TEST REPORT

CT通测检测 TESTING CENTRE TECHNOLOGY

> FCC ID: 2ACOE-WG233 Product: WIFI module Model No.: WG233 Additional Model No.: WG233E, WG233P Trade Mark: N/A Report No.: TCT200305E028 Issued Date: Apr. 08, 2020

> > Issued for:

Skylab M&C Technology Co., Ltd. 6/F, Building 9, Lijincheng park, Gongye East Rd, Longhua St, Longhua District, Shenzhen 518109, China

Issued By:

Shenzhen Tongce Testing Lab. 1B/F., Building 1, Yibaolai Industrial Park, Qiaotou, Fuyong, Baoan District, Shenzhen, Guangdong, China TEL: +86-755-27673339

FAX: +86-755-27673332

Note: This report shall not be reproduced except in full, without the written approval of Shenzhen Tongce Testing Lab. This document may be altered or revised by Shenzhen Tongce Testing Lab. personnel only, and shall be noted in the revision section of the document. The test results in the report only apply to the tested sample.

TABLE OF CONTENTS

TCT 通测检测 TESTING CENTRE TECHNOLOGY

							(.G)	
1.	Test Certification.						3	
2.	Test Result Summ	ary					4	
3.	EUT Description						5	
4.	General Informatio	n				\sim	7	
	4.1. Test environment	and mode.	_				7	
	4.2. Description of Su	pport Units					8	
5.	Facilities and Accr	editations	s		\sim		9	
	5.1. Facilities							
	5.2. Location							
	5.3. Measurement Un	certainty					9	
6.	Test Results and M							
	6.1. Antenna requiren							
	6.2. Conducted Emission11							
	6.3. Maximum Conducted (Average) Output Power1							
	6.4. Emission Bandwidth17							
	6.5. Power Spectral Density18							
	6.6. Conducted Band	-	-					
	6.7. Radiated Spuriou						22	
A	ppendix A: Test Res	sult of Co	nducted T	est				
Α	ppendix B: Photogr	aphs of T	est Setup					
Α	ppendix C: Photogr	aphs of E	UT					
							(S)	
						Page 2 of	136	

CT 通测检测 TESTING CENTRE TECHNOLOGY

Product:	WIFI module			
Model No.:	WG233			
Additional Model No.:	WG233E, WG233P			
Trade Mark:	N/A			
Applicant:	Skylab M&C Technology Co., Ltd.			
Address:	6/F, Building 9, Lijincheng park, Gongye East Rd, Longhua St, Longhua District, Shenzhen 518109, China			
Manufacturer:	acturer: Skylab M&C Technology Co., Ltd.			
Address:	6/F, Building 9, Lijincheng park, Gongye East Rd, Longhua St, Longhua District, Shenzhen 518109, China			
Date of Test:	Mar. 06, 2020 – Apr. 07, 2020			
Applicable Standards:FCC CFR Title 47 Part 15 Subpart C Section 15.247 FCC KDB 558074 D01 15.247 Meas Guidance v05r02 FCC KDB 662911 D01 Multiple Transmitter Output v02r01 ANSI C63.10:2013				

The above equipment has been tested by Shenzhen Tongce Testing Lab. and found compliance with the requirements set forth in the technical standards mentioned above. The results of testing in this report apply only to the product/system, which was tested. Other similar equipment will not necessarily produce the same results due to production tolerance and measurement uncertainties.

Tested By:

Rleo Ber (zhar

Reviewed By:

Approved By:

Tomsin

msm

Beryl Zhao

Date: Apr. 07, 2020
Date: Apr. 08, 2020
Date: Apr. 08, 2020

Page 3 of 136

2. Test Result Summary

CT 通测检测 TESTING CENTRE TECHNOLOGY

Report No.:	TCT200305E028
-------------	---------------

			_(.c)
Requirement	CFR 47 Section	Result	
Antenna requirement	§15.203/§15.247 (c)	PASS	
AC Power Line Conducted Emission	§15.207	PASS	
Conducted Peak Output Power	§15.247 (b)(3)	PASS	6
6dB Emission Bandwidth	§15.247 (a)(2)	PASS	
Power Spectral Density	§15.247 (e)	PASS	
Band Edge	§15.247(d)	PASS	
Spurious Emission	§15.205/§15.209	PASS	

Note:

1. PASS: Test item meets the requirement.

2. Fail: Test item does not meet the requirement.

3. N/A: Test case does not apply to the test object.

4. The test result judgment is decided by the limit of test standard.

Page 4 of 136

3. EUT Description

Product:	WIFI module
Model No.:	WG233
Additional Model No.:	WG233E, WG233P
Trade Mark:	N/A
Operation Frequency:	2412MHz~2462MHz (802.11b/802.11g/802.11n(HT20)) 2422MHz~2452MHz (802.11n(HT40))
Channel Separation:	5MHz
Number of Channel:	11 for 802.11b/802.11g/802.11n(HT20) 7 for 802.11n(HT40)
Modulation Technology: (IEEE 802.11b)	Direct Sequence Spread Spectrum (DSSS)
Modulation Technology: (IEEE 802.11g/802.11n)	Orthogonal Frequency Division Multiplexing(OFDM)
Data speed (IEEE 802.11b):	1Mbps, 2Mbps, 5.5Mbps, 11Mbps
Data speed (IEEE 802.11g):	6Mbps, 9Mbps, 12Mbps, 18Mbps, 24Mbps, 36Mbps, 48Mbps, 54Mbps
Data speed (IEEE 802.11n):	Up to 300Mbps
Antenna Type:	External Antenna
Antenna Gain:	2dBi
Power Supply:	DC 3.3V
Remark:	All models above are identical in interior structure, electrical circuits and components, and just model names are different for the marketing requirement.

Report No.: TCT200305E028

Operation Frequency each of channel For 802.11b/g/n(HT20)

CI	hannel	Frequency	Channel	Frequency	Channel	Frequency	Channel	Frequency
	1	2412MHz	4	2427MHz	7	2442MHz	10	2457MHz
	2	2417MHz	5	2432MHz	8	2447MHz	11	2462MHz
	3	2422MHz	6	2437MHz	9	2452MHz		

Operation Frequency each of channel For 802.11n (HT40)

Channel	Frequency	Channel	Frequency	Channel	Frequency	Channel	Frequency
	(*	4	2427MHz	7	2442MHz	-	
		5	2432MHz	8	2447MHz		
3	2422MHz	6	2437MHz	9	2452MHz		

Note:

In section 15.31(*m*), regards to the operating frequency range over 10 MHz, the Lowest frequency, the middle frequency, and the highest frequency of channel were selected to perform the test, and the selected channel see below:

802.11b/802.11g/802.11n (HT20)

Channel	Frequency
The lowest channel	2412MHz
The middle channel	2437MHz
The Highest channel	2462MHz

802.<u>11n (HT40)</u>

Channel	Frequency
The lowest channel	2422MHz
The middle channel	2437MHz
The Highest channel	2452MHz

Page 6 of 136

CT 通测检测 TESTING CENTRE TECHNOLOGY

Report No.: TCT200305E028

4. General Information

4.1. Test environment and mode

Operating I	Environment:
-------------	--------------

Condition	Conducted Emission	Radiated Emission	
Temperature:	25.0 °C	25.0 °C	
Humidity:	55 % RH	55 % RH	
Atmospheric Pressure:	1010 mbar	1010 mbar	

Test Mode:

Engineering mode: Keep the EUT in continuous transmitting by select channel and modulations with Fully-charged battery

The sample was placed 0.8m & 1.5m for the measurement below & above 1GHz above the ground plane of 3m chamber. Measurements in both horizontal and vertical polarities were performed. During the test, each emission was maximized by: having the EUT continuously working, investigated all operating modes, rotated about all 3 axis (X, Y & Z) and considered typical configuration to obtain worst position, manipulating interconnecting cables, rotating the turntable, varying antenna height from 1m to 4m in both horizontal and vertical polarizations. The emissions worst-case(Z axis) are shown in Test Results of the following pages.

We have verified the construction and function in typical operation. All the test modes were carried out with the EUT in transmitting operation, which was shown in this test report and defined as follows:

Per-scan all kind of data rate in lowest channel, and found the follow list which it was worst case.

Mode	Data rate
802.11b	1Mbps
802.11g	6Mbps
802.11n(H20)	6.5Mbps
802.11n(H40)	13.5Mbps

Final Test Mode:

Operation mode:

Keep the EUT in continuous transmitting with modulation

1. For WIFI function, the engineering test program was provided and enabled to make EUT continuous transmit/receive.

2.According to ANSI C63.10 standards, the test results are both the "worst case" and "worst setup" 1Mbps for 802.11b, 6Mbps for 802.11g, 6.5Mbps for 802.11n(H20), 13.5Mbps for 802.11(H40). Duty cycle setting during the transmission is 98.46% with maximum power setting for all modulations.

Page 7 of 136

「CT通测检测 4.2. Description of Support Units

The EUT has been tested as an independent unit together with other necessary accessories or support units. The following support units or accessories were used to form a representative test configuration during the tests.

Equipment	Model No.	Serial No.	FCC ID	Trade Name
Notebook Computer	XiaoXin CHAO5000	PF0WZYD9	1	Lenovo
WG203 TSET BOARD		6		/

Note:

- 1. All the equipment/cables were placed in the worst-case configuration to maximize the emission during the test.
- 2. Grounding was established in accordance with the manufacturer's requirements and conditions for the intended use.
- 3. For conducted measurements (Output Power, 6dB Emission Bandwidth, Power Spectral Density, Spurious Emissions), the antenna of EUT is connected to the test equipment via temporary antenna connector, the antenna connector is soldered on the antenna port of EUT, and the temporary antenna connector is listed in the Test Instruments.

5. Facilities and Accreditations

5.1. Facilities

The test facility is recognized, certified, or accredited by the following organizations:

• FCC - Registration No.: 645098

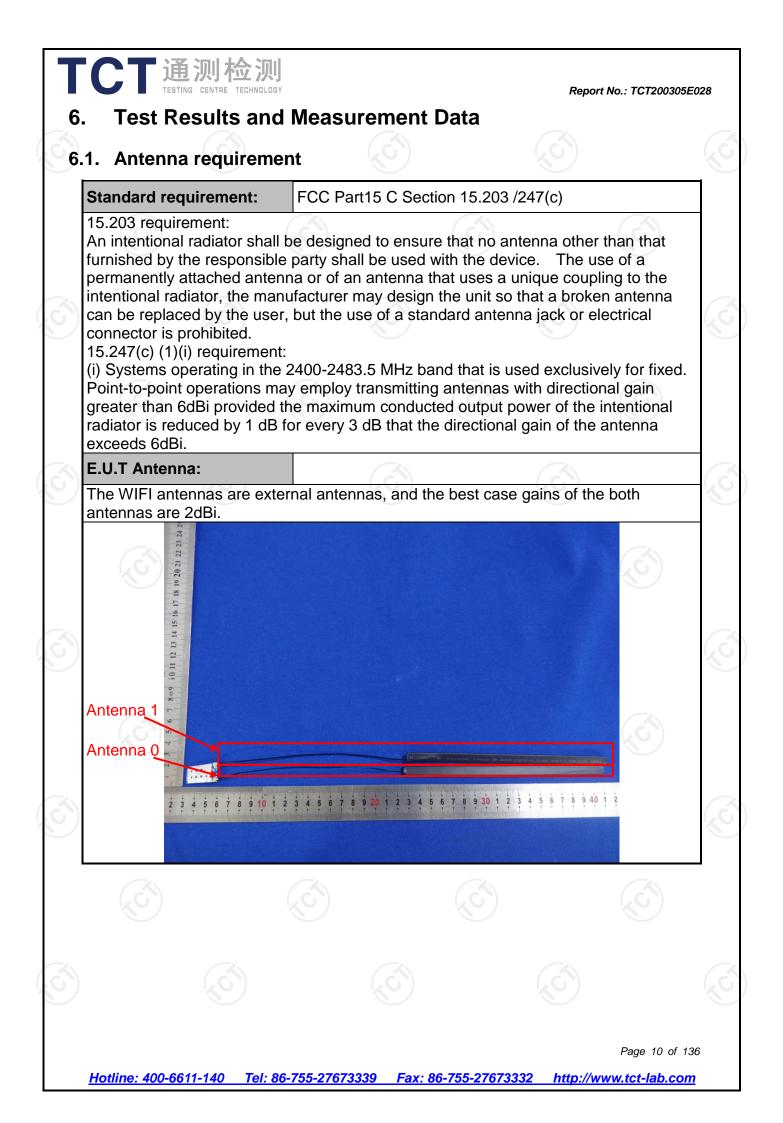
Shenzhen Tongce Testing Lab.

