TEST REPORT

CT通测检测 TESTING CENTRE TECHNOLOGY

> FCC ID: 2ACOE-SKW17 Product: WIFI Module Model No.: SKW17 Additional Model No.: N/A Trade Mark: SKYLAB Report No.: TCT200918E006 Issued Date: Oct. 27, 2020

> > Issued for:

Skylab M&C Technology Co., Ltd. 6/F,Building 9, Lijincheng park, Gongye East Rd, Longhua St, Longhua District, Shenzhen, 518109 China

Issued By:

Shenzhen Tongce Testing Lab. 1B/F., Building 1, Yibaolai Industrial Park, Qiaotou, Fuyong, Baoan District, Shenzhen, Guangdong, China TEL: +86-755-27673339

FAX: +86-755-27673332

Note: This report shall not be reproduced except in full, without the written approval of Shenzhen Tongce Testing Lab. This document may be altered or revised by Shenzhen Tongce Testing Lab. personnel only, and shall be noted in the revision section of the document. The test results in the report only apply to the tested sample.

TABLE OF CONTENTS

TCT 通测检测 TESTING CENTRE TECHNOLOGY

	Test Certification	(0)	<u>(0)</u>	
2.	Test Result Summary			
3.	EUT Description	<u></u>		
4.	General Information	<u> </u>		
	4.1. Test environment and n			
	4.2. Description of Support	Units		8
5.	Facilities and Accredita	tions	<u> </u>	9
	5.1. Facilities			9
	5.2. Location			
	5.3. Measurement Uncertair	ty	<u>~</u>	9
6.	Test Results and Measu	rement Data		10
	6.1. Antenna requirement			
	6.2. Conducted Emission		~~/	
	6.3. Maximum Conducted (A	• / •		
	6.4. Emission Bandwidth			
	6.5. Power Spectral Density			
	6.6. Conducted Band Edge	-		
	6.7. Radiated Spurious Emis			20
A	ppendix A: Test Result o	f Conducted Te	st	
Α	ppendix B: Photographs	of Test Setup		
Α	ppendix C: Photographs	of EUT		
				Page 2 of 70

「CT通测检测 TESTING CENTRE TECHNOLOGY 1. Test Certification

Product:	WIFI Module	(
Model No.:	SKW17	K
Additional Model:	N/A	
Trade Mark:	SKYLAB	
Applicant:	Skylab M&C Technology Co., Ltd.	
Address: 6/F, Building 9,Lijincheng park, Gongye East Rd, Longhua St, Longhua District, Shenzhen, 518109 China		
Manufacturer: Skylab M&C Technology Co., Ltd.		
Address:	6/F, Building 9,Lijincheng park, Gongye East Rd, Longhua St, Longhua District, Shenzhen, 518109 China	
Date of Test:	Sep. 21, 2020 – Oct. 26, 2020	
Applicable Standards:	FCC CFR Title 47 Part 15 Subpart C Section 15.247 FCC KDB 558074 D01 15.247 Meas Guidance v05r02 ANSI C63.10:2013	

The above equipment has been tested by Shenzhen Tongce Testing Lab. and found compliance with the requirements set forth in the technical standards mentioned above. The results of testing in this report apply only to the product/system, which was tested. Other similar equipment will not necessarily produce the same results due to production tolerance and measurement uncertainties.

Tested By:	Kerin Huang	Date:	Oct. 26, 2020	
Reviewed By:	Kevin Huang Berf There	 Date:	Oct. 27, 2020	
Approved By:	Beryl Zhao Tomsm	Date:	Oct. 27, 2020	
	Tomsin	_	(S)	
			Page 3 d	of 70

2. Test Result Summary

Requirement	CFR 47 Section	Result	6
Antenna requirement	§15.203/§15.247 (c)	PASS	
AC Power Line Conducted Emission	§15.207	PASS	
Conducted Peak Output Power	§15.247 (b)(3)	PASS	Ċ
6dB Emission Bandwidth	§15.247 (a)(2)	PASS	No.
Power Spectral Density	§15.247 (e)	PASS	
Band Edge	§15.247(d)	PASS	
Spurious Emission	§15.205/§15.209	PASS	

Note:

1. PASS: Test item meets the requirement.

2. Fail: Test item does not meet the requirement.

3. N/A: Test case does not apply to the test object.

4. The test result judgment is decided by the limit of test standard.

Page 4 of 70

3. EUT Description

Product:	WIFI Module	6
Model No.:	SKW17	
Additional Model:	N/A	
Trade Mark:	SKYLAB	
Operation Frequency:	2412MHz~2462MHz (802.11b/802.11g/802.11n(HT20))	
Channel Separation:	5MHz	3
Number of Channel:	11 for 802.11b/802.11g/802.11n(HT20)	
Modulation Technology: (IEEE 802.11b)	Direct Sequence Spread Spectrum (DSSS)	
Modulation Technology: (IEEE 802.11g/802.11n)	Orthogonal Frequency Division Multiplexing(OFDM)	
Data speed (IEEE 802.11b):	1Mbps, 2Mbps, 5.5Mbps, 11Mbps	
Data speed (IEEE 802.11g):	6Mbps, 9Mbps, 12Mbps, 18Mbps, 24Mbps, 36Mbps, 48Mbps, 54Mbps	\mathcal{O}
Data speed (IEEE 802.11n):	Up to 150Mbps	
Antenna Type:	External Antenna	
Antenna Gain:	1.8dBi	
Power Supply:	DC 3.3V	S.C

Note: The antenna gain listed in this report is provided by applicant, and the test laboratory is not responsible for this parameter.

Report No.: TCT200918E006

Operation Frequency each of channel For 802.11b/g/n(HT20)

Channel	Frequency	Channel	Frequency	Channel	Frequency	Channel	Frequency
1	2412MHz	4	2427MHz	7	2442MHz	10	2457MHz
2	2417MHz	5	2432MHz	8	2447MHz	11	2462MHz
3	2422MHz	6	2437MHz	9	2452MHz		

Note:

In section 15.31(*m*), regards to the operating frequency range over 10 MHz, the Lowest frequency, the middle frequency, and the highest frequency of channel were selected to perform the test, and the selected channel see below:

802.11b/802.11g/802.11n (HT20)

Channel	Frequency
The lowest channel	2412MHz
The middle channel	2437MHz
The Highest channel	2462MHz
The Highest channel	240210112

Page 6 of 70

4. General Information

4.1. Test environment and mode

Operating Environment:		
Condition	Conducted Emission	Radiated Emission
Temperature:	25.0 °C	25.0 °C
Humidity:	55 % RH	55 % RH
Atmospheric Pressure:	1010 mbar	1010 mbar

Test Mode:

Engineering mode: Keep the EUT in continuous transmitting by select channel and modulations with Fully-charged battery

The sample was placed 0.8m & 1.5m for the measurement below & above 1GHz above the ground plane of 3m chamber. Measurements in both horizontal and vertical polarities were performed. During the test, each emission was maximized by: having the EUT continuously working, investigated all operating modes, rotated about all 3 axis (X, Y & Z) and considered typical configuration to obtain worst position, manipulating interconnecting cables, rotating the turntable, varying antenna height from 1m to 4m in both horizontal and vertical polarizations. The emissions worst-case(Z axis) are shown in Test Results of the following pages.

We have verified the construction and function in typical operation. All the test modes were carried out with the EUT in transmitting operation, which was shown in this test report and defined as follows:

Per-scan all kind of data rate in lowest channel, and found the follow list which it was worst case.

Mode	Data rate
802.11b	1Mbps
802.11g	6Mbps
802.11n(H20)	6.5Mbps

Final Test Mode:

(,	Keep the EUT in continuous transmitting
	with modulation

1. For WIFI function, the engineering test program was provided and enabled to make EUT continuous transmit/receive.

2.According to ANSI C63.10 standards, the test results are both the "worst case" and "worst setup" 1Mbps for 802.11b, 6Mbps for 802.11g, 6.5Mbps for 802.11n(H20). Duty cycle setting during the transmission is 98.46% with maximum power setting for all modulations.

TCT通测检测 4.2. Description of Support Units

The EUT has been tested as an independent unit together with other necessary accessories or support units. The following support units or accessories were used to form a representative test configuration during the tests.

Equipment	Model No.	Serial No.	FCC ID	Trade Name
Adapter	K-E30502000E1	/		BESTGK
Notebook Computer	XiaoXin CHAO5000	PF0WZYD9	1	Lenovo
EVB Board	WG229/WG230_ EVB02			SKYLAB

Note:

- 1. All the equipment/cables were placed in the worst-case configuration to maximize the emission during the test.
- 2. Grounding was established in accordance with the manufacturer's requirements and conditions for the intended use.
- 3. For conducted measurements (Output Power, 6dB Emission Bandwidth, Power Spectral Density, Spurious Emissions), the antenna of EUT is connected to the test equipment via temporary antenna connector, the antenna connector is soldered on the antenna port of EUT, and the temporary antenna connector is listed in the Test Instruments.

Page 8 of 70

5. Facilities and Accreditations

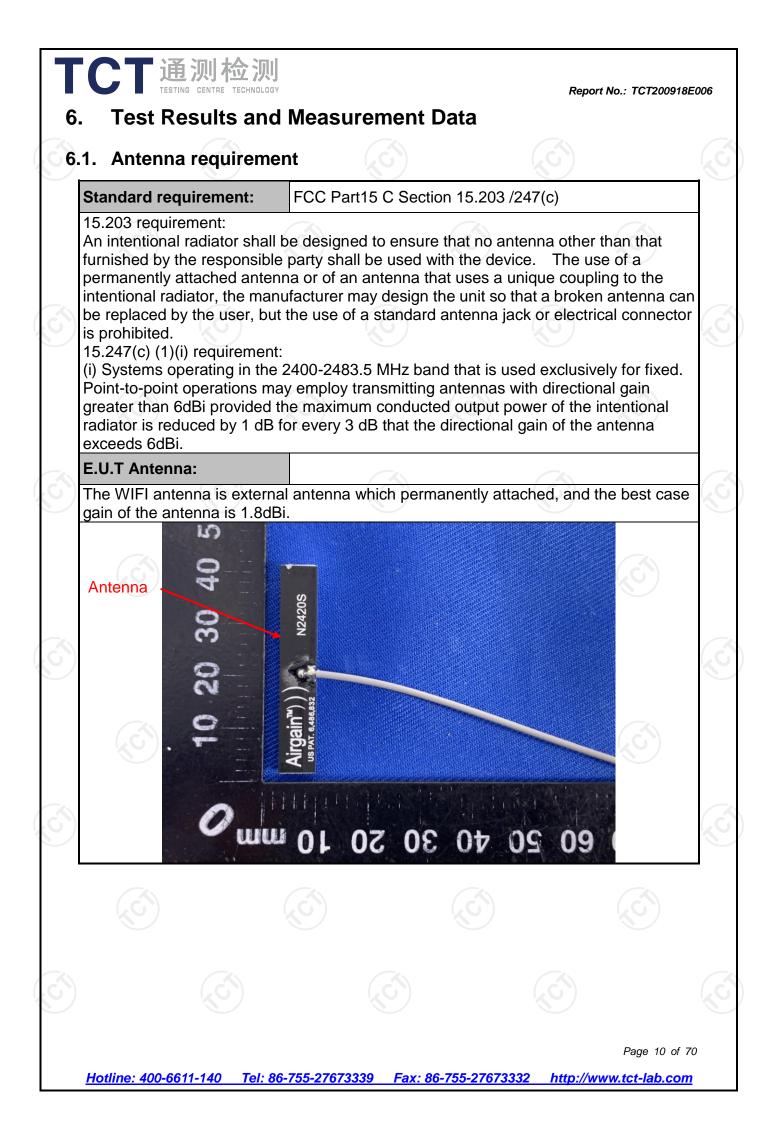
5.1. Facilities

The test facility is recognized, certified, or accredited by the following organizations:

