FCC Part 15C Measurement and Test Report

For

ShenZhen Hunicom Electronics Co., Ltd

Room 227, Block A of Shenzhen Zhihui Innovation Center, Qianjin 2nd Road,

Baoan District of Shenzhen, China

FCC ID: 2ACLV6700

FCC Rule(s): FCC Part 15.231

Product Description: Panty vibe with remote

Tested Model: <u>VPR-6700</u>

Report No.: <u>STR140682251</u>

Tested Date: <u>2014-06-06 to 2014-06-25</u>

Issued Date: <u>2014-06-26</u>

Tested By: Vigoss Liang/ Engineer

Reviewed By: <u>Lahm Peng / EMC Manager</u>

Approved & Authorized By: <u>Jandy so / PSQ Manager</u>

Prepared By:

Shenzhen SEM.Test Technology Co., Ltd.

1/F, Building A, Hongwei Industrial Park, Liuxian 2nd Road,

Lahm peny

Bao'an District, Shenzhen, P.R.C. (518101)

Tel.: +86-755-33663308 Fax.: +86-755-33663309 Website: www.semtest.com.cn

Note: This test report is limited to the above client company and the product model only. It may not be duplicated without prior permitted by Shenzhen SEM.Test Technology Co., Ltd.

TABLE OF CONTENTS

1. GENERAL INFORMATION	3
1.1 PRODUCT DESCRIPTION FOR EQUIPMENT UNDER TEST (EUT)	3
1.2 Test Standards	
1.3 TEST METHODOLOGY	
1.4 Test Facility	
1.5 EUT SETUP AND TEST MODE	
2. SUMMARY OF TEST RESULTS	6
3. ANTENNA REQUIREMENT	7
3.1 STANDARD APPLICABLE	7
3.2 TEST RESULT	7
4. RADIATED EMISSIONS	8
4.1 MEASUREMENT UNCERTAINTY	
4.2 STANDARD APPLICABLE.	8
4.3 TEST EQUIPMENT LIST AND DETAILS	
4.4 TEST PROCEDURE	9
4.5 CORRECTED AMPLITUDE & MARGIN CALCULATION	
4.6 Environmental Conditionsfa	
4.7 SUMMARY OF TEST RESULTS/PLOTS	10
5. TRANSMISSION TIME	15
5.1 STANDARD APPLICABLE	15
5.2 TEST EQUIPMENT LIST AND DETAILS	15
5.3 TEST PROCEDURE	
5.4 Environmental Conditions	
5.5 SUMMARY OF TEST RESULTS/PLOTS	15
6. DUTY CYCLE	17
6.1 STANDARD APPLICABLE	17
6.2 TEST EQUIPMENT LIST AND DETAILS	
6.3 Test Procedure	
6.4 Environmental Conditions	
6.5 SUMMARY OF TEST RESULTS/PLOTS	17

1. GENERAL INFORMATION

1.1 Product Description for Equipment Under Test (EUT)

Client Information

Applicant: ShenZhen Hunicom Electronics Co., Ltd

Address of applicant: Room 227, Block A of Shenzhen Zhihui Innovation

Center, Qianjin 2nd Road, Baoan District of

Shenzhen, China

Manufacturer: Derek(ShaoGuan)Limited

Address of manufacturer: Gaojiling, Taiping Town, Shixing County, Shao Guan

City, China

General Description of EUT					
Product Name:	Panty vibe with remote				
Trade Name:	Secrets				
Model No.:	VPR-6700				
Adding Model(s):	/				
Rated Voltage:	DC 3.0V				
Power Adapter Model:	/				
Note: The test data is gathered from a production sample, provided by the manufacturer.					

Technical Characteristics of EUT					
Frequency Range:	433.92 MHz				
Max. Field Strength:	79.18dBuV/m				
Data Rate:	1				
Modulation:	ASK				
Antenna Type:	PCB				
Antenna Gain:	<2.14dBi				
Lowest Internal Frequency of EUT:	13.560MHz				
Device Category:	Portable Device				

1.2 Test Standards

The following report is prepared on behalf of the ShenZhen Hunicom Electronics Co., Ltd in accordance with FCC Part 15, Subpart C, and section 15.231, 15.203, 15.205 and 15.209 of the Federal Communication Commissions rules.

Model: VPR-6700

The objective is to determine compliance with FCC Part 15, Subpart C, and section 15.231, 15.203, 15.205 and 15.209 of the Federal Communication Commissions rules.

