ONE WORLD OUR APPROVAL

Test report

332151-2TRFWL

Date of issue: July 19, 2017

Applicant:

Fortin Systèmes Électroniques

Product:

Keyfob

Model:

FTX900

FCC ID:

IC Registration number: 12084A-R1W01FSS

Specifications:

ACKU-R1W01FSS

FCC 47 CFR Part 15 Subpart C, §15.247

Operation in the 902–928 MHz, 2400–2483.5 MHz, and 5725–5850 MHz

RSS-247, Issue 2, Feb 2017, Section 5

Digital Transmission Systems (DTSs), Frequency Hopping Systems (FHSs)
and Licence-Exempt Local Area Network (LE-LAN) Devices
5) Standard specifications for frequency hopping systems and digital transmission systems operating in the bands 902–928 MHz, 2400–2483.5 MHz and 5725–5850 MHz

www.nemko.com

Nemko Canada Inc., a testing laboratory, is accredited by the Standards Council of Canada. The tests included in this report are within the scope of this accreditation

FCC 15.247 and RSS-247.docx; Date: Mar 2017

Test location

Company name	Nemko Canada Inc.
Address	292 Labrosse Avenue
City	Pointe-Claire
Province	QC
Postal code	H9R 5L8
Country	Canada
Telephone	+1 514 694 2684
Facsimile	+1 514 694 3528
Toll free	+1 800 563 6336
Website	www.nemko.com
Site number	FCC: CA2041; IC: 2040G-5 (3 m semi anechoic chamber)

Tested by	Yong Huang, Wireless/EMC Specialist
Reviewed by	Kevin Rose, Wireless/EMC Specialist
Review date	July 19, 2017
Reviewer signature	HB-

Limits of responsibility

Note that the results contained in this report relate only to the items tested and were obtained in the period between the date of initial receipt of samples and the date of issue of the report.

This test report has been completed in accordance with the requirements of ISO/IEC 17025. All results contain in this report are within Nemko Canada's ISO/IEC 17025 accreditation.

Copyright notification

Nemko Canada Inc. authorizes the applicant to reproduce this report provided it is reproduced in its entirety and for use by the company's employees only. Any use which a third party makes of this report, or any reliance on or decisions to be made based on it, are the responsibility of such third parties. Nemko Canada Inc. accepts no responsibility for damages, if any, suffered by any third party as a result of decisions made or actions based on this report. © Nemko Canada Inc.

Table of contents

Table of o	contents	3
Section 1	Report summary	4
1.1	Applicant and manufacturer	4
1.2	Test specifications	4
1.3	Test methods	4
1.4	Statement of compliance	4
1.5	Exclusions	4
1.6	Test report revision history	4
Section 2		
2.1	FCC Part 15 Subpart C, general requirements test results	5
2.2	FCC Part 15 Subpart C, intentional radiators test results	5
2.3	ISED RSS-GEN, Issue 4, test results	5
2.4	ISED RSS-247, Issue 2, test results	6
Section 3	. Equipment under test (EUT) details	7
3.1	Sample information	7
3.2	EUT information	7
3.3	Technical information	7
3.4	Product description and theory of operation	7
3.5	EUT exercise details	7
3.6	EUT setup diagram	8
Section 4	. Engineering considerations	9
4.1	Modifications incorporated in the EUT	9
4.2	Technical judgment	9
4.3	Deviations from laboratory tests procedures	9
Section 5	. Test conditions	10
5.1	Atmospheric conditions	10
5.2	Power supply range	10
Section 6	. Measurement uncertainty	11
6.1	Uncertainty of measurement	11
Section 7	. Test equipment	12
7.1	Test equipment list	12
Section 8	. Testing data	13
8.1	FCC 15.247(a)(1) and RSS-247 5.1(1) Frequency Hopping Systems requirements	13
8.2	FCC 15.247(b) and RSS-247 5.4 (1) Transmitter output power and e.i.r.p. requirements	18
8.3	FCC 15.247(d) and RSS-247 Section 5.5 Spurious (out-of-band) emissions	20
Section 9	. Block diagrams of test set-ups	28
9.1	Radiated emissions set-up for frequencies below 1 GHz	28
9.2	Radiated emissions set-up for frequencies above 1 GHz	29
9.3	Conducted antenna port set-up	29

Section 1. Report summary

1.1 Applicant and manufacturer

Company name	Fortin Systèmes Électroniques
Address	9855, rue Colbert
City	Anjou
Province/State	Québec
Postal/Zip code	H1J 1Z9
Country	Canada

1.2 Test specifications

FCC 47 CFR Part 15, Subpart C, Clause 15.247	Operation in the 902–928 MHz, 2400–2483.5 MHz, and 5725–585 MHz
RSS-247, Issue 2, Feb 2017, Section 5	Digital Transmission Systems (DTSs), Frequency Hopping Systems (FHSs) and Licence-Exempt Local Area Network (LE-LAN) Devices

1.3 Test methods

DA 00-705, Released March 30, 2000	Filing and Measurement Guidelines for Frequency Hopping Spread Spectrum Systems
ANSI C63.10 v2013	American National Standard of Procedures for Compliance Testing of Unlicensed Wireless Devices

1.4 Statement of compliance

In the configuration tested, the EUT was found compliant.