- FCC Registration No.: 645098
 Shenzhen Tongce Testing Lab
 The 3m Semi-anechoic chamber has been registered and fully described in a report with the (FCC) Federal Communications Commission. The acceptance letter from the FCC is maintained in our files.
- IC Registration No.: 10668A-1 The 3m Semi-anechoic chamber of Shenzhen TCT Testing Technology Co., Ltd. has been registered by Certification and Engineering Bureau of Industry Canada for radio equipment testing

5.2. Location

Shenzhen Tongce Testing Lab


Address: 1B/F., Building 1, Yibaolai Industrial Park, Qiaotou, Fuyong, Baoan District, Shenzhen, Guangdong, China

TEL: +86-755-27673339

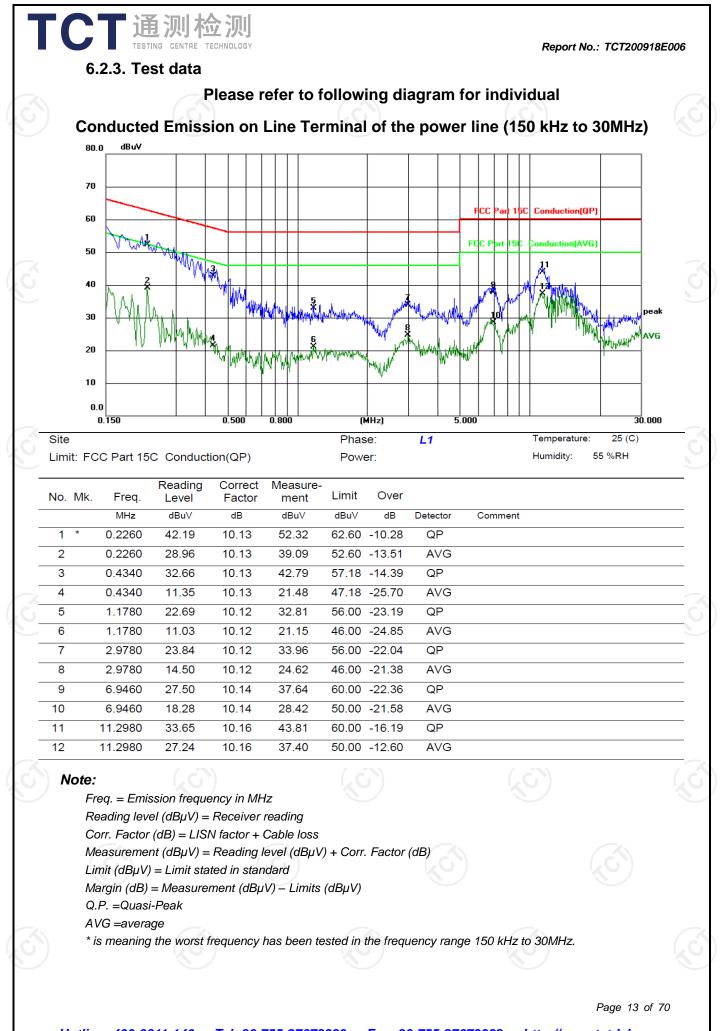
5.3. Measurement Uncertainty

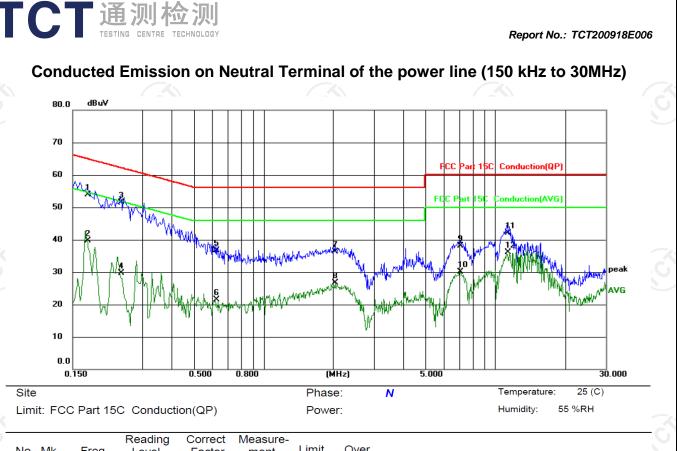
The reported uncertainty of measurement $y \pm U$, where expended uncertainty U is based on a standard uncertainty multiplied by a coverage factor of k=2, providing a level of confidence of approximately 95 %.

oonna			
No.	Item	MU	
1	Conducted Emission	±2.56dB	.ć
2	RF power, conducted	±0.12dB	
3	Spurious emissions, conducted	±0.11dB	1
4	All emissions, radiated(<1G)	±3.92dB	1
5	All emissions, radiated(>1G)	±4.28dB	1
6	Temperature	±0.1°C	
7	Humidity	±1.0%	No.

6.2. Conducted Emission

6.2.1. Test Specification


Test Requirement:	FCC Part15 C Section	15.207	
Test Method:	ANSI C63.10:2013		
Frequency Range:	150 kHz to 30 MHz		
Receiver setup:	RBW=9 kHz, VBW=30) kHz, Sweep time	=auto
	Frequency range	Limit (dBuV)
	(MHz)	Quasi-peak	Áverage
Limits:	0.15-0.5	66 to 56*	56 to 46*
	0.5-5	56	46
	5-30	60	50
	Referenc	e Plane	
Test Setup:	E.U.T AC powe Test table/Insulation plane Remarkc E.U.T. Equipment Under Test LISN: Line Impedence Stabilization No Test table height=0.8m	EMI Receiver	— AC power
Test Mode:	Charging + transmittin	g with modulation	
Test Procedure:	 The E.U.T is conneline impedance sta provides a 500hm/s measuring equipme The peripheral device power through a LI coupling impedance refer to the block photographs). Both sides of A.C. conducted interferent emission, the relative the interface cables ANSI C63.10: 2013 	bilization network 50uH coupling im nt. ces are also conne ISN that provides with 50ohm tern diagram of the line are checkence. In order to fin e positions of equ s must be chang	(L.I.S.N.). This pedance for the ected to the main a 500hm/50uH hination. (Please test setup and ed for maximum hd the maximum ipment and all of ed according to
Test Result:	PASS		


6.2.2. Test Instruments

Conducted Emission Shielding Room Test Site (843)				
Equipment	Manufacturer	Model	Serial Number	Calibration Due
Test Receiver	R&S	ESCI3	100898	Jul. 27, 2021
LISN-2	Schwarzbeck	NSLK 8126	8126453	Sep. 11, 2021
Line-5	тст	CE-05	N/A	Sep. 02, 2021
EMI Test Software	Shurple Technology	EZ-EMC	N/A	N/A

Note: The calibration interval of the above test instruments is 12 months and the calibrations are traceable to international system unit (SI).

Page 12 of 70

0	No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over			5
_			MHz	dBuV	dB	dBuV	dBu∨	dB	Detector	Comment	
	1		0.1740	43.85	10.12	53.97	64.77	-10.80	QP		
-	2		0.1740	29.49	10.12	39.61	54.77	-15.16	AVG		
-	3	*	0.2420	41.47	10.13	51.60	62.03	-10.43	QP		
-	4		0.2420	19.60	10.13	29.73	52.03	-22.30	AVG		
-	5		0.6260	26.67	10.13	36.80	56.00	-19.20	QP		
7	6		0.6260	11.35	10.13	21.48	46.00	-24.52	AVG		X
G	7		2.0420	26.20	10.12	36.32	56.00	-19.68	QP		G
_	8		2.0420	16.53	10.12	26.65	46.00	-19.35	AVG		
-	9		7.0460	28.03	10.14	38.17	60.00	-21.83	QP		
-	10		7.0460	19.95	10.14	30.09	50.00	-19.91	AVG		
-	11		11.2620	31.91	10.16	42.07	60.00	-17.93	QP		
-	12		11.2620	25.93	10.16	36.09	50.00	-13.91	AVG		
-											

Note:

Freq. = Emission frequency in MHz Reading level $(dB\mu V)$ = Receiver reading Corr. Factor (dB) = LISN factor + Cable loss Measurement $(dB\mu V)$ = Reading level $(dB\mu V)$ + Corr. Factor (dB)Limit $(dB\mu V)$ = Limit stated in standard Margin (dB) = Measurement $(dB\mu V)$ – Limits $(dB\mu V)$ Q.P. =Quasi-Peak AVG =average

* is meaning the worst frequency has been tested in the frequency range 150 kHz to 30MHz.

Page 14 of 70

6.3. Maximum Conducted (Average) Output Power

Report No.: TCT200918E006

6.3.1. Test Specific	ation			
Test Requirement:	FCC Part15 C Section 15.247 (b)(3)			
Test Method:	KDB 558074 D01 v05r02			
Limit:	30dBm			
Test Setup:	Spectrum Analyzer EUT			
Test Mode:	Transmitting mode with modulation			
Test Procedure:	 The RF output of EUT was connected to the spectrum analyzer by RF cable and attenuator. The path loss was compensated to the results for each measurement. Set to the maximum power setting and enable the EUT transmit continuously. Measure the conducted output power and record the results in the test report. 			
Test Result:	PASS			

6.3.2. Test Instruments

	RF Test Room				
Equipment	Manufacturer	Model	Serial Number	Calibration Due	
Spectrum Analyzer	Agilent	N9020A	MY49100619	Sep. 11, 2021	
RF Cable (9KHz-26.5GHz)	тст	RE-06	N/A	Sep. 11, 2021	
Antenna Connector	тст	RFC-01	N/A	Sep. 11, 2021	

Note: The calibration interval of the above test instruments is 12 months and the calibrations are traceable to international system unit (SI).

Page 15 of 70

6.4. Emission Bandwidth

6.4.1. Test Specification

Test Requirement:	FCC Part15 C Section 15.247 (a)(2)]
Test Method:	KDB 558074 D01 v05r02	1
Limit:	>500kHz	1
Test Setup:	Spectrum Analyzer EUT	
Test Mode:	Transmitting mode with modulation	
Test Procedure:	 Set to the maximum power setting and enable the EUT transmit continuously. Make the measurement with the spectrum analyzer's resolution bandwidth (RBW) = 100 kHz. Set the Video bandwidth (VBW) = 300 kHz. In order to make an accurate measurement. The 6dB bandwidth must be greater than 500 kHz. Measure and record the results in the test report. 	
Test Result:	PASS	

6.4.2. Test Instruments

	RF Test Room				
Equipment	Manufacturer	Model	Serial Number	Calibration Due	
Spectrum Analyzer	Agilent	N9020A	MY49100619	Sep. 11, 2021	
RF Cable (9KHz-26.5GHz)	тст	RE-06	N/A	Sep. 11, 2021	
Antenna Connector	ТСТ	RFC-01	N/A	Sep. 11, 2021	

Note: The calibration interval of the above test instruments is 12 months and the calibrations are traceable to international system unit (SI).