The 3m Semi-anechoic chamber has been registered and fully described in a report with the (FCC) Federal Communications Commission. The acceptance letter from the FCC is maintained in our files.

 IC - Registration No.: 10668A-1 The 3m Semi-anechoic chamber of Shenzhen TCT Testing Technology Co., Ltd. has been registered by Certification and Engineering Bureau of Industry Canada for radio equipment testing

5.2. Location

Shenzhen Tongce Testing Lab.


Address: 1B/F., Building 1, Yibaolai Industrial Park, Qiaotou, Fuyong, Baoan District, Shenzhen, Guangdong, China

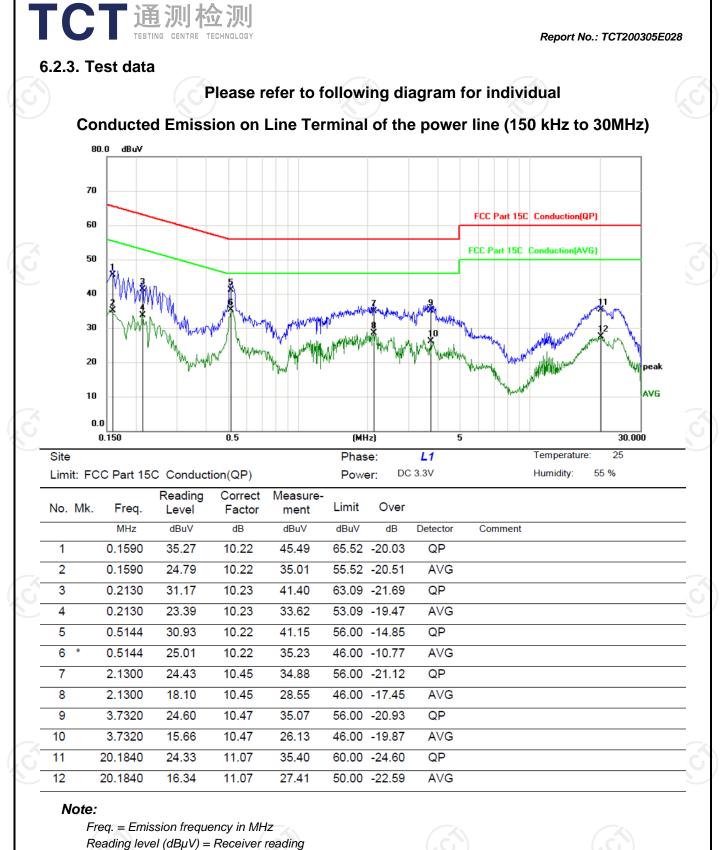
TEL: +86-755-27673339

5.3. Measurement Uncertainty

The reported uncertainty of measurement $y \pm U$, where expended uncertainty U is based on a standard uncertainty multiplied by a coverage factor of k=2, providing a level of confidence of approximately 95 %.

No.	Item	MU	
1	Conducted Emission		
2	RF power, conducted	±0.12dB	
3	Spurious emissions, conducted	±0.11dB	
4	All emissions, radiated(<1G)	±3.92dB	
5	All emissions, radiated(>1G)	±4.28dB	
6	Temperature	±0.1°C	
7	Humidity	±1.0%	_

2. Conducted Emiss .1. Test Specification	ion		
Fest Requirement:	FCC Part15 C Section	15.207	
Fest Method:	ANSI C63.10:2013	$\langle \mathcal{C} \rangle$	
Frequency Range:	150 kHz to 30 MHz		
Receiver setup:	RBW=9 kHz, VBW=30) kHz, Sweep time	=auto
_imits:	Frequency range (MHz) 0.15-0.5 0.5-5 5-30	Limit (c Quasi-peak 66 to 56* 56 60	dBuV) Average 56 to 46* 46 50
Гest Setup:	40cm E.U.T AC powe Test table/Insulation plane Remarkc E.U.T: Equipment Under Test LISN: Line Impedence Stabilization Ne Test table height=0.8m	EMI Receiver	— AC power
Test Mode:	Charging + transmitting	g with modulation	
Гest Procedure:	 The E.U.T is conneline impedance sta provides a 500hm/5 measuring equipme The peripheral device power through a Ll coupling impedance refer to the block photographs). Both sides of A.C. conducted interferer emission, the relative the interface cables ANSI C63.10: 2013 	bilization network 50uH coupling im- nt. ces are also conne ISN that provides with 50ohm term diagram of the line are checkence. In order to fir e positions of equi- s must be change	(L.I.S.N.). This pedance for the ected to the main a 500hm/50uH hination. (Please test setup and d for maximum d the maximum ipment and all of ed according to


Page 11 of 136

6.2.2. Test Instruments

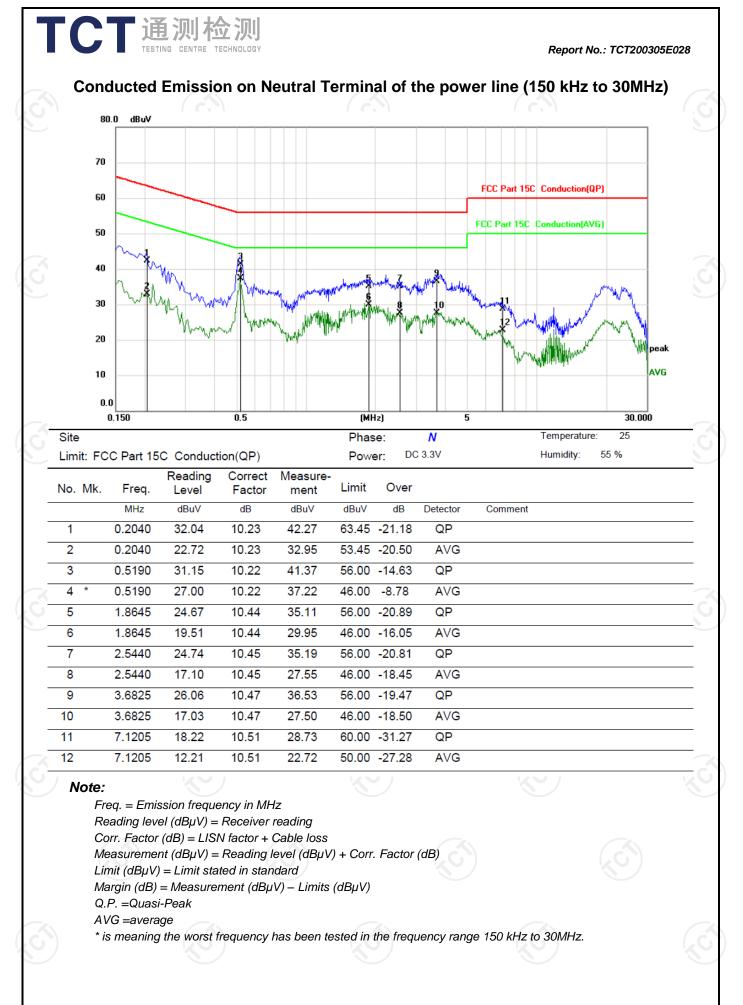
Conducted Emission Shielding Room Test Site (843)				
Equipment	Manufacturer	Model	Serial Number	Calibration Due
Test Receiver	R&S	ESPI	101402	Jul. 29, 2020
LISN	Schwarzbeck	NSLK 8126	8126453	Sep. 11, 2020
Coax cable (9KHz-30MHz)	тст	CE-05	N/A	Sep. 08, 2020
EMI Test Software	Shurple Technology	EZ-EMC	N/A	N/A

Note: The calibration interval of the above test instruments is 12 months and the calibrations are traceable to international system unit (SI).

Page 12 of 136

Corr. Factor (dB) = LISN factor + Cable loss

Measurement ($dB\mu V$) = Reading level ($dB\mu V$) + Corr. Factor (dB)


Limit $(dB\mu V) = Limit$ stated in standard

Margin (dB) = Measurement (dB μ V) – Limits (dB μ V)

Q.P. =Quasi-Peak AVG =average

* is meaning the worst frequency has been tested in the frequency range 150 kHz to 30MHz

Page 13 of 136

Page 14 of 136

6.3. Maximum Conducted (Average) Output Power

6.3.1. Test Specification

Test Requirement:	FCC Part15 C Section 15.247 (b)(3)	
Test Method:	KDB 558074 D01 v05r02, KDB662911 D01 v02r01	
Limit:	30dBm	
Test Setup:		
Test Mode:	Transmitting mode with modulation	
Test Procedure:	 The RF output of EUT was connected to the spectrum analyzer by RF cable and attenuator. The path loss was compensated to the results for each measurement. Set to the maximum power setting and enable the EUT transmit continuously. Measure the conducted output power and record the results in the test report. 	
Test Result:	PASS	

6.3.2. Test Instruments

Equipment	Manufacturer	Model	Serial Number	Calibration Due
Spectrum Analyzer	Agilent	N9020A	MY49100619	Sep. 11, 2020
RF Cable (9KHz-26.5GHz)	ТСТ	RE-06	N/A	Sep. 11, 2020
Antenna Connector	тст	RFC-01	N/A	Sep. 11, 2020

Note: The calibration interval of the above test instruments is 12 months and the calibrations are traceable to

international system unit (SI).

Page 15 of 136

6.3.3. Test Data

Highest

Configuration IEEE 8	02.11b/ Antenna ()+Antenna 1			
Test channel	Maximum Cond Output Po	ucted (Average) wer (dBm)	Limit (dBm)	Result	
	Antenna 0	Antenna 1			
Lowest	17.10	14.44	30	PASS	
Middle	17.46	13.88	30	PASS	
Highest	17.31	13.30	30	PASS	
Configuration IEEE 8	02.11g/ Antenna ()+Antenna 1			
Test channel	Maximum Cond Output Po	· · · ·	Limit (dBm)	Result	
	Antenna 0	Antenna 1	~ /		
Lowest	14.33	10.43	30	PASS	
Middle	15.11	12.29	30	PASS	

Configuration IEEE 8	02.11n(H20)/	Antenna 0+	Antenna 1		
Test channel	Maximum Conducted (Average) Output Power (dBm)			Limit (dBm)	Result
	Antenna 0	Antenna 1	Total		
Lowest	14.49	11.38	16.22	30	PASS
Middle	14.78	13.24	17.09	30	PASS
Highest	14.65	10.66	16.11	30	PASS

10.63

30

Configuration IEEE 8	02.11n(H40)/	'Antenna 0+	Antenna 1			
Test channel	Maximum Conducted (Average) Output Power (dBm)			Limit (dBm)	Result	
	Antenna 0	Antenna 1	Total			
Lowest	14.93	12.11	16.76	30	PASS	
Middle	15.03	13.42	17.31	30	PASS	
Highest	15.01	10.89	16.43	30	PASS	

Note:

G_{ANT} = 2dBi, Array Gain= 10log(N_{ANT})= 3.01dBi

Directional Gain=G_{ANT} + Array Gain= 5.01dBi < 6dBi, So limit=30dBm

14.76

Refer to Appendix A: Test Result of Conducted Test

Report No.: TCT200305E028

PASS

4. Emission Bandw	ridth
Test Requirement:	FCC Part15 C Section 15.247 (a)(2)
Test Method:	KDB 558074 D01 v05r02
Limit:	>500kHz
Test Setup:	Spectrum Analyzer EUT
Test Mode:	Transmitting mode with modulation
Test Procedure:	 Set to the maximum power setting and enable the EUT transmit continuously. Make the measurement with the spectrum analyzer's resolution bandwidth (RBW) = 100 kHz. Set the Video bandwidth (VBW) = 300 kHz. In order to make an accurate measurement. The 6dB bandwidth must be greater than 500 kHz. Measure and record the results in the test report.
Test Result:	PASS

6.4.2. Test Instruments

Equipment	Manufacturer	Model	Serial Number	Calibration Due
Spectrum Analyzer	Agilent	N9020A	MY49100619	Sep. 11, 2020
RF Cable (9KHz-26.5GHz)	ТСТ	RE-06	N/A	Sep. 11, 2020
Antenna Connector	ТСТ	RFC-01	N/A	Sep. 11, 2020

Note: The calibration interval of the above test instruments is 12 months and the calibrations are traceable to international system unit (SI).

