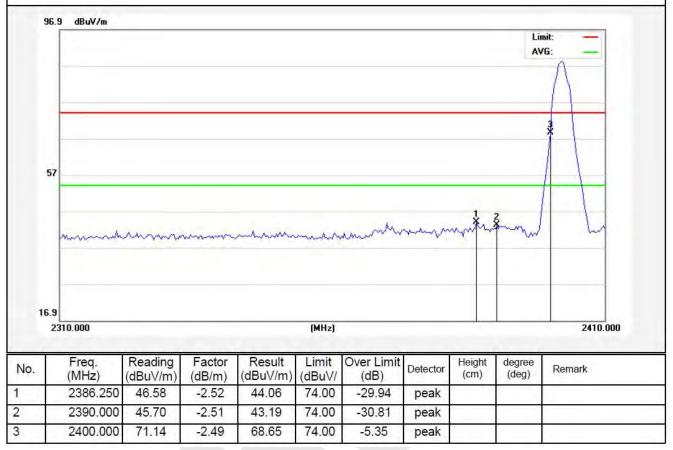
Same as the equipment listed in 4.2.

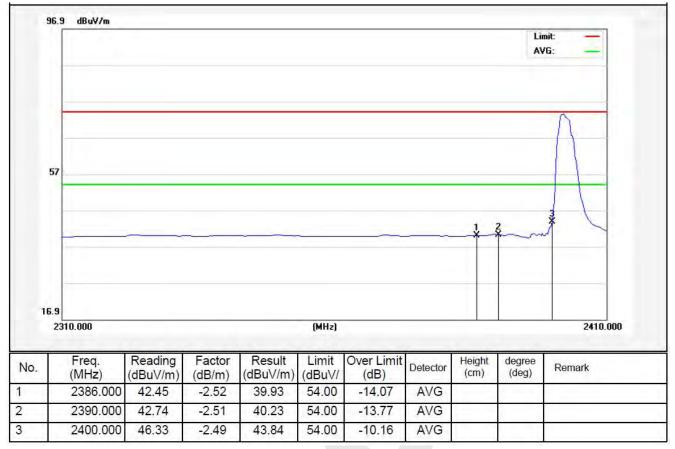
d. Test Results


Pass.

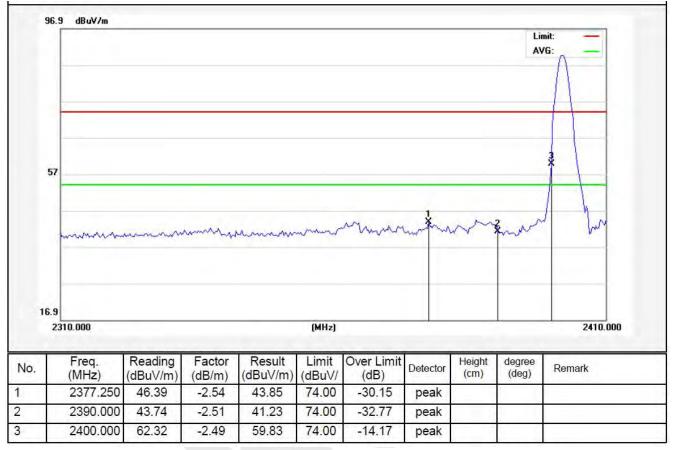
e. Test Plots

See the following page.