Testing was completed against all relevant requirements of the test standard or as per detailed in the section 1.5 Exclusions below. Results obtained indicate that the product under test complies in full with the requirements tested. The test results relate only to the items tested.

See "Summary of test results" for full details.

1.5 Exclusions

None

1.6 Test report revision history

Revision #	Details of changes made to test report
TRF	Original report issued

Section 2. Summary of test results

2.1 FCC Part 15 Subpart C, general requirements test results

Part	Test description	Verdict
§15.207(a)	Conducted limits	Not applicable
§15.31(e)	Variation of power source	Pass ¹
§15.203	Antenna requirement	Pass ²

Notes: ¹ For battery operated equipment, the equipment tests were performed using a new battery.

² The Antennas are located within the enclosure of EUT and not user accessible.

2.2 FCC Part 15 Subpart C, intentional radiators test results

Part	Test description	Verdict
§15.247(a)(1)(i)	Frequency hopping systems operating in the 902–928 MHz band	Pass
§15.247(a)(1)(ii)	Frequency hopping systems operating in the 5725–5850 MHz band Not applicab	
§15.247(a)(1)(iii)	Frequency hopping systems operating in the 2400–2483.5 MHz band	Not applicable
§15.247(a)(2)	Minimum 6 dB bandwidth for systems using digital modulation techniques	Not applicable
§15.247(b)(1)	Maximum peak output power of frequency hopping systems operating in the 2400–2483.5 MHz band and S725–5850 MHz band	
§15.247(b)(2)	Maximum peak output power of Frequency hopping systems operating in the 902–928 MHz band Pas	
§15.247(b)(3)	Maximum peak output power of systems using digital modulation in the 902–928 MHz, 2400–2483.5 Pass MHz, and 5725–5850 MHz bands	
§15.247(c)(1)	Fixed point-to-point operation with directional antenna gains greater than 6 dBi	Not applicable
§15.247(c)(2)	Transmitters operating in the 2400–2483.5 MHz band that emit multiple directional beams	Not applicable
§15.247(d)	Spurious emissions	Pass
§15.247(e)	Power spectral density for digitally modulated devices	Not applicable
§15.247(f)	Time of occupancy for hybrid systems	Not applicable

2.3 ISED RSS-GEN, Issue 4, test results

Part	Test description	Verdict
7.1.2	Receiver radiated emission limits	Not applicable
7.1.3	Receiver conducted emission limits	Not applicable
8.8	Power Line Conducted Emissions Limits for Licence-Exempt Radio Apparatus	Not applicable

Notes: ¹ According to sections 5.2 and 5.3 of RSS-Gen, Issue 4 the EUT does not have a stand-alone receiver neither scanner receiver, therefore exempt from receiver requirements.

2.4 ISED RSS-247, Issue 2, test results

Part	Test description	Verdict
5.1	Frequency Hopping Systems (FHSs)	
5.1 (a)	Bandwidth of a frequency hopping channel	Pass
5.1 (b)	Minimum channel spacing for frequency hopping systems	Pass
5.1 (c)	Frequency hopping systems operating in the 902–928 MHz band	Pass
5.1 (d)	Frequency hopping systems operating in the 2400–2483.5 MHz band	Not applicable
5.1 (e)	Frequency hopping systems operating in the 5725–5850 MHz band	Not applicable
5.2	Digital Transmission Systems (DTSs)	
5.2 (a)	Minimum 6 dB bandwidth	Not applicable
5.2 (b)	Maximum power spectral density	Not applicable
5.3	Hybrid Systems	
5.3 (a)	Digital modulation turned off	Not applicable
5.3 (b)	Frequency hopping turned off	Not applicable
5.4	Transmitter output power and e.i.r.p. requirements	
5.4 (a)	Frequency hopping systems operating in the 902–928 MHz band	Not applicable
5.4 (b)	Frequency hopping systems operating in the 2400–2483.5 MHz band	Not applicable
5.4 (c)	Frequency hopping systems operating in the 5725–5850 MHz	Not applicable
5.4 (d)	Systems employing digital modulation techniques	Not applicable
5.4 (e)	Point-to-point systems in 2400–2483.5 MHz and 5725–5850 MHz band	Not applicable
5.4 (f)	Transmitters which operate in the 2400–2483.5 MHz band with multiple directional beams	Not applicable
5.5	Unwanted emissions	Pass