Maintenance of compliance is the responsibility of the manufacturer. Any modification of the product, which result in lowering the emission/immunity, should be checked to ensure compliance has been maintained.

1.3 Test Methodology

All measurements contained in this report were conducted with ANSI C63.4-2003, American National Standard for Methods of Measurement of Radio-Noise Emissions from Low-Voltage Electrical and Electronic Equipment in the range of 9 kHz to 40 GHz.

1.4 Test Facility

FCC – Registration No.: 934118

Shenzhen SEM.Test Technology Co., Ltd. EMC Laboratory has been registered and fully described in a report filed with the (FCC) Federal Communications Commission. The acceptance letter from the FCC is maintained in our files and the Registration is 934118.

Industry Canada (IC) Registration No.: 11464A

The 3m Semi-anechoic chamber of Shenzhen SEM.Test Technology Co., Ltd. has been registered by Certification and Engineering Bureau of Industry Canada for radio equipment testing with Registration No.: 11464A.

CNAS Registration No.: L4062

Shenzhen SEM. Test Technology Co., Ltd. is a testing organization accredited by China National Accreditation Service for Conformity Assessment (CNAS) according to ISO/IEC 17025. The accreditation certificate number is L4062. All measurement facilities used to collect the measurement data are located at 1/F, Building A, Hongwei Industrial Park, Liuxian 2nd Road, Bao'an District, Shenzhen, P.R.C (518101).

REPORT NO.: STR14068225I PAGE 4 OF 19 FCC PART 15.231

1.5 EUT Setup and Test Mode

The EUT was operated at continuous transmitting mode that was for the purpose of the measurements. All testing shall be performed under maximum output power condition, and to measure its highest possible emissions level, more detailed description as follows:

Test Mode List						
Test Mode	Description	Remark				
TM1	Transmitting	With modulation				

Special Cable List and Details								
Cable Description Length (m) Shielded/Unshielded With / Without Ferrite								
/	/	/	/					

Auxiliary Equipment List and Details							
Description Manufacturer Model Serial Number							

2. SUMMARY OF TEST RESULTS

FCC Rules	Description of Test Item	Result
§ 15.203	Antenna Requirement	Compliant
§15.205	Restricted Band of Operation	Compliant
§ 15.209	Radiated Spurious Emissions	Compliant
§15.231(a)	Deactivation Testing	Compliant
§15.231(b)	Radiated Emissions	Compliant

REPORT NO.: STR14068225I PAGE 6 OF 19 FCC PART 15.231

3. Antenna Requirement

3.1 Standard Applicable

According to FCC Part 15.203, an intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator shall be considered sufficient to comply with the provisions of this section.

3.2 Test Result

This product has a permanent antenna, fulfill the requirement of this section.

4. Radiated Emissions

4.1 Measurement Uncertainty

Based on NIS 81, The Treatment of Uncertainty in EMC Measurements, the best estimate of the uncertainty of a radiation emissions measurement is +5.10 dB.

4.2 Standard Applicable

According to §15.231(b), the field strength of emissions from intentional radiators operated under this section shall not exceed the following:

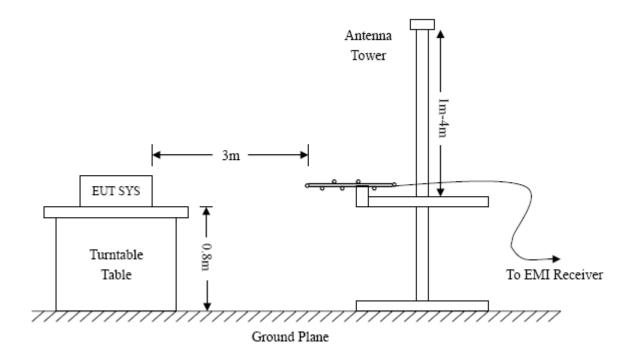
Fundamental Frequency (MHz)	Field Strength of Fundamental (microvolts/meter)	Field Strength of Spurious Emissions (microvolts/meter)
40.66 - 40.70	2,250	225
70 - 130	1,250	125
130 - 174	1,250 to 3,750 **	125 to 375 **
174 - 260	3,750	375
260 - 470	3,750 to 12,500 **	375 to 1,250 **
Above 470	12,500	1,250

^{**} linear interpolations

The limits on the field strength of the spurious emissions in the above table are based on the fundamental frequency of the intentional radiator. Spurious emissions shall be attenuated to the average (or, alternatively, CISPR quasi-peak) limits shown in this table or to the general limits shown in §15.209, whichever limit permits a higher field strength.