「CT通测检》 ESTING CENTRE TECHNO 6.5. Power Spectral D	
6.5.1. Test Specific	
Test Requirement:	FCC Part15 C Section 15.247 (e)
Test Method:	KDB 558074
Limit:	The average power spectral density shall not be greater than 8dBm in any 3kHz band at any time interval of continuous transmission.
Test Setup:	
Test Mode:	Spectrum Analyzer EUT Transmitting mode with modulation Image: Content of the second
Test Procedure:	 The RF output of EUT was connected to the spectrum analyzer by RF cable and attenuator. The path loss was compensated to the results for each measurement. Set to the maximum power setting and enable the EUT transmit continuously. Make the measurement with the spectrum analyzer's resolution bandwidth (RBW): 3 kHz ≤ RBW ≤ 100

6.5.2. Test Instruments

Test Result:

RF Test Room					
Equipment	Manufacturer	Model	Serial Number	Calibration Due	
Spectrum Analyzer	Agilent	N9020A	MY49100619	Sep. 11, 2021	
RF Cable (9KHz-26.5GHz)	тст	RE-06	N/A	Sep. 11, 2021	
Antenna Connector	тст	RFC-01	N/A	Sep. 11, 2021	

PASS

kHz. Video bandwidth VBW \geq 3 x RBW. Set the span

5. Employ trace averaging (RMS) mode over a minimum of 100 traces. Use the peak marker function to

6. Measure and record the results in the test report.

to at least 1.5 times the OBW.

4. Detector = RMS, Sweep time = auto couple.

determine the maximum power level.

Note: The calibration interval of the above test instruments is 12 months and the calibrations are traceable to international system unit (SI).

Page 17 of 70

http://www.tct-lab.com Hotline: 400-6611-140 Tel: 86-755-27673339 Fax: 86-755-27673332

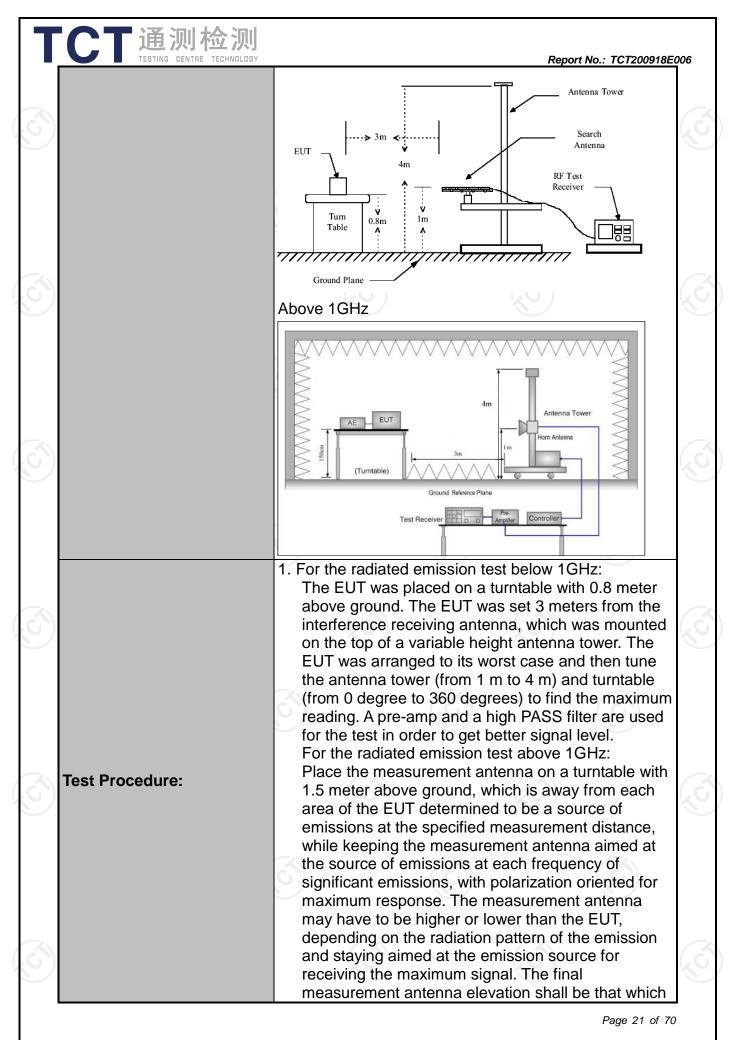
Report No.: TCT200918E006

6.6. Conducted Band Edge and Spurious Emission Measurement

Test Requirement:	FCC Part15 C Section 15.247 (d)
Test Method:	KDB558074
Limit:	In any 100 kHz bandwidth outside of the authorized frequency band, the emissions which fall in the non-restricted bands shall be attenuated at least 20 dB / 30dB relative to the maximum PSD level in 100 kHz by RF conducted measurement and radiated emissions which fall in the restricted bands, as defined in Section 15.205(a), must also comply with the radiated emission limits specified in Section 15.209(a).
Test Setup:	
Test Mode:	Spectrum Analyzer EUT Transmitting mode with modulation Image: Comparison of the second sec
Test Procedure:	 The RF output of EUT was connected to the spectrum analyzer by RF cable and attenuator. The path loss was compensated to the results for each measurement. Set to the maximum power setting and enable the EUT transmit continuously. Set RBW = 100 kHz, VBW=300 kHz, Peak Detector. Unwanted Emissions measured in any 100 kHz bandwidth outside of the authorized frequency band shall be attenuated by at least 20 dB relative to the maximum in-band peak PSD level in 100 kHz when maximum peak conducted output power procedure is used. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, the attenuation required under this paragraph shall be 30 dB instead of 20 dB per 15.247(d). Measure and record the results in the test report. The RF fundamental frequency should be excluded against the limit line in the operating frequency band.
Test Result:	PASS

Page 18 of 70

6.6.2. Test Instruments

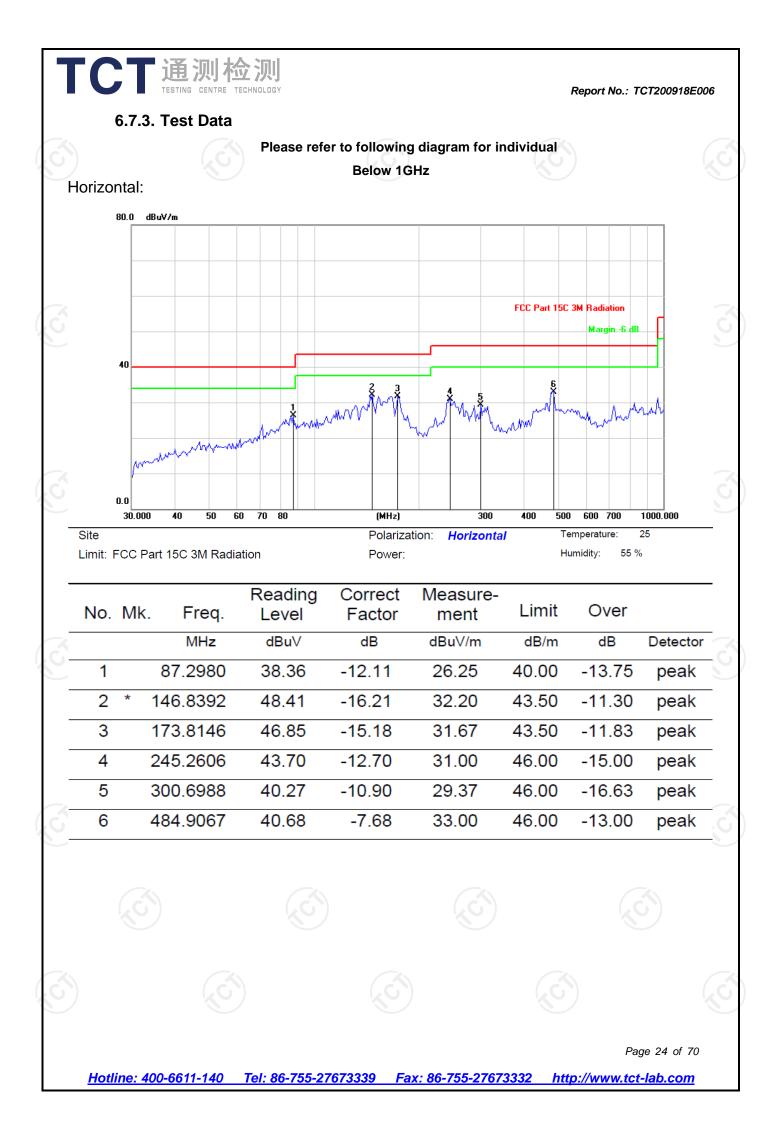

		F Test Room					
Equipment	Manufacturer	Model	Serial Number	Calibration Due			
Spectrum Analyze	r Agilent	N9020A	MY49100619	Sep. 11, 2021			
	тст	RE-06	N/A	Sep. 11, 2021			
• •	or TCT	RFC-01	N/A	Sep. 11, 2021			
		struments is 12 r.	nonths and the calibratio	ons are traceable to			
				Page 19 of 7			
	RF Cable (9KHz-26.5GHz) ntenna Connecto ote: The calibration international syste o	RF Cable TCT ntenna Connector TCT te: The calibration interval of the above test insidernational system unit (SI).	RF Cable (9KHz-26.5GHz) TCT RE-06 ntenna Connector TCT RFC-01 te: The calibration interval of the above test instruments is 12 minternational system unit (SI). Image: Construct of the above test instruments is 12 minternational system unit (SI). Image: Construct of the above test instruments is 12 minternational system unit (SI). Image: Construct of the above test instruments is 12 minternational system unit (SI). Image: Construct of the above test instruments is 12 minternational system unit (SI). Image: Construct of test instruments is 12 minternational system unit (SI). Image: Construct of test instruments is 10 minternational system unit (SI). Image: Construct of test instruments is 12 minternational system unit (SI). Image: Construct of test instruct of test instruments is 12 minternational system unit (SI). Image: Construct of test instruments is 12 minternational system unit (SI). Image: Construct of test instruments is 10 minternational system unit (SI). Image: Construct of test instruments is 12 minternational system unit (SI). Image: Construct of test instruct of test instruments is 12 minternational system unit (SI). Image: Construct of test instruments is 12 minternational system unit (SI). Image: Construct of test instruct	RF Cable (9KHz-26.5GHz) TCT RE-06 N/A Interna Connector TCT RFC-01 N/A Ite: The calibration interval of the above test instruments is 12 months and the calibratic international system unit (SI). Ite: The calibration interval of the above test instruments is 12 months and the calibratic international system unit (SI). Ite: The calibration interval of the above test instruments is 12 months and the calibratic international system unit (SI). Ite: The calibratic interval of the above test instruments is 12 months and the calibratic international system unit (SI). Ite: The calibratic interval of the above test instruments is 12 months and the calibratic international system unit (SI). Ite: The calibratic interval of the above test instruments is 12 months and the calibratic international system unit (SI). Ite: The calibratic interval of the above test instruments is 12 months and the calibratic interval of the above test instruments is 12 months and the calibratic interval of the above test instruments is 12 months and the calibratic interval of the above test instruments is 12 months and the calibratic interval of the above test instruments is 12 months and the calibratic interval of the above test instruments is 12 months and the calibratic interval of the above test instruments is 12 months and the calibratic interval of the above test instruments is 12 months and the calibratic interval of the above test instruments is 12 months and the calibratic interval of the above test instruments is 12 months and the calibratic interval of the above test instruments is 12 months and the calibratic interval of the above test instruments is 12 months above test instruments is 12 months and the c			

