

FCC Test Report

Report No.: AGC08189220402FE03

FCC ID : 2ACP4LGXTW1R

APPLICATION PURPOSE Original Equipment

PRODUCT DESIGNATION Bluetooth Earphone

BRAND NAME SENTRY

MODEL NAME GXTW1, GXTW2, GXTW3

APPLICANT Sentry Industries Limited

DATE OF ISSUE Apr. 15, 2022

STANDARD(S) FCC Part 15.247

REPORT VERSION : V1.0

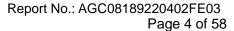
> Attestation of G lobal e (Shenzhen) Co., Ltd

Any report having not been signed by authorized approver, or having been altered without authorization, or having not been stamped by the "Dedicated Testing/Inspection Stamp" is deemed to be invalid. Copying or excerpting portion of, or altering the content of the report is not permitted without the written authorization of AGC. The test results presented in the report apply only to the tested sample. Any objections to report issued by AGC should be submitted to AGC within 15days after the issuance of the test report.

Further enquiry of validity or verification of the test report should be addressed to AGC by agc01@agccert.com.

Report No.: AGC08189220402FE03

Page 2 of 58


REPORT REVISE RECORD

Report Version	Revise Time	Issued Date	Valid Version	Notes
V1.0	/	Apr. 15, 2022	Valid	Initial Release

TABLE OF CONTENTS

1. VERIFICATION OF CONFORMITY	5
2. GENERAL INFORMATION	6
2.1. PRODUCT DESCRIPTION	6
2.2. TABLE OF CARRIER FREQUENCYS	6
2.3. RECEIVER INPUT BANDWIDTH	7
2.4. EXAMPLE OF A HOPPING SEQUENCY IN DATA MODE	7
2.5. EQUALLY AVERAGE USE OF FREQUENCIES AND BEHAVIOUR	7
2.6. RELATED SUBMITTAL(S) / GRANT (S)	8
2.7. TEST METHODOLOGY	8
2.8. SPECIAL ACCESSORIES	8
2.9. EQUIPMENT MODIFICATIONS	8
2.10. ANTENNA REQUIREMENT	8
3. MEASUREMENT UNCERTAINTY	9
4. DESCRIPTION OF TEST MODES	10
5. SYSTEM TEST CONFIGURATION	11
5.1. CONFIGURATION OF EUT SYSTEM	11
5.2. EQUIPMENT USED IN TESTED SYSTEM	11
5.3. SUMMARY OF TEST RESULTS	11
6. TEST FACILITY	12
7. PEAK OUTPUT POWER	13
7.1. MEASUREMENT PROCEDURE	13
7.2. TEST SET-UP (BLOCK DIAGRAM OF CONFIGURATION)	13
7.3. LIMITS AND MEASUREMENT RESULT	14
8. 20DB BANDWIDTH	18
8.1. MEASUREMENT PROCEDURE	18
8.2. TEST SET-UP (BLOCK DIAGRAM OF CONFIGURATION)	18
8.3. LIMITS AND MEASUREMENT RESULTS	19
9. CONDUCTED SPURIOUS EMISSION	23
9.1. MEASUREMENT PROCEDURE	23
9.2. TEST SET-UP (BLOCK DIAGRAM OF CONFIGURATION)	23
9.3. MEASUREMENT EQUIPMENT USED	23
9.4. LIMITS AND MEASUREMENT RESULT	
10. RADIATED EMISSION	37
10.1. MEASUREMENT PROCEDURE	37
10.2. TEST SETUP	39

10.3. LIMITS AND I	MEASUREMENT RESULT		40
10.4. TEST RESUL	Т		40
11. NUMBER OF HO	PPING FREQUENCY		50
11.1. MEASUREME	ENT PROCEDURE		50
11.2. TEST SETUP	(BLOCK DIAGRAM OF CONFIGU	RATION)	50
11.3. MEASUREME	ENT EQUIPMENT USED		50
11.4. LIMITS AND N	MEASUREMENT RESULT		50
12. TIME OF OCCUP	ANCY (DWELL TIME)		51
12.1. MEASUREME	ENT PROCEDURE		51
12.2. TEST SETUP	(BLOCK DIAGRAM OF CONFIGU	RATION)	51
12.3. MEASUREME	ENT EQUIPMENT USED		51
	MEASUREMENT RESULT		
	PARATION		
13.1. MEASUREME	ENT PROCEDURE		55
	(BLOCK DIAGRAM OF CONFIGU	•	
	ENT EQUIPMENT USED		
	MEASUREMENT RESULT		
	ED EMISSION TEST		
	NE CONDUCTED EMISSION TEST		
	RAM OF LINE CONDUCTED EMIS		
	Y PROCEDURE OF LINE CONDU		
	EDURE OF LINE CONDUCTED EN		
	T OF LINE CONDUCTED EMISSION		
	OGRAPHS OF TEST SETUP		
APPENDIX B: PHOT	OGRAPHS OF EUT		58

1. VERIFICATION OF CONFORMITY

Applicant	Sentry Industries Limited
Address	Unit 904, 9/F Chinachem Golden Plaza,77 Mody Road, Tsim Sha Tsui East, Kowloon, Hong Kong,China
Manufacturer	Guangdong SAIYO Eletronics Industry Co., Ltd
Address	Xibian Industry Zone, Tongyu Town, Chaoyang District, Shantou City, Guangdong Province, China
Factory	Guangdong SAIYO Eletronics Industry Co., Ltd
Address	Xibian Industry Zone, Tongyu Town, Chaoyang District, Shantou City, Guangdong Province, China
Product Designation	Bluetooth Earphone
Brand Name	SENTRY
Test Model	GXTW1
Series Model	GXTW2, GXTW3
Difference Description	All the same except the model name
Date of test	Apr. 12, 2022~Apr. 15, 2022
Deviation	No any deviation from the test method
Condition of Test Sample	Normal
Test Result	Pass
Report Template	AGCRT-US-BR/RF

We hereby certify that:

The above equipment was tested by Attestation of Global Compliance (Shenzhen) Co., Ltd. The test data, data evaluation, test procedures, and equipment configurations shown in this report were made in accordance with the procedures given in ANSI C63.10 (2013) and the energy emitted by the sample EUT tested as described in this report is in compliance with radiated emission limits of FCC PART 15.247.