Page 17 of 136

5. Power Spectral Der	sity
.5.1. Test Specification	
Test Requirement:	FCC Part15 C Section 15.247 (e)
Test Method:	KDB 558074 D01 v05r02, KDB662911 D01 v02r01
Limit:	The average power spectral density shall not be greater than 8dBm in any 3kHz band at any time interval of continuous transmission.
Test Setup:	
	Spectrum Analyzer EUT
Test Mode:	Transmitting mode with modulation
Test Procedure:	 The RF output of EUT was connected to the spectrum analyzer by RF cable and attenuator. The path loss was compensated to the results for each measurement. Set to the maximum power setting and enable the EUT transmit continuously. Make the measurement with the spectrum analyzer's resolution bandwidth (RBW): 3 kHz ≤ RBW ≤ 100 kHz. Video bandwidth VBW ≥ 3 x RBW. Set the span to at least 1.5 times the OBW. Detector = RMS, Sweep time = auto couple. Employ trace averaging (RMS) mode over a minimum of 100 traces. Use the peak marker function to determine the maximum power level. Measure and record the results in the test report.

6.5.2. Test Instruments

5.2. Test Instrument	s (c)					
Equipment	Manufacturer	anufacturer Model		Calibration Due		
Spectrum Analyzer	Agilent	N9020A	MY49100619	Sep. 11, 2020		
RF Cable (9KHz-26.5GHz)	тст	RE-06	N/A	Sep. 11, 2020		
Antenna Connector	тст	RFC-01	N/A	Sep. 11, 2020		

Note: The calibration interval of the above test instruments is 12 months and the calibrations are traceable to international system unit (SI)

Page 18 of 136

6.5.3.	Test data
--------	-----------

Configuration IEEE 802.11b/ Antenna 0, Antenna 1									
Test channel		Spectral Density n/3kHz)	Limit	Result					
	Antenna 0	Antenna 1	(dBm/3kHz)						
Lowest	-14.71	-17.37	8	PASS					
Middle	-14.36	-18.01	8	PASS					
Highest	-14.54	-18.54	8	PASS					

Configuration IEEE 80	02.11g/ Antenna	0, Antenna 1			
Test channel	AVG Power Spectral Density (dBm/3kHz)		Limit	Result	
	Antenna 0	Antenna 1	(dBm/3kHz)		
Lowest	-17.18	-21.73	8	PASS	
Middle	-17.19	-19.62	8	PASS	
Highest	-17.45	-21.14	8	PASS	

Configuration IEEE 802.11n (HT20)/ Antenna 0, Antenna 1									
Test channel		er Spectral E dBm/3kHz)	Limit	Result					
	Antenna 0	Antenna 1	Total	(dBm/3kHz)					
Lowest	-16.19	-18.44	-14.16	8	PASS				
Middle	-16.69	-17.60	-14.11	8	PASS				
Highest	-17.66	-20.74	-15.92	8	PASS				

Configuration IEEE 802.11n (HT40)/ Antenna 0, Antenna 1									
Test channel		er Spectral E dBm/3kHz)	Limit	Result					
	Antenna 0	Antenna 1	Total	(dBm/3kHz)					
Lowest	-20.37	-23.97	-18.80	8	PASS				
Middle	-21.19	-23.18	-19.06	8	PASS				
Highest	-21.53	-25.60	-20.09	8	PASS				

Note:

G_{ANT} = 2dBi, Array Gain= 10log(*N_{ANT}*)= 3.01dBi

Directional Gain=G_{ANT} + Array Gain= 5.01dBi < 6dBi, So limit=8dBm/3kHz

Refer to Appendix A: Test Result of Conducted Test

6.6. Conducted Band Edge and Spurious Emission Measurement

6.6.1. Test Specification

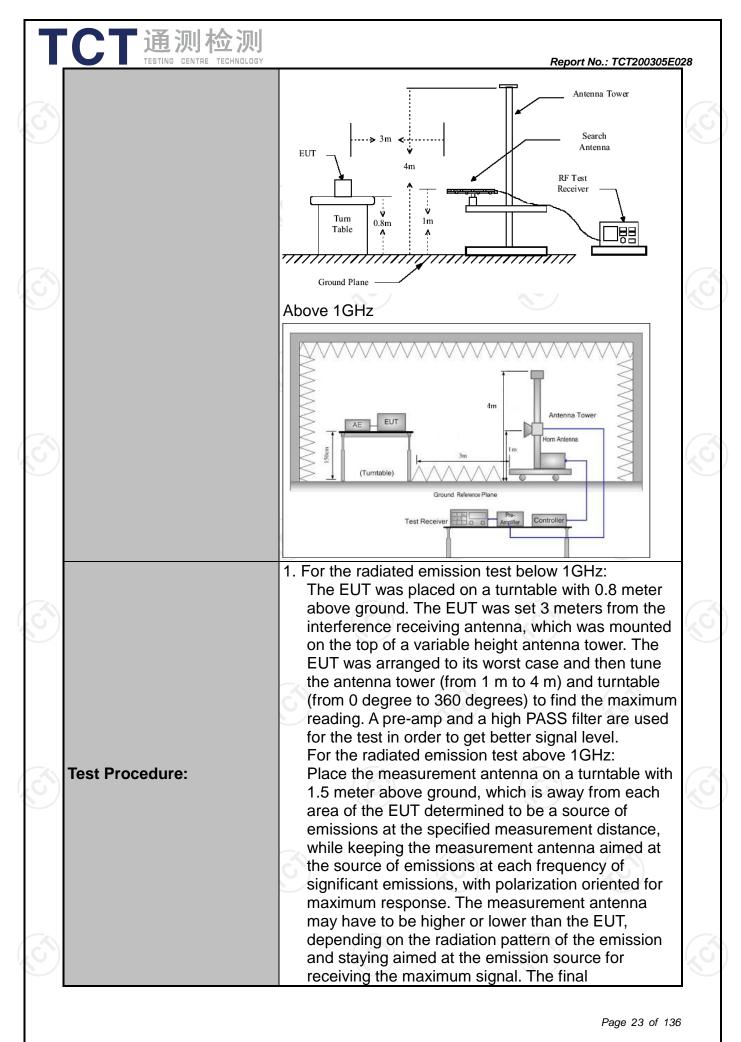
Test Requirement:	FCC Part15 C Section 15.247 (d)
Test Method:	KDB 558074 D01 v05r02
Limit:	In any 100 kHz bandwidth outside of the authorized frequency band, the emissions which fall in the non-restricted bands shall be attenuated at least 20 dB / 30dB relative to the maximum PSD level in 100 kHz by RF conducted measurement and radiated emissions which fall in the restricted bands, as defined in Section 15.205(a), must also comply with the radiated emission limits specified in Section 15.209(a).
Test Setup:	
	Spectrum Analyzer EUT
Test Mode:	Transmitting mode with modulation
Test Procedure:	 The RF output of EUT was connected to the spectrum analyzer by RF cable and attenuator. The path loss was compensated to the results for each measurement. Set to the maximum power setting and enable the EUT transmit continuously. Set RBW = 100 kHz, VBW=300 kHz, Peak Detector. Unwanted Emissions measured in any 100 kHz bandwidth outside of the authorized frequency band shall be attenuated by at least 20 dB relative to the maximum in-band peak PSD level in 100 kHz when maximum peak conducted output power procedure is used. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, the attenuation required under this paragraph shall be 30 dB instead of 20 dB per 15.247(d). Measure and record the results in the test report. The RF fundamental frequency should be excluded against the limit line in the operating frequency band.
	PASS

Page 20 of 136

Equipment **Calibration Due** Manufacturer Model **Serial Number** N9020A MY49100619 Sep. 11, 2020 Spectrum Analyzer Agilent **RF** Cable TCT **RE-06** N/A Sep. 11, 2020 (9KHz-26.5GHz) **RFC-01** N/A Antenna Connector TCT Sep. 11, 2020 Note: The calibration interval of the above test instruments is 12 months and the calibrations are traceable to international system unit (SI).

Page 21 of 136

Hotline: 400-6611-140 Tel: 86-755-27673339 Fax: 86-755-27673332 http://www.tct-lab.com

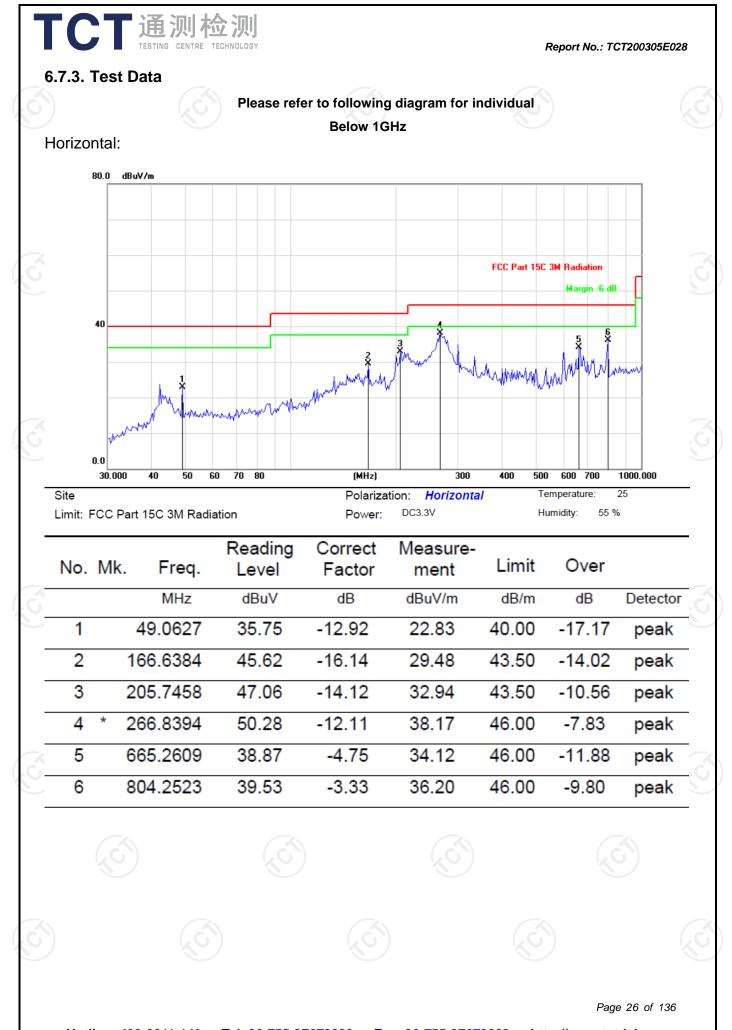

6.6.2. Test Instruments

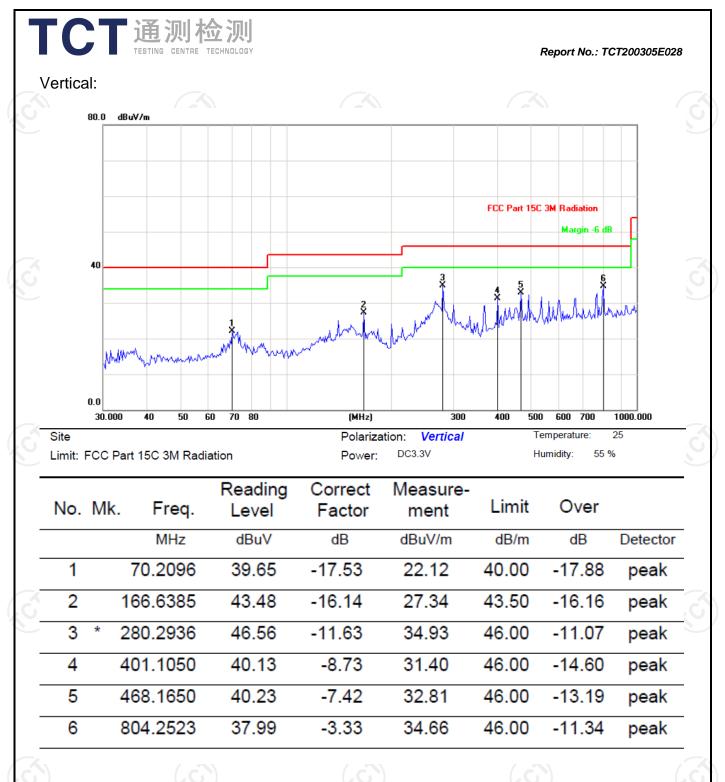
6.7. Radiated Spurious Emission Measurement