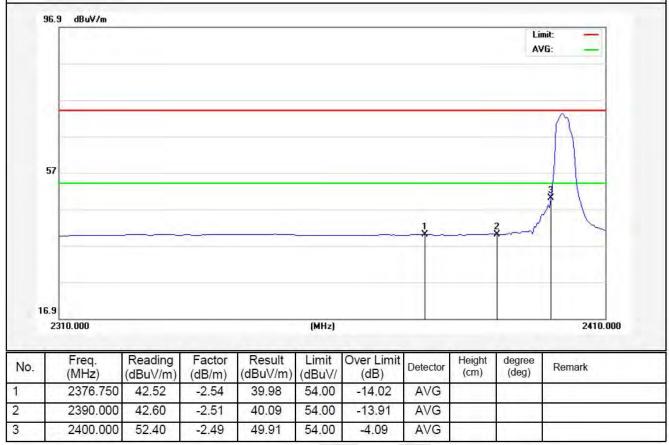

CH Low



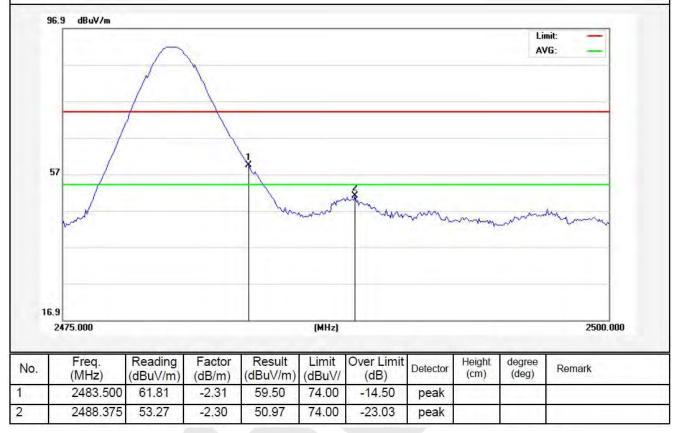
2402MHz Horizontal-PEAK:



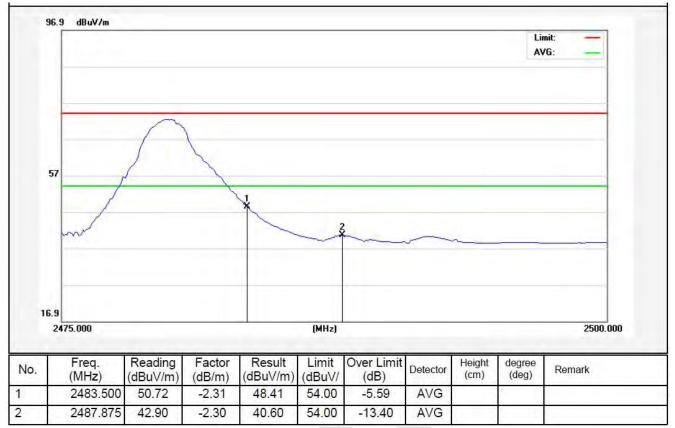
Horizontal-AV:



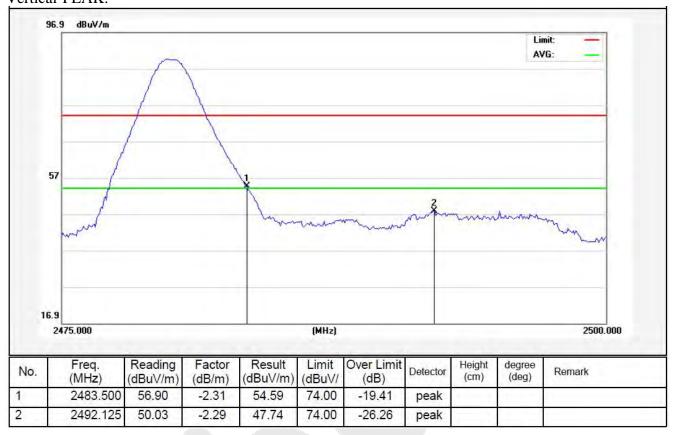
2402MHz Vertical-PEAK:



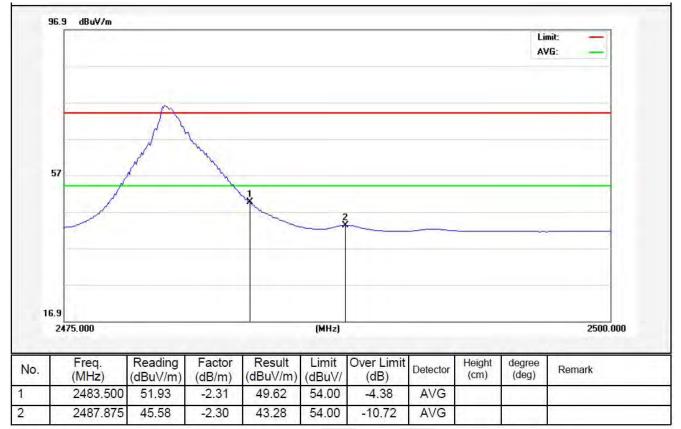
Vertical-AV:



2480MHz Horizontal-PEAK:



Horizontal-AV:



2480MHz Vertical-PEAK:

Vertical-AV:

4.5. Peak Power Spectral Density

a. Limit

1. For direct sequence systems, the peak power spectral density conducted from the intentional radiator to the antenna shall not be greater than 8dBm in any 3kHz band during any time interval of continuous transmission.

