RF Exposure Evaluation Result

1. Requirement

Systems operating under the provisions of FCC 47 CFR section shall be operated in a manner that ensures that the public is not exposed to radio frequency energy level in excess of the Commission's guidelines.

In accordance with 47 CFR FCC Part 2 Subpart J, section 2.1091 this device has been defined as mobile device whereby a distance of 0.2m normally can be maintained between the user and the device, and below RF Permissible Exposure limit shall comply with.

Limits for General Population/Uncontrolled Exposure

Frequency Range (MHz)	Electric Field Strength (E) (V/m)	Magnetic Field Strength (H) (A/m)	Power Density (S) (mW/ cm ²)	Averaging Time E ² , H ² or S (minutes)
0.3-1.34	614	1.63	(100)*	30
1.34-30	824/f	2.19/f	(180/f)*	30
30-300	27.5	0.073	0.2	30
300-1500			F/1500	30
1500-100,000			1.0	30

(B) Limits for Gen	eral Population / Unc	controlled Exposure

Note: f = frequency in MHz; *Plane-wave equivalent power density

2. Calculation Method

$$E(V/m) = \frac{\sqrt{30 \times P \times G}}{d}$$
 Power Density: $S(mW/cm^2) = \frac{E^2}{377}$

E = Electric field (V/m)

P = Peak RF output power (mW)

G = EUT Antenna numeric gain (numeric)=

d = Separation distance between radiator and human body (m) The formula can be changed to

We can change the formula to:

S =
$$\frac{30 \times P \times G}{377 \times d^2}$$
 or, d = $\sqrt{\frac{30 \times P \times G}{377 \times S}}$

From the peak EUT RF output power, the minimum mobile separation distance, d=0.2m, as well as the gain of the used antenna, the RF power density can be obtained.

Mode	Frequency (MHz)	PK Output power (dBm)	Output power (mW)	Antenna Gain (dBi)	Antenna Gain (linear)	MPE (mW/cm ²)
ТХ	2414.25	17.28	53.46	2	1.585	0.017
	2437.875	17.27	53.33	2	1.585	0.017
	2461.50	17.19	52.36	2	1.585	0.017

3. Estimation Result

 $< 1 (mW/cm_2)$

Note: The estimation distance is 20cm

Conclusion: PASS

Evaluation Test Engineer:

loober

Leo Liu (Lead Engineer)