Notes: None

Section 3. Equipment under test (EUT) details

3.1 Sample information

Receipt date	May 30, 2017
Nemko sample ID number	Item 4

3.2 EUT information

Product name	Keyfob
Model	FTX900
Serial number	None

3.3 Technical information

Applicant IC company number	12084A
IC UPN number	R1W01FSS
All used IC test site(s) Reg. number	2040G-5
RSS number and Issue number	RSS-247 Issue 2, Feb 2017
Frequency band	902–928 MHz
Frequency Min (MHz)	903
Frequency Max (MHz)	906
RF power Min (W), Conducted/ERP/EIRP	N/A
RF power Max (W), Conducted	0.01687 (12.27 dBm)
Field strength, Units @ distance	N/A
Measured BW (kHz) (20 dB)	30.87
Calculated BW (kHz), as per TRC-43	N/A
Type of modulation	FSK
Emission classification (F1D, G1D, D1D)	F1D
Transmitter spurious, Units @ distance	53.6 dBμV/m, at 4516 MHz @ 3 m
Power requirements	3 V _{DC} Battery
Antenna information	The EUT uses a non-detachable antenna to the intentional radiator. As per customer, antenna gain is -3 dBi

3.4 Product description and theory of operation

The product is an aftermarket remote starter keyfob. When the costumer press the remote button, the remote sends through radio frequency a unique message that is received by the remote starter that will execute the command in the costumer vehicle.

3.5 EUT exercise details

EUT was configured and operated by client on site. During transmitter testing, the unit was set to transmit continuously.

3.6 EUT setup diagram

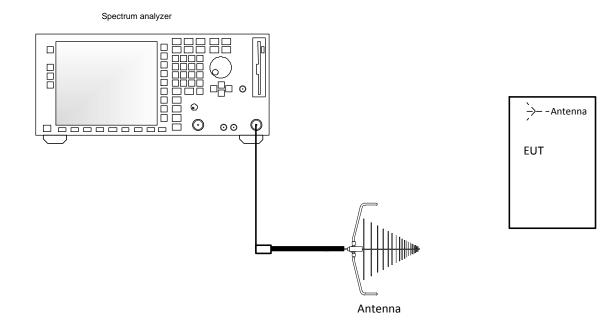


Figure 3.6-1: Setup diagram

Section 4. Engineering considerations

4.1 Modifications incorporated in the EUT

There were no modifications performed to the EUT during this assessment.

4.2 Technical judgment

None

4.3 Deviations from laboratory tests procedures

No deviations were made from laboratory procedures.

Section 5. Test conditions

5.1 Atmospheric conditions

Temperature	15–30 °C
Relative humidity	20-75 %
Air pressure	860–1060 mbar

When it is impracticable to carry out tests under these conditions, a note to this effect stating the ambient temperature and relative humidity during the tests shall be recorded and stated.

5.2 Power supply range

The normal test voltage for equipment to be connected to the mains shall be the nominal mains voltage. For the purpose of the present document, the nominal voltage shall be the declared voltage, or any of the declared voltages ±5 %, for which the equipment was designed.

Section 6. Measurement uncertainty

6.1 Uncertainty of measurement

UKAS Lab 34 and TIA-603-B have been used as guidance for measurement uncertainty reasonable estimations with regards to previous experience and validation of data. Nemko Canada, Inc. follows these test methods in order to satisfy ISO/IEC 17025 requirements for estimation of uncertainty of measurement for wireless products.

Measurement uncertainty budgets for the tests are detailed below. Measurement uncertainty calculations assume a coverage factor of K = 2 with 95% certainty.

Test name	Measurement uncertainty, dB
All antenna port measurements	0.55
Conducted spurious emissions	1.13
Radiated spurious emissions	3.78
AC power line conducted emissions	3.55

Section 7. Test equipment

7.1 Test equipment list

Table 7.1-1: Equipment list

Equipment	Manufacturer	Model no.	Asset no.	Cal cycle	Next cal.
Flush mount turntable	Sunol	FM2022	FA002550	_	NCR
Controller	Sunol	SC104V	FA002551	_	NCR
Antenna mast	Sunol	TLT2	FA002552	—	NCR
Spectrum analyzer	Rohde & Schwarz	ESW44	101605	1 year	Feb.14/18
50 Ω coax cable	C.C.A.	None	FA002603	_	VOU
50 Ω coax cable	C.C.A.	None	FA002605	_	VOU
50 Ω coax cable	C.C.A.	None	FA002607	—	VOU
Bilog antenna (20–2000 MHz)	Sunol	JB1	FA002517	1 year	Oct. 5/17
Horn antenna (1–18 GHz)	EMCO	3115	FA001452	1 year	Oct. 26/17
Horn antenna (18–40 GHz)	EMCO	3116	FA002487	2 year	Aug. 16/17
Pre-amplifier (0.5–18 GHz)	COM-POWER	PAM-118A	FA002561	1 year	May 8/18
Pre-amplifier (18–40 GHz)	COM-POWER	PAM-840	FA002508	1 year	May 8/18
2400-2483 MHz Notch Filter	Microwave Circuits	N0324413	FA002693	_	VOU
50 Ω coax cable	HUBER+SUHNER	SUCOFLEX 100	FA002564	_	VOU
Power source	California Instruments	5001ix	FA001770	1 year	Feb 1/18
Receiver/spectrum analyzer	Rohde & Schwarz	ESU 40	FA002071	1 year	May 3/18