The emission limit in this paragraph is based on measurement instrumentation employing an average detector. The provisions in §15.35 for limiting peak emissions apply. Spurious Radiated Emissions measurements starting below or at the lowest crystal frequency.

Compliance with the provisions of §15.205 shall be demonstrated using the measurement instrumentation specified in that section.


REPORT NO.: STR14068225I PAGE 8 OF 19 FCC PART 15.231

4.3 Test Equipment List and Details

Description	Manufacturer	Model	Model Serial Number		Due. Date	
Spectrum Analyzer	R&S	FSP	836079/035	2014-05-28	2015-05-27	
EMI Test Receiver	R&S	ESVB	825471/005	2014-05-28	2015-05-27	
Pre-amplifier	Agilent	8447F	3113A06717	2014-05-28	2015-05-27	
Pre-amplifier	Compliance Direction	PAP-0118	24002	2014-05-28	2015-05-27	
Trilog Broadband Antenna	SCHWARZBECK	VULB9163	9163-333	2014-05-24	2015-05-23	
Horn Antenna	ETS	3117	00086197	2014-05-24	2015-05-23	
Loop Antenna	SCHWARZECK	HFRA 5165	9365	2014-05-24	2015-05-23	

4.4 Test Procedure

The setup of EUT is according with per ANSI C63.4-2003 measurement procedure. The specification used was with the FCC Part 15.205 15.231(b) and FCC Part 15.209 Limit.

4.5 Corrected Amplitude & Margin Calculation

The Corrected Amplitude is calculated by adding the Antenna Factor and the Cable Factor, and subtracting the Amplifier Gain from the Amplitude reading. The basic equation is as follows:

Model: VPR-6700

Corr. Ampl. = Indicated Reading +Ant.Loss +Cab. Loss - Ampl.Gain

The "Margin" column of the following data tables indicates the degree of compliance with the applicable limit. For example, a margin of $-6dB\mu V$ means the emission is $6dB\mu V$ below the maximum limit. The equation for margin calculation is as follows:

Margin = Corr. Ampl. – FCC Part 15C Limit

4.6 Environmental Conditionsfa

Temperature:	21° C
Relative Humidity:	50%
ATM Pressure:	1011 mbar

4.7 Summary of Test Results/Plots

According to the data below, the FCC Part 15.205, 15.209 and 15.231 standards, and had the worst margin of:

-7.75 dB at 36.01 MHz in the Vertical polarization, Peak Detector, 9 kHz to 5 GHz, 3 Meters

Note: this EUT was tested in 3 orthogonal positions and the worst case position data was reported.

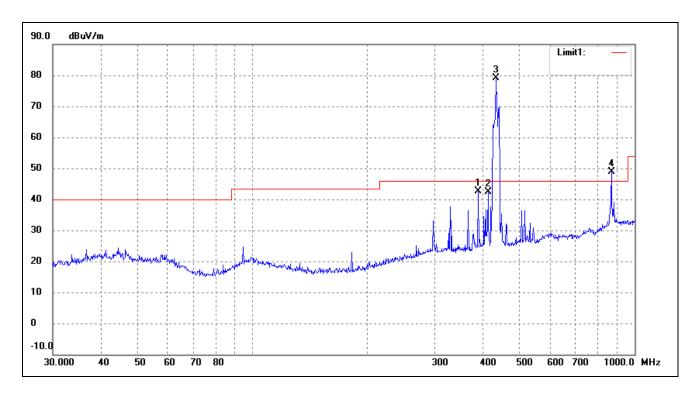

Plot of Radiated Emissions Test Data

EUT: Panty vibe with remote

Tested Model: VPR-6700
Operating Condition: Transmitting

Comment: Pass

Test Specification: Horizontal



No.	Frequency	Reading	Corr.	Dutycycle	Result	Limit	Margin	Deg.	Height	Remark
	MHz	dBuV/m	Factor(dB)	Factor	dBuV/m	dBuV/m	(dB)	(°)	(cm)	
				(dB)						
1	102.3597	15.26	5.88	N/A	21.14	46.00	-3.37	120	100	peak
2	400.4318	21.69	10.12	N/A	31.81	46.00	-3.73	120	100	peak
3	433.9200	60.46	9.83	N/A	70.29	100.82	-30.53	360	100	peak
	433.9200	/	/	-7.33	63.59	80.82	-17.23	360	100	Ave
4	867.8400	37.56	16.54	N/A	54.10	80.82	-26.72	358	100	peak
	867.8400	/	/	-7.33	46.77	60.82	-14.05	358	100	Ave