2. The direct sequence operating of the hybrid system, with the frequency hopping operation turned off, shall comply with the power density requirements of paragraph (d) of this section.

b. Test Procedure

1. Place the EUT on the table and set it in transmitting mode. Remove the antenna from the EUT and then connect a low loss RF cable from the antenna port to the spectrum analyzer.

2. Set the spectrum analyzer as RBW = 3kHz, VBW = 10kHz, Span = 1.5xOBW, Sweep=500s

3. Record the max. reading.

4. Repeat the above procedure until the measurements for all frequencies are completed.

c. Test Equipment

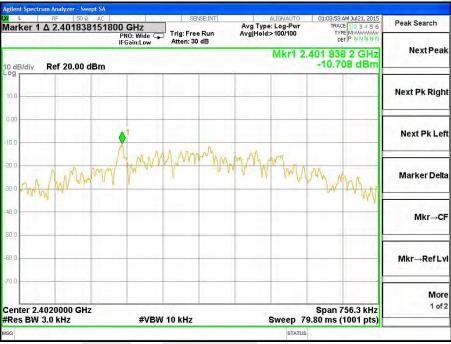
Same as the equipment listed in 4.2.

d. Test Setup See 3.1

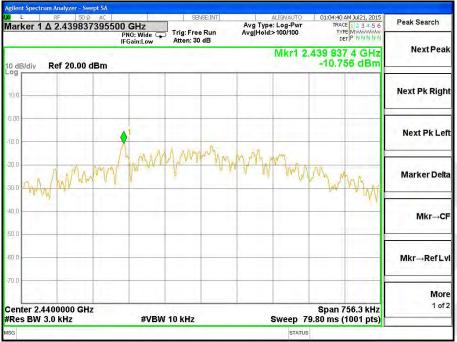
e. Test Results

Pass

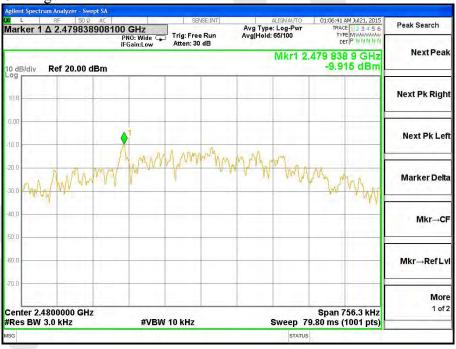
f. Test Data


Please refer to the following data.

g. Test Plot See the following pages


Test mode: IEE	EE 802.11b				
Channel	Frequency (MHz)	PPSD (dBm/3KHz)	Σ PPSD (dBm/3KHz)	Limit (dBm)	Result
Low	2402	-10.708	-	8.00	Pass
Mid	2440	-10.756	-	8.00	Pass
High	2480	-9.915	-	8.00	Pass