Prepared By	and change	
	Cool Cheng (Project Engineer)	Apr. 15, 2022
Reviewed By	Max Zhang	
	Max Zhang (Reviewer)	Apr. 15, 2022
Approved By	Formercies	
	Forrest Lei (Authorized Officer)	Apr. 15, 2022

Report No.: AGC08189220402FE03

Page 6 of 58

2. GENERAL INFORMATION

2.1. PRODUCT DESCRIPTION

The EUT is designed as "Bluetooth Earphone". It is designed by way of utilizing the GFSK, Pi/4 DQPSK technology to achieve the system operation.

A major technical description of EUT is described as following

Operation Frequency	2.402 GHz to 2.480 GHz	
RF Output Power	-1.407dBm (Max)	
Bluetooth Version	V5.0	
Modulation	BR ⊠GFSK, EDR ⊠π /4-DQPSK, □8DPSK BLE □GFSK 1Mbps □GFSK 2Mbps	
Number of channels	79	
Hardware Version	V1.1	
Software Version	V1.1	
Antenna Designation	Ceramic Antenna (Comply with requirements of the FCC part 15.203)	
Antenna Gain	0dBi	
Power Supply	DC 3.7V by battery	

2.2. TABLE OF CARRIER FREQUENCYS

Frequency Band	Channel Number	Frequency
	0	2402 MHz
	1	2403 MHz
	:	:
	38	2440 MHz
2402~2480MHz	39	2441 MHz
	40	2442 MHz
	:	:
	77	2479 MHz
	78	2480 MHz

Report No.: AGC08189220402FE03 Page 7 of 58

2.3. RECEIVER INPUT BANDWIDTH

The input bandwidth of the receiver is 1.3MHz, in every connection one Bluetooth device is the master and the other one is slave. The master determines the hopping sequence. The slave follows this sequence. Both devices shift between RX and TX time slot according to the clock of the master. Additionally, the type of connection (e.g. single of multi slot packet) is set up at the beginning of the connection. The master adapts its hopping frequency and its TX/RX timing according to the packet type of the connection. Also, the slave of the connection will use these settings. Repeating of a packet has no influence on the hopping sequence. The hopping sequence generated by the master of the connection will be followed in any case. That means, a repeated packet will not be send on the same frequency, it is send on the next frequency of the hopping sequence.

2.4. EXAMPLE OF A HOPPING SEQUENCY IN DATA MODE

Example of a hopping sequence in data mode:

40, 21, 44, 23, 04, 15, 66, 56, 19, 78, 07, 28, 69, 55,

36, 45, 05, 13, 43, 74, 57, 35, 67, 76, 02, 34, 54, 63,

42, 11, 30, 06, 64, 25, 75, 48, 17, 33, 58, 01, 29, 14,

51, 72, 03, 31, 50, 61, 77, 18, 10, 47, 12, 68, 08, 49,

20, 00, 73, 09, 16, 60, 71, 41, 24, 53, 38, 26, 46, 37,

65, 32, 70, 52, 27, 59, 22, 62, 39

2.5. EQUALLY AVERAGE USE OF FREQUENCIES AND BEHAVIOUR

The generation of the hopping sequence in connection mode depends essentially on two input values:

- 1. LAP/UAP of the master of the connection.
- 2. Internal master clock.

The LAP (lower address part) are the 24 LSB's of the 48 BD_ADDRESS. The BD_ADDRESS is an unambiguous number of every Bluetooth unit. The UAP (upper address part) are the 24MSB's of the 48BD_ADDRESS

The internal clock of a Bluetooth unit is derived from a free running clock which is never adjusted and is never turned off. For behavior action with other units only offset is used. It has no relation to the time of the day. Its resolution is at least half the RX/TX slot length of 312.5us. The clock has a cycle of about one day(23h30). In most case it is implemented as 28 bits counter. For the deriving of the hopping sequence the entire. LAP (24 bits),4LSB's(4bits) (Input 1) and the 27MSB's of the clock (Input 2) are used. With this input values different mathematical procedures (permutations, additions, XOR-operations) are performed to generate the Sequence. This will be done at the beginning of every new transmission.

Regarding short transmissions the Bluetooth system has the following behavior:

The first connection between the two devices is established, a hopping sequence was generated. For Transmitting the wanted data the complete hopping sequence was not used. The connection ended.

Report No.: AGC08189220402FE03 Page 8 of 58

The second connection will be established. A new hopping sequence is generated. Due to the fact the Bluetooth clock has a different value, because the period between the two transmission is longer (and it Cannot be shorter) than the minimum resolution of the clock(312.5us). The hopping sequence will always

2.6. RELATED SUBMITTAL(S) / GRANT (S)

This submittal(s) (test report) is intended for **FCC ID: 2ACP4LGXTW1R** filing to comply with the FCC PART 15.247 requirements.

2.7. TEST METHODOLOGY

differ from the first one.

Both conducted and radiated testing was performed according to the procedures in ANSI C63.10 (2013). Radiated testing was performed at an antenna to EUT distance 3 meters.

2.8. SPECIAL ACCESSORIES

Refer to section 5.2.

2.9. EQUIPMENT MODIFICATIONS

Not available for this EUT intended for grant.

2.10. ANTENNA REQUIREMENT

This intentional radiator is designed with a permanently attached antenna of an antenna to ensure that no antenna other than that furnished by the responsible party shall be used with the device.

For more information of the antenna, please refer to the APPENDIX B: PHOTOGRAPHS OF EUT.

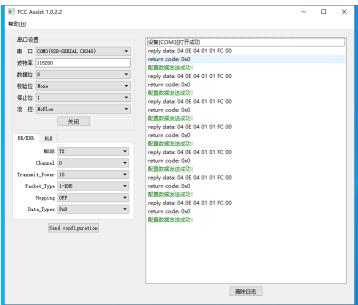
Report No.: AGC08189220402FE03

Page 9 of 58

3. MEASUREMENT UNCERTAINTY

The reported uncertainty of measurement y ±U, where expended uncertainty U is based on a standard uncertainty multiplied by a coverage factor of k=2, providing a level of confidence of approximately 95%.