6.7.1. Test Specification

TCT通测检测 TESTING CENTRE TECHNOLOGY

Test Requirement:	FCC Part15	C Section	15.209					
Test Method:	ANSI C63.10: 2013							
Frequency Range:	9 kHz to 25 GHz							
Measurement Distance:	3 m							
Antenna Polarization:	Horizontal & Vertical							
Operation mode:	Transmitting mode with modulation							
	Frequency	Detector	RBW	VBW		Remark		
Receiver Setup:	<u>9kHz- 150kHz</u> 150kHz- 30MHz	Quasi-peak Quasi-peak		1kHz 30kHz		<u>i-peak Value</u> i-peak Value		
	30MHz-1GHz	Quasi-peak	120KHz	300KHz	Quas	i-peak Value		
	Above 1GHz	Peak Peak	1MHz 1MHz	3MHz 10Hz		eak Value rage Value		
	Frequen	су	Field Stre (microvolts	ength /meter)	Меа	asurement nce (meters)		
	0.009-0.4		2400/F(I 24000/F(<u>300</u> 30		
	1.705-3		30		30			
	30-88		100		3			
Limit:	<u>88-216</u> 216-96		150 200		3			
	Above 9		500		3			
	Frequency		Field Strength (microvolts/meter)		ment ice rs)	Detector		
	Above 1GH:	z	500	3		Average		
		(5000	3		Peak		
	For radiated	emissions	s below 30		Comput			
Test setup:	0.8m				Receiver	 }		
	30MHz to 10	θHz						
		5		(\mathbf{c})				

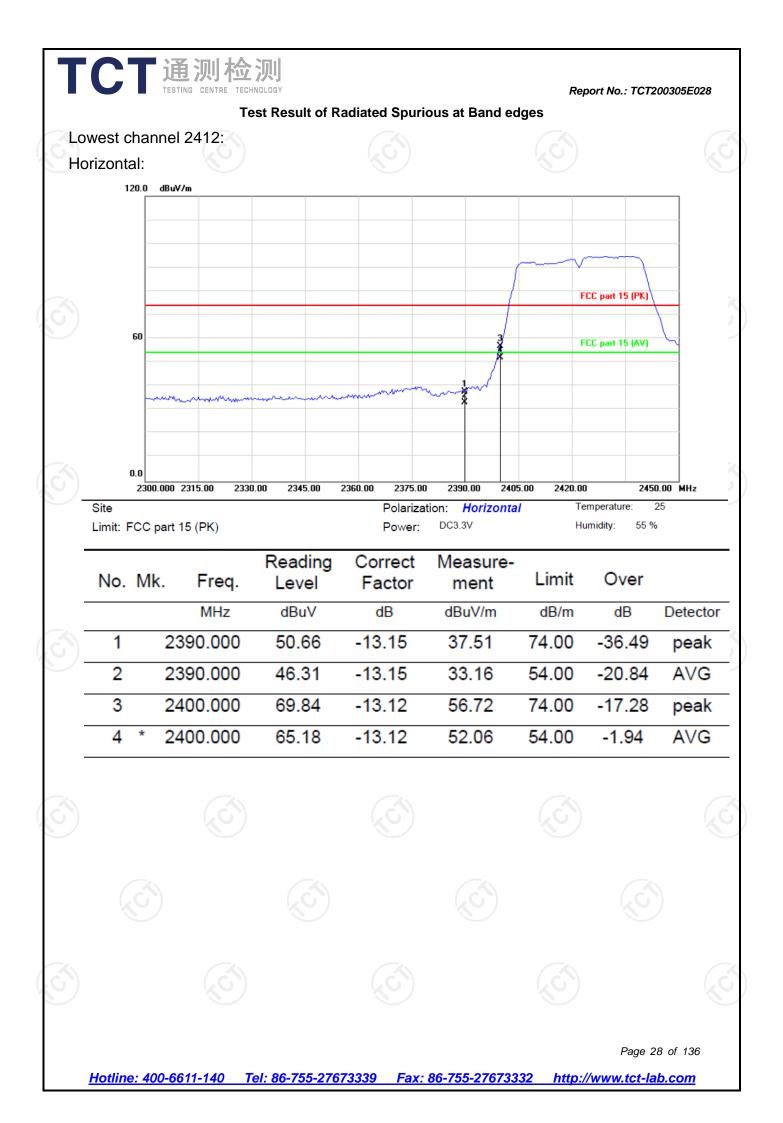

TCT	<u>NG CENTRE TECHNOLO</u>	maxi anter restr abov 3. Corre Read 4. For m of the lowe	imizes the nna elevati icted to a ra ected Readi d Level - Pr neasurement e EUT mea r than the a	emissions. on for maxinange of heig nd or reference ng: Antenna reamp Factor nt below 100 asured by the applicable li	vation shall The measur mum emissi ghts of from nce ground a Factor + C or = Level Hz, If the en e peak dete mit, the pea	ons shall be 1 m to 4 m plane. Cable Loss + mission level ector is 3 dB k emission	128
		mean deter 5. Use ti (1) S (2) S (3) S (3) S For a duty when the n trans	surement v ctor and re he following pan shall w mission bei et RBW=12 weep = aut nax hold; et RBW = 7 eak measu average me cycle is no n duty cycle ninimum tra smitter is or	vill be repea ported. g spectrum ride enough ng measure 20 kHz for f co; Detector 1 MHz, VBV rement. easurement less than 9 e is less tha ansmission n and is trar	analyzer se to fully cap ed; < 1 GHz; V function = p V= 3MHz fo V = 10 8 percent. N n 98 percen duration over smitting at	ttings: ture the BW ≥ RBW; beak; Trace = r f >1 GHz for Hz, when	
Test results.		1700					
Test results:	Ś						
Test results:							
Test results:							
Test results:							

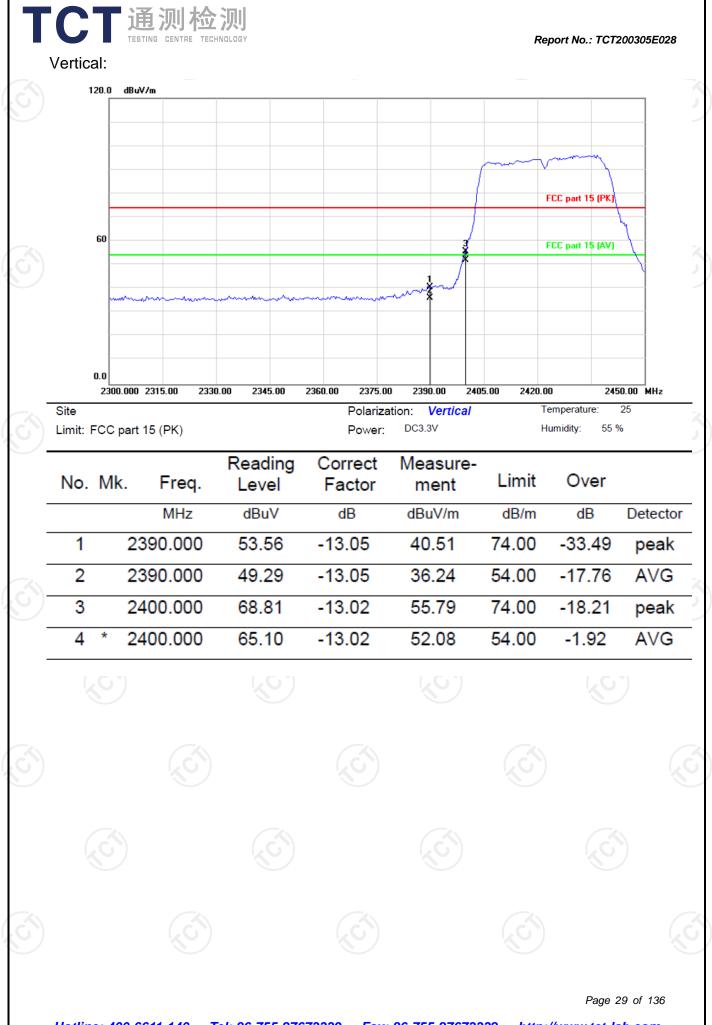

6.7.2. Test Instruments

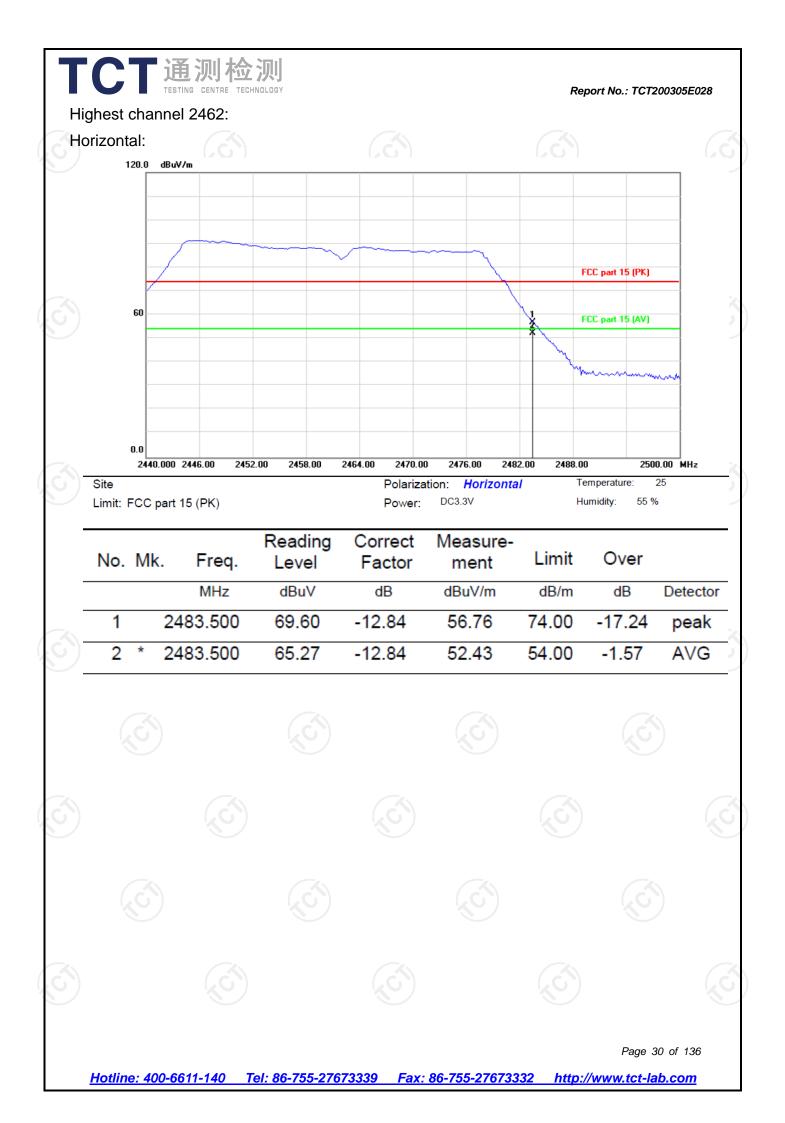
Radiated Emission Test Site (966)										
Name of Equipment	Manufacturer Model		Serial Number	Calibration Due						
Test Receiver	ROHDE&SCHW ARZ	ESIB7	100197	Jul. 29, 2020						
Spectrum Analyzer	ROHDE&SCHW ARZ	FSQ40	200061	Sep. 11, 2020						
Pre-amplifier	EM Electronics Corporation CO.,LTD	EM30265	07032613	Sep. 08, 2020						
Pre-amplifier	e-amplifier HP		HP 8447D		2727A05017	Sep. 08, 2020 Sep. 11, 2020 Sep. 06, 2020				
Loop antenna	na ZHINAN ZN30900A	ZN30900A	12024							
Broadband Antenna	Schwarzbeck	VULB9163	340							
Horn Antenna	Schwarzbeck	BBHA 9120D	631	Sep. 06, 2020						
Horn Antenna	A-INFO	LB-180400-KF	J211020657	Sep. 06, 2020						
Antenna Mast	Keleto	RE-AM	N/A	N/A						
Coax cable (9KHz-40GHz)	PKHz-40GHz) TCT Coax cable TCT		N/A	Sep. 08, 2020						
Coax cable (9KHz-40GHz)			N/A	Sep. 08, 2020						
EMI Test Software	Shurple Technology	EZ-EMC	N/A	N/A						