Note: NCR - no calibration required, VOU - verify on use

Section 8. Testing data

8.1 FCC 15.247(a)(1) and RSS-247 5.1(1) Frequency Hopping Systems requirements

8.1.1 Definitions and limits

FCC:

- (1) Frequency hopping systems shall have hopping channel carrier frequencies separated by a minimum of 25 kHz or the 20 dB bandwidth of the hopping channel, whichever is greater. The system shall hop to channel frequencies that are selected at the system hopping rate from a pseudo randomly ordered list of hopping frequencies. Each frequency must be used equally on the average by each transmitter. The system receivers shall have input bandwidths that match the hopping channel bandwidths of their corresponding transmitters and shall shift frequencies in synchronization with the transmitted signals.
- (i) For frequency hopping systems operating in the 902–928 MHz band: if the 20 dB bandwidth of the hopping channel is less than 250 kHz, the system shall use at least 50 hopping frequencies and the average time of occupancy on any frequency shall not be greater than 0.4 seconds within a 20 second period; if the 20 dB bandwidth of the hopping channel is 250 kHz or greater, the system shall use at least 25 hopping frequencies and the average time of occupancy on any frequency shall not be greater than 0.4 seconds within a 10 second period. The maximum allowed 20 dB bandwidth of the hopping channel is 500 kHz.

IC:

- a) The bandwidth of a frequency hopping channel is the -20 dB emission bandwidth, measured with the hopping stopped. The system's radio frequency (RF) bandwidth is equal to the channel bandwidth multiplied by the number of channels in the hopset. The hopset shall be such that the near-term distribution of frequencies appears random, with sequential hops randomly distributed in both direction and magnitude of change in the hopset, whereas the long-term distribution appears evenly distributed.
- b) FHSs shall have hopping channel carrier frequencies separated by a minimum of 25 kHz or the -20 dB bandwidth of the hopping channel, whichever is greater. The system receivers shall have input bandwidths that match the hopping channel bandwidths of their corresponding transmitters and shall shift frequencies in synchronization with the transmitted signals.
- c) For FHSs in the band 902–928 MHz: if the 20 dB bandwidth of the hopping channel is less than 250 kHz, the system shall use at least 50 hopping channels and the average time of occupancy on any channel shall not be greater than 0.4 seconds within a 20-second period. If the 20 dB bandwidth of the hopping channel is 250 kHz or greater, the system shall use at least 25 hopping channels and the average time of occupancy on any channel shall not be greater than 0.4 seconds within a 10-second period. The maximum 20 dB bandwidth of the hopping channel shall be 500 kHz.

8.1.2 Test summary

Test date	June 13, 2017	Temperature	23 °C
Test engineer	Yong	Air pressure	1005 mbar
Verdict	Pass	Relative humidity	33 %

8.1.3 Observations, settings and special notes

Spectrum analyzer settings for carrier frequency separation:

Resolution bandwidth	3 kHz
Video bandwidth	≥RBW
Frequency span	wide enough to capture the peaks of two adjacent channels
Detector mode	Peak
Trace mode	Max Hold

Spectrum analyser settings for number of hopping frequencies:

Resolution bandwidth	3 kHz
Video bandwidth	≥ RBW
Frequency span	the frequency band of operation
Detector mode	Peak
Trace mode	Max Hold

Spectrum analyser settings for time of occupancy (dwell time):

Resolution bandwidth	≤ channel spacing
Video bandwidth	≥ RBW
Frequency span	Zero span
Detector mode	Peak
Trace mode	Max Hold

Spectrum analyser settings for 20 dB bandwidth:

Resolution bandwidth	1% to 5 % of the 20 dB bandwidth
Video bandwidth	≥ RBW
Frequency span	approximately 2 to 3 times the 20 dB bandwidth, centered on a hopping channel
Detector mode	Peak
Trace mode	Max Hold

8.1.4 Test data

Frequency, MHz	20 dB bandwidth, kHz Limit, kHz		Margin, k	Hz
903	30.77 500 46		469.23	
906	30.87	500	469.13	
	Table 8.1-2: Carrier freque	ncy separation results		
Carrier frequency separation, kHz	Minimum lir	nit, kHz	Margin, kHz	
22.65	30.87			
39.65	30.87 Table 8.1-3 : Number of hop _l		8.78	
39.65 Number of hopping frequencies		ping frequencies results	8.78 Margin	
	Table 8.1-3: Number of hop	ping frequencies results		
Number of hopping frequencies	Table 8.1-3: Number of hop	ping frequencies results limit	Margin	
Number of hopping frequencies	Table 8.1-3: Number of hop Minimum 50	ping frequencies results limit	Margin	Margin, 1