Item	Measurement Uncertainty	
Uncertainty of Conducted Emission for AC Port	$U_c = \pm 3.1 \text{ dB}$	
Uncertainty of Radiated Emission below 1GHz	$U_c = \pm 4.0 \text{ dB}$	
Uncertainty of Radiated Emission above 1GHz	$U_c = \pm 4.8 \text{ dB}$	
Uncertainty of total RF power, conducted	$U_c = \pm 0.8 \text{ dB}$	
Uncertainty of RF power density, conducted	$U_c = \pm 2.6 \text{ dB}$	
Uncertainty of spurious emissions, conducted	$U_c = \pm 2 \%$	
Uncertainty of Occupied Channel Bandwidth	$U_c = \pm 2 \%$	


4. DESCRIPTION OF TEST MODES

NO.	TEST MODE DESCRIPTION	
1	Low channel GFSK	
2	Middle channel GFSK	
3	High channel GFSK	
4	Low channel π/4-DQPSK	
5	Middle channel π/4-DQPSK	
6	High channel π/4-DQPSK	
7	Hopping mode GFSK	
8	Hopping mode π/4-DQPSK	

Note:

- 1. Only the result of the worst case was recorded in the report, if no other cases.
- 2. For Radiated Emission, 3axis were chosen for testing for each applicable mode.
- 3. For Conducted Test method, a temporary antenna connector is provided by the manufacture.

Software Setting

Report No.: AGC08189220402FE03

Page 11 of 58

5. SYSTEM TEST CONFIGURATION

5.1. CONFIGURATION OF EUT SYSTEM

Radiated Emission Configure:

EUT	

5.2. EQUIPMENT USED IN TESTED SYSTEM

Item	Equipment	Model No.	ID or Specification	Remark
1	Bluetooth Earphone	GXTW1	2ACP4LGXTW1R	EUT

5.3. SUMMARY OF TEST RESULTS

FCC RULES	DESCRIPTION OF TEST	RESULT
15.247 (b)(1)	Peak Output Power	Compliant
15.247 (a)(1)	20 dB Bandwidth	Compliant
15.247 (d)	Conducted Spurious Emission	Compliant
15.209	Radiated Emission	Compliant
15.247 (a)(1)(iii)	Number of Hopping Frequency	Compliant
15.247 (a)(1)(iii)	Time of Occupancy	Compliant
15.247 (a)(1)	Frequency Separation	Compliant
15.207	Conducted Emission	Not applicable

Note: The BT function cannot transmit when charging.

Report No.: AGC08189220402FE03

Page 12 of 58

6. TEST FACILITY

Test Site	Attestation of Global Compliance (Shenzhen) Co., Ltd		
Location	1-2/F, Building 19, Junfeng Industrial Park, Chongqing Road, Heping Community, Fuhai Street, Bao'an District, Shenzhen, Guangdong, China		
Designation Number	CN1259		
FCC Test Firm Registration Number	975832		
A2LA Cert. No.	5054.02		
Description	Attestation of Global Compliance (Shenzhen) Co., Ltd is accredited by A2LA		

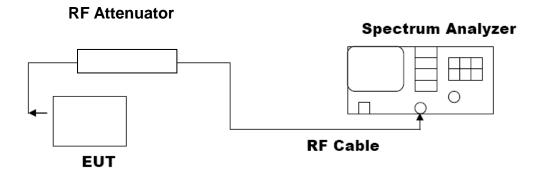
TEST EQUIPMENT OF CONDUCTED EMISSION TEST

Equipment	Manufacturer	Model	S/N	Cal. Date	Cal. Due
	a.raraotaro		0 /// 1	Juli Juli	
TEST RECEIVER	R&S	ESCI	10096	May 15,2021	May 14,2022
EXA Signal Analyzer	Aglient	N9010A	MY53470504	Nov. 17, 2021	Nov. 16, 2022
2.4GHz Filter	EM Electronics	2400-2500MHz	N/A	Mar. 23, 2020	Mar. 22, 2022
Attenuator	ZHINAN	E-002	N/A	Sep. 03, 2020	Sep. 02, 2022
Horn antenna	SCHWARZBECK	BBHA 9170	#768	Oct. 31, 2021	Oct. 30, 2023
Active loop antenna (9K-30MHz)	ZHINAN	ZN30900C	18051	May 22, 2020	May 21, 2022
Double-Ridged Waveguide Horn	ETS LINDGREN	3117	00034609	Apr. 23, 2021	Apr. 22, 2023
Broadband Preamplifier	ETS LINDGREN	3117PA	00225134	Sep. 03, 2020	Sep. 02, 2022
ANTENNA	SCHWARZBECK	VULB9168	494	Jan. 08, 2021	Jan. 07, 2023
Test software	Tonscend	JS32-RE (Ver.2.5)	N/A	N/A	N/A

Page 13 of 58

7. PEAK OUTPUT POWER

7.1. MEASUREMENT PROCEDURE

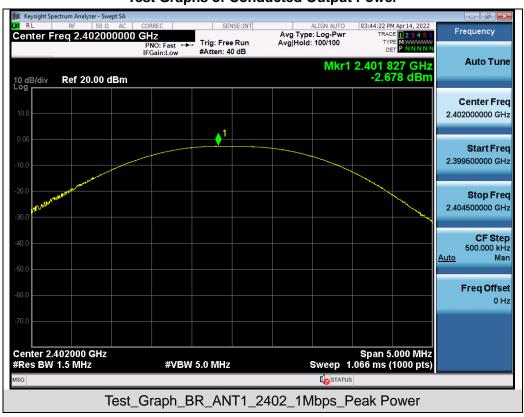

For peak power test:

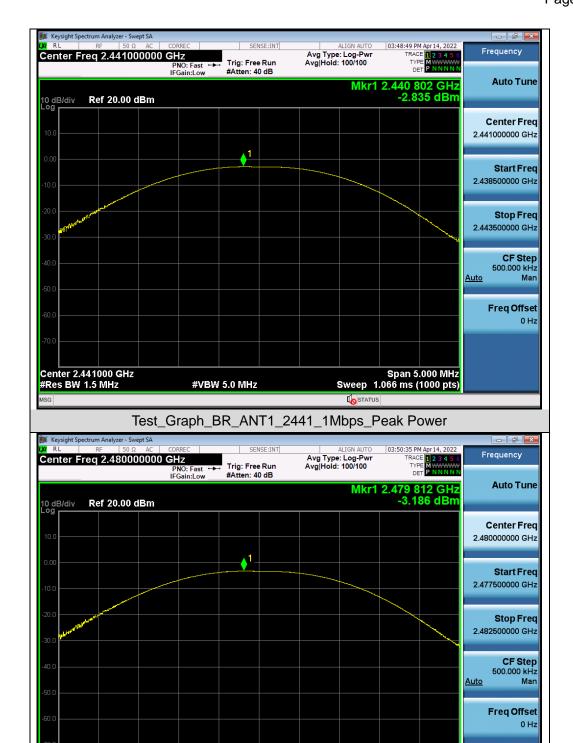
- 1. Connect EUT RF output port to the Spectrum Analyzer through an RF attenuator
- 2. Span: Approximately five times the 20 dB bandwidth, centered on a hopping channel.
- 3. RBW > 20 dB bandwidth of the emission being measured.
- 4. VBW ≥RBW.
- 5. Sweep: Auto.
- 6. Detector function: Peak.
- 7. Trace: Max hold.