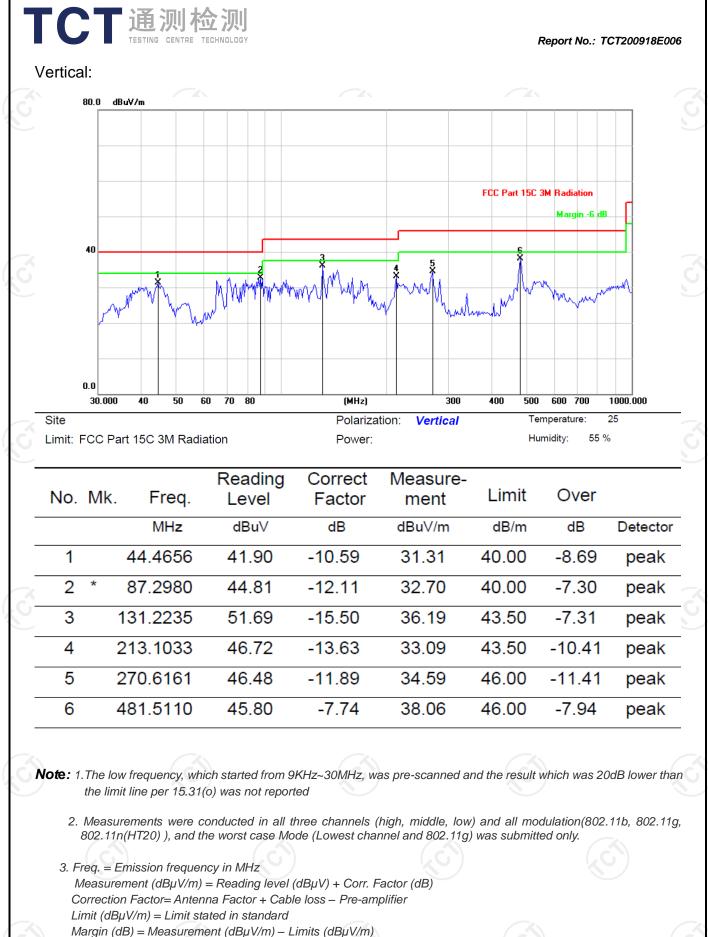
6.7. Radiated Spurious Emission Measurement

6.7.1. Test Specification

TCT 通测检测 TESTING CENTRE TECHNOLOGY

Test Requirement:	FCC Part15	C Section	15.209			
Test Method:	ANSI C63.10): 2013				
Frequency Range:	9 kHz to 25 (GHz	9			\mathbf{O}
Measurement Distance:	3 m					
Antenna Polarization:	Horizontal &	Vertical				
Operation mode:	Transmitting	mode with	modulat	ion		
	Frequency 9kHz- 150kHz	Detector Quasi-peak	RBW 200Hz	VBW 1kHz		Remark i-peak Value
Receiver Setup:	150kHz- 30MHz	Quasi-peak	9kHz	30kHz		i-peak Value
	30MHz-1GHz Above 1GHz	Quasi-peak Peak	120KHz 1MHz	300KHz 3MHz	1	i-peak Value eak Value
	Above TGHz	Peak	1MHz	10Hz	Ave	rage Value
	Frequen	icy	Field Stre (microvolts			asurement nce (meters)
	0.009-0.4		2400/F(I			300
	0.490-1.7		24000/F(KHz)		30	
	<u>1.705-3</u> 30-88	1	<u>30</u> 100			<u>30</u> 3
	88-216	14	150		3	
Limit:	216-96		200			3
limit:	Above 960 50					3
	Frequency		Strength /olts/meter)	Measurement Distance (meters)		Detector
	Above 1GH:	7	500 5000	3		Average Peak
Test setup:	For radiated	stance = 3m		Pre -	Comput	
		X \				

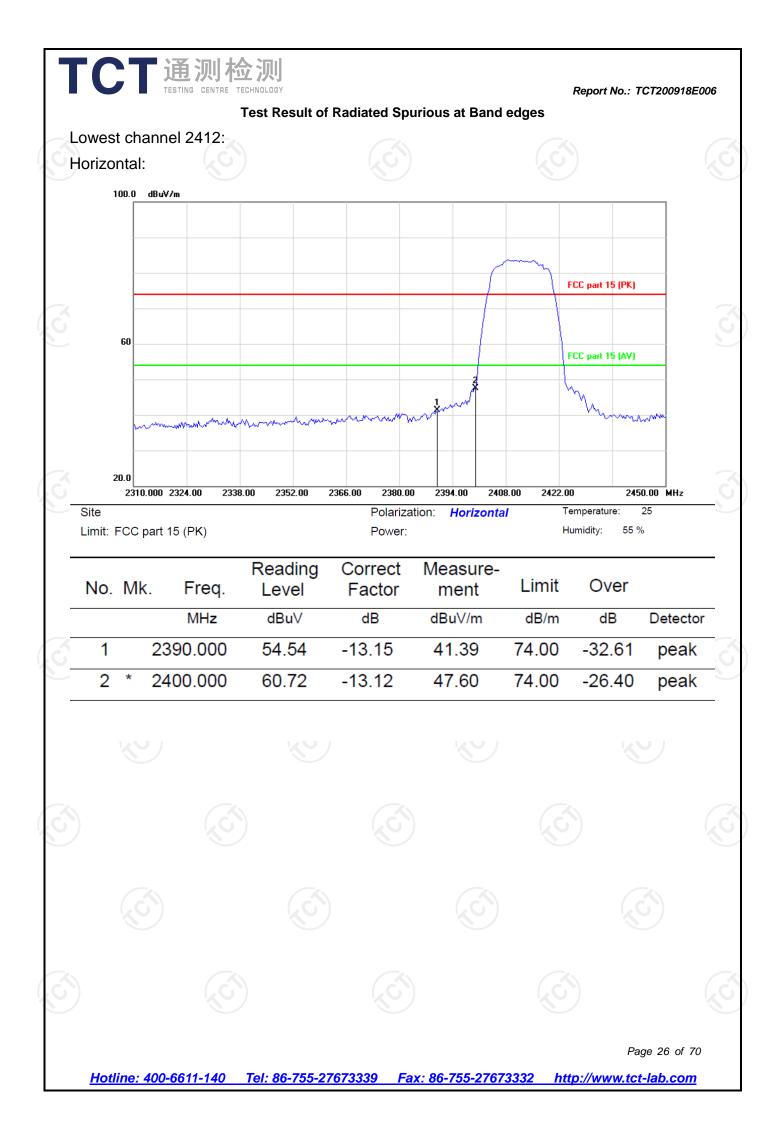


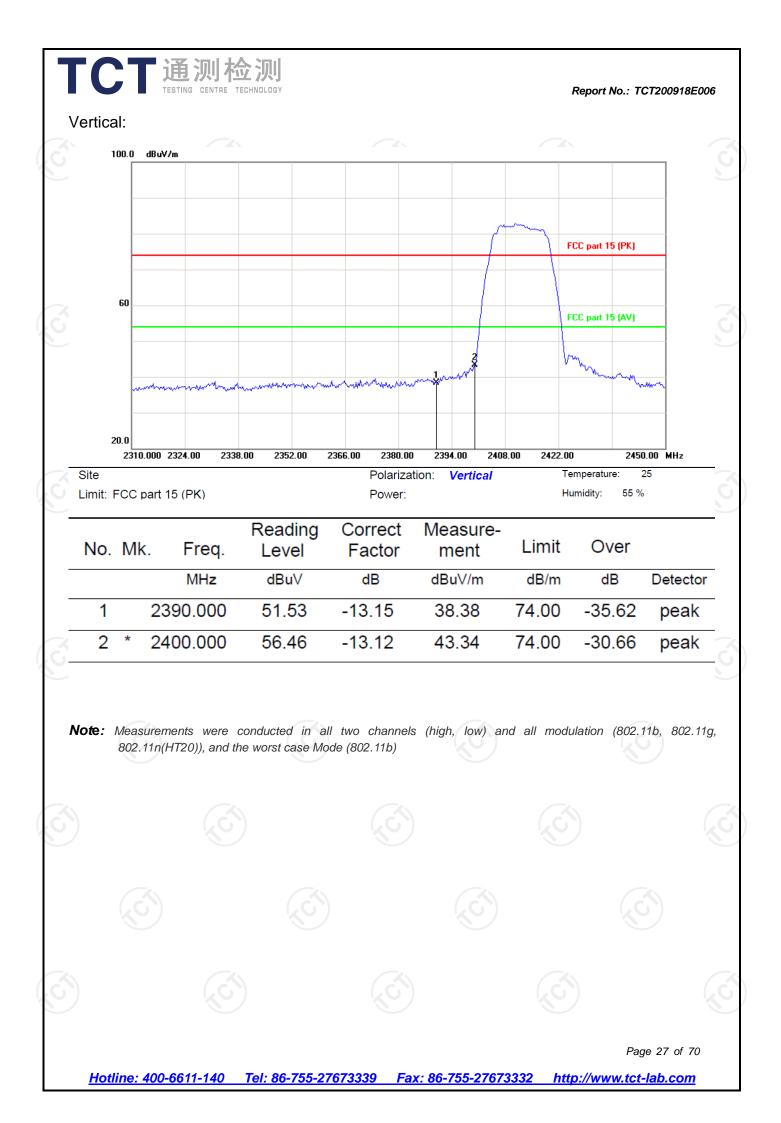

TCT	<u>EESTING CENTRE TECHNO</u>	ante restr abov 3. Corre Rea 4. For n of th lowe	 Report No.: TCT200918E006 maximizes the emissions. The measurement antenna elevation for maximum emissions shall be restricted to a range of heights of from 1 m to 4 m above the ground or reference ground plane. Corrected Reading: Antenna Factor + Cable Loss + Read Level - Preamp Factor = Level For measurement below 1GHz, If the emission level of the EUT measured by the peak detector is 3 dB lower than the applicable limit, the peak emission level will be reported. Otherwise, the emission 							
<u>3</u>		mea dete 5. Use t (1) S (2) S (2) S (3) S p For duty whe the r	 level will be reported. Otherwise, the emission measurement will be repeated using the quasi-peak detector and reported. 5. Use the following spectrum analyzer settings: (1) Span shall wide enough to fully capture the emission being measured; (2) Set RBW=120 kHz for f < 1 GHz; VBW ≥ RBW; Sweep = auto; Detector function = peak; Trace = max hold; (3) Set RBW = 1 MHz, VBW= 3MHz for f >1 GHz for peak measurement. For average measurement: VBW = 10 Hz, when duty cycle is no less than 98 percent. VBW ≥ 1/T, when duty cycle is less than 98 percent where T is the minimum transmission duration over which the transmitter is on and is transmitting at its maximum power control level for the tested mode of operation. 							
Test result	ts:			•						
Test result	ts:	pow		•		Ś				
Test result	ts:	pow		•						
Test result	ts:	pow		•						
Test result	ts: (j)	pow		•						

