

FCC Co-Location Test Report

FCC ID	:	2ACKD-WIM1200-20
Equipment	:	Wireless access point module
Model No.	:	WIM1200-20
Brand Name	:	SKSPRUCE
Applicant	:	SKSpruce Technologies Inc.
Address	:	1885 Lundy Ave. Suite 270, San Jose, CA, United States, 95131
Standard	:	47 CFR FCC Part 15.247 47 CFR FCC Part 15.407
Received Date	:	Nov. 07, 2016
Tested Date	:	Nov. 23 ~ Nov. 24, 2016

We, International Certification Corp., would like to declare that the tested sample has been evaluated and in compliance with the requirement of the above standards. The test results contained in this report refer exclusively to the product. It may be duplicated completely for legal use with the approval of the applicant. It shall not be reproduced except in full without the written approval of our laboratory.

Reviewed by:

long Chen

Along Cherly/ Assistant Manager Gary Chang / Manager

Approved by:

Table of Contents

1	GENERAL DESCRIPTION	5
1.1	Information	
1.2	The Equipment List	7
1.3	Test Standards	8
1.4	Measurement Uncertainty	8
2	TEST CONFIGURATION	9
2.1	Testing Condition	9
2.2	The Worst Test Modes and Channel Details	9
3	TRANSMITTER TEST RESULTS1	0
3.1	Unwanted Emissions into Restricted Frequency Bands1	0
4	TEST LABORATORY INFORMATION	1

Release Record

Report No.	Version	Description	Issued Date
FR6N2101CO	Rev. 01	Initial issue	Dec. 13, 2016

Summary of Test Results

FCC Rules	Test Items	Measured	Result
15.247(d)			
15.407(b)	Radiated Emissions	[dBuV/m at 3m]: 71.67MHz 38.99 (Margin -1.01dB) – QP	Pass
15.209			

1 General Description

1.1 Information

5GHz Power amplifier component has 2 sources as below

Component	Brand	Model
5GHz Power amplifier	SKYWORKS	SK85726-11
5GHz Power amplifier	SKYWORKS	SK85712-11

1.1.1 Specification of the Equipment under Test (EUT)

RF General Information							
Frequency Range (MHz)	IEEE Std. 802.11	Ch. Freq. (MHz)	Channel Number	Transmit Chains (N _{TX})	Data Rate / MCS		
2400-2483.5	b	2412-2462	1-11 [11]	2	1-11 Mbps		
2400-2483.5	g	2412-2462	1-11 [11]	2	6-54 Mbps		
2400-2483.5	n (HT20)	2412-2462	1-11 [11]	2	MCS 0-15		
2400-2483.5	n (HT40)	2422-2452	3-9 [7]	2	MCS 0-15		

Note 1: RF output power specifies that Maximum Peak Conducted Output Power.

Note 2: 802.11b uses a combination of DSSS-DBPSK, DQPSK, CCK modulation.

Note 3: 802.11g/n uses a combination of OFDM-BPSK, QPSK, 16QAM, 64QAM modulation.

RF General Information						
Frequency Range (MHz)	IEEE Std. 802.11	Ch. Freq. (MHz)	Channel Number	Transmit Chains (N _{TX})	Data Rate / MCS	
5150-5250	а	5180-5240	36-48 [4]	1	6-54 Mbps	
5150-5250	n (HT20)	5180-5240	36-48 [4]	1	MCS 0-23	
5150-5250	n (HT40)	5190-5230	38-46 [2]	1	MCS 0-23	
5150-5250	ac (VHT20)	5180-5240	36-48 [4]	1	MCS 0-9	
5150-5250	ac (VHT40)	5190-5230	38-46 [2]	1	MCS 0-9	
5150-5250	ac (VHT80)	5210	42 [1]	1	MCS 0-9	

Note 1: RF output power specifies that Maximum Conducted Output Power. Note 2: 802.11a/n/ac uses a combination of OFDM-BPSK, QPSK, 16QAM, 64QAM, 256QAM modulation.