Allow trace to stabilize. Use the marker-to-peak function to set the marker to the peak of the emission. The indicated level is the peak output power, after any corrections for external attenuators and cables.

7.2. TEST SET-UP (BLOCK DIAGRAM OF CONFIGURATION)

PEAK POWER TEST SETUP




7.3. LIMITS AND MEASUREMENT RESULT

Test Data of Conducted Output Power				
Test Mode	Test Channel (MHz)	Peak Power (dBm)	Limits (dBm)	Pass or Fail
	2402	-2.678	₹ 1	Pass
GFSK	2441	-2.835	₹ 1	Pass
	2480	-3.186	≨ 1	Pass
	2402	-1.407	≨ 1	Pass
π /4-DQPSK	2441	-1.630	⊴ 21	Pass
	2480	-2.039	≨ 1	Pass

Test Graphs of Conducted Output Power

Test_Graph_BR_ANT1_2480_1Mbps_Peak Power

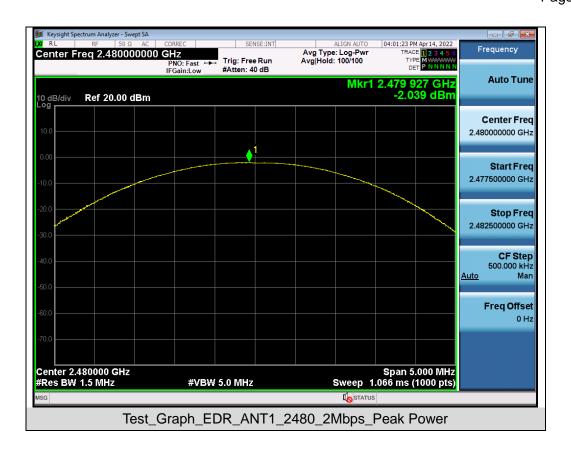
#VBW 5.0 MHz

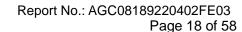

Span 5.000 MHz Sweep 1.066 ms (1000 pts)

Center 2.480000 GHz #Res BW 1.5 MHz

Freq Offset

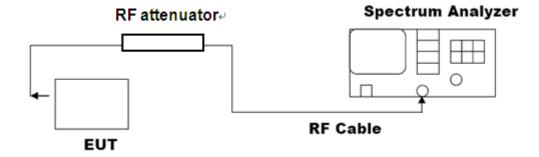
Span 5.000 MHz Sweep 1.066 ms (1000 pts)

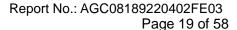

Any report having not been signed by authorized approver, or having been altered without authorization, or having not been stamped by the "Dedicated Testing/Inspection Stamp" is deemed to be invalid. Copying or excerpting portion of, or altering the content of the report is not permitted without the written authorization of AGC. The test results presented in the report apply only to the tested sample. Any objections to report issued by AGC should be submitted to AGC within 15days after the issuance of the test report. Further enquiry of validity or verification of the test report should be addressed to AGC by agc01@agccert.com.


Test_Graph_EDR_ANT1_2441_2Mbps_Peak Power

#VBW 5.0 MHz

Center 2.441000 GHz #Res BW 1.5 MHz

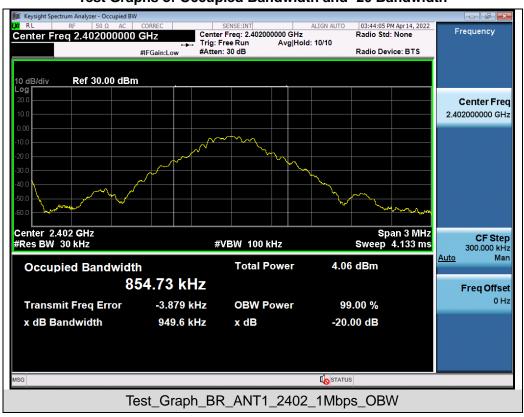


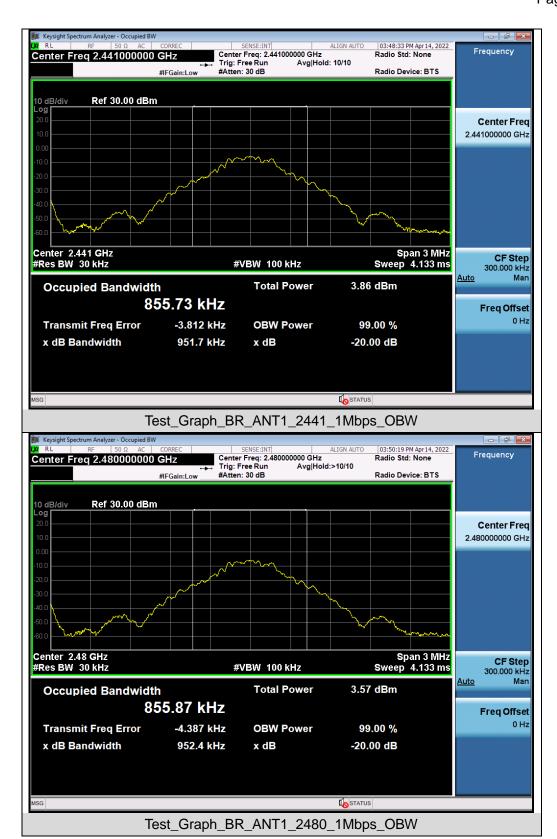

8. 20DB BANDWIDTH

8.1. MEASUREMENT PROCEDURE

- 1. Connect EUT RF output port to the Spectrum Analyzer through an RF attenuator
- 2, Set the EUT Work on the top, the middle and the bottom operation frequency individually.
- 3. Set Span = approximately 2 to 5 times the 20 dB bandwidth, centered on a hoping channel
 The nominal IF filter bandwidth (3 dB RBW) shall be in the range of 1% to 5% of the OBW and video
 bandwidth (VBW) shall be approximately three times RBW; Sweep = auto; Detector function = peak
- 4. Set SPA Trace 1 Max hold, then View.

