

RF Exposure

MPE Calculation

KDB 447498

Prediction of MPE limit at a given distance

Equation from IEEE C95.1

$$S = \frac{EIRP}{4\pi R^2} \text{ re - arranged } R = \sqrt{\frac{EIRP}{S 4\pi}}$$

where:

S = power density

R = distance to the centre of radiation of the antenna

EIRP = EUT Maximum power

Note:

The EIRP was calculated by addition of the maximum conducted carrier power plus the antenna gain.

OR

The following formula may be used to convert field strength (FS) in volts/metre to transmitter output power (TP) in watts:

$$TP = (FS \times D)^2 / (30 \times G)$$

where D is the distance in metres between the two antennas and G is the antenna numerical gain referenced to isotropic gain.

Result

Prediction Frequency (MHz)	Maximum Conducted Power (dBm)	Antenna Gain (dBi)	Maximum EIRP (mW)	Minimum Distance (cm)	Power density at distance (mW/cm ²)	Power density limit (S) (mW/cm ²)
902.2	29.68	5	2937.65	19.8	0.596293132	0.601466667
914.8	29.60	5	2884.03	19.4	0.609798638	0.609866667
927.7	29.64	5	2910.72	19.4	0.615441965	0.618466667