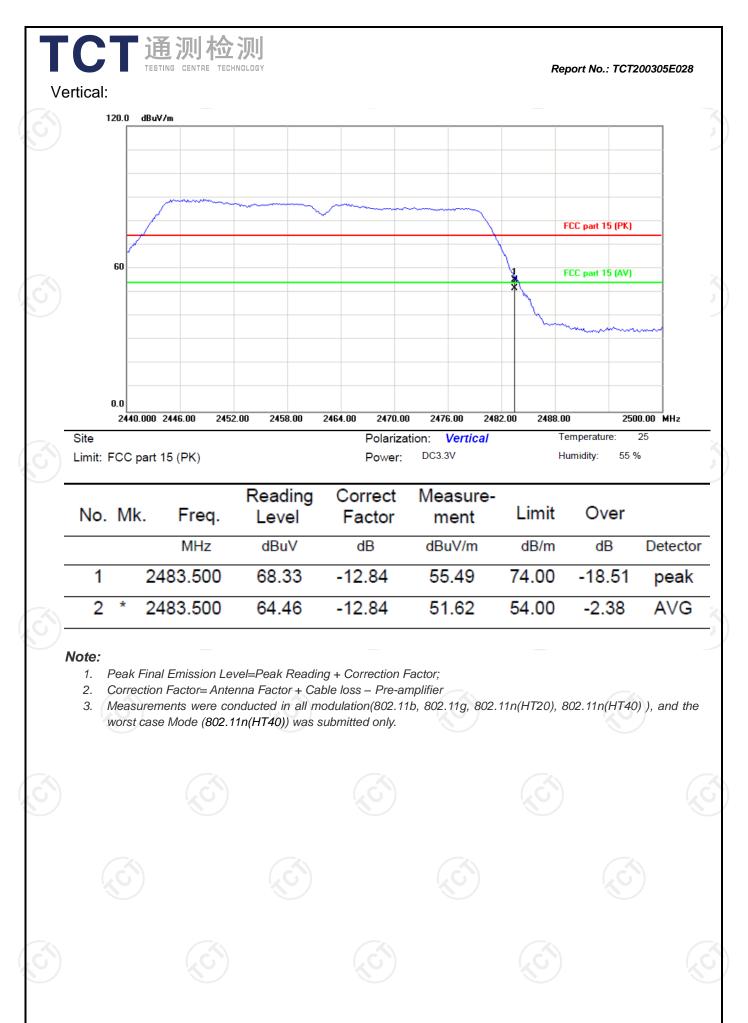
Note: The calibration interval of the above test instruments is 12 months and the calibrations are traceable to international system unit (SI).

Page 25 of 136




Note: 1. The low frequency, which started from 9KHz~30MHz, was pre-scanned and the result which was 20dB lower than the limit line per 15.31(o) was not reported


- Measurements were conducted in all three channels (high, middle, low) and all modulation(802.11b, 802.11g, 802.11n(HT20), 802.11n(HT40)), and the worst case Mode (Middle channel and 802.11b) was submitted only.
 Freq. = Emission frequency in MHz
- Measurement $(dB\mu V/m) = Reading \, level \, (dB\mu V) + Corr. Factor (dB)$
- Correction Factor= Antenna Factor + Cable loss Pre-amplifier
- Limit $(dB\mu V/m) = Limit$ stated in standard
- Margin (dB) = Measurement (dB μ V/m) Limits (dB μ V/m)
- Any value more than 10dB below limit have not been specifically reported.


* is meaning the worst frequency has been tested in the test frequency range

Page 27 of 136

Page 31 of 136

TC	通 TESTING	测检 CENTRE TECHN					Rep	ort No.: TCT20	00305E028
					1GHz				
					ype: 802.1				
		-	L		I: 2412 MH	Z	-		
Frequency (MHz)	Ant. Pol. H/V	Peak reading (dBµV)	AV reading (dBuV)	Correction Factor (dB/m)	Emissic Peak (dBµV/m)	on Level AV (dBµV/m)	Peak limit (dBµV/m)	AV limit (dBµV/m)	Margin (dB)
4824	Н	47.46		0.75	48.21		74	54	-5.79
7236	Н	36.71		9.87	46.58		74	54	-7.42
(Н								
		•		/			•		
4824	V	44.96		0.75	45.71		74	54	-8.29
7236	V	35.18		9.87	45.05		74	54	-8.95
	V								
N.						•			
		KO)	Μ	iddle chanr	nel: 2437MH	Ηz	KO)		N.
Frequency	Ant. Pol.	Peak reading	AV reading	Correction Factor	Emissic Peak	on Level	Peak limit	AV limit	Margin

Frequency (MHz)	Ant. Pol. H/V	Peak reading	AV reading (dBµV)	Correction Factor	Emissic Peak	on Level AV	Peak limit (dBµV/m)	AV limit (dBµV/m)	Margin (dB)
(101112)	1 1/ V	(dBµV)	(ubµv)	(dB/m)	(dBµV/m)	(dBµV/m)			(UD)
4874	H	46.02		0.97	46.99		74	54	-7.01
7311	С Н	34.85	f. G`	9.83	44.68	C^{+}	74	54	-9.32
3	H					<u> </u>			
4874	V	48.64		0.97	49.61		74	54	-4.39
7311	V	37.23		9.83	47.06		74	54	-6.94
	V	(((. (
(برا	V				(·) (·)				

			Н	ligh channe	el: 2462 MH	z			
Frequency (MHz)	Ant. Pol. H/V	Peak reading (dBµV)	AV reading (dBµV)	Correction Factor (dB/m)	Emissic Peak (dBµV/m)	n Level AV (dBµV/m)	Peak limit (dBµV/m)	AV limit (dBµV/m)	Margin (dB)
4924	S H	45.57	-zG	1.18	46.75		74	54	-7.25
7386	Ţ	37.36		10.07	47.43		74	54	-6.57
	Н								
4924	V	47.97		1.18	49.15		74	54	-4.85
7386	V	38.41		10.07	48.48		74	54	-5.52
J	V				ノ				

1. Emission Level=Peak Reading + Correction Factor; Correction Factor= Antenna Factor + Cable loss - Pre-amplifier

2. Margin (dB) = Emission Level (Peak) (dBµV/m)-Average limit (dBµV/m)

3. The emission levels of other frequencies are very lower than the limit and not show in test report.

4. Measurements were conducted from 1 GHz to the 10th harmonic of highest fundamental frequency. The highest test frequency is 25GHz.

5. Data of measurement shown "---"in the above table mean that the reading of emissions is attenuated more than 20 dB below the limits or the field strength is too small to be measured.

6. 802.11b is SISO mode and the worst case Antenna (ANT0) was submitted only.

Page 32 of 136

			М	odulation T	ype: 802.11	lg			
			L	ow channe.	I: 2412 MH	z			
Frequency (MHz)	Ant. Pol. H/V	Peak reading (dBµV)	AV reading (dBuV)	Correction Factor (dB/m)	Emissic Peak (dBµV/m)	n Level AV (dBµV/m)	Peak limit (dBµV/m)	AV limit (dBµV/m)	Margin (dB)
4824	Н	45.82		0.75	46.57		74	54	-7.43
7236	Н	34.59		9.87	44.46		74	54	-9.54
	н								
							•		
4824	V	46.63		0.75	47.38		74	54	-6.62
7236	V	35.47		9.87	45.34		74	54	-8.66
	V								

)			Μ	iddle chann	nel: 2437MF	Ιz			
Frequency (MHz)	Ant. Pol. H/V	Peak reading (dBµV)	AV reading (dBµV)	Correction Factor (dB/m)	Emissic Peak (dBµV/m)	n Level AV (dBµV/m)	Peak limit (dBµV/m)	AV limit (dBµV/m)	Margin (dB)
4874	H	44.52		0.97	45.49		74	54	-8.51
7311	, C, H	35.13	[6]	9.83	44.96	.C 1	74	54	-9.04
	H								
4874	V	47.07		0.97	48.04		74	54	-5.96
7311	V	38.25		9.83	48.08		74	54	-5.92
	V	((. C					(

			H	ligh channe	el: 2462 MH	z			
Frequency (MHz)	Ant. Pol. H/V	Peak reading (dBµV)	AV reading (dBµV)	Correction Factor (dB/m)	Emissic Peak (dBµV/m)	n Level AV (dBµV/m)	Peak limit (dBµV/m)	AV limit (dBµV/m)	Margin (dB)
4924	Ч С H	43.78		1.18	44.96		74	54	-9.04
7386	Ţ	34.26		10.07	44.33		74	54	-9.67
	Н								
4924	V	42.98		1.18	44.16		74	54	-9.84
7386	V	36.34		10.07	46.41		74	54	-7.59
	V			🤍					2

1. Emission Level=Peak Reading + Correction Factor; Correction Factor= Antenna Factor + Cable loss - Pre-amplifier

2. Margin (dB) = Emission Level (Peak) (dBµV/m)-Average limit (dBµV/m)

3. The emission levels of other frequencies are very lower than the limit and not show in test report.

4. Measurements were conducted from 1 GHz to the 10th harmonic of highest fundamental frequency. The highest test frequency is 25GHz.

5. Data of measurement shown "---"in the above table mean that the reading of emissions is attenuated more than 20 dB below the limits or the field strength is too small to be measured.

6. 802.11g is SISO mode and the worst case Antenna (ANT0) was submitted only.

Page 33 of 136

					: 802.11n (l	/			
			L		el: 2412 MH				
Frequency (MHz)	Ant. Pol. H/V	Peak reading (dBµV)	AV reading (dBuV)	Correction Factor (dB/m)	Emissic Peak (dBµV/m)	on Level AV (dBµV/m)	Peak limit (dBµV/m)	AV limit (dBµV/m)	Margin (dB)
4824	Н	44.58		0.75	45.33		74	54	-8.67
7236	Н	35.91		9.87	45.78		74	54	-8.22
(Н					C			
4824	V	44.62		0.75	45.37		74	54	-8.63
7236	V	34.34		9.87	44.21		74	54	-9.79
	V								
		-(c)	NA	iddle ebenr	nel: 2437MF	1-	-(c)		(
		Peak		Correction		on Level			
Frequency (MHz)	Ant. Pol. H/V	reading (dBµV)	AV reading (dBµV)	Factor (dB/m)	Peak (dBµV/m)	AV (dBµV/m)	Peak limit (dBµV/m)	AV limit (dBµV/m)	Margin (dB)
4874	KH	46.02		0.97	46.99		74	54	-7.01
7311	GH	35.41	(G)	9.83	45.24	<u>, G ² -</u>	74	54	-8.76
	H								
4874	V	45.15		0.97	46.12		74	54	-7.88
7311	V	36.83		9.83	46.66		74	54	-7.34
	V			(. ((
)			•	0				· ·	
			F	ligh channe	el: 2462 MH	Z			
Frequency (MHz)	Ant. Pol. H/V	Peak reading (dBµV)	AV reading (dBµV)	Correction		on Level AV (dBµV/m)	Peak limit (dBµV/m)	AV limit (dBµV/m)	Margin (dB)
4004	AN 1 11	40.05		4 4 0	44.40		74	F 4	0.57

(MHz)	H/V	(dBµV)	(dBµV)	Factor (dB/m)	dBµV/m)	AV (dBµV/m)	(dBµV/m)	(dBµV/m)	(dB)
4924	С H	43.25	μO.	1.18	44.43		74	54	-9.57
7386	H	34.77		10.07	44.84		74	54	-9.16
	Н								
4924	V	45.59		1.18	46.77		74	54	-7.23
7386	V	36.87		10.07	46.94		74	54	-7.06
·	V			0	/				0

1. Emission Level=Peak Reading + Correction Factor; Correction Factor= Antenna Factor + Cable loss - Pre-amplifier

2. Margin (dB) = Emission Level (Peak) (dB μ V/m)-Average limit (dB μ V/m)

3. The emission levels of other frequencies are very lower than the limit and not show in test report.

4. Measurements were conducted from 1 GHz to the 10th harmonic of highest fundamental frequency. The highest test frequency is 25GHz.

5. Data of measurement shown "---"in the above table mean that the reading of emissions is attenuated more than 20 dB below the limits or the field strength is too small to be measured.

6. 802.11n(HT20) is MIMO mode.