RF General Information							
Frequency Range (MHz)	IEEE Std. 802.11	Ch. Freq. (MHz)	Channel Number	Transmit Chains (N _{TX})	Data Rate / MCS		
5725-5850	а	5745-5825	149-165 [5]	1	6-54 Mbps		
5725-5850	n (HT20)	5745-5825	149-165 [5]	1	MCS 0-23		
5725-5850	n (HT40)	5755-5795	151-159 [2]	1	MCS 0-23		
5725-5850 ac (VHT20) 5745-5825 149-165 [5] 1 MCS 0-9							
5725-5850	ac (VHT40)	5755-5795	151-159 [2]	1	MCS 0-9		
5725-5850	ac (VHT80)	5775	155 [1]	1	MCS 0-9		
Note 1: RF output	t power specifies t	hat Maximum Con	ducted Output Po	wer.	•		

Note 2: 802.11a/n/ac uses a combination of OFDM-BPSK, QPSK, 16QAM, 64QAM, 256QAM modulation.

1.1.2 Antenna Details of Specific platform

Ant. No.	Brand	Model	Туро	Gain (dBi)		Connector	Remark
Ant. NO.	Dialiu	WOUEI	Type	Type 2.4GHz 5GHz	5GHz	Connector	nendik
1	ALPHA	AW3509-11	Dipole	2	2	UFL	

1.1.3 Accessories of Specific platform

N/A

1.2 The Equipment List

66 chamber1 / (03C Manufacturer R&S R&S SCHWARZBECK SCHWARZBECK	Model No. FSV40 ESR3 VULB9168 BBHA 9120 D	Serial No. 101498 101657 VULB9168-522 BBHA 9120 D 1096	Calibration Date Dec. 13, 2015 Jan. 12, 2016 Aug. 04, 2016	Calibration Until Dec. 12, 2016 Jan. 11, 2017 Aug. 03, 2017
R&S R&S SCHWARZBECK SCHWARZBECK	FSV40 ESR3 VULB9168	101498 101657 VULB9168-522	Dec. 13, 2015 Jan. 12, 2016	Dec. 12, 2016 Jan. 11, 2017
R&S SCHWARZBECK SCHWARZBECK	ESR3 VULB9168	101657 VULB9168-522	Jan. 12, 2016	Jan. 11, 2017
SCHWARZBECK SCHWARZBECK	VULB9168	VULB9168-522	,	
SCHWARZBECK			Aug. 04, 2016	Aug. 03, 2017
	BBHA 9120 D			
		DDI IA 9120 D 1090	Dec. 16, 2015	Dec. 15, 2016
SCHWARZBECK	BBHA 9170	BBHA 9170517	Oct. 25, 2016	Oct. 24, 2017
EMC	EMC02325	980225	Aug. 05, 2016	Aug. 04, 2017
Agilent	83017A	MY39501308	Oct. 06, 2016	Oct. 05, 2017
EMC	EMC184045B	980192	Aug. 24, 2016	Aug. 23, 2017
R&S	HFH2-Z2	100330	Nov. 10, 2016	Nov. 09, 2017
KOAX KABEL	101354-BW	101354-BW	Dec. 10, 2015	Dec. 09, 2016
UBER+SUHNER	SUCOFLEX104	MY16014/4	Dec. 10, 2015	Dec. 09, 2016
HUBER+SUHNER	SUCOFLEX104	MY16019/4	Dec. 10, 2015	Dec. 09, 2016
HUBER+SUHNER	SUCOFLEX104	MY16139/4	Dec. 10, 2015	Dec. 09, 2016
EMC	EMCCFD400-NM-NM-1000	16052	Dec. 10, 2015	Dec. 09, 2016
Woken	CFD400NL-LW	CFD400NL-001	Dec. 10, 2015	Dec. 09, 2016
Woken	CFD400NL-LW	CFD400NL-002	Dec. 10, 2015	Dec. 09, 2016
AUDIX	e3	6.120210g	NA	NA
	EMC Agilent EMC R&S KOAX KABEL UBER+SUHNER UBER+SUHNER UBER+SUHNER EMC Woken Woken AUDIX	EMCEMC02325Agilent83017AEMCEMC184045BR&SHFH2-Z2KOAX KABEL101354-BWUBER+SUHNERSUCOFLEX104UBER+SUHNERSUCOFLEX104UBER+SUHNERSUCOFLEX104UBER+SUHNERSUCOFLEX104UBER+SUHNERSUCOFLEX104UBER+SUHNERSUCOFLEX104UBER+SUHNERSUCOFLEX104UBER+SUHNERSUCOFLEX104UBER+SUHNERSUCOFLEX104UBER+SUHNERSUCOFLEX104UBER+SUHNERSUCOFLEX104UBER+SUHNERSUCOFLEX104UBER+SUHNERSUCOFLEX104	EMCEMC02325980225Agilent83017AMY39501308EMCEMC184045B980192R&SHFH2-Z2100330KOAX KABEL101354-BW101354-BWUBER+SUHNERSUCOFLEX104MY16014/4UBER+SUHNERSUCOFLEX104MY16019/4UBER+SUHNERSUCOFLEX104MY16139/4EMCEMCCFD400-NM-NM-100016052WokenCFD400NL-LWCFD400NL-001WokenCFD400NL-LWCFD400NL-002AUDIXe36.120210g	EMC EMC02325 980225 Aug. 05, 2016 Agilent 83017A MY39501308 Oct. 06, 2016 EMC EMC184045B 980192 Aug. 24, 2016 R&S HFH2-Z2 100330 Nov. 10, 2016 KOAX KABEL 101354-BW 101354-BW Dec. 10, 2015 UBER+SUHNER SUCOFLEX104 MY16014/4 Dec. 10, 2015 UBER+SUHNER SUCOFLEX104 MY16019/4 Dec. 10, 2015 UBER+SUHNER SUCOFLEX104 MY16139/4 Dec. 10, 2015 UBER+SUHNER SUCOFLEX104 MY16139/4 Dec. 10, 2015 UBER+SUHNER SUCOFLEX104 MY16139/4 Dec. 10, 2015 Woken CFD400NL-LW CFD400NL-001 Dec. 10, 2015 Woken CFD400NL-LW CFD400NL-002 Dec. 10, 2015 AUDIX e3 6.120210g NA