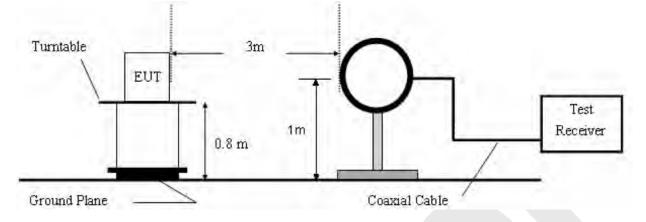
CH Low



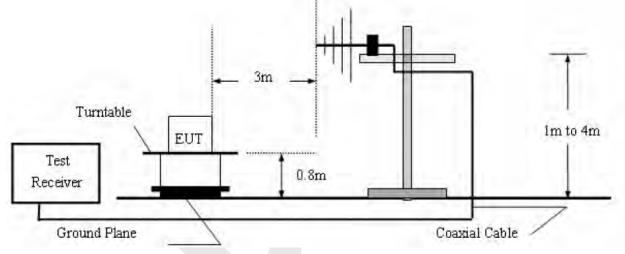
CH Mid

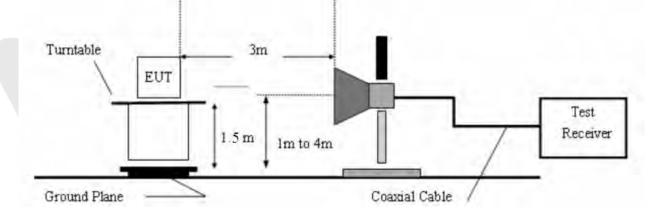
4.6. Radiated Emissions

4.6.1.1. Test Limi	ts (< 30 MHZ)			
Frequency	Field Strength	Measurement	Distance	
(MHz)	(microvolts/meter)	(meter)		
0.009-0.490	2400/F(kHz)	300		
0.490-1.705	24000/F(kHz)	30		
1.705-30.0	30	30		
4.6.1.2. Test Limi	ts (≥ 30 MHZ)			
FIELD STRENG	TH FIELD ST	RENGTH	S15.209	
of Fundamental:	of Harmon	nics	30 - 88 MHz	40 dBuV/m
@3M				
902-928 MHZ			88 - 216 MHz	43.5
2.4-2.4835 GHz			216 - 960 MHz	46
94 dBµV/m @3m	54 dBµV/r	n @3m	ABOVE 960 MHz	54dBuV/m


In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement. Attenuation below the general limits specified in Section 15.209(a) is not required. In addition, radiated emissions which fall in the restricted bands, as defined in Section 15.205(a), must also comply with the radiated emission limits specified in Section 15.209(a) (see Section 15.205(c)).

	Test Equipment					
Item	Equipment	Manufacturer	Model No.	Serial No.	Last Cal.	Cal. Interval
1.	1. Spectrum Analysis Agilent		E4407B	US39390582	Apr. 17, 2015	1 Year
2.	Preamplifier	Instruments corporation	EMC01183 0	980100	Apr. 17, 2015	1 Year
3.	3. EMI Test Receiver Rohde & Schwarz		ESPI	101604	Apr. 17, 2015	1 Year
4.	Double Ridged Horn Antenna	Instruments corporation	GTH-0118	351600	Apr. 20, 2015	1 Year
5.	Bilog Broadband Antenna	Schwarzbeck	VULB9163	VULB 9163-289	Apr. 20, 2015	1 Year
6.	Pre-amplifier	SONOMA	310N	186860	Apr. 17, 2015	1 Year
7.	EMI Test Software EZ-EMC	SHURPLE	N/A	N/A	N/A	N/A


Tost Equipmont


4.6.2. Test Configuration: 4.6.2.1. 9k to 30MHz emissions:

4.6.2.2. 30M to 1G emissions:

4.6.2.3. 1G to 40G emissions:

4.6.3. Test Procedure

For below 1GHz: The EUT is placed on a turntable, which is 0.8m above the ground plane. For above 1GHz: The EUT is placed on a turntable, which is 1.5m above the ground plane. The turn table can rotate 360 degrees to determine the position of the maximum emission level. The EUT is set 3 meters away from the receiving antenna which is mounted on a antenna tower. The antenna can be moved up and down from 1 to 4 meters to find out the maximum emission level. Both horizontal and vertical polarization of the antenna are set on test.

Measurements are made on 9KHz to 30MHz and 30MHz to 26GHz range with the transmitter set to the lowest, middle, and highest channels.

All readings from 30MHz to 1GHz are quasi-peak values with a resolution bandwidth of 120kHz. All reading are above 1GHz, peak & average values with a resolution bandwidth of 1MHz.

The EUT is tested in 9*6*6 Chamber. The device is evaluated in xyz orientation.

The test results are listed in Section 4.6.4.

4.6.4. Test Results

PASS.

The EUT was tested on (Charging, BT Mode) modes, only the worst data of (Charging) is attached in the following pages. Only the worst case (x orientation).

ob N	0.:	01150832	221		Pol	arization:			Horiz	zontal
tand	ard:	(RE)FCC	C PART1	5 C _3m	Pov	wer Source:	:		AC 1	20V, 60Hz for adapte
est it	tem:	Radiatio	n Test		Ter	np.(C)/Hur	n.(%RH	[) :	24.3(C)/55%RH
'est N	/lode:	Charging	g		Dis	tance:			3m	
	80.0 dBu∀/m	F T	1			-			- Li	mit:
	· · · · · ·									argin:
										r
	pression data									
	40		100	- 1						
	40									
						4 *				1 Marson alburger
	Mr. WMX.					Ť	DX		www.dunal.gr.ad.nab	Whenter
	Winner	Mulumin.					white the	Ar Water and		
		ANY	make me	3 Andrew	_	which have protinged	when			
			APR. WA	L. M. a kraunalelinal	the design and the second					
	0.0									
	30.000 40	50 60	70 80		(MHz)		300	400	500 600	700 1000.000
-	Freq.	Reading	Factor	Result	Limit	Over Limit	-	Height	dograa	<u> </u>
No.	(MHz)	(dBuV/m)	(dB/m)	(dBuV/m)		(dB)	Detector	Height (cm)	degree (deg)	Remark
1	41.5670	32.04	-10.99	21.05	40.00	-18.95	peak			
2	58.6126	31.97	-15.27	16.70	40.00	-23.30	peak		i i i	
3	96.0986	31.99	-20.97	11.02	43.50	-32.48	peak	-	-	
4	260.1444	43.05	-18.99	24.06	46.00	-21.94	peak			
5	348.0274	36.15	-14.05	22.10	46.00	-23.90	peak			
5						INCOME AND A DESCRIPTION OF A DESCRIPTIO				