TCT通测检测 TCT通测检测

Page 34 of 136

			Modu	lation Type	: 802.11n (l	HT40)			
					el: 2422 MH	/			
Frequency (MHz)	Ant. Pol. H/V	Peak reading (dBµV)	AV reading (dBuV)	Correction Factor (dB/m)	Emissic Peak (dBµV/m)	n Level AV (dBµV/m)	Peak limit (dBµV/m)	AV limit (dBµV/m)	Margin (dB)
4844	Н	42.87		0.75	43.62		74	54	-10.38
7266	Н	33.49		9.87	43.36		74	54	-10.64
	Н								
		•					•		
4824	V	43.38		0.75	44.13		74	54	-9.87
7236	V	34.67		9.87	44.54		74	54	-9.46
	V								
						·			
·)			M		nel: 2437MI				
Frequency (MHz)	Ant. Pol. H/V	Peak reading (dBµV)	AV reading (dBµV)	Correction Factor (dB/m)	Emissic Peak (dBµV/m)	on Level AV (dBµV/m)	Peak limit (dBµV/m)	AV limit (dBµV/m)	Margin (dB)
4874	H	43.94		0.97	44.91		74	54	-9.09
7311	.GН	33.52	(6)	9.83	43.35	\mathcal{O}^{2}	74	54	-10.65
	<u> </u>								
4874	V	44.78		0.97	45.75		74	54	-8.25
7311	V	35.51		9.83	45.34		74	54	-8.66
	V								
· /								11	
			F	ligh channe	el: 2452 MH	Z			
Frequency (MHz)	Ant. Pol. H/V	Peak reading (dBµV)	AV reading (dBµV)	Correction Factor (dB/m)		n Level AV (dBµV/m)	Peak limit (dBµV/m)	AV limit (dBµV/m)	Margin (dB)
4004		12 20		1 1 0	11 17		74	54	0 5 2

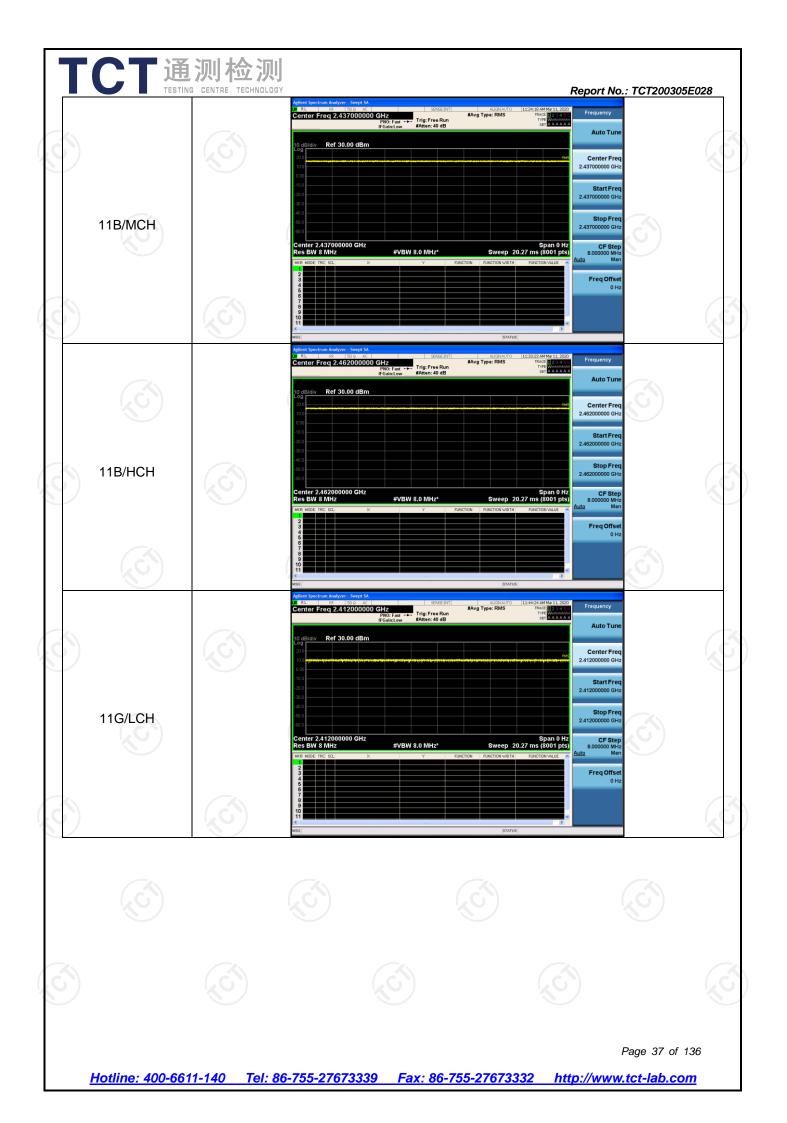
(MHz)	H/V	reading (dBµV)	(dBµV)	Factor (dB/m)	Peak (dBµV/m)	AV (dBµV/m)	(dBµV/m)	(dBµV/m)	(dB)
4904	С H	43.29	μO J	1.18	44.47		74	54	-9.53
7356	H	33.64		10.07	43.71		74	54	-10.29
	Н								
4904	V	45.17		1.18	46.35		74	54	-7.65
7356	V	36.42		10.07	46.49		74	54	-7.51
	V			0					

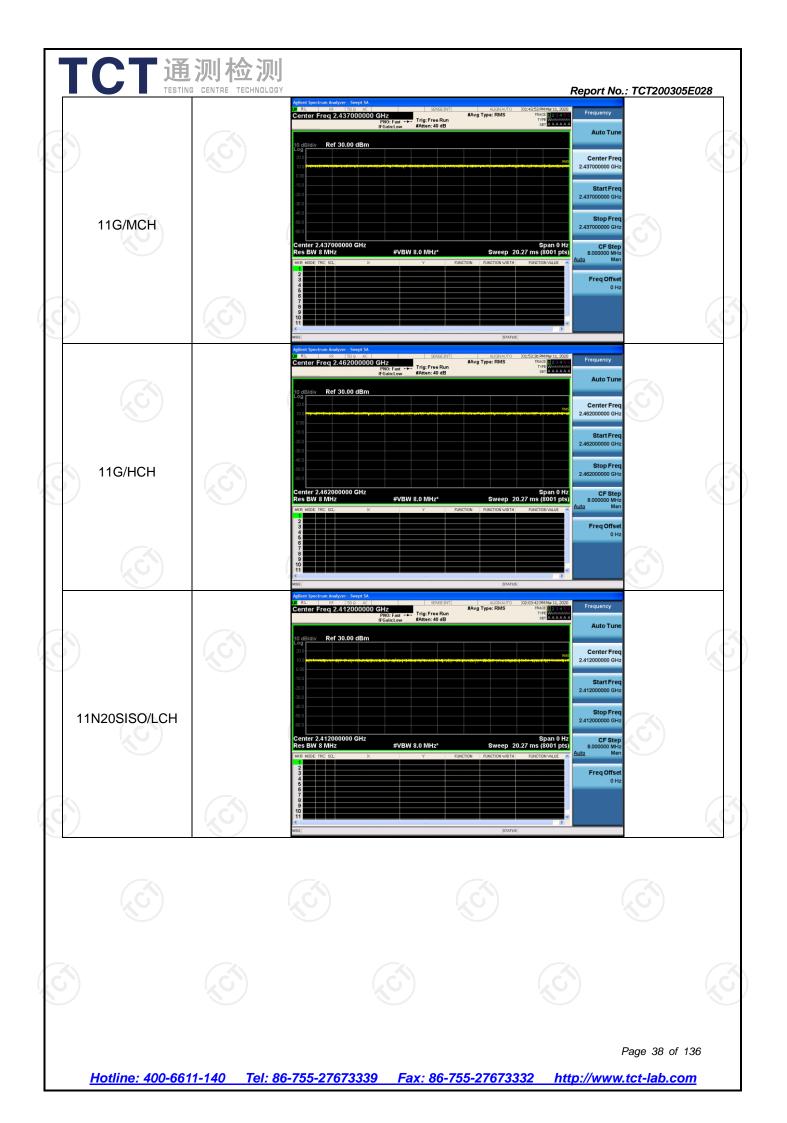
1. Emission Level=Peak Reading + Correction Factor; Correction Factor= Antenna Factor + Cable loss - Pre-amplifier

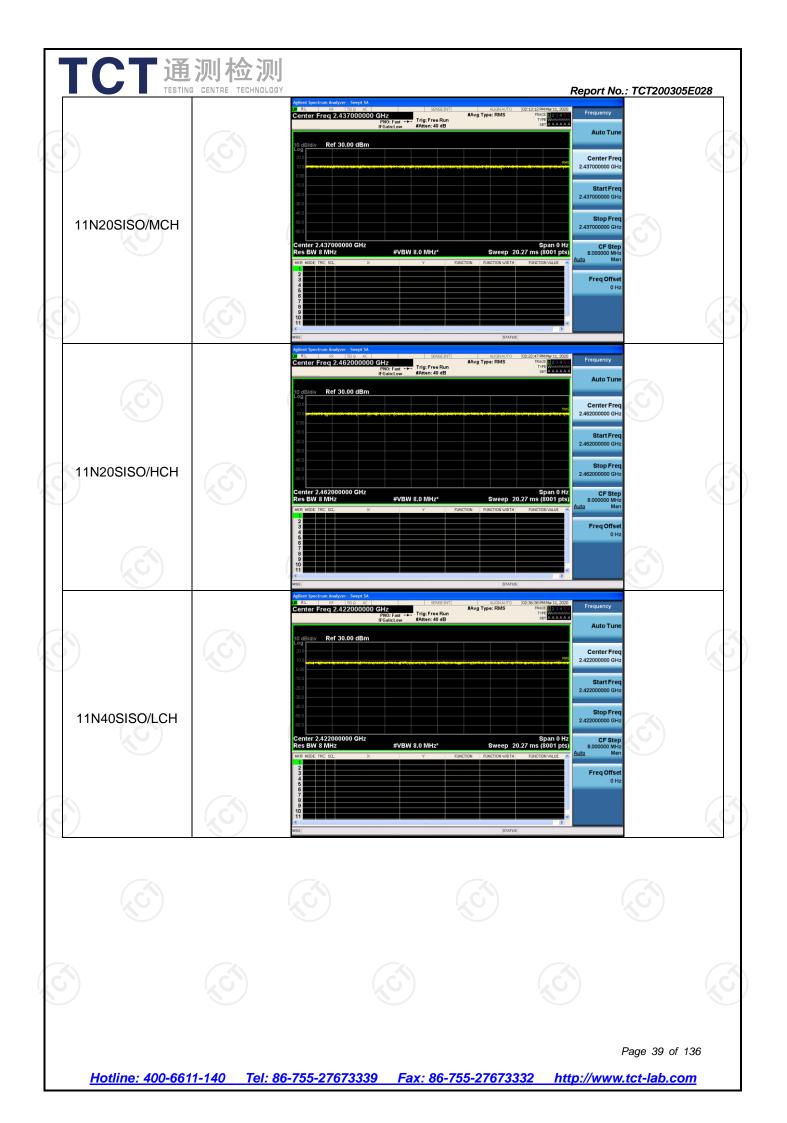
2. Margin (dB) = Emission Level (Peak) (dB μ V/m)-Average limit (dB μ V/m)