8.1.4 Test data, continued

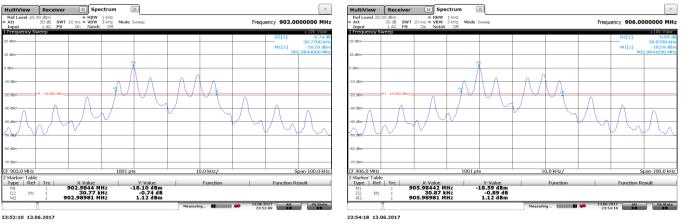
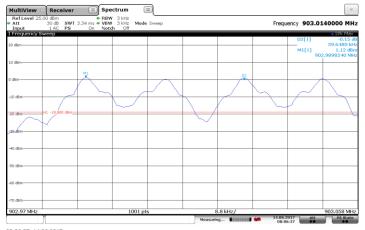
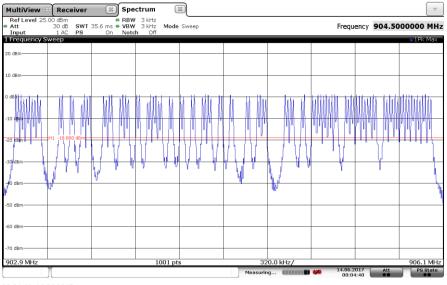



Figure 8.1-1: 20 dB bandwidth on low channel

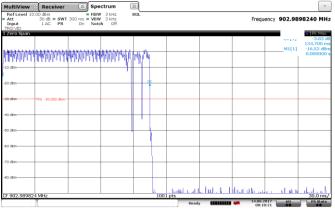
Figure 8.1-2: 20 dB bandwidth on hi channel



00:06:37 14.06.2017

Figure 8.1-3: Carrier frequency separation

8.1.5 Test data



00:04:41 14.06.2017

Figure 8.1-4: Number of hopping channels, 50 channels

Figure 8.1-5: Number of using of the channel within 20 seconds. 1 time.

00:18:21 14.06.2017

Figure 8.1-6: Dwell time, 135 ms

8.2 FCC 15.247(b) and RSS-247 5.4 (1) Transmitter output power and e.i.r.p. requirements

8.2.1 Definitions and limits

FCC:

(b) The maximum peak conducted output power of the intentional radiator shall not exceed the following:

- (2) For frequency hopping systems operating in the 902–928 MHz band: 1 watt (30 dBm) for systems employing at least 50 hopping channels; and, 0.25 watts (24 dBm) for systems employing less than 50 hopping channels, but at least 25 hopping channels, as permitted under paragraph (a)(1)(i) of this section.
- (4) The conducted output power limit specified in paragraph (b) of this section is based on the use of antennas with directional gains that do not exceed 6 dBi. Except as shown in paragraph (c) of this section, if transmitting antennas of directional gain greater than 6 dBi are used, the conducted output power from the intentional radiator shall be reduced below the stated values in paragraphs (b)(1), (b)(2), and (b)(3) of this section, as appropriate, by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

IC:

For FHSs operating in the band 902–928 MHz, the maximum peak conducted output power shall not exceed 1.0 W (30 dBm), and the e.i.r.p. shall not exceed 4 W (36 dBm) if the hopset uses 50 or more hopping channels; the maximum peak conducted output power shall not exceed 0.25 W (24 dBm) and the e.i.r.p. shall not exceed 1 W (30 dBm) if the hopset uses less than 50 hopping channels.

8.2.2 Test summary

Test date	June 13, 2017	Temperature	23 °C
Test engineer	Yong	Air pressure	1005 mbar
Verdict	Pass	Relative humidity	36 %

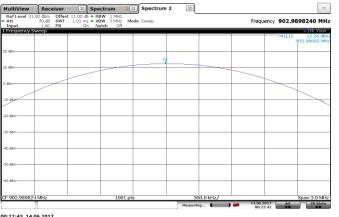
8.2.3 Observations, settings and special notes

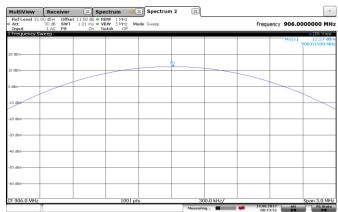
Spectrum analyser settings for output power:

Resolution bandwidth	> the 20 dB bandwidth of the emission being measured
Video bandwidth	≥RBW
Frequency span	approximately 5 times the 20 dB bandwidth, centered on a hopping channel
Detector mode	Peak
Trace mode	Max Hold

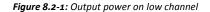
8.2.4 Test data

Table 8.2-1: Output power and EIRP results


Frequency, MHz	Output power, dBm	Output power limit, dBm	Margin, dB	Antenna gain, dBi	EIRP, dBm	EIRP limit, dBm	EIRP margin, dB
903	12.26	30	17.74	-3	9.26	36	26.74
906	12.27	30	17.73	-3	9.27	36	26.73


Note: ¹ As provided by customer, test were performed with fully charged battery

EIRP = Output power + Antenna gain



8.2.4 Test data, continued

00:22:43 14.06.2017

00:23:52 14.06.2017

Figure 8.2-2: Output power on high channel

8.3 FCC 15.247(d) and RSS-247 Section 5.5 Spurious (out-of-band) emissions

8.3.1 Definitions and limits

FCC:

In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits. Attenuation below the general limits specified in §15.209(a) is not required. In addition, radiated emissions which fall in the restricted bands, as defined in §15.205(a), must also comply with the radiated emission limits specified in §15.209(a) (see §15.205(c)).