ob No	.:	01150832	21		Р	olarization	:		Vert	ical	
tanda	rd:	(RE)FCO	C PART1	5 C _3m	Р	ower Sour	ce:		AC	120V, 6	60Hz for adapt
'est ite	em:	Radiatio	n Test		Т	emp.(C)/H	um.(%R	H):	24.3	(C)/55%	%RH
'est M	ode:	Charging	g		D	vistance:			3m		
	80.0 dBu¥7m									imit: Aargin:	
						-				rargin.	
											r
						-					
	40					-	-	-		_	
	-					5					
	1	2				×		6			warmen
	MA M M	d and		3 4		100	1.2	Anna	an purchase	manapolio	
	WV.	WWWWWWWWWW		Missinger 10.	. Alexand	moundalifield	and the superior	en war - onder			
		THE PARKAGE	ALL .		A MARINE WINA						
		WAR AND	Murin						_		
		. The branding	Murin					1			
4	0.0	50 60	70 80		(MHz)		300	400	500 600) 700	1000.000
	0.0	50 60 Reading	70 80 Factor	Result (dBuV/m)	Limit	Over Limit (dB)		400 Height (cm)	500 600 degree (deg)	700 Rem	
No.	0.0 30.000 40 Freq.	50 60	70 80 Factor	Result (dBuV/m) 28.65	Limit			Height	degree	1	
No.	0.0 30.000 40 Freq. (MHz)	50 60 Reading (dBuV/m)	70 80 Factor (dB/m)	(dBuV/m)	Limit (dBuV/	(dB)	Detector	Height	degree	1	
No. 1	0.0 30.000 40 Freq. (MHz) 37.5479	50 60 Reading (dBuV/m) 40.95	70 80 Factor (dB/m) -12.30	(dBuV/m) 28.65	Limit (dBuV/ 40.00	(dB) -11.35	Detector peak	Height	degree	1	
No. 1 2 3	0.0 30.000 40 Freq. (MHz) 37.5479 53.3179	50 60 Reading (dBuV/m) 40.95 39.65	70 80 Factor (dB/m) -12.30 -14.80	(dBuV/m) 28.65 24.85	Limit (dBuV/ 40.00 40.00	(dB) -11.35 -15.15	Detector peak peak	Height	degree	1	
No. 1 2 3 4 5	0.0 30.000 40 Freq. (MHz) 37.5479 53.3179 112.1305	50 60 Reading (dBuV/m) 40.95 39.65 36.56	70 80 Factor (dB/m) -12.30 -14.80 -15.77	(dBuV/m) 28.65 24.85 20.79	Limit (dBuV/ 40.00 40.00 43.50	(dB) -11.35 -15.15 -22.71	Detector peak peak peak	Height	degree	1	

ob No.:		0115083	3221			Polarizatio	on:		Horiz	ontal
tandard	l:	(RE)FC	CC PART	15 C _3m		Power Sou	rce:		DC 3.	.7V
'est item	1:	Radiati	on Test			Temp.(C)/	Hum.(%	BRH):	24.3(C) /55%RH
lote:		2402MI	Hz			Distance:			3m	
96	9 dBuV/m									
				-					Lir AV	nit: /6:
	-									
47			1	m		1				
	mm			Ly		~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	Jun	man	mahar	mun
						5000 60	000 7000	8000 9000		18000.000
-3	000.000		2000	2000			100 7000	8000 3000		18000.000
	000.000		2000	3000	(MHz)	5000 60				
	000.000 Freq. (MHz)	Reading (dBuV/m)	2000 Factor (dB/m)	3000 Result (dBuV/m)	Limit (dBuV/	Over Limit (dB)		Height (cm)	degree (deg)	Remark
1	Freq.		Factor	Result	Limit	Over Limit		Height	degree (deg)	Remark