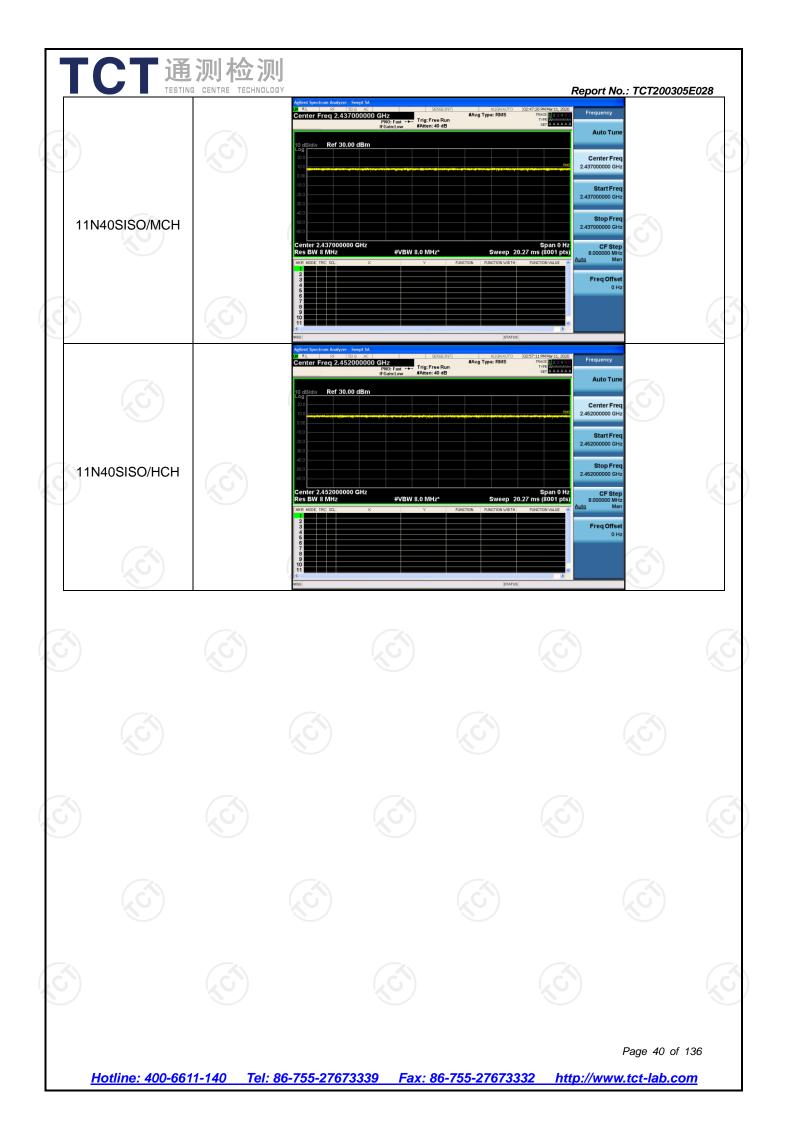
3. The emission levels of other frequencies are very lower than the limit and not show in test report.

4. Measurements were conducted from 1 GHz to the 10th harmonic of highest fundamental frequency. The highest test frequency is 25GHz.

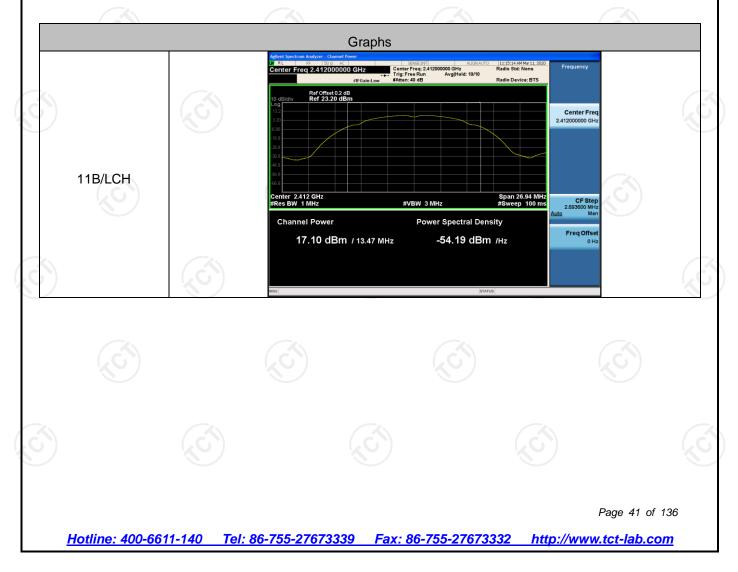

5. Data of measurement shown "---"in the above table mean that the reading of emissions is attenuated more than 20 dB below the limits or the field strength is too small to be measured.


6. 802.11n(HT40) is MIMO mode.


TCT通测检测 TCT通测检测


Page 35 of 136

	Appendix A	. Test Nesul		eu lesi		
Antenna 0						
		Duty Cy	ycle			
Result Table						
	Mode	Channel	Meas.Level	F%1		
	11B	LCH	100			
	11B	мсн	100			
	11B	НСН	100			
	11G	LCH	100			
	11G	MCH	100			
	11G	НСН	100			
	11N20SISO	LCH	100			
	11N20SISO	MCH	100			
	11N20SISO	НСН	100			
	11N40SISO	LCH	100			
Test Graph	11N40SISO 11N40SISO	МСН НСН	100			
Test Graph	11N40SISO	МСН НСН	100			
Test Graph	11N40SISO 11N40SISO	MCH HCH Graph:	100 100 S	111.446 AMMer 11, 2020 TRAC 0224 823		
Test Graph	11N40SISO 11N40SISO	MCH HCH BCF BCF BCF BCF BCF BCF BCF BCF BCF BCF	100 100 S	11:14:46 AMMer 11, 2020 TRAC THE DESIGN FOR THE DESIGN FOR THE DESIGN FOR THE DESIGN FOR THE DESIGN FOR THE DESIGN FOR THE DES		
Test Graph	11N40SISO 11N40SISO	MCH HCH Graph:	100 100 S	Trace In 2 3 4 5 Prequence Trace In 2 3 4 5 7 Auto 1 Auto 1 Center	Freq	
Test Graph	11N40SISO 11N40SISO	MCH HCH BCF BCF BCF BCF BCF BCF BCF BCF BCF BCF	100 100 S	Auto 1 Content Cont	Freq GHz	
Test Graph	11N40SISO 11N40SISO	MCH HCH BCF BCF BCF BCF BCF BCF BCF BCF BCF BCF	100 100 S	Auto 1	Freq GHz FFreq	
Test Graph	11N40SISO 11N40SISO	MCH HCH BCF BCF BCF BCF BCF BCF BCF BCF BCF BCF	100 100 S	Auto 1 Content Cont	Freq Freq GHz Freq	
	11N40SISO 11N40SISO	MCH HCH HCH	100 100 S S Trg: Fre Run FArten: 40 dB	Auto 1 Center 2.41200000 Stop 2.412000000	Tune Freq GHz GHz GHz GHz Step	
	11N40SISO 11N40SISO	MCH HCH HCH	100 100 S S S S S S S S S S S S S S S S	The set of	Freq GHz GHz GHz GHz GHz GHz GHz GHz GHz GHz	
	11N40SISO 11N40SISO	MCH HCH HCH	100 100 S S S S S S S S S S S S S S S S	The set of	Tune Freq GHz GHz GHz Step MHz	
	11N40SISO 11N40SISO	MCH HCH HCH	100 100 S S S May Type: RMS May Type: RMS Ma	Auto 1 Center 2.41200000 Span 0 Hz Span 0 Hz Span 0 Hz Auto 1 Center 2.41200000 Startl 2.41200000 CF 8.000000 Auto Freq 0	Freq GHz GHz GHz GHz GHz GHz GHz GHz GHz GHz	
	11N40SISO 11N40SISO	MCH HCH HCH	100 100 S S S S S S S S S S S S S S S S	Auto 1 Center 2.41200000 Span 0 Hz Span 0 Hz Span 0 Hz Auto 1 Center 2.41200000 Startl 2.41200000 CF 8.000000 Auto Freq 0	Freq GHz GHz GHz GHz GHz GHz GHz GHz GHz GHz	
	11N40SISO 11N40SISO	MCH HCH HCH	100 100 S S S May Type: RMS May Type: RMS Ma	Auto 1 Center 2.41200000 Span 0 Hz Span 0 Hz Span 0 Hz Auto 1 Center 2.41200000 Startl 2.41200000 CF 8.000000 Auto Freq 0	Freq GHz GHz GHz GHz GHz GHz GHz GHz GHz GHz	
	11N40SISO 11N40SISO	MCH HCH HCH	100 100 S S S May Type: RMS May Type: RMS Ma	Auto 1 Center 2.41200000 Span 0 Hz Span 0 Hz Span 0 Hz Auto 1 Center 2.41200000 Startl 2.41200000 CF 8.000000 Auto Freq 0	Freq GHz GHz GHz GHz GHz GHz GHz GHz GHz GHz	

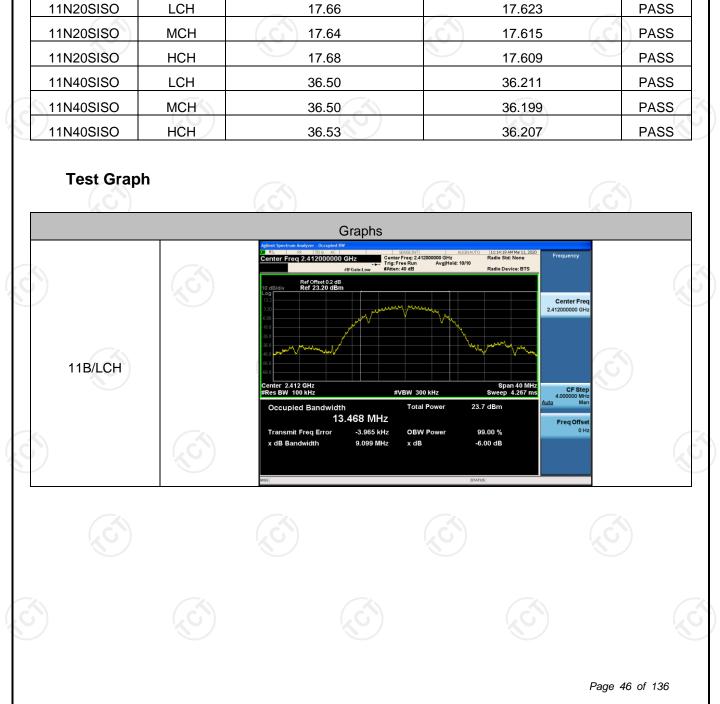

Report No.: TCT200305E028

Conducted Average Output Power

Result Table

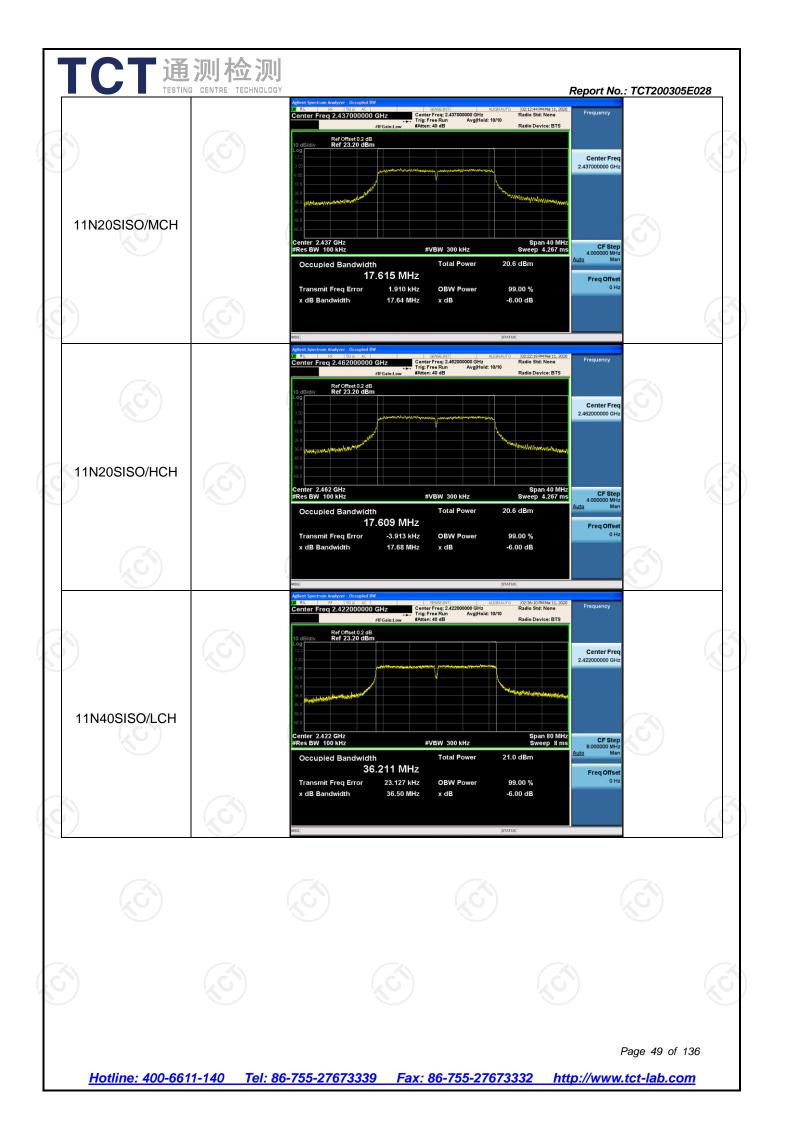

Mode	Channel	Meas.Level [dBm]	Verdict
11B	LCH	17.10	PASS
11B	МСН	17.46	PASS
11B	нсн	17.31	PASS
11G	LCH	14.33	PASS
11G	МСН	15.11	PASS
11G	НСН	14.76	PASS
11N20SISO	LCH	14.49	PASS
11N20SISO	МСН	14.78	PASS
11N20SISO	НСН	14.65	PASS
11N40SISO	LCH	14.93	PASS
11N40SISO	MCH	15.03	PASS
11N40SISO	НСН	15.01	PASS