Above 1GHz

No.	Frequency	Reading	Correct	Result	Limit	Margin	Degree	Height	Detector
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	()	(cm)	
1	1273.651	52.73	-8.41	44.32	74.00	-29.68	0	100	peak
2	1301.332	45.07	-8.34	36.73	54.00	-17.27	0	100	AVG
3	1733.375	59.56	-6.27	53.29	74.00	-20.71	360	100	peak
4	1736.483	50.78	-6.25	44.53	54.00	-9.47	360	100	AVG
5	2427.643	47.97	-3.46	44.51	74.00	-29.49	360	100	peak
6	2427.643	36.95	-3.46	33.49	54.00	-20.51	360	100	AVG

Test Specification: Vertical

No.	Frequency	Reading	Corr.	Dutycycle	Result	Limit	Margin	Deg.	Height	Remark
	MHz	dBuV/m	Factor(dB)	Factor	dBuV/m	dBuV/m	(dB)	(°)	(cm)	
				(dB)						
1	389.3548	33.00	9.63	N/A	42.63	46.00	-3.37	120	100	peak
2	413.2706	32.64	9.63	N/A	42.27	46.00	-3.73	120	100	peak
3	433.9200	69.35	9.83	N/A	79.18	100.82	-21.64	360	100	peak
	433.9200	/	/	-7.33	71.85	80.82	-9.97	360	100	Ave
4	867.8400	32.35	16.54	N/A	48.89	80.82	-31.93	358	100	peak
	867.8400	/	/	-7.33	41.56	60.82	-19.26	358	100	Ave

Above 1GHz

No.	Frequency	Reading	Correct	Result	Limit	Margin	Degree	Height	Detector
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	()	(cm)	
1	1107.528	58.21	-8.76	49.45	74.00	-24.55	110	100	peak
2	1301.332	64.74	-8.34	56.40	74.00	-17.60	360	100	peak
3	1301.332	55.02	-8.34	46.68	54.00	-7.32	360	100	AVG
4	1711.770	63.84	-6.42	57.42	74.00	-16.58	360	100	peak
5	1736.483	53.66	-6.25	47.41	54.00	-6.59	360	100	AVG
6	2168.510	36.07	-4.03	32.04	54.00	-21.96	180	100	AVG

Note: Testing is carried out with frequency rang 9kHz to the tenth harmonics, which above 5th Harmonics are attenuated more than 20dB below the permissible limits or the field strength is too small to be measured. The measurements greater than 20dB below the limit from 9kHz to 30MHz.

The fundamental frequency is 433.92MHz, so the fundamental and spurious emissions radiated limit base on the operating frequency 433.92MHz.

5. Transmission Time

5.1 Standard Applicable

According to FCC Part 15.231 (a), the transmitter shall be complied the following requirements:

1) A manually operated transmitter shall employ a switch that will automatically deactivate the transmitter within not more than 5 seconds of being released.

Model: VPR-6700

- (2) A transmitter activated automatically shall cease transmission within 5 seconds after activation.
- (3) Periodic transmissions at regular predetermined intervals are not permitted. However, polling or supervision transmissions, including data, to determine system integrity of transmitters used in security or safety applications are allowed if the total duration of transmissions does not exceed more than two seconds per hour for each transmitter. There is no limit on the number of individual transmissions, provided the total transmission time does not exceed two seconds per hour.