1.3 Test Standards

According to the specification of EUT, the EUT must comply with following standards and KDB documents.

47 CFR FCC Part 15.247 47 CFR FCC Part 15.407 ANSI C63.10-2013 FCC KDB 558074 D01 DTS Meas Guidance v03r05 FCC KDB 662911 D01 Multiple Transmitter Output v02r01 FCC KDB 789033 D02 General UNII Test Procedures New Rules v01r03 FCC KDB 644545 D03 Guidance for IEEE 802 11ac New Rules v01 FCC KDB 412172 D01 Determining ERP and EIRP v01r01

1.4 Measurement Uncertainty

ISO/IEC 17025 requires that an estimate of the measurement uncertainties associated with the emissions test results be included in the report. The measurement uncertainties given below are based on a 95% confidence level (based on a coverage factor (k=2)

Measurement Uncertainty					
Parameters	Uncertainty				
Radiated emission \leq 1GHz	±3.66 dB				
Radiated emission > 1GHz	±5.63 dB				

2 Test Configuration

2.1 Testing Condition

Test Item	Test Site	Ambient Condition	Tested By
Radiated Emissions	03CH01-WS	22-23°C / 62-63%	Vincent Yeh Kevin Lee

➢ FCC site registration No.: 181692

► IC site registration No.: 10807A-1

2.2 The Worst Test Modes and Channel Details

	Test item	Modulation Mode	Test Channel	Data Rate	Test Configuration
Rad	diated Emissions	2.4GHz 11n HT40 + 5GHz 11ac VHT20 2.4GHz 11n HT40 + 5GHz 11a		MCS 0 + MCS 0 MCS 0 + 6Mbps	1 2
NO 1.	The EUT was pr	etested with 3 orientations placed on the table plane results were found as the worst case an			nent – X, Y, and
2.		rations are listed as follows:			
		Power amplifier / SK85726-11 Power amplifier / SK85712-11			

3 Transmitter Test Results

3.1 Unwanted Emissions into Restricted Frequency Bands

3.1.1 Limit of Unwanted Emissions into Restricted Frequency Bands

Restricted Band Emissions Limit										
Frequency Range (MHz)	Field Strength (uV/m)	Field Strength (dBuV/m)	Measure Distance (m)							
0.009~0.490	2400/F(kHz)	48.5 - 13.8	300							
0.490~1.705	24000/F(kHz)	33.8 - 23	30							
1.705~30.0	30	29	30							
30~88	100	40	3							
88~216	150	43.5	3							
216~960	200	46	3							
Above 960	500	54	3							