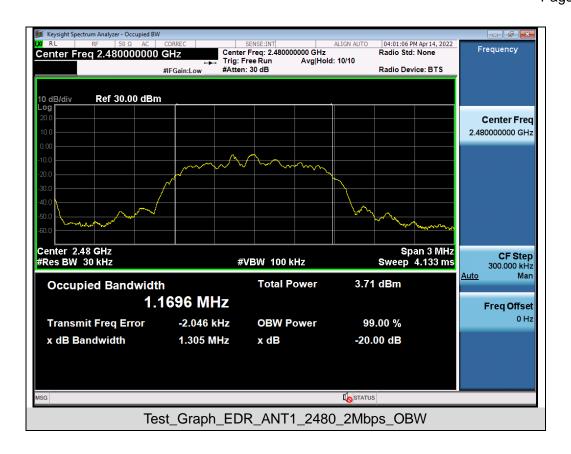
8.2. TEST SET-UP (BLOCK DIAGRAM OF CONFIGURATION)




8.3. LIMITS AND MEASUREMENT RESULTS

Test Data of Occupied Bandwidth and -20dB Bandwidth					
Test Mode	Test Channel (MHz)	99% Occupied Bandwidth (MHz)	-20dB Bandwidth (MHz)	Limits	Pass or Fail
	2402	0.855	0.950	N/A	Pass
GFSK	2441	0.856	0.952	N/A	Pass
	2480	0.856	0.952	N/A	Pass
	2402	1.167	1.281	N/A	Pass
π /4-DQPSK	2441	1.167	1.301	N/A	Pass
	2480	1.170	1.305	N/A	Pass

Test Graphs of Occupied Bandwidth and -20 Bandwidth



Report No.: AGC08189220402FE03

Page 23 of 58

9. CONDUCTED SPURIOUS EMISSION

9.1. MEASUREMENT PROCEDURE

- 1. Connect EUT RF output port to the Spectrum Analyzer through an RF attenuator
- 2. Set the EUT Work on the top, the Middle and the bottom operation frequency individually.
- 3. Set the Span = wide enough to capture the peak level of the in-band emission and all spurious emissions from the lowest frequency generated in the EUT up through the 10th harmonic.
 RBW = 100 kHz; VBW= 300 kHz; Sweep = auto; Detector function = peak.
- 4. Set SPA Trace 1 Max hold, then View.

9.2. TEST SET-UP (BLOCK DIAGRAM OF CONFIGURATION)

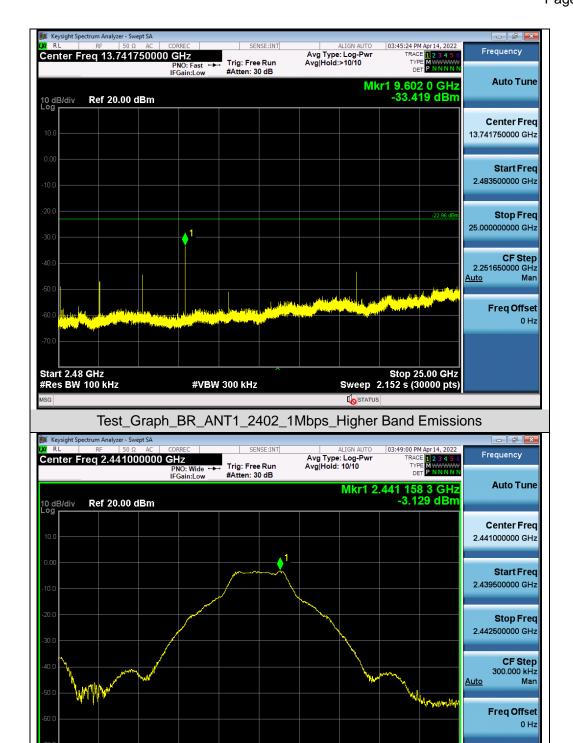
The same as described in section 8.2

9.3. MEASUREMENT EQUIPMENT USED

The same as described in section 6

9.4. LIMITS AND MEASUREMENT RESULT

LIMITS AND MEASUREMENT RESULT				
Amplicable Limite	Measurement Result			
Applicable Limits	Test Data	Criteria		
In any 100 kHz Bandwidth Outside the	At least -20dBc than the limit			
frequency band in which the spread spectrum	Specified on the BOTTOM	PASS		
intentional radiator is operating, the radio frequency	Channel			
power that is produce by the intentional radiator shall				
be at least 20 dB below that in 100KHz bandwidth				
within the band that contains the highest level of the				
desired power.	At least -20dBc than the limit	DA 00		
In addition, radiation emissions which fall in the	Specified on the TOP Channel	PASS		
restricted bands, as defined in §15.205(a), must also				
comply with the radiated emission limits specified				
in§15.209(a))				



Test Graphs of Spurious Emissions in Non-Restricted Frequency Bands

Any report having not been signed by authorized approver, or having been altered without authorization, or having not been stamped by the "Dedicated Testing/Inspection Stamp" is deemed to be invalid. Copying or excerpting portion of, or altering the content of the report is not permitted without the written authorization of AGC. The test results presented in the report apply only to the tested sample. Any objections to report issued by AGC should be submitted to AGC within 15days after the issuance of the test report. Further enquiry of validity or verification of the test report should be addressed to AGC by agc01@agccert.com.

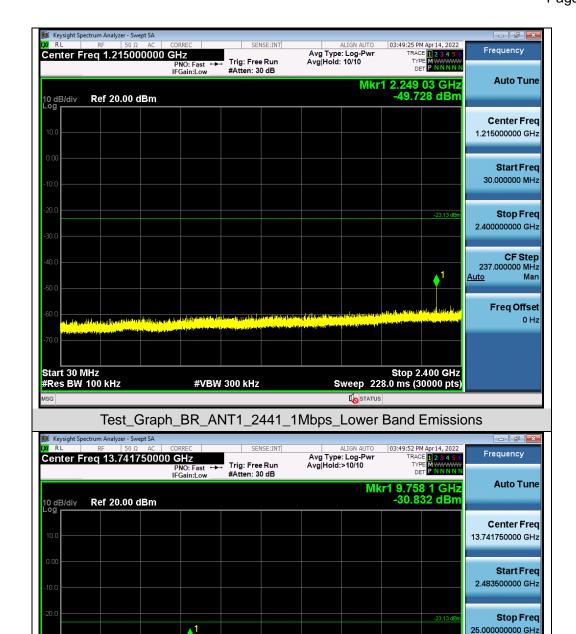
Test_Graph_BR_ANT1_2441_1Mbps_Reference Level