Test Graph

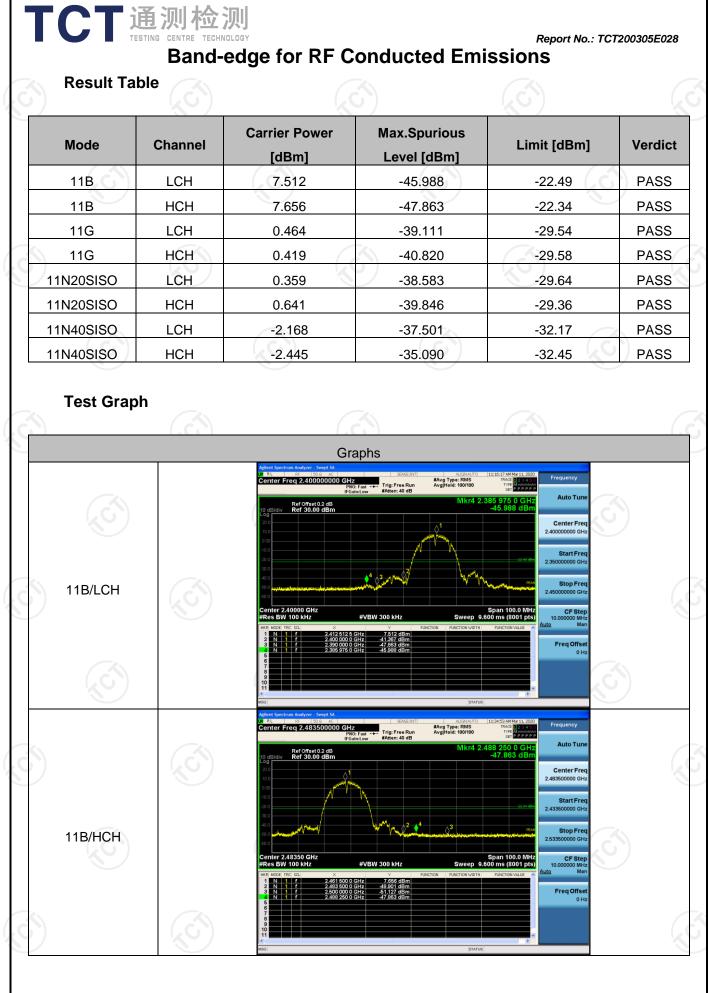


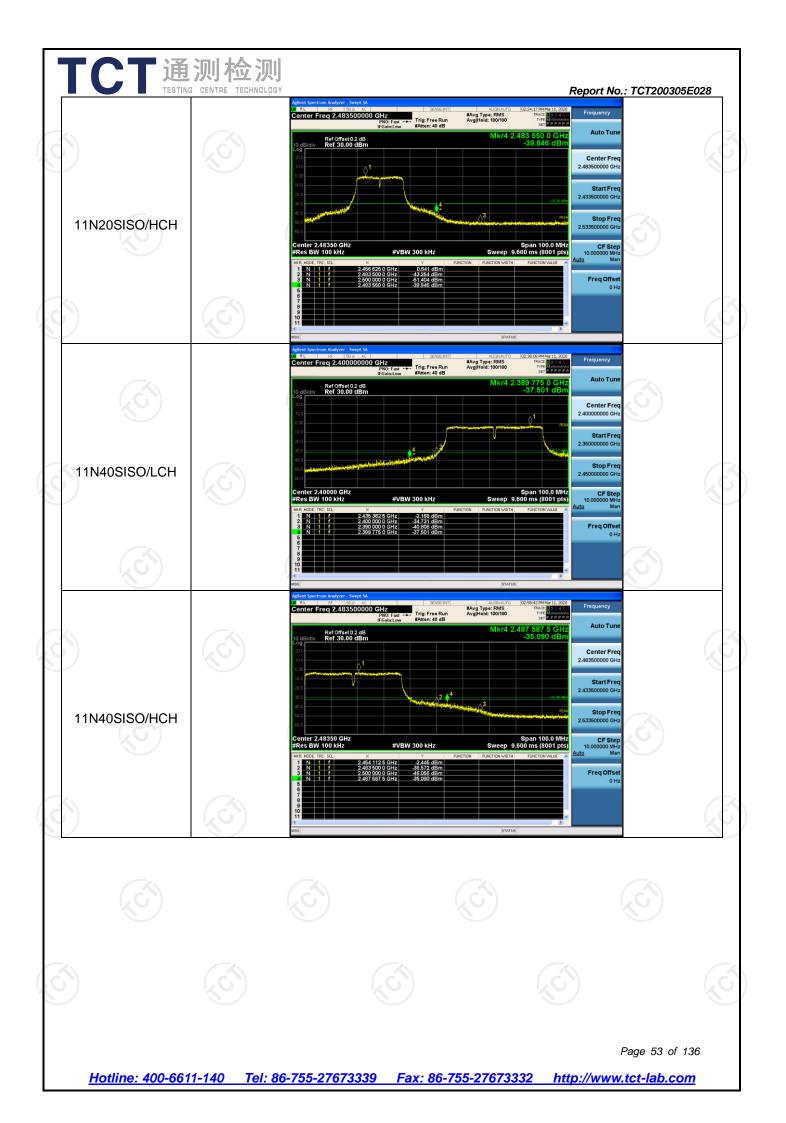

Mode	Channel	6dB Bandwidth [MHz]	99% OBW [MHz]	Verdict
11B	LCH	9.099	13.468	PASS
11B	МСН	9.108	13.521	PASS
11B	НСН	9.554	13.554	PASS
11G	LCH	16.50	16.459	PASS
11G	мсн	16.55	16.455	PASS
11G	НСН	16.52	16.441	PASS
11N208180	I CH	17.66	17 623	DV66

6dB Occupied Bandwidth


Result Table

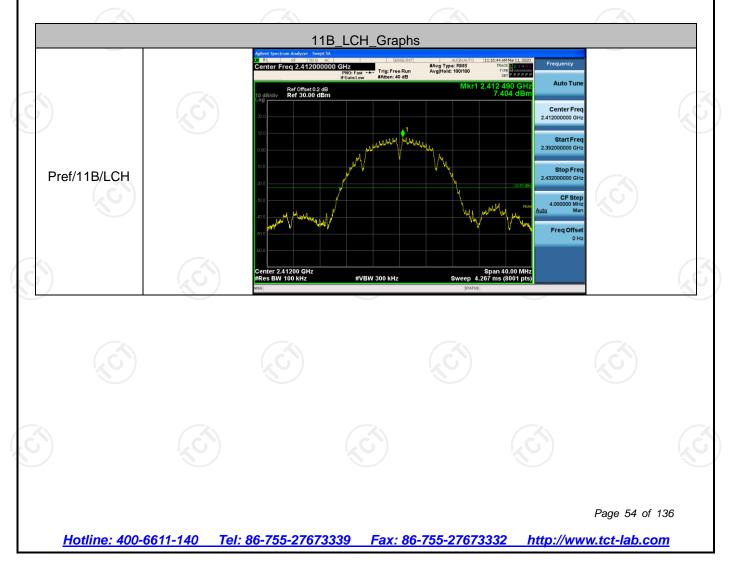
Report No.: TCT200305E028

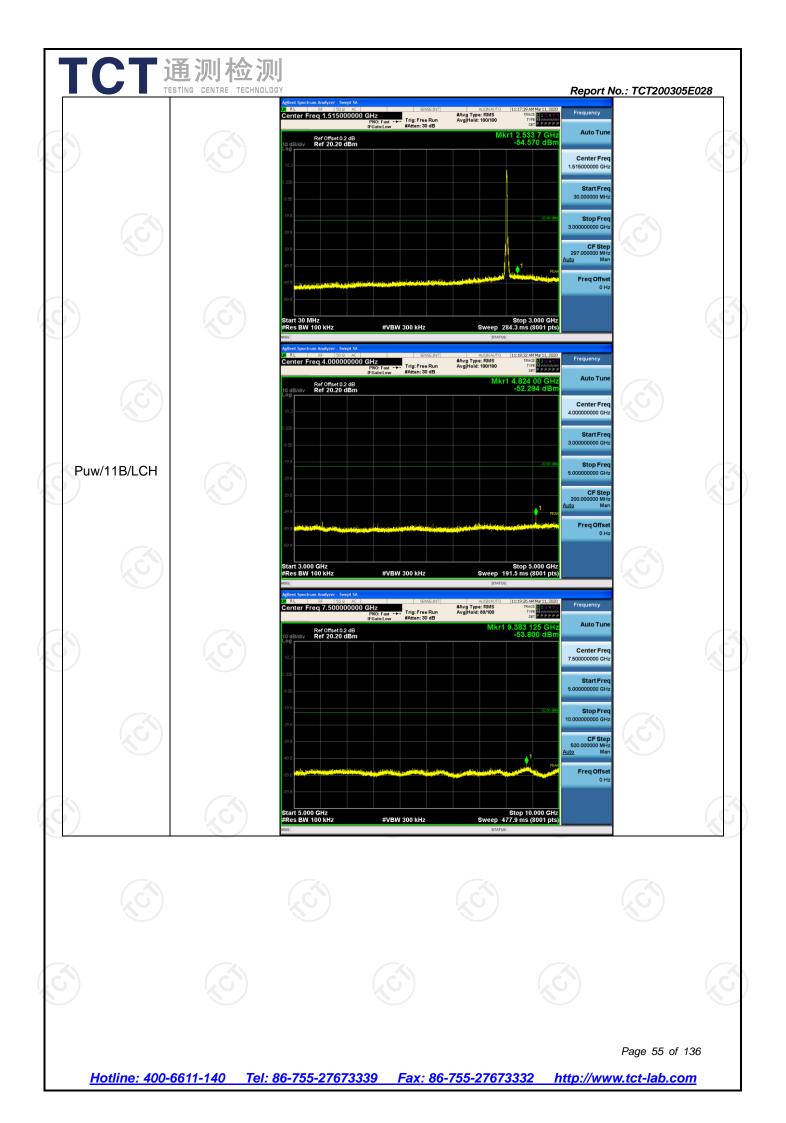

Hotline: 400-6611-140 Tel: 86-755-27673339 Fax: 86-755-27673332 http://www.tct-lab.com



Page 51 of 136

Hotline: 400-6611-140 Tel: 86-755-27673339 Fax: 86-755-27673332 http://www.tct-lab.com


TCT通测检测 RF Conducted Spurious Emissions


Report No.: TCT200305E028

Result Table

Mode	Channel	Pref [dBm]	Puw [dBm]	Verdict
11B	LCH	7.404	<limit< td=""><td>PASS</td></limit<>	PASS
11B	мсн	7.751	<limit< td=""><td>PASS</td></limit<>	PASS
11B	нсн	7.610	<limit< td=""><td>PASS</td></limit<>	PASS
11G	LCH	0.354	<limit< td=""><td>PASS</td></limit<>	PASS
11G	МСН	0.568	<limit< td=""><td>PASS</td></limit<>	PASS
11G	нсн	0.458	<limit< td=""><td>PASS</td></limit<>	PASS
11N20SISO	LCH	0.300	<limit< td=""><td>PASS</td></limit<>	PASS
11N20SISO	мсн	0.725	<limit< td=""><td>PASS</td></limit<>	PASS
11N20SISO	нсн	0.621	<limit< td=""><td>PASS</td></limit<>	PASS
11N40SISO	LCH	-2.259	<limit< td=""><td>PASS</td></limit<>	PASS
11N40SISO	МСН	-2.278	<limit< td=""><td>PASS</td></limit<>	PASS
11N40SISO	НСН	-2.212	<limit< td=""><td>PASS</td></limit<>	PASS

Test Graph

