


CTC **advanced**
member of RWTÜV group

Bundesnetzagentur

BNetzA-CAB-02/21-102

Maximum Permissible Exposure (MPE) & Exposure evaluation

Report identification number: 1-6141/18-01-14 MPE (FCC_IC)

Certification numbers and labeling requirements	
FCC ID	2ACK7-SMBST4
IC number	12204A-SMBST4
HVIN (Hardware Version Identification Number)	SMBS-T4
PMN (Product Marketing Name)	Micro Access Station
FVIN (Firmware Version Identification Number)	-/-
HMN (Host Marketing Name)	-/-

This report is electronically signed and valid without handwriting signature. For verification of the electronic signatures, the public keys can be requested at the testing laboratory.

Document authorised:

Thomas Vogler
Lab Manager
Radio Communications & EMC

EUT technologies:

Technologies:	Max. power conducted:	Max. antenna gain:	Min. pathloss:
ISM 902 MHz	Declared 24 dBm	Measured : 2 dBi)*	-- (if applicable)

)* calculated max antenna-gain, see CTC advanced test report 1-6141/18-01-03 page 17.

Prediction of MPE limit at given distance - FCC

Equation from page 18 of OET Bulletin 65, Edition 97-01

$$S = PG / 4\pi R^2$$

where: S = Power density
 P = Power input to the antenna
 G = Antenna gain
 R = Distance to the center of radiation of the antenna
 PG = Output Power including antenna gain

The table below is excerpted from Table 1B of 47 CFR 1.1310 titled "Limits for Maximum Permissible Exposure (MPE), Limits for General Population/Uncontrolled Exposure"

Frequency Range (MHz)	Power Density (mW/cm ²)	Averaging Time (minutes)
300 - 1500	f/1500	30
1500 - 100000	1.0	30

where f = Frequency (MHz)

Prediction: worst case

Technologies:	ISM	
Frequency (MHz)	902	
PG	Declared max power (EIRP)	26 dBm
R	Distance	20 cm
S	MPE limit for uncontrolled exposure	0.60 mW/cm ²
	Calculated Power density:	0.0792 mW/cm ²
	Calculated percentage of limit:	13.18%

This prediction demonstrates the following:

The power density levels for FCC at a distance of 20 cm are below the maximum levels allowed by regulations.

Prediction of MPE limit at given distance - IC

RSS-102, Issue 5, 2.5.2

RF exposure evaluation is required if the separation distance between the user and/or bystander and the device's radiating element is greater than 20 cm, except when the device operates as follows:

- below 20 MHz and the source-based, time-averaged maximum e.i.r.p. of the device is equal to or less than 1 W (adjusted for tune-up tolerance);
- at or above 20 MHz and below 48 MHz and the source-based, time-averaged maximum e.i.r.p. of the device is equal to or less than $4.49/f^{0.5}$ W (adjusted for tune-up tolerance), where f is in MHz;
- at or above 48 MHz and below 300 MHz and the source-based, time-averaged maximum e.i.r.p. of the device is equal to or less than 0.6 W (adjusted for tune-up tolerance);
- at or above 300 MHz and below 6 GHz and the source-based, time-averaged maximum e.i.r.p. of the device is equal to or less than $1.31 \times 10^{-2} f^{0.6834}$ W (adjusted for tune-up tolerance), where f is in MHz;
- at or above 6 GHz and the source-based, time-averaged maximum e.i.r.p. of the device is equal to or less than 5 W (adjusted for tune-up tolerance).

Prediction: worst case

	0.3 - 6 GHz	
Technology	ISM	
Frequency	902 MHz	
P	Max power input to the antenna	24 dBm
R	Distance	20 cm
G	Antenna gain	2 dBi
	Exclusion Limit for EIRP:	1.37 W
	Maximum calculated EIRP:	398.1 mW
	Exhaustion of Limit:	29.05 %

Conclusion: RF exposure evaluation is not required.

For applications where minimum distance to radiating element is 20cm Annex C of RSS-102 should be filled out.