#VBW 300 kHz

Span 3.000 MHz Sweep 2.000 ms (30000 pts)

Center 2.441000 GHz #Res BW 100 kHz

CF Step 2.251650000 GHz


Freq Offset

Mar

<u>Auto</u>

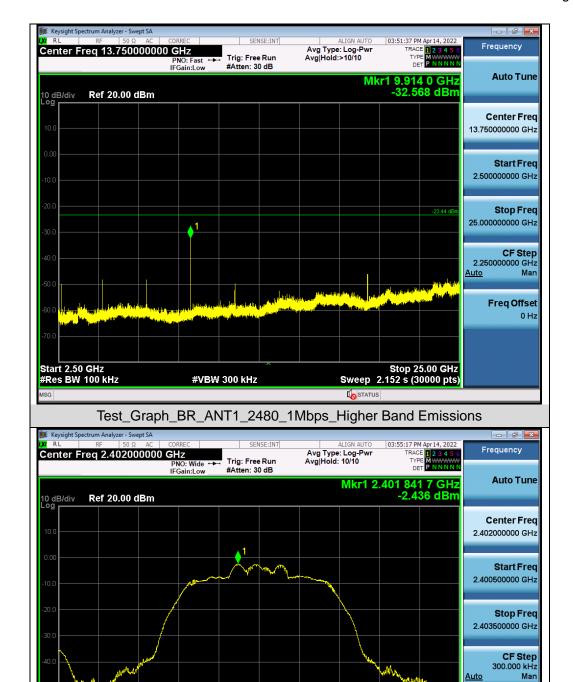
Stop 25.00 GHz Sweep 2.152 s (30000 pts)

Any report having not been signed by authorized approver, or having been altered without authorization, or having not been stamped by the "Dedicated Testing/Inspection Stamp" is deemed to be invalid. Copying or excerpting portion of, or altering the content of the report is not permitted without the written authorization of AGC. The test results presented in the report apply only to the tested sample. Any objections to report issued by AGC should be submitted to AGC within 15days after the issuance of the test report. Further enquiry of validity or verification of the test report should be addressed to AGC by agc01@agccert.com.

Test_Graph_BR_ANT1_2441_1Mbps_Higher Band Emissions

#VBW 300 kHz

Start 2.48 GHz #Res BW 100 kHz



Freq Offset

Span 3.000 MHz Sweep 2.000 ms (30000 pts)

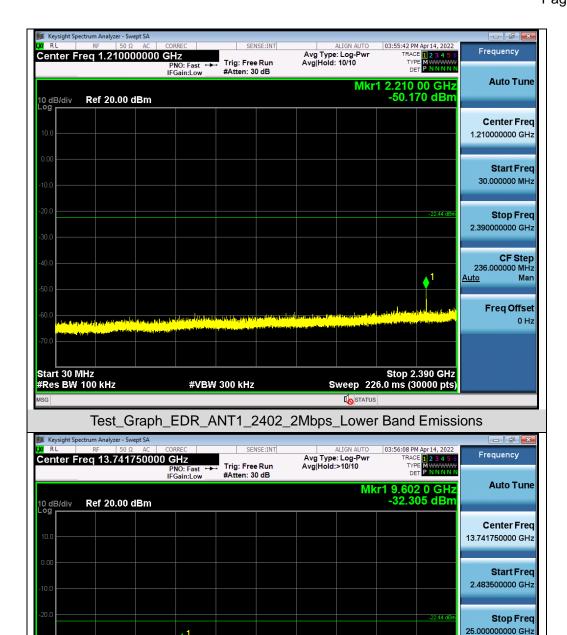
Any report having not been signed by authorized approver, or having been altered without authorization, or having not been stamped by the "Dedicated Testing/Inspection Stamp" is deemed to be invalid. Copying or excerpting portion of, or altering the content of the report is not permitted without the written authorization of AGC. The test results presented in the report apply only to the tested sample. Any objections to report issued by AGC should be submitted to AGC within 15days after the issuance of the test report. Further enquiry of validity or verification of the test report should be addressed to AGC by agc01@agccert.com.

Test_Graph_EDR_ANT1_2402_2Mbps_Reference Level

#VBW 300 kHz

Center 2.402000 GHz #Res BW 100 kHz

CF Step 2.251650000 GHz


Freq Offset 0 Hz

Mar

<u>Auto</u>

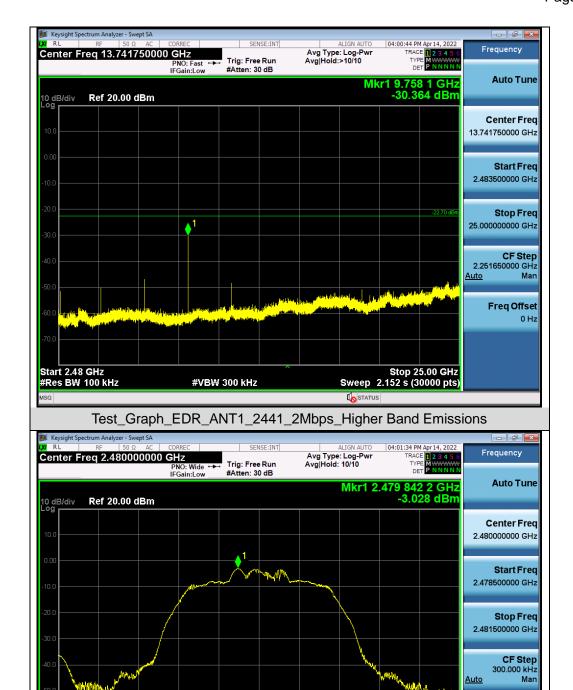
Stop 25.00 GHz Sweep 2.152 s (30000 pts)

Any report having not been signed by authorized approver, or having been altered without authorization, or having not been stamped by the "Dedicated Testing/Inspection Stamp" is deemed to be invalid. Copying or excerpting portion of, or altering the content of the report is not permitted without the written authorization of AGC. The test results presented in the report apply only to the tested sample. Any objections to report issued by AGC should be submitted to AGC within 15days after the issuance of the test report. Further enquiry of validity or verification of the test report should be addressed to AGC by agc01@agccert.com.