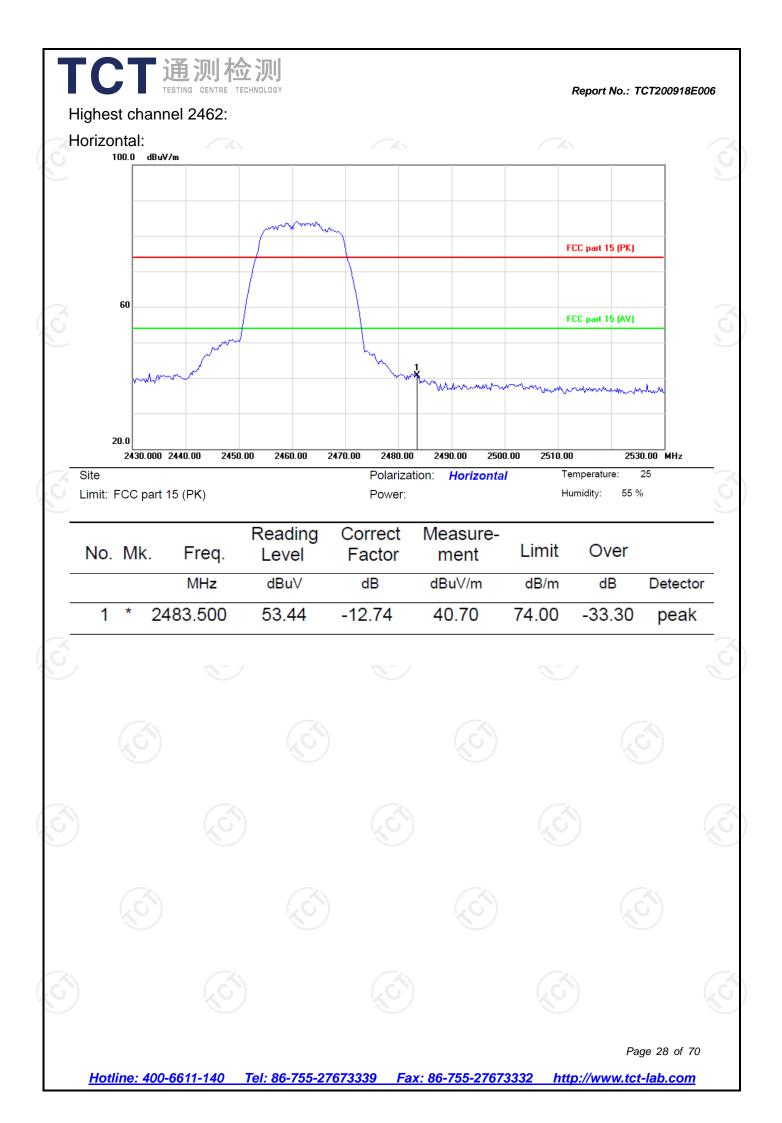
6.7.2. Test Instruments

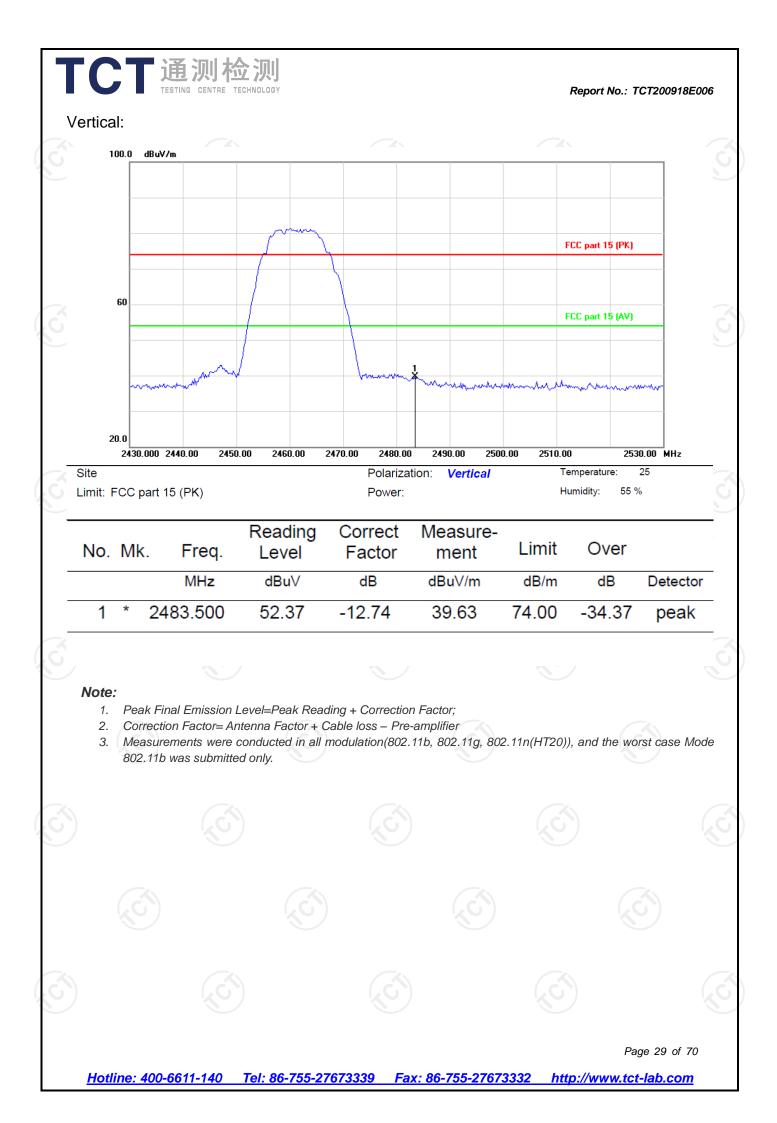
	Radiated Em	ission Test Site	e (966)	
Name of Equipment	Manufacturer	Model	Serial Number	Calibration Due
Test Receiver	ROHDE&SCHW ARZ	ESIB7	100197	Jul. 27, 2021
Spectrum Analyzer	ROHDE&SCHW ARZ	FSQ40	200061	Sep. 11, 2021
Pre-amplifier	EM Electronics Corporation CO.,LTD	EM30265	07032613	Sep. 02, 2021
Pre-amplifier	HP	8447D	2727A05017	Sep. 02, 2021
Loop antenna	ZHINAN	ZN30900A	12024	Oct. 27, 2020
Broadband Antenna	Schwarzbeck	VULB9163	340	Sep. 04, 2022
Horn Antenna	Schwarzbeck	BBHA 9120D	631	Sep. 04, 2022
Horn Antenna	A-INFO	LB-180400-KF	J211020657	Sep. 04, 2022
Antenna Mast	Keleto	RE-AM	N/A	N/A
Line-4	RE-high-04	тст	N/A	Sep. 02, 2021
Line-8	RE-01	тст	N/A	Jul. 27, 2021
EMI Test Software	Shurple Technology	EZ-EMC	N/A	N/A

Note: The calibration interval of the above test instruments is 12 months and the calibrations are traceable to international system unit (SI).






Margin (dB) = Measurement (dB μ V/m) – Limits (dB μ V/m) Any value more than 10dB below limit have not been specifically reported.


* is meaning the worst frequency has been tested in the test frequency range

Page 25 of 70

ТС	TESTING			Above odulation T	• 1GHz	15	Rep	ort No.: TCT2	00918E006
				ow channe	<u> </u>				
Frequency (MHz)	Ant. Pol. H/V	Peak reading (dBµV)	AV reading (dBuV)	Correction Factor (dB/m)	Emissic Peak (dBµV/m)	n Level AV (dBµV/m)	Peak limit (dBµV/m)	AV limit (dBµV/m)	Margin (dB)
4824	Н	48.88		0.75	49.63		74	54	-4.37
7236	Н	40.61		9.87	50.48		74	54	-3.52
	H								
	$\langle \mathcal{O} \rangle$		601)	()	$\langle \mathbf{O} \rangle$		(\mathcal{G})	
4824	V	47.32		0.75	48.07		74	54	-5.93
7236	V	40.51		9.87	50.38		74	54	-3.62
	V								
			М	iddle chanr	nel: 2437MF	Ηz	(\mathbf{c})		G

) [*])			M	liddle chanr	nel: 2437MF	lz			
Frequency	Ant. Pol.	Ant. Pol. Peak		Correction		on Level	Peak limit	AV limit	Margin
	reading (dBµV)	AV reading (dBµV)	Factor (dB/m)	Peak (dBµV/m)	AV (dBµV/m)	(dBµV/m)	(dBµV/m)	(dB)	
4874	Н	48.65		0.97	49.62		74	54	-4.38
7311	н	41.12		9.83	50.95		74	54	-3.05
/	Я		<u>K</u> O					1kO	
4874	V	49.44		0.97	50.41		74	54	-3.59
7311	V	41.62		9.83	51.45		74	54	-2.55
×	V			(×				(
5)					(

			F	ligh channe	el: 2462 MH	Z			6
Frequency (MHz)	Ant. Pol. H/V	Peak reading (dBµV)	AV reading (dBµV)	Correction Factor (dB/m)	Emissic Peak (dBµV/m)	n Level AV (dBµV/m)	Peak limit (dBµV/m)	AV limit (dBµV/m)	Margin (dB)
4924	H	49.36		1.18	50.54		74	54	-3.46
7386	H	38.91		10.07	48.98		74	54	-5.02
	Н								
4924	V	48.88		1.18	50.06		74	54	-3.94
7386	V	40.72		10.07	50.79		74	54	-3.21
2 /	V			X	2 /				🔨

Note:

1. Emission Level=Peak Reading + Correction Factor; Correction Factor= Antenna Factor + Cable loss – Pre-amplifier

2. Margin (dB) = Emission Level (Peak) (dB μ V/m)-Average limit (dB μ V/m)

3. The emission levels of other frequencies are very lower than the limit and not show in test report.

4. Measurements were conducted from 1 GHz to the 10th harmonic of highest fundamental frequency. The highest test frequency is 25GHz.

5. Data of measurement shown "---"in the above table mean that the reading of emissions is attenuated more than 20 dB below the limits or the field strength is too small to be measured.