IC:

In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated device is operating, the RF power that is produced shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided that the transmitter demonstrates compliance with the peak conducted power limits. Attenuation below the general field strength limits specified in RSS-Gen is not required.

Table 8.3-1: FCC §15.209 and RSS-Gen – Radiated emission limits

Frequency,	Field stren	gth of emissions	Measurement distance, m
MHz	μV/m	dBµV/m	
0.009-0.490	2400/F	67.6 – 20 × log ₁₀ (F)	300
0.490-1.705	24000/F	87.6 – 20 × log ₁₀ (F)	30
1.705-30.0	30	29.5	30
30–88	100	40.0	3
88–216	150	43.5	3
216-960	200	46.0	3
above 960	500	54.0	3

Notes: In the emission table above, the tighter limit applies at the band edges.

For frequencies above 1 GHz the limit on peak RF emissions is 20 dB above the maximum permitted average emission limit applicable to the equipment under test

Table 8.3-2: IC restricted frequency bands

MHz	MHz	MHz	GHz
0.090-0.110	12.51975-12.52025	399.9–410	5.35-5.46
2.1735-2.1905	12.57675-12.57725	608–614	7.25–7.75
3.020-3.026	13.36–13.41	960–1427	8.025-8.5
4.125-4.128	16.42-16.423	1435-1626.5	9.0-9.2
4.17725-4.17775	16.69475-16.69525	1645.5-1646.5	9.3–9.5
4.20725-4.20775	16.80425-16.80475	1660–1710	10.6–12.7
5.677-5.683	25.5-25.67	1718.8–1722.2	13.25-13.4
6.215-6.218	37.5-38.25	2200–2300	14.47-14.5
6.26775-6.26825	73–74.6	2310–2390	15.35-16.2
6.31175-6.31225	74.8–75.2	2655-2900	17.7–21.4
8.291-8.294	108–138	3260-3267	22.01-23.12
8.362-8.366	156.52475-156.52525	3332–3339	23.6-24.0
8.37625-8.38675	156.7-156.9	3345.8-3358	31.2–31.8
8.41425-8.41475	240–285	3500-4400	36.43-36.5
12.29–12.293	322–335.4	4500–5150	Above 38.6

Note: Certain frequency bands listed in Table 8.3-2 and above 38.6 GHz are designated for low-power licence-exempt applications. These frequency bands and the requirements that apply to the devices are set out in this Standard

Table 8.3-3: FCC restricted frequency bands

MHz	MHz	MHz	GHz
0.090-0.110	16.42–16.423	399.9–410	4.5-5.15
0.495-0.505	16.69475-16.69525	608–614	5.35-5.46
2.1735-2.1905	16.80425-16.80475	960–1240	7.25–7.75
4.125-4.128	25.5-25.67	1300–1427	8.025-8.5
4.17725-4.17775	37.5–38.25	1435–1626.5	9.0–9.2
4.20725-4.20775	73–74.6	1645.5-1646.5	9.3–9.5
6.215-6.218	74.8–75.2	1660–1710	10.6–12.7
6.26775-6.26825	108-121.94	1718.8-1722.2	13.25-13.4
6.31175-6.31225	123–138	2200–2300	14.47–14.5
8.291-8.294	149.9–150.05	2310-2390	15.35-16.2
8.362-8.366	156.52475-156.52525	2483.5-2500	17.7–21.4
8.37625-8.38675	156.7-156.9	2690-2900	22.01-23.12
8.41425-8.41475	162.0125-167.17	3260–3267	23.6-24.0
12.29-12.293	167.72–173.2	3332–3339	31.2-31.8
12.51975-12.52025	240–285	3345.8–3358	36.43-36.5
12.57675-12.57725	322-335.4	3600-4400	Above 38.6
13.36-13.41			

8.3.2 Test summary

Test date	June 13, 2017 to June 16, 2017	Temperature	23 °C
Test engineer	Yong	Air pressure	1005 mbar
Verdict	Pass	Relative humidity	49 %

8.3.3 Observations, settings and special notes

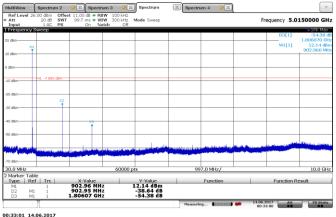
The spectrum was searched from 30 MHz to the 10th harmonic. EUT was set to transmit continuously.

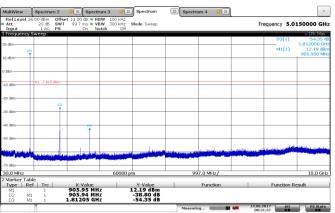
Spectrum analyser settings for radiated measurements within restricted bands below 1 GHz:

Resolution bandwidth:	100 kHz
Video bandwidth:	300 kHz
Detector mode:	Peak
Trace mode:	Max Hold

Spectrum analyser settings for peak radiated measurements within restricted bands above 1 GHz:

Resolution bandwidth:	1 MHz
Video bandwidth:	3 MHz
Detector mode:	Peak
Trace mode:	Max Hold

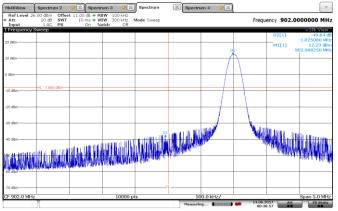

Average radiated measurements within restricted bands above 1 GHz were calculated with duty cycle correction factors.