Test_Graph_EDR_ANT1_2402_2Mbps_Higher Band Emissions

#VBW 300 kHz

Start 2.48 GHz #Res BW 100 kHz



Freq Offset

Span 3.000 MHz Sweep 2.000 ms (30000 pts)

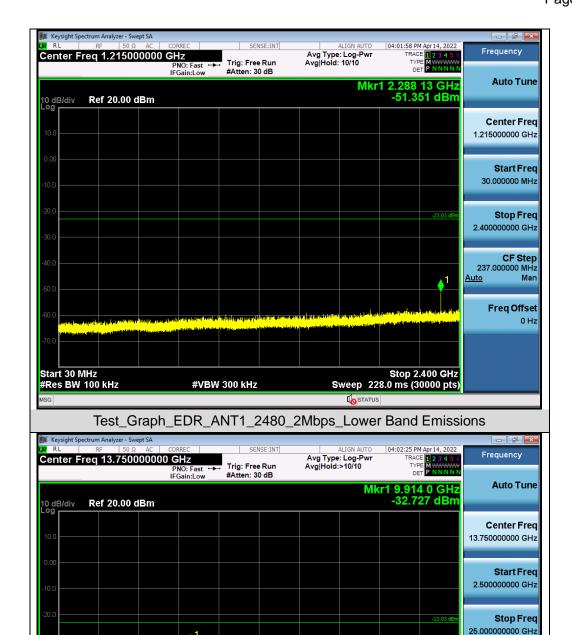
Any report having not been signed by authorized approver, or having been altered without authorization, or having not been stamped by the "Dedicated Testing/Inspection Stamp" is deemed to be invalid. Copying or excerpting portion of, or altering the content of the report is not permitted without the written authorization of AGC. The test results presented in the report apply only to the tested sample. Any objections to report issued by AGC should be submitted to AGC within 15days after the issuance of the test report. Further enquiry of validity or verification of the test report should be addressed to AGC by agc01@agccert.com.

Test_Graph_EDR_ANT1_2480_2Mbps_Reference Level

#VBW 300 kHz

Center 2.480000 GHz #Res BW 100 kHz

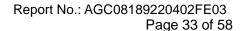
CF Step 2.250000000 GHz


> Freq Offset 0 Hz

Mar

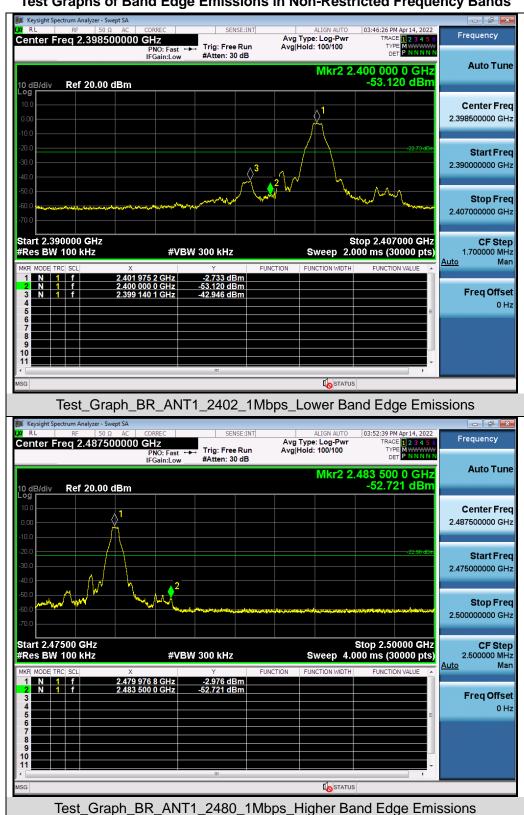
<u>Auto</u>

Stop 25.00 GHz Sweep 2.152 s (30000 pts)

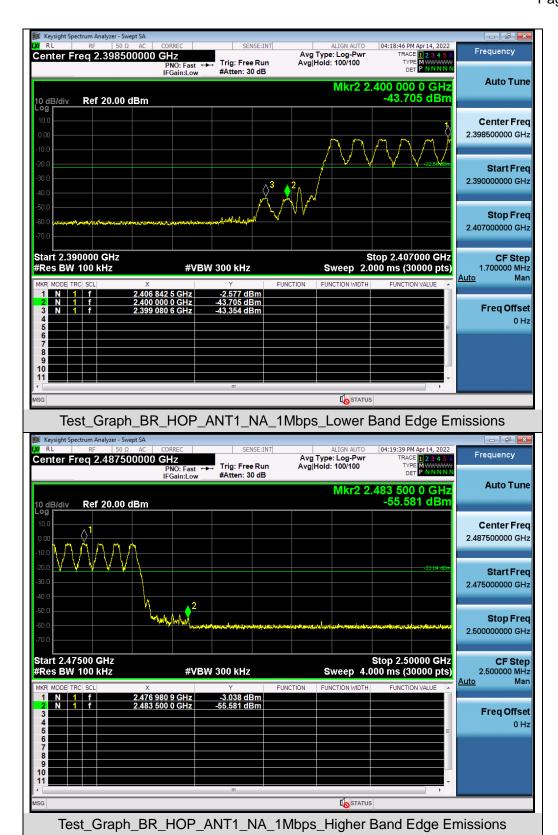


Any report having not been signed by authorized approver, or having been altered without authorization, or having not been stamped by the "Dedicated Testing/Inspection Stamp" is deemed to be invalid. Copying or excerpting portion of, or altering the content of the report is not permitted without the written authorization of AGC. The test results presented in the report apply only to the tested sample. Any objections to report issued by AGC should be submitted to AGC within 15days after the issuance of the test report. Further enquiry of validity or verification of the test report should be addressed to AGC by agc01@agccert.com.