6. All the restriction bands are compliance with the limit of 15.209.

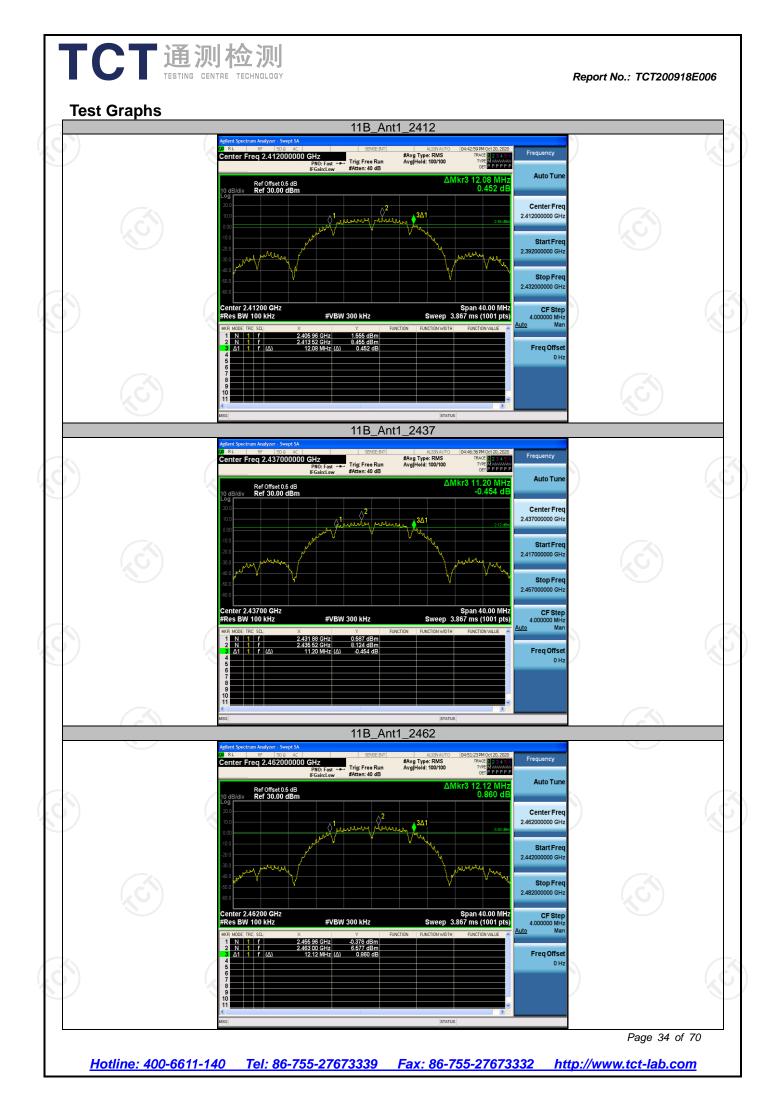
Page 30 of 70

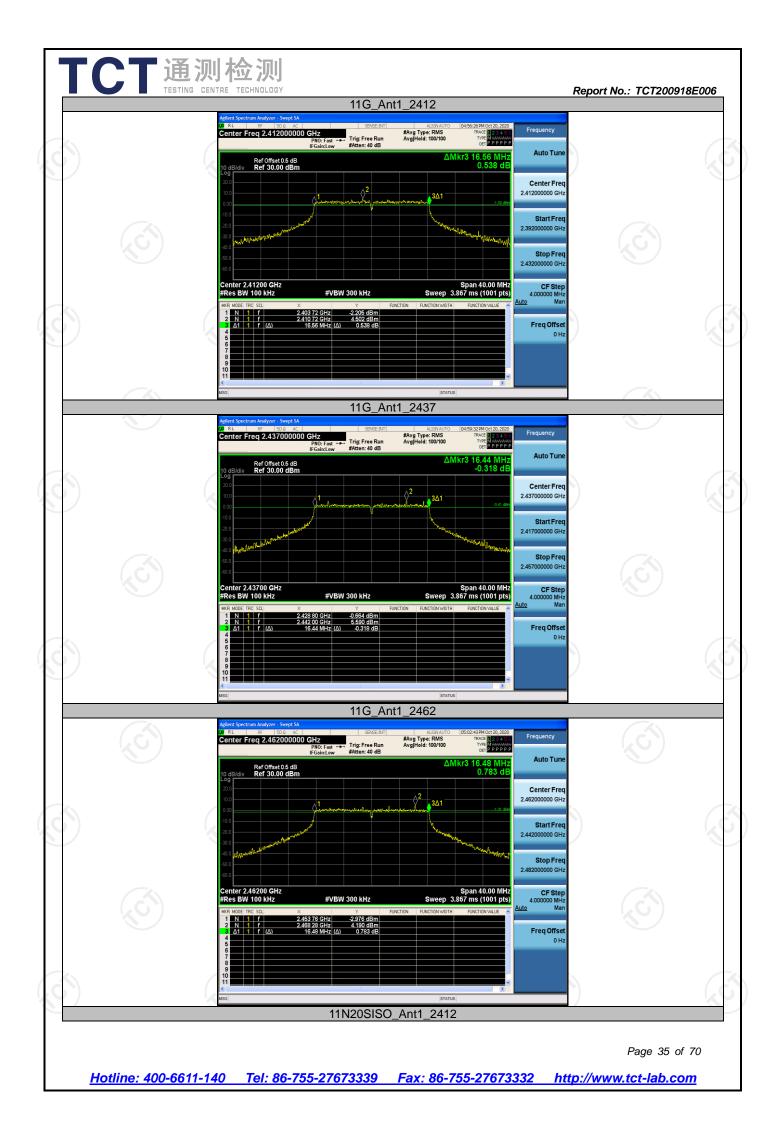
		Peak		Correction	I: 2412 MH	z on Level			
requency (MHz)	Ant. Pol. H/V	reading (dBµV)	AV reading (dBuV)	Factor (dB/m)	Peak (dBµV/m)	AV (dBµV/m)	Peak limit (dBµV/m)	AV limit (dBµV/m)	Margin (dB)
4824	Н	49.72		0.75	50.47		74	54	-3.53
7236	Н	40.65		9.87	50.52		74	54	-3.48
	Н								
4824	<u>S</u> V	47.41		0.75	48.16		74	54	-5.84
7236	V	40.79		9.87	50.66		74	54	-3.34
	V								
		<u> </u>	M	iddle chanr	nel: 2437MF	17			
		Peak		Correction		n Level			
requency (MHz)	Ant. Pol. H/V	reading (dBµV)	AV reading (dBµV)	Factor (dB/m)	Peak (dBµV/m)	AV (dBµV/m)	Peak limit (dBµV/m)	AV limit (dBµV/m)	Margin (dB)
4874	Н	47.68		0.97	48.65		74	54	-5.35
7311	Н	40.91		9.83	50.74		74	54	-3.26
/	H								
			KO .					KO /	
4874	V	47.39		0.97	48.36		74	54	-5.64
7311	V	40.52		9.83	50.35		74	54	-3.65
	V								
									(
		<u>k0</u>)	F		el: 2462 MH				
requency (MHz)	Ant. Pol. H/V	Peak reading (dBµV)	AV reading (dBµV)	Correction Factor (dB/m)	Emissic Peak (dBµV/m)	on Level AV (dBµV/m)	Peak limit (dBµV/m)	AV limit (dBµV/m)	Margin (dB)
4924	H	47.48		1.18	48.66	(abµ (/////)	74	54	-5.34
7386	Ĥ	39.69		10.07	49.76		74	54	-4.24
	н					\sim			
4024		47.07		1 1 0	40.05		74	5 4	4.05
4924	<u>V</u>	47.87		1.18	49.05		74	54	-4.95
7386	V	39.96		10.07	50.03		74	54	-3.97
Note:	V	$(\overline{\mathbf{G}})$			· · · ·		$(\overline{\mathbf{C}})$		
 Emiss Margir 	n (dB) = Emis	ssion Level	g + Correction (Peak) (dBµV equencies are	/m)-Average	limit (dBµV/	m)			amplifier

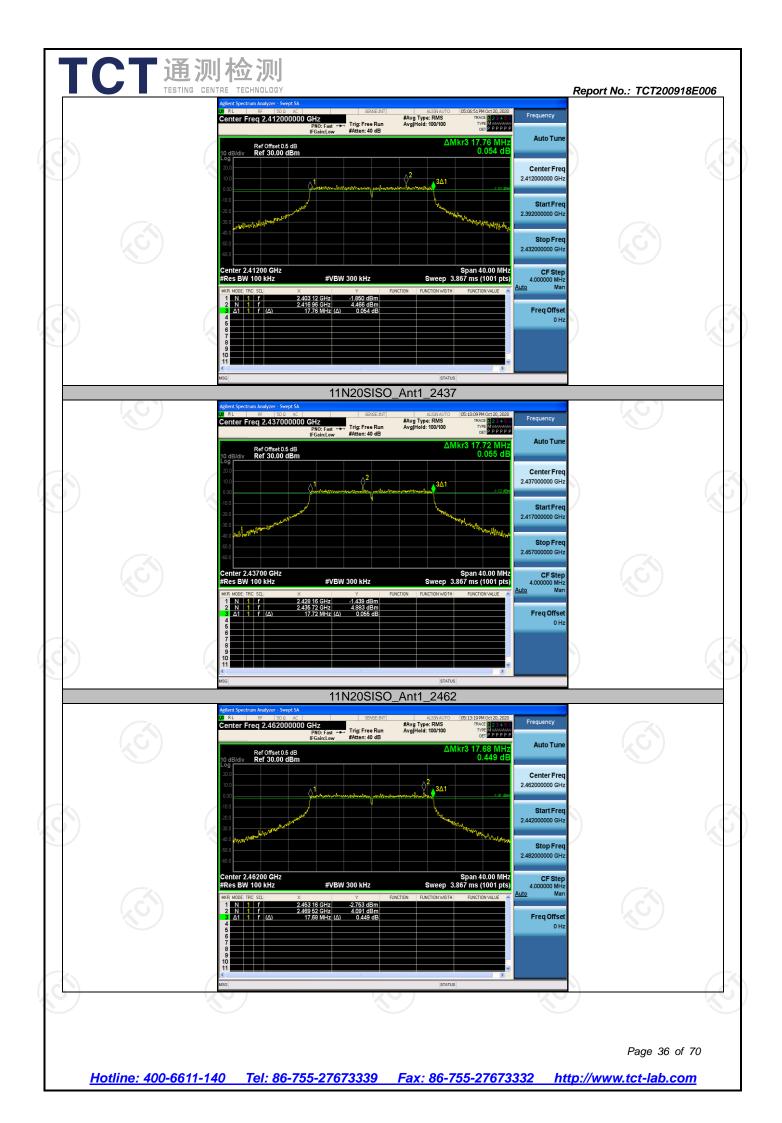
5. Data of measurement shown "---"in the above table mean that the reading of emissions is attenuated more than 20 dB below the limits or the field strength is too small to be measured.

6. All the restriction bands are compliance with the limit of 15.209.

					: 802.11n (H I: 2412 MH:				
requency (MHz)	Ant. Pol. H/V	Peak reading	AV reading (dBuV)	Correction Factor	Emissic Peak	AV	Peak limit (dBµV/m)	AV limit (dBµV/m)	Margin (dB)
4824	Н	(dBµV) 49.73		(dB/m) 0.75	(dBµV/m) 50.48	(dBµV/m)	74	54	-3.52
7236	H	40.42		9.87	50.29		74	54	-3.71
	H								
4824	ΟV	47.46	G`	0.75	48.21	<u>, G 1</u>	74	54	-5.79
7236	V	41.33		9.87	51.20		74	54	-2.80
	V								
							I.		
			М	iddle chanr	el: 2437MF	lz			
requency	Ant. Pol.	Peak	AV reading	Correction	Emissic	on Level	Peak limit	AV limit	Margin
(MHz)	H/V	reading (dBµV)	(dBµV)	Factor (dB/m)	Peak (dBµV/m)	AV (dBµV/m)	(dBµV/m)	(dBµV/m)	(dB)
4874	Н	48.78		0.97	49.75		74	54	-4.25
7311	Н	40.33		9.83	50.16		74	54	-3.84
(H				/			+-	
			KU /					KU/	
4874	V	47.76		0.97	48.73		74	54	-5.27
7311	V	40.98		9.83	50.81		74	54	-3.19
	V								
		<u>k0</u>)			I: 2462 MH				
requency (MHz)	Ant. Pol. H/V	Peak reading (dBµV)	AV reading (dBµV)	Correction Factor (dB/m)	Emissic Peak (dBµV/m)	n Level AV (dBµV/m)	Peak limit (dBµV/m)	AV limit (dBµV/m)	Margin (dB)
4924	Н	48.96		1.18	50.14		74	54	-3.86
7386	H	41.11	C	10.07	51.18		74	54	-2.82
1	Н								
4924	V	47.42		1.18	48.60		74	54	-5.40
7386	V	40.58		10.07	50.65		74	54	-3.35
	V			(0					