Spectrum analyser settings for conducted spurious emissions measurements:

Resolution bandwidth:	100 kHz
Video bandwidth:	300 kHz
Detector mode:	Peak
Trace mode:	Max Hold

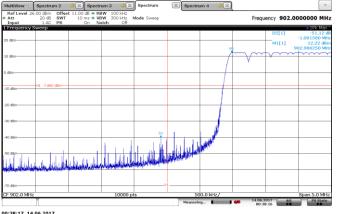
8.3.4 Test data

00:33:01 14.06.2017


Figure 8.3-1: Conducted spurious emissions for low channel

00:31:58 14.06.2017

Figure 8.3-2: Conducted spurious emissions for high channel



8.3.4 Test data, continued

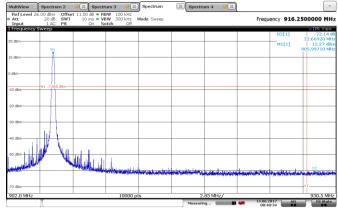

00:36:57 14.06.2017

Figure 8.3-3: Lower band edge emission, tx on low channel

00:38:17 14.06.2017

Figure 8.3-5: Lower band edge emission, tx hopping on

00:40:34 14.06.2017

Figure 8.3-4: Upper band edge emission, tx on high channel

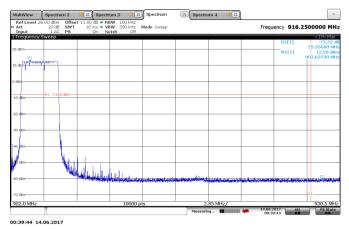


Figure 8.3-6: Upper band edge emission, tx hopping on

8.3.4 Test data, continued

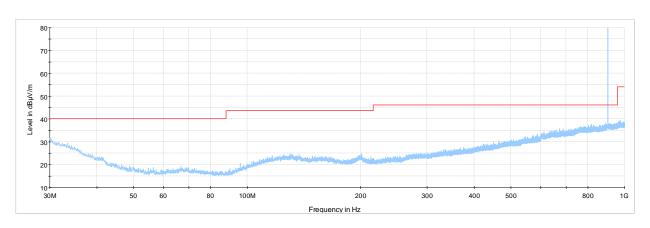


Figure 8.3-7: Radiated spurious emissions for low channel below 1 GHz for restricted band emissions

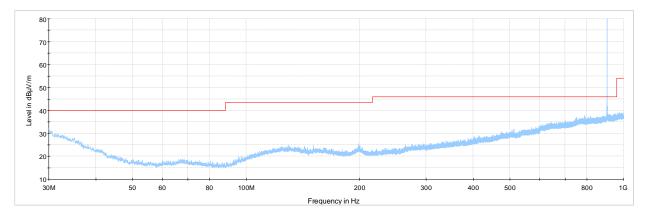


Figure 8.3-8: Radiated spurious emissions for high channel below 1 GHz for restricted band emissions

Note: Emission at band 902 MHz to 928 MHz were from intentional transmission.

8.3.5 Test data, continued

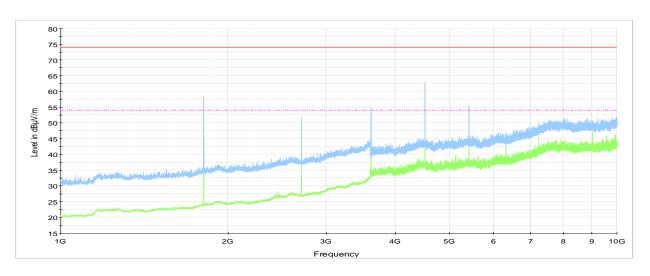


Figure 8.3-9: Radiated spurious emissions for low channel above 1 GHz for restricted band emissions

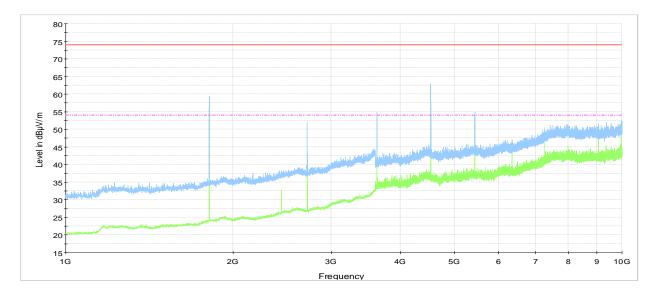
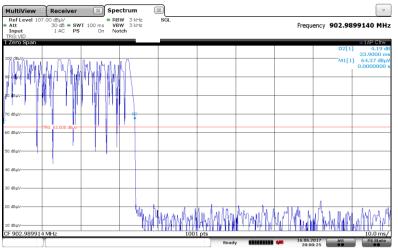


Figure 8.3-10: Radiated spurious emissions for high channel above 1 GHz for restricted band emissions

Note: 1.8 GHz emission is a second harmonic that falls outside restricted bands.