ob No.:		0115083	22I			Polarizatio	on:		Verti	cal
standard	:	(RE)FC	C PART	15 C _3m		Power Sou	rce:		DC 3	.7V
lest item	:	Radiatio	on Test			Temp.(C)/Hum.(%RH):				C)/55%RH
Note:		2402MH	[z			Distance:			3m	
96.	9 dBu∀/m									
									Lin AV	
			1							
47				120						
			mil	m	m	mj	mm	mm	how	man
						*				
2										
-3 11	000.000		2000	3000	(MHz)	5000 60	00 7000	8000 9000		18000.000
	Freq.	Reading (dBuV/m)	Factor	Result	Limit	Over Limit		8000 9000 Height (cm)	degree (deg)	18000.000 Remark
11		Reading (dBuV/m) 40.04	index 2		Limit			Height		

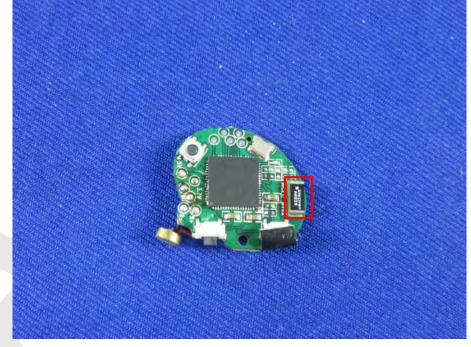
ob No.:	:	01150832	22I		ł	Polarization	a:		Horiz	ontal
tandar	d:	(RE)FC(C PART1	5 C _3m	I	Power Sour	:ce:		DC 3.	7V
est iter	n:	Radiatio	n Test]	Гетр.(С)/Н	Ium.(%]	RH):	24.3(0	C)/55%RH
lote:		2440MH	Z		I	Distance:			3m	
9	6.9 dBuV/m									
									Lin AV	100.11
4	17	~	mall	m		1	A		much	an and
	man			hin	mm	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	mur	2 m man	a article a	~~~~
	1									
-3	1000.000		2000	3000	(MHz)	5000 60	000 7000 1	8000 9000		18000.000
	1000.000 Freq. (MHz)	Reading (dBuV/m)	2000 Factor (dB/m)	3000 Result (dBuV/m)	Limit	5000 60 Over Limit (dB)		8000 9000 Height (cm)	degree (deg)	18000.000 Remark
	Freq.		Factor	Result	Limit	Over Limit		Height	degree (deg)	

lob No.:		0115083	3221			Polarizat	ion:		Vertic	al
Standard	:	(RE)FC	C PART	15 C _3m		Power So	ource:		DC 3.7	7V
Fest item	:	Radiati	on Test			Temp.(C)/Hum.(%	%RH):	24.3(C	2)/55%RH
Note:		2440MI	Hz			Distance:			3m	
96.	9 dBu¥/m									
									Lir AV	nit: /G:
			1							
						_				
					_					
47	m	m		m	m	www	*m	nm	m	m
		~		han	~~~~~		X			
-3										
2.1	000.000	-	2000	3000	(MHz)	5000 6	000 7000	8000 9000	_	18000.000
	000.000 Freq. (MHz)	Reading (dBuV/m)	2000 Factor (dB/m)	3000 Result (dBuV/m)	(MHz) Limit (dBuV/	5000 6 Over Limit (dB)		8000 9000 Height (cm)	degree (deg)	18000.000 Remark
1	Freq.		Factor	Result	Limit	Over Limit		Height	degree (deg)	

ob No.:		01150832	2I]	Polarizatio	n:		Horiz	ontal		
tandard	:	(RE)FCC	PART1	5 C _3m	I	Power Sou	rce:		DC 3.	.7V		
Test item	:	Radiation	n Test		r	Temp.(C)/Hum.(%RH):				24.3(C)/55%RH		
Note:		2480MH	Z]	Distance:			3m			
96.	9 dBuV/m											
										nit: /6:		
	1							_				
47				Ly .		ł	man					
	m		-	h	m	~~~~~		www	and a construction	mun		
								1-1-1				
-3	00.000		2000	3000	(MHz)	5000 6	200 7000	8000 9000		18000.000		
	000.000		2000	3000	(MHz)	5000 60	000 7000	8000 9000		18000.000		
	000.000 Freq. (MHz)	Reading (dBuV/m)	2000 Factor (dB/m)	3000 Result (dBuV/m)	Limit	5000 Gr Over Limit (dB)		8000 9000 Height (cm)	degree (deg)	18000.000 Remark		
1	Freq.		Factor	Result	Limit	Over Limit		Height				