Note 1:

Qusai-Peak value is measured for frequency below 1GHz except for 9–90 kHz, 110–490 kHz frequency band. Peak and average value are measured for frequency above 1GHz. The limit on average radio frequency emission is as above table. The limit on peak radio frequency emissions is 20 dB above the maximum permitted average emission limit **Note 2:**

Measurements may be performed at a distance other than what is specified provided. When performing measurements at a distance other than that specified, the results shall be extrapolated to the specified distance using an extrapolation factor as below, Frequency at or above 30 MHz: 20 dB/decade Frequency below 30 MHz: 40 dB/decade.

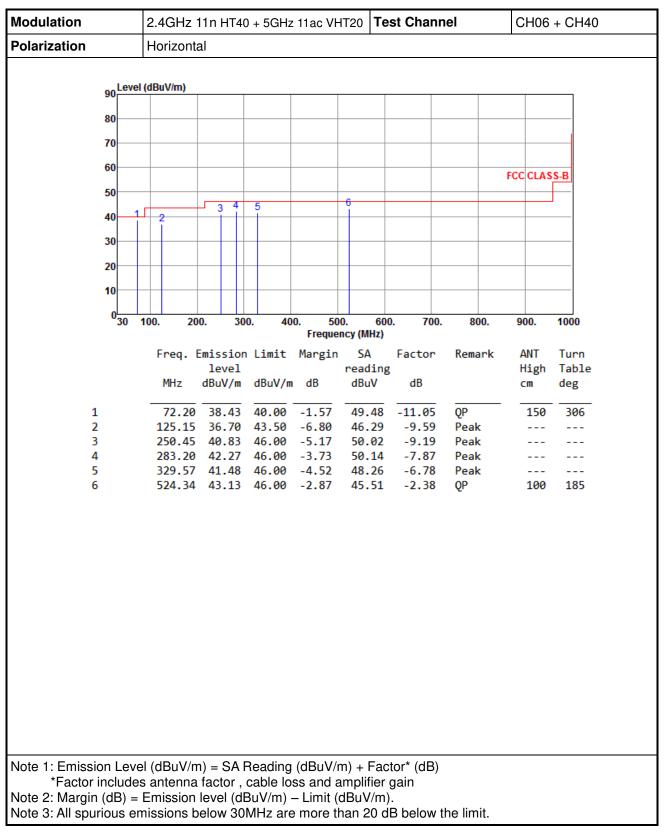
3.1.2 Test Procedures


- 1. Measurement is made at a semi-anechoic chamber that incorporates a turntable allowing a EUT rotation of 360°. A continuously-rotating, remotely-controlled turntable is installed at the test site to support the EUT and facilitate determination of the direction of maximum radiation for each EUT emission frequency. The EUT is placed at test table. For emissions testing at or below 1 GHz, the table height is 80 cm above the reference ground plane. For emission measurements above 1 GHz, the table height is 1.5 m.
- Measurement is made with the antenna positioned in both the horizontal and vertical planes of polarization. The measurement antenna is varied in height (1m ~ 4m) above the reference ground plane to obtain the maximum signal strength. Distance between EUT and antenna is 3 m.
- 3. This investigation is performed with the EUT rotated 360°, the antenna height scanned between 1 m and 4 m, and the antenna rotated to repeat the measurements for both the horizontal and vertical antenna polarizations.