5.2 Test Equipment List and Details

Description	Manufacturer	Model	Serial Number	Cal. Date	Due. Date
Spectrum Analyzer	Agilent	E4402B	US41192821	2014-05-28	2015-05-27
Attenuator	ATTEN	ATS100-4-20	/	2014-05-28	2015-05-27

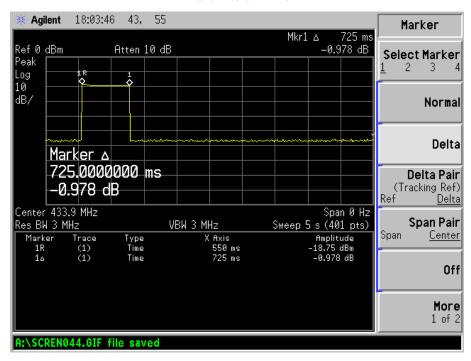
5.3 Test Procedure

With the EUT's antenna attached, the EUT's output signal was received by the test antenna, which was connected to the spectrum analyzer. Set the center frequency to 433.92MHz, than set the spectrum analyzer to Zero Span for the release time reading. During the testing, the switch was released then the EUT automatically deactivated.

5.4 Environmental Conditions

Temperature:	20° C
Relative Humidity:	52%
ATM Pressure:	1011 mbar

5.5 Summary of Test Results/Plots


Transmission Type	Test Frequency MHz	Transmission Time seconds	Limit s	Result
Manually	433.92	0.75	5	Pass

Please refer to the attached plots.

REPORT NO.: STR14068225I PAGE 15 OF 19 FCC PART 15.231

FCC PART 15.231

Transmission Time

6. Duty Cycle

6.1 Standard Applicable

According to FCC Part 15.231 (b)(2) and 15.35 (c), For pulse operation transmitter, the averaging pulsed emissions are calculated by peak value of measured emission plus duty cycle factor.

6.2 Test Equipment List and Details

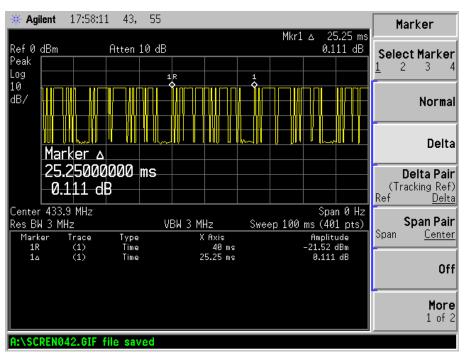
Description	Manufacturer	Model	Serial Number	Cal. Date	Due. Date
Spectrum Analyzer	Agilent	E4402B	US41192821	2014-05-28	2015-05-27
Attenuator	ATTEN	ATS100-4-20	/	2014-05-28	2015-05-27

6.3 Test Procedure

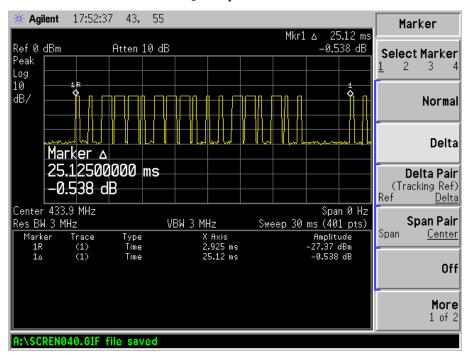
With the EUT's antenna attached, the EUT's output signal was received by the test antenna, which was connected to the spectrum analyzer. Set the center frequency to 433.92MHz, than set the spectrum analyzer to Zero Span for the release time reading. During the testing, the switch was released then the EUT automatically deactivated.

6.4 Environmental Conditions

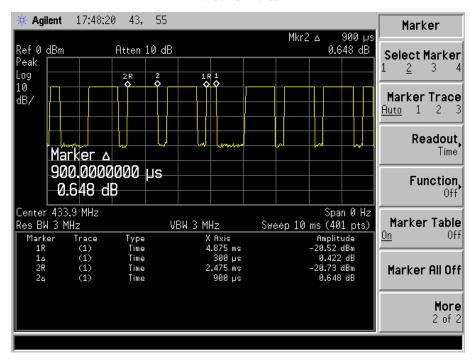
Temperature:	20° C
Relative Humidity:	52%
ATM Pressure:	1011 mbar


6.5 Summary of Test Results/Plots

Type of Pulse	Type of Pulse Width of Pulse		Transmission Time	Total Time (Ton)
	ms		ms	ms
Pulse 1 (Wide)	0.9	9	8.1	10.9
Pulse 2 (Narrow)	0.3	9	2.7	10.8


Test Period (T _p)	Total Time (T _{on})	Duty Cycle	Duty Cycle Factor	
ms	ms	%	dB	
25.12	10.8	42.99	-7.33	

Please refer to the attached test plots


Test Period

Quantity of Pulse

Width of Pulse

***** END OF REPORT *****