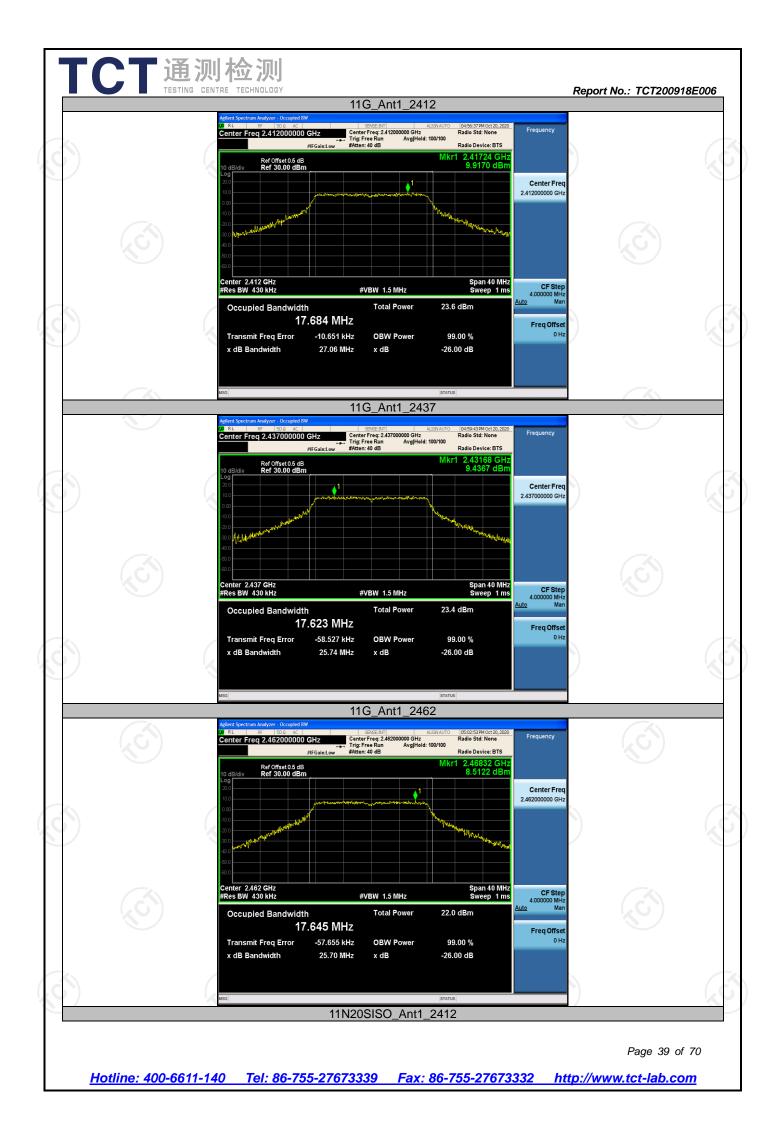

4. Measurements were conducted from 1 GHz to the 10th harmonic of highest fundamental frequency. The highest test frequency is 25GHz.

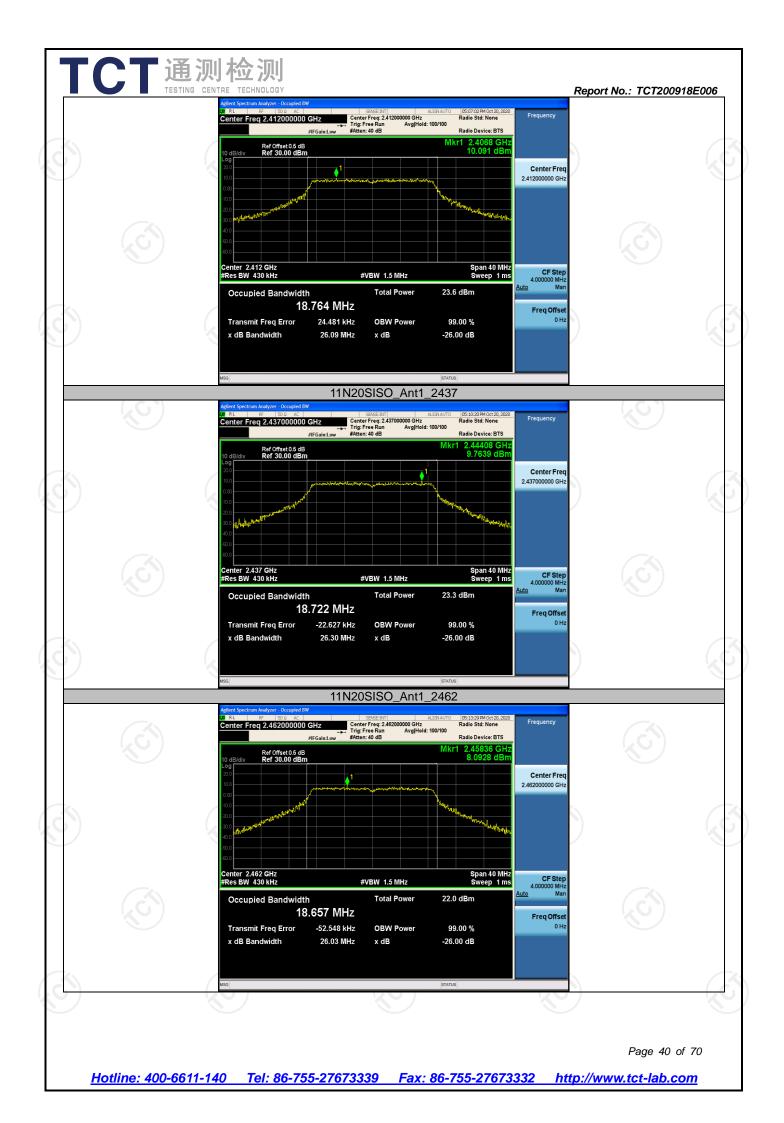

5. Data of measurement shown "---"in the above table mean that the reading of emissions is attenuated more than 20 dB below the limits or the field strength is too small to be measured.


6. All the restriction bands are compliance with the limit of 15.209.

Page 32 of 70

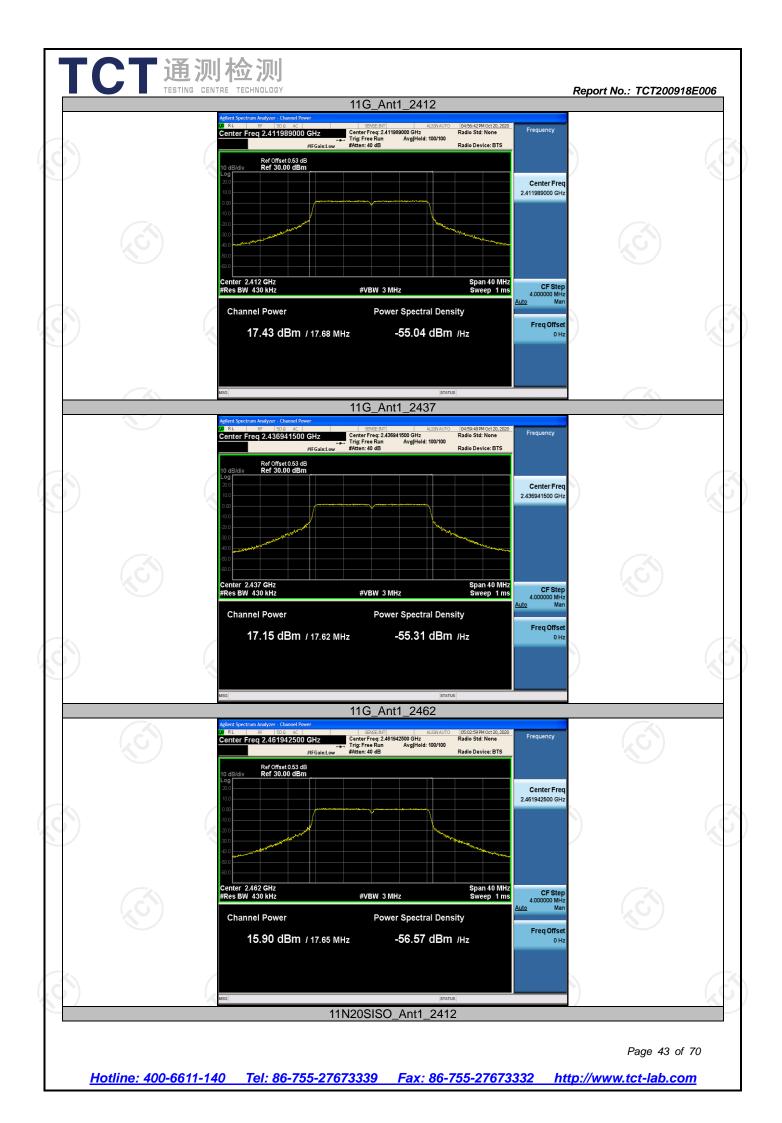
Test	Resu	lt		DTS	Bandwie	dth			
Testi 1 ¹	Mode 1B IG	Antenna Ant1 Ant1	Channel 2412 2437 2462 2412 2437 2437 2462	DTS BW [MH 12.080 11.200 12.120 16.560 16.440 16.480	240 243 245 245 240 242	MHz] 5.960 1.880 5.960 3.720 8.800 3.760	FH [MHz] 2418.040 2443.080 2468.080 2420.280 2445.240 2470.240	Limit [MHz] 0.5 0.5 0.5 0.5 0.5 0.5 0.5	Verdict PASS PASS PASS PASS PASS PASS
11N2	DSISO	Ant1	2412 2437 2462	17.760 17.720 17.680	2403	3.120 8.160 3.160	2420.880 2445.880 2470.840	0.5 0.5 0.5	PASS PASS PASS





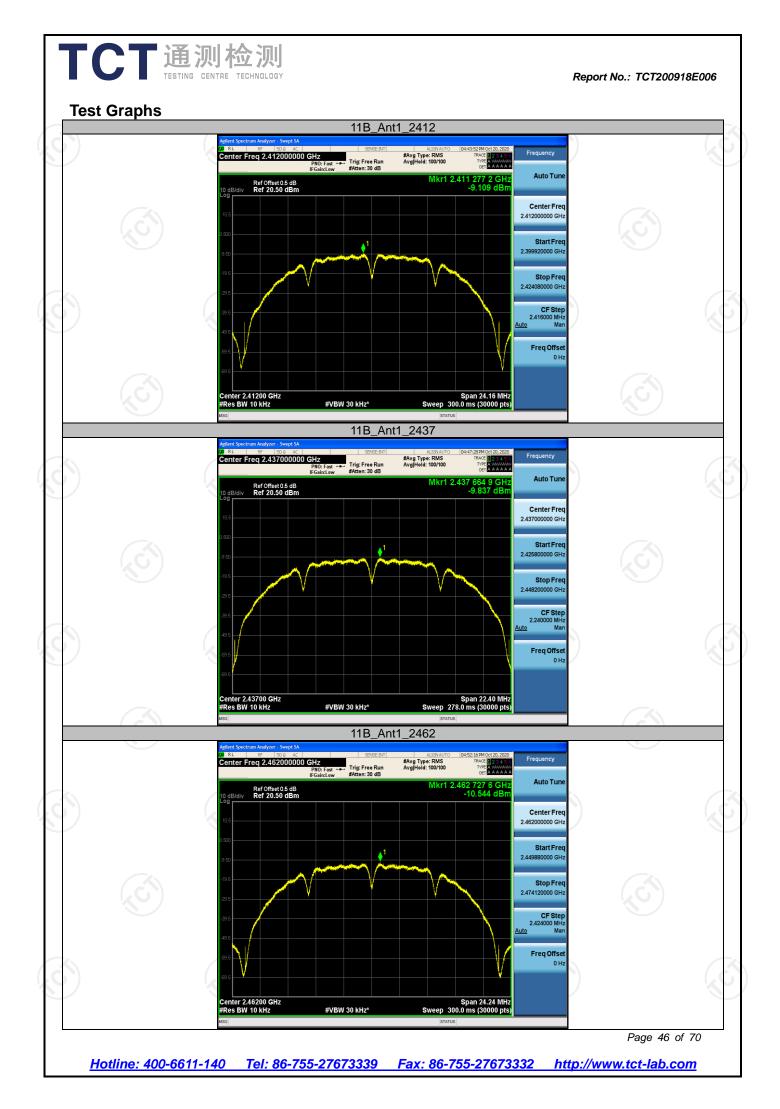
Test Resu TestMode	Antenna	Channel	OCB [MHz]	FL	MHz]	FH [MHz]	Limit [MHz]	Verdio
		2412	15.925	2404	4.069	2419.994		PASS
11B	Ant1	2437 2462	15.871 15.842		9.074 4.067	2444.945 2469.909		PASS PASS
11G	Ant1	2412 2437	17.684 17.623		3.147 8.130	2420.831 2445.753		PASS PASS
		2462	17.645	245	3.120	2470.765		PASS
11N20SISO	Ant1	2412 2437	18.764 18.722	242	2.642 7.616	2421.406 2446.338		PASS PASS
)		2462	18.657	245	2.619	2471.276		PASS