Note:

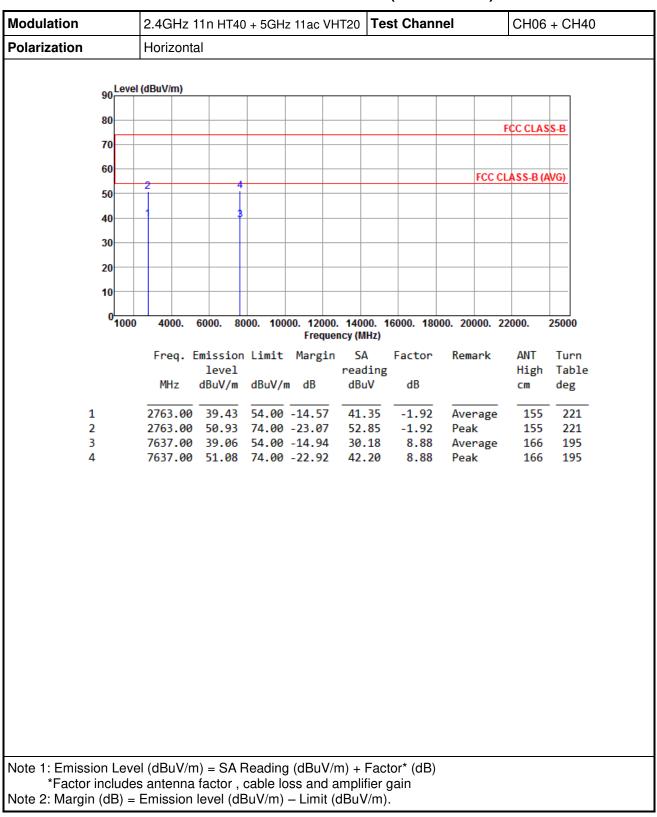
- 1. 120kHz measurement bandwidth of test receiver and Quasi-peak detector is for radiated emission below 1GHz.
- 2. RBW=1MHz, VBW=3MHz and Peak detector is for peak measured value of radiated emission above 1GHz.
- 3. RBW=1MHz, VBW=1/T and Peak detector is for average measured value of radiated emission above 1GHz.

3.1.3 Test Setup



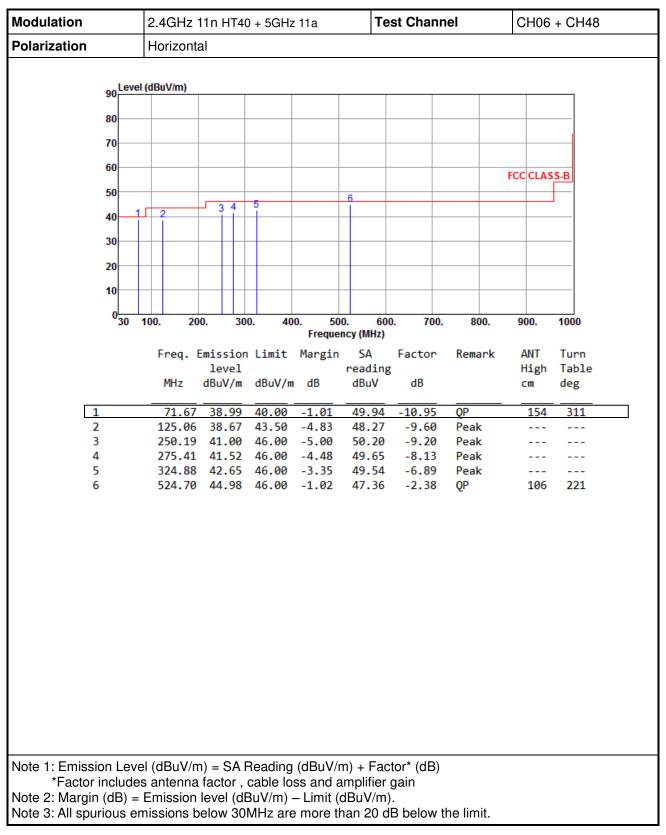
Report No.: FR6N2101CO Report Version: Rev. 01