lob No.:		011508	3322I]	Polarizatio	n:		Vertic	cal
Standaro	d:	(RE)F	CC PAR	T15 C _3m]	Power Sour	rce:		DC 3.	7V
Fest iten	n:	Radia	tion Test		r	Гетр.(С)/Н	Hum.(%]	RH):	24.3(0	C)/55%RH
Note:		2480M	Hz]	Distance:			3m	
96	.9 dBu∀/m			-						7
										mit:
						_				
4	7			4		min	~~~			
4				4		~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	~~~~	mm	hump	
41						*	~~~~	mm	hunn	
4	7 					*	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	mmm	hund	mmm
-3							······	mmm	hunne	mmm
-3	1000.000		2000	3000	(MHz)	*	000 7000		hunn	18000.000
-3		Reading (dBuV/m)	2000 Factor (dB/m)	3000 Result (dBuV/m)	Limit	*			degree (deg)	18000.000 Remark
-3	1000.000 Freq.		Factor	Result	Limit	5000 G		8000 9000 Height	degree	

5. ANTENNA APPLICATION

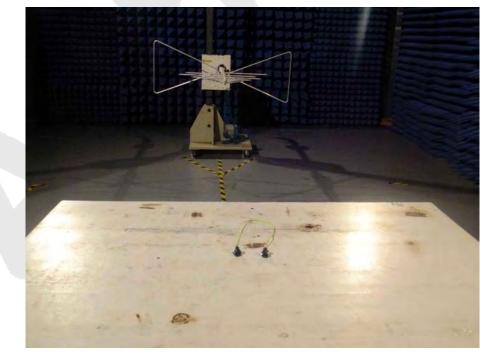

5.1. Antenna requirement

The EUT'S antenna is met the requirement of FCC part 15C section 15.203.

An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator shall be considered sufficient to comply with the provisions of this section. The manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited. This requirement does not apply to carrier current devices or to devices operated under the provisions of \$15.211, \$15.213, \$15.217, \$15.219, or \$15.221. Further, this requirement does not apply to intentional radiators that must be professionally installed, such as perimeter protection systems and some field disturbance sensors, or to other intentional radiators which, in accordance with \$15.31(d), must be measured at the installation site. However, the installer shall be responsible for ensuring that the proper antenna is employed so that the limits in this part are not exceeded.

5.2. Result

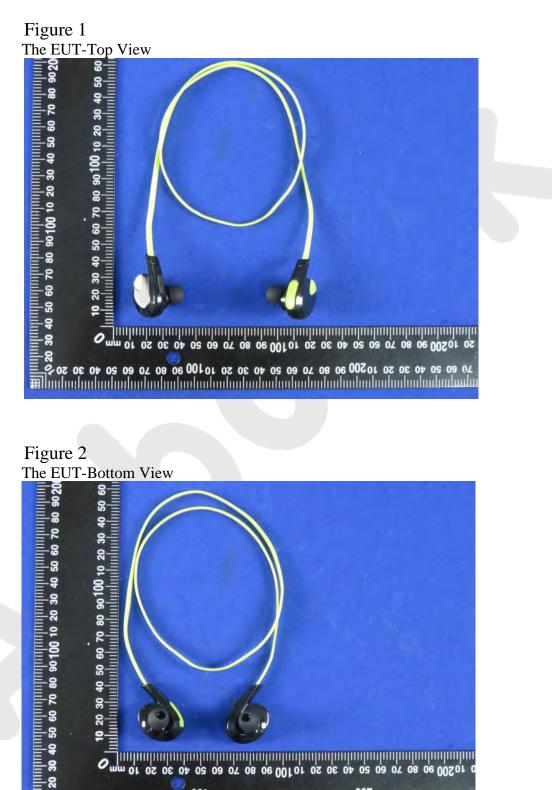
The EUT's antenna used a Integrated antenna which is permanently attached, The antenna's gain is 3.1dBi and meets the requirement.