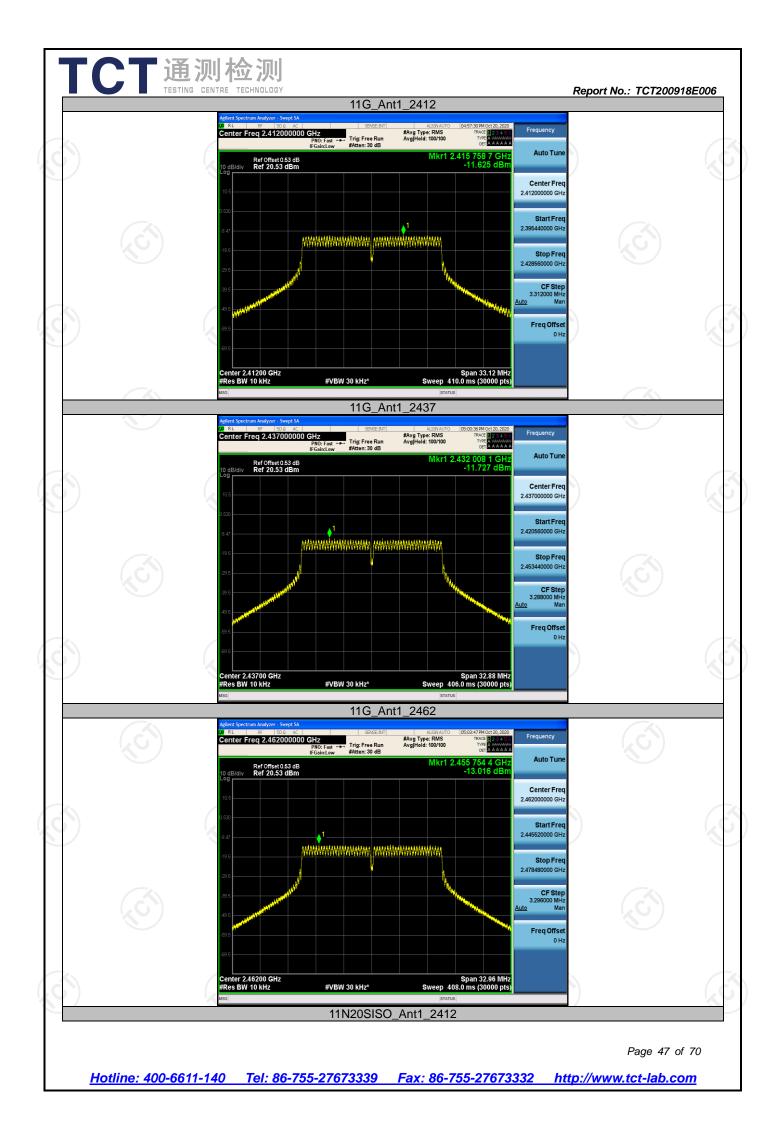
Hotline: 400-6611-140 Tel: 86-755-27673339 Fax: 86-755-27673332 http://www.tct-lab.com

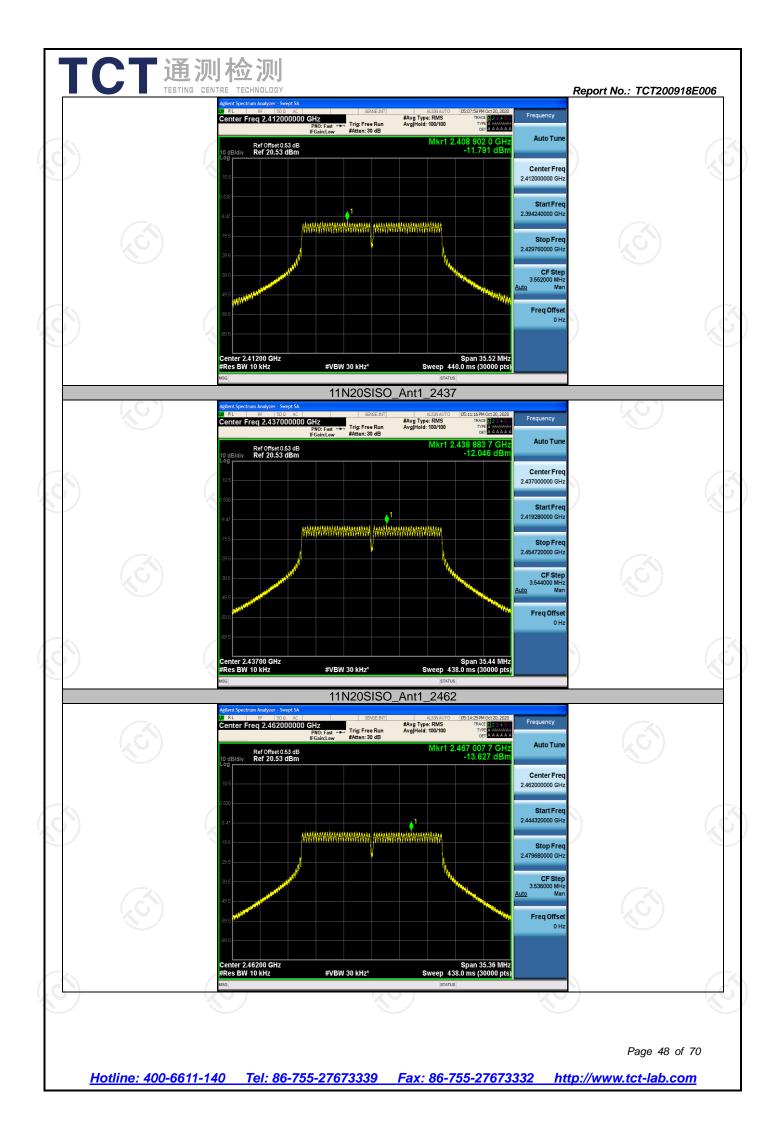


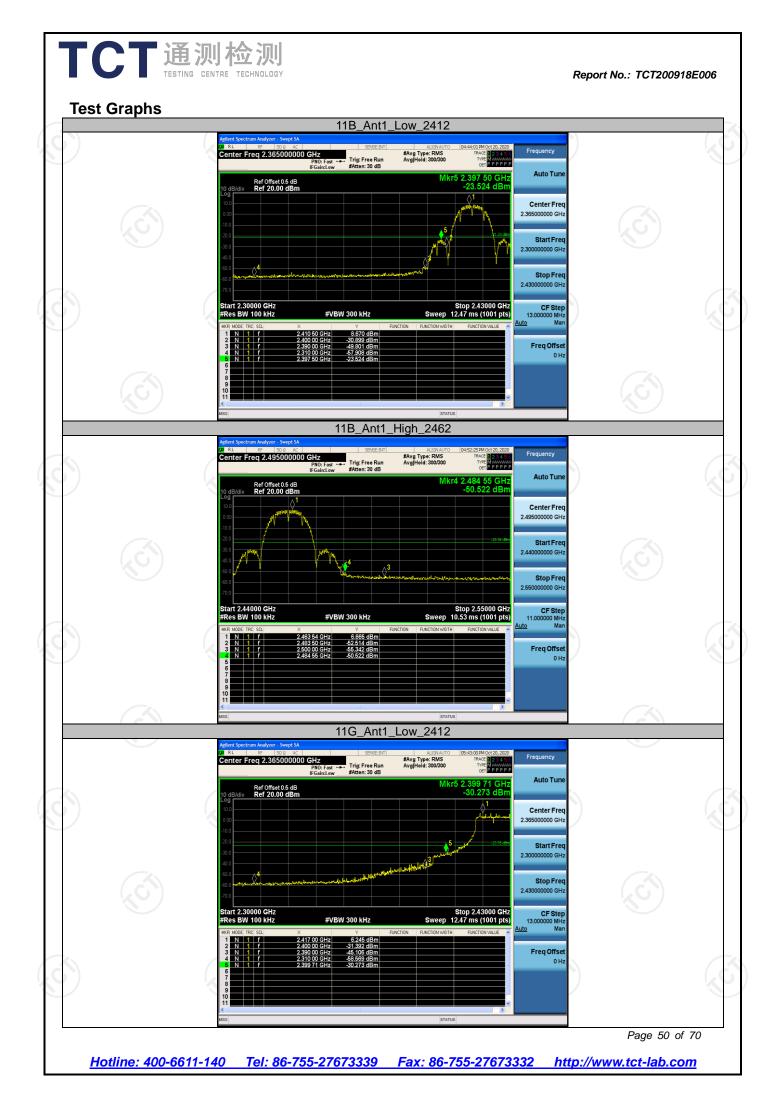


est Result	Antenna	Channel	<u>(6)</u>		(<u>k</u> 0)		Verdic
11B	Antenna Ant1	2412 2437 2462		Result [dBm] 18.50 17.93 16.80		t [dBm] =30 =30 =30	PASS PASS PASS
11G	Ant1	2412 2437 2462		17.43 17.15 15.90	<	=30 =30 =30	PASS PASS PASS
11N20SISO	Ant1	2412 2437 2462 2437 2452		17.43 17.15 15.87 17.55 16.82		=30 =30 =30 =30 =30	PASS PASS PASS PASS PASS




Hotline: 400-6611-140 Tel: 86-755-27673339 Fax: 86-755-27673332 http://www.tct-lab.com




TestM	Result	enna	Channel	Result [dBm/10kHz]	Result [dBm/3	kHz]	Limit dBm/3kHz]	Verdict
11E	з А	nt1	2412 2437	-	9.11 9.84	-14.34 -15.07		<=8 <=8	PASS PASS
110		nt1	2462 2412 2437		10.54 11.63 11.73	-15.77 -16.86 -16.96		<=8 <=8 <=8	PASS PASS PASS
			2437 2462 2412	-13.02 -11.79		-18.25 -17.02		<=8 <=8	PASS PASS
11N208	SISO A	nt1	2437 2462		12.05 13.63	-17.28 -18.86		<=8 <=8	PASS PASS

Test Re		Intenna	ChName	Channel	RefLev	/el [dBm]	Result [dBm]	Limit [dBm]	Verdic
11B		Ant1	Low High	2412 2462		.67	-23.52 -50.52	<=-21.33 <=-23.34	PASS PASS
11G		Ant1	Low High	2412 2462	6	.25	-30.27 -42.54	<=-23.76 <=-25.63	PASS PASS
11N20SIS	50	Ant1	Low High	2412 2462		.60	-30.2 -40.81	<=-22.95 <=-25.4	PASS PASS