Configuration 1: Power amplifier / SK85726-11


3.1.4 Transmitter Radiated Unwanted Emissions (Below 1GHz)

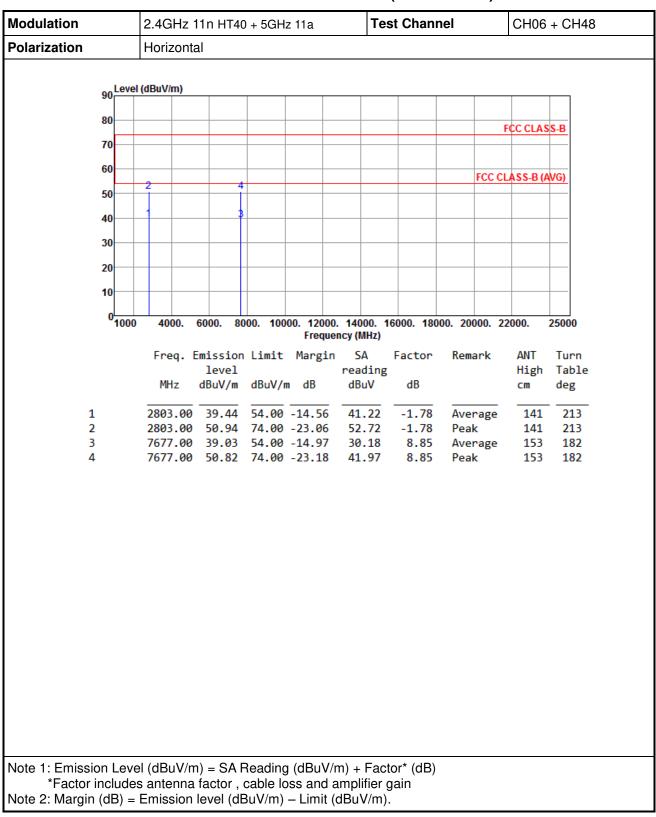
Modulation	2.4GHz	11n HT40	+ 5GH:	z 11ac VH	IT20 Te	st Chanr	nel	CH06	+ CH40
Polarization	Vertical								
90 <mark>Le</mark>	evel (dBuV/m)								
80									
70									
70									
60								FCC CLAS	S-B
50									
40	1	4		6					J
40	2	3	5	Ĭ					
30			Ť						
20									
10									
0 <mark></mark> 30	100. 20	0. 300). 4()0. 50		0. 700.	800.	900.	1000
					ncy (MHz)				
	Freq.	mission	Limit	Margin		Factor	Remark	ANT	Turn
	MHz	level dBuV/m	dBuV/r	n dB	reading dBuV	dB		High cm	Table deg
1		37.60				-11.05	Peak		
2	155.14 253.17	35.55 36.10			43.77 45.23	-8.22 -9.13	Peak Peak		
4		38.42			46.13		Peak		
5		30.12			36.85		Peak		
6	495.41	38.41	46.00	-7.59	41.35	-2.94	Peak		
Note 1: Emission Le									
*Factor inclue Note 2: Margin (dB)									
lote 3: All spurious					200 V/III)	•			

3.1.5 Transmitter Radiated Unwanted Emissions (Above 1GHz)



Modulation	2.4GHz 11n HT40 + 5GHz 11ac VHT20 Test Channel CH06 + CH40									
Polarization	Vertical									
ا مربوا	(dRu\//m)									
90	(dBuV/m)									
80								FCC CLAS	S-B	
70										
60								LASS-B (A		
50	2	4					FLUU	LA22-B (A		
40										
30										
20										
10										
0 <mark></mark>	4000.	6000. 80	00. 100	00. 12000	. 14000. 1	6000. 180	00. 20000. 2	2000.	25000	
				Freque	ncy (MHz)					
	Freq. I	Emission level	Limit	Margin	SA reading	Factor	Remark	ANT High	Turn Table	
	MHz	dBuV/m	dBuV/r	n dB	dBuV	dB		cm	deg	
1	2763.00	38.97	51 00	-15 03	40.89	-1.92	Average	166	172	
2	2763.00					-1.92	Peak	166		
3 4	7637.00 7637.00					8.88 8.88	Average Peak	129 129		
4	/03/.00	30.30	74.00	-23.42	41.70	0.00	FEGK	129	111	
		\ 			\ -	* ()=`				
Note 1: Emission Leve *Factor includes					n) + Fact	or* (dB)				

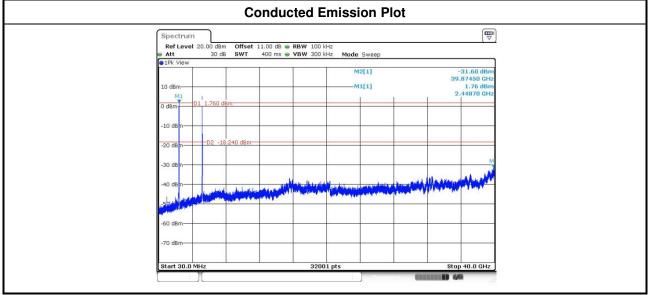
Configuration 2 : Power amplifier / SK85712-11