8.3.6 Test data, continued

Table 8.3-4: Radiated field strength measurement results


Channel	Frequency,	Peak Field strength, dBµV/m		Margin,	Average Field strength, dBµV/m		Margin,
	MHz	Measured	Limit	dB	Calculated	Limit	dB
Low	1806	58.1	74	15.9	48.7	54	5.3
Low	2709	51.8	74	22.2	42.4	54	11.6
Low	3612	55.0	74	19.0	45.6	54	8.4
Low	4516	63.0	74	11.0	53.6	54	0.4
Low	5418	55.7	74	18.3	46.3	54	7.7
high	1812	59.4	74	14.6	50.0	54	4.0
high	2718	52.0	74	22.0	42.6	54	11.4
high	3624	54.9	74	19.1	45.5	54	8.5
high	4531	62.9	74	11.1	53.5	54	0.5
high	5437	54.8	74	19.2	45.4	54	8.6

Notes: Field strength includes correction factor of antenna, cable loss, amplifier, and attenuators where applicable.

Average radiated measurements within restricted bands above 1 GHz were calculated with duty cycle correction factors (DCCF) as below:

Average Field strength = Peak Field strength + DCCF

DCCF = 20*log(33.90 ms / 100 ms)=-9.39 dB

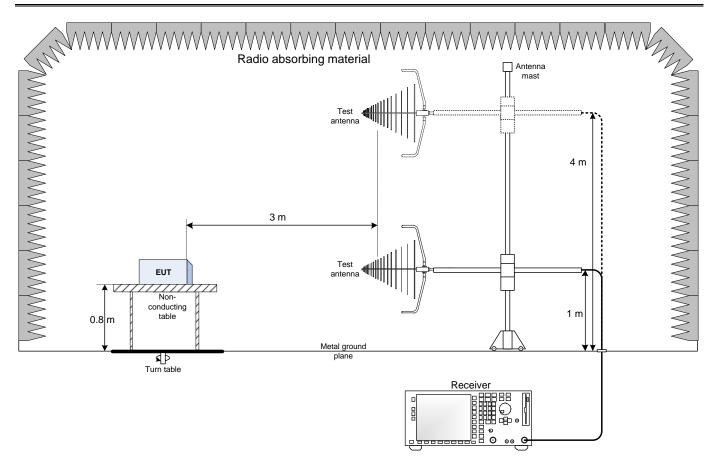
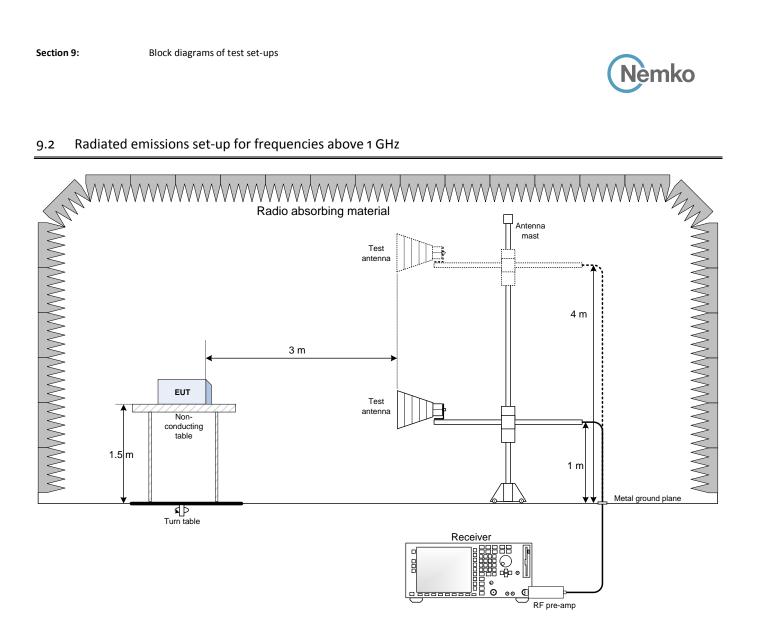
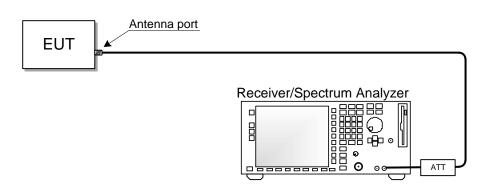

20:00:26 16.06.2017

Figure 8.3-11: Duty cycle in 100ms


Section 9. Block diagrams of test set-ups

9.1 Radiated emissions set-up for frequencies below 1 GHz



Radiated emissions set-up for frequencies above 1 GHz 9.2

9.3 Conducted antenna port set-up