6. PHOTOGRAPH

6.1 Photo of Conducted Emission Test

6.2 Photo of Radiation Emission Test



APPENDIX I (EXTERNAL PHOTOS)

8

20

\$

8

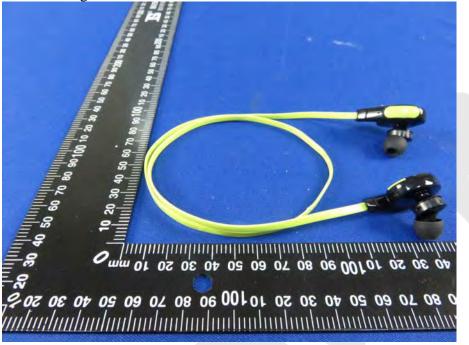
20

2

Figure 3 The EUT-Front View

Figure 4 The EUT-Back View

Figure 5 The EUT-Right View



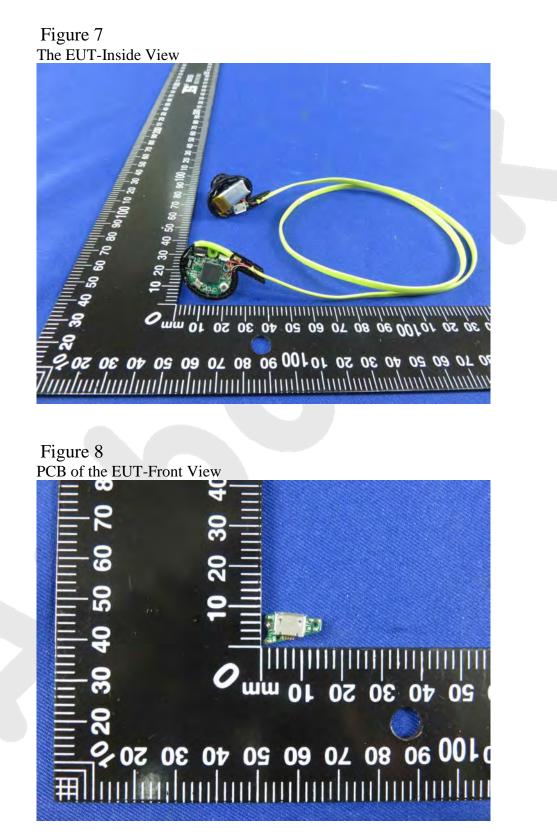


Figure 6 The EUT-Left View

APPENDIX II (INTERNAL PHOTOS)

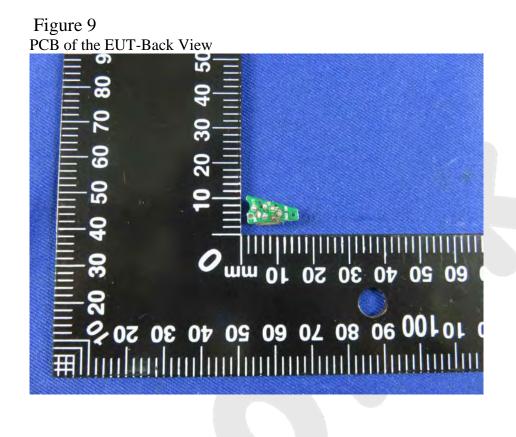
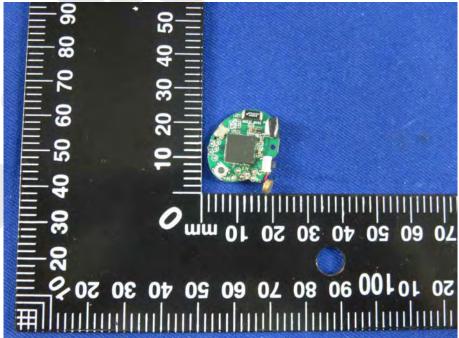


Figure 10 PCB of the EUT-Front View



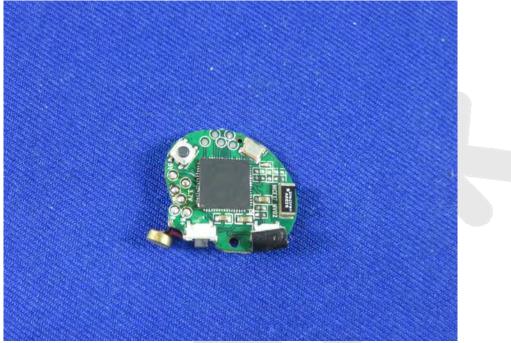


Figure 12 PCB of the EUT-Front View

Figure 13 PCB of the EUT-Back View