3.1.6 Transmitter Radiated Unwanted Emissions (Below 1GHz)

Modulation	2.4GHz	11n HT40	nel	CH06 + CH48					
Polarization	Vertical								
90	el (dBuV/m)								
80									
70									
70									
60								FCC CLAS	S-B
50									
40									
40	2	3 4	5		Î				
30									
20			_		_				
10									
10									
0 <mark>30</mark>	100. 20	0. 30	0. 40	0. 50		0. 700.	800.	900.	1000
	_				ncy (MHz)				-
	Freq.	mission level	n Limit	Margin	SA readin	Factor	Remark	ANT High	Turn Table
	MHz	dBuV/m	dBuV/r	n dB	dBuV	dВ		Cm	deg
1		36.40				-10.95	Peak		
2 3		30.81 32.48			40.41 41.68		Peak Peak		
4				-10.94			Peak		
5				-13.20					
6	524.70	36.44	46.00	-9.56	38.82	-2.38	Peak		
loto 1. Emission La			Dooding		\mathbf{n}	ator* (dD)			
Note 1: Emission Lev Factor includ*									
Note 2: Margin (dB)									
Note 3: All spurious e							la a 11		

3.1.7 Transmitter Radiated Unwanted Emissions (Above 1GHz)

Modulation	2.4GHz 11n Test Channel CH06 + CH									
Polarization	Vertical				·					
90	el (dBuV/m)									
80								FCC CLAS	S-B	
70										
60—							TCC CI	LASS-B (A		
50	2	4						LA33-D (A		
40										
30										
20										
10										
0 ^L 100	0 4000.	6000. 80	00. 100			6000. 180	00. 20000. 2	2000.	25000	
					ncy (MHz)				-	
	Freq. 1	level level	Limit	Margin	5A reading	Factor	Remark	ANT High	Turn Table	
	MHz	dBuV/m	dBuV/r	n dB	dBuV	dB		cm	deg	
1	2803.00	38.97	54.00	-15.03	40.75	-1.78	Average	147	189	
2	2803.00					-1.78	Peak	147		
3 4	7677.00 7677.00					8.85 8.85	Average Peak	126 126	83 83	
		1) – SA F	Reading	. (dBuV/)		or* (dD)				
Note 1: Emission Lev *Factor include Note 2: Margin (dB) =	es antenna	factor,	cable lo	oss and a	mplifier g	gain				



3.1.8 Conducted Emissions (30MHz~40GHz)

Configuration 1: Power amplifier / SK85726-11

Configuration 2: Power amplifier / SK85712-11

4 Test laboratory information

Established in 2012, ICC provides foremost EMC & RF Testing and advisory consultation services by our skilled engineers and technicians. Our services employ a wide variety of advanced edge test equipment and one of the widest certification extents in the business.

International Certification Corp (EMC and Wireless Communication Laboratory), it is our definitive objective is to institute long term, trust-based associations with our clients. The expectation we set up with our clients is based on outstanding service, practical expertise and devotion to a certified value structure. Our passion is to grant our clients with best EMC / RF services by oriented knowledgeable and accommodating staff.

Our Test sites are located at Linkou District and Kwei Shan District. Location map can be found on our website <u>http://www.icertifi.com.tw</u>.

Linkou

Tel: 886-2-2601-1640 No. 30-2, Ding Fwu Tsuen, Lin Kou District, New Taipei City, Taiwan, R.O.C.

Kwei Shan

Tel: 886-3-271-8666 No. 3-1, Lane 6, Wen San 3rd St., Kwei Shan District, Tao Yuan City 333, Taiwan, R.O.C.

Kwei Shan Site II Tel: 886-3-271-8640

No. 14-1, Lane 19, Wen San 3rd St., Kwei Shan District, Tao Yuan City 333, Taiwan, R.O.C..

If you have any suggestion, please feel free to contact us as below information

Tel: 886-3-271-8666 Fax: 886-3-318-0155 Email: ICC_Service@icertifi.com.tw

—END—