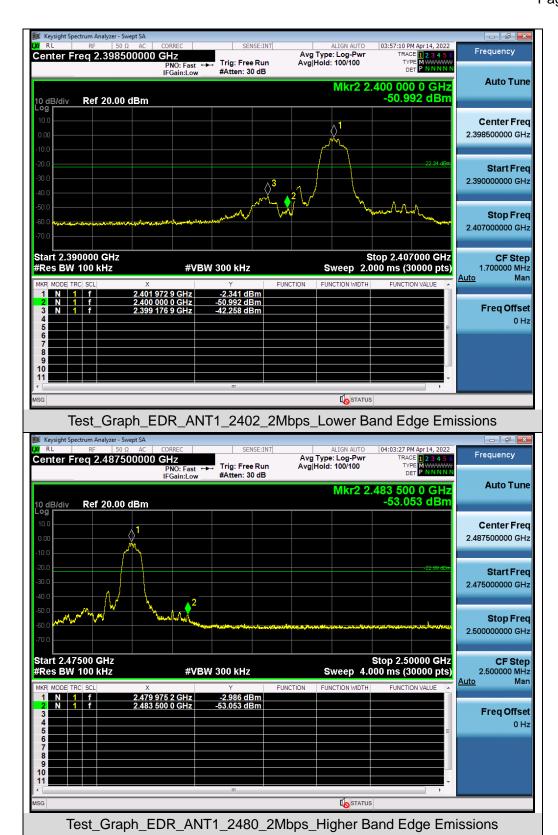
Test_Graph_EDR_ANT1_2480_2Mbps_Higher Band Emissions


#VBW 300 kHz

Start 2.50 GHz #Res BW 100 kHz



Test Graphs of Band Edge Emissions in Non-Restricted Frequency Bands



Any report having not been signed by authorized approver, or having been altered without authorization, or having not been stamped by the "Dedicated Testing/Inspection Stamp" is deemed to be invalid. Copying or excerpting portion of, or altering the content of the report is not permitted without the written authorization of AGC. The test results presented in the report apply only to the tested sample. Any objections to report issued by AGC should be submitted to AGC within 15days after the issuance of the test report. Further enquiry of validity or verification of the test report should be addressed to AGC by agc01@agccert.com.

Test_Graph_EDR_HOP_ANT1_NA_2Mbps_Higher Band Edge Emissions

Report No.: AGC08189220402FE03 Page 37 of 58

10. RADIATED EMISSION

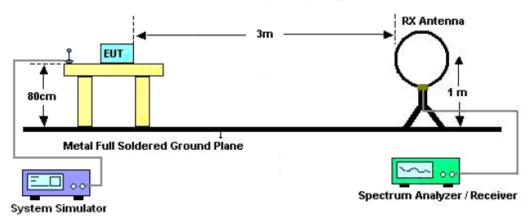
10.1. MEASUREMENT PROCEDURE

- 1. The EUT was placed on the top of the turntable 0.8 or 1.5 meter above ground. The phase center of the receiving antenna mounted on the top of a height-variable antenna tower was placed 3 meters far away from the turntable.
- 2. Power on the EUT and all the supporting units. The turntable was rotated by 360 degrees to determine the position of the highest radiation.
- 3. The height of the broadband receiving antenna was varied between one meter and four meters above ground to find the maximum emissions field strength of both horizontal and vertical polarization.
- 4. For each suspected emission, the antenna tower was scan (from 1 M to 4 M) and then the turntable was rotated (from 0 degree to 360 degrees) to find the maximum reading.
- 5. Set the test-receiver system to Peak or CISPR quasi-peak Detect Function with specified bandwidth under Maximum Hold Mode.
- 6. For emissions above 1GHz, use 1MHz RBW and 3MHz VBW for peak reading. Place the measurement antenna away from each area of the EUT determined to be a source of emissions at the specified measurement distance, while keeping the measurement antenna aimed at the source of emissions at each frequency of significant emissions, with polarization oriented for maximum response. The measurement antenna may have to be higher or lower than the EUT, depending on the radiation pattern of the emission and staying aimed at the emission source for receiving the maximum signal. The final measurement antenna elevation shall be that which maximizes the emissions. The measurement antenna elevation for maximum emissions shall be restricted to a range of heights of from 1 m to 4 m above the ground or reference ground plane.
- 7. When the radiated emissions limits are expressed in terms of the average value of the emissions, and pulsed operation is employed, the measurement field strength shall be determined by averaging over one complete pulse train, including blanking intervals, as long as the pulse train does not exceed 0.1 seconds. As an alternative (provided the transmitter operates for longer than 0.1 seconds) or in cases where the pulse train exceeds 0.1 seconds, the measured field strength shall be determined from the average absolute voltage during a 0.1 second interval during which the field strength is at its maximum values.
- 8.If the emissions level of the EUT in peak mode was 3 dB lower than the average limit specified, then testing will be stopped and peak values of EUT will be reported, otherwise, the emissions which do not have 3 dB margin will be repeated one by one using the quasi-peak method for below 1GHz.
- 9. For testing above 1GHz, the emissions level of the EUT in peak mode was lower than average limit (that means the emissions level in peak mode also complies with the limit in average mode), then testing will be stopped and peak values of EUT will be reported, otherwise, the emissions will be measured in average mode again and reported.
- 10. In case the emission is lower than 30MHz, loop antenna has to be used for measurement and the recorded data should be QP measured by receiver. High Low scan is not required in this case.

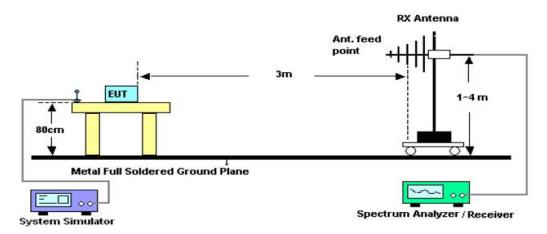
Report No.: AGC08189220402FE03

Page 38 of 58

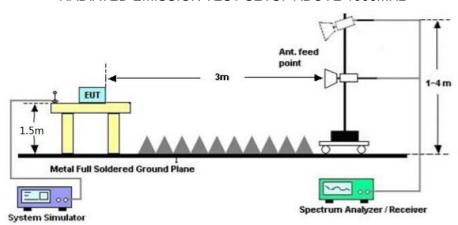
The following table is the setting of spectrum analyzer and receiver.


Spectrum Parameter	Setting
Start ~Stop Frequency	9KHz~150KHz/RB 200Hz for QP
Start ~Stop Frequency	150KHz~30MHz/RB 9KHz for QP
Start ~Stop Frequency	30MHz~1000MHz/RB 120KHz for QP
Start ~Stop Frequency	1GHz~26.5GHz
Start ~Stop i requerity	1MHz/3MHz for Peak, 1MHz/3MHz for Average

Receiver Parameter	Setting
Start ~Stop Frequency	9KHz~150KHz/RB 200Hz for QP
Start ~Stop Frequency	150KHz~30MHz/RB 9KHz for QP
Start ~Stop Frequency	30MHz~1000MHz/RB 120KHz for QP



10.2. TEST SETUP


Radiated Emission Test-Setup Frequency Below 30MHz

RADIATED EMISSION TEST SETUP 30MHz-1000MHz

RADIATED EMISSION TEST SETUP ABOVE 1000MHz

