

A RADIO TEST REPORT

FOR

SIGFOX

ON

SBS T 902

DOCUMENT NO. TRA-020168-06-47-00-A

HULL

Unit E, South Orbital Trading Park, Hedon Road, Hull, HU9 1NJ, UK.
T +44 (0)1482 801801 **F** +44 (0)1482 801806 **E** test@tracglobal.com
www.tracglobal.com

TRaC Wireless Test Report : TRA-020168-06-47-00-A

Applicant : SigFox

Apparatus : SBS T 902

Specification(s) : CFR47 Part 15.247 & RSS-210 Annex 8

FCCID : 2ACK7SBST902

Certification Number : 12204A-SBST902

Purpose of Test : Class II Permissive Change

Authorised by :

: Radio Product Manager

Issue Date : 21st April 2015

Authorised Copy Number : *PDF*

Contents

Section 1: Introduction	4
1.1 General	4
1.2 Tests Requested By	5
1.3 Manufacturer	5
1.4 Apparatus Assessed	5
1.5 Test Result Summary	6
1.6 Notes Relating To The Assessment	7
1.7 Deviations from Test Standards	7
Section 2: Measurement Uncertainty	8
2.1 Measurement Uncertainty Values	8
Section 3: Modifications	10
3.1 Modifications Performed During Assessment	10
Section 4 General Test Procedures	11
4.1 Radiated Test Setup and Procedures	11
4.2 Antenna Port Conducted Emissions	12
Appendix A: Formal Emission Test Results	13
A1 Transmitter Peak Output Power	14
A2 Radiated Electric Field Emissions	15
A3 Antenna Gain	20
A4 Unintentional Radiated Electric Field Emissions	21
Appendix B: Supporting Graphical Data	23
Appendix C: Additional Test and Sample Details	31
Appendix D: Additional Information	37
Appendix E: Calculation of the duty cycle correction factor	38
Appendix F: Photographs and Figures	39

Section 1: Introduction

1.1 General

This report contains an assessment of an apparatus against Electromagnetic Compatibility Standards based upon tests carried out on samples submitted to the Laboratory.

Test performed by: TRaC Global []
Unit E
South Orbital Trading Park
Hedon Road
Hull, HU9 1NJ.
United Kingdom.

Telephone: +44 (0) 1482 801801
Fax: +44 (0) 1482 801806

TRaC Global [X]
Unit 1
Pendle Place
Skelmersdale
West Lancashire, WN8 9PN
United Kingdom

Telephone: +44 (0) 1695 556666
Fax: +44 (0) 1695 577077

Email: test@tracglobal.com
Web site: <http://www.tracglobal.com>

Tests performed by: S Hodgkinson

Report author: S Hodgkinson

This report must not be reproduced except in full without prior written permission from TRaC Global.

1.2 Tests Requested By

This testing in this report was requested by :

SigFox
425 Rue Jean Rostand
Labège
31670

1.3 Manufacturer

As Above

1.4 Apparatus Assessed

The following apparatus was assessed between 23rd December 2014 - 7th January 2015

SBS T 902

The SBS T 902 is a FHSS device operating in the 902 -928 MHz Band.

Class II change: The addition of a screening enclosure for the P.A

1.5 Test Result Summary

Full details of test results are contained within Appendix A. The following table summarises the results of the assessment.

The statements relating to compliance with the standards below apply ONLY as qualified in the notes and deviations stated in sections 1.6 to 1.7 of this test report.

Full details of test results are contained within Appendix A. The following table summarises the results of the assessment.

Test Type	Regulation		Measurement standard	Result
	Title 47 of the CFR: Part 15 Subpart (c)	RSS – 210 Issue 8, December 2010		
Radiated spurious emissions (Restricted bands)	15.247 (d) 15.209	Annex 8, A8.5	ANSI C63.10:2009	Pass
Conducted Carrier Power	15.247(b)(2)	Annex 8, A8.4(1)	ANSI C63.10:2009	Pass
Unintentional Radiated Spurious Emissions	15.109	Section 7.2.3	ANSI C63.10:2009	Pass
Restricted Bands:	15.205	RSS-Gen Issue 3 7.2.2	-	-

Abbreviations used in the above table:

Mod	: Modification	RSS	: Radio Standards Specification
CFR	: Code of Federal Regulations	ANSI	: American National Standards Institution
REFE	: Radiated Electric Field Emissions	PLCE	: Power Line Conducted Emissions

1.6 Notes Relating To The Assessment

With regard to this assessment, the following points should be noted:

The results contained in this report relate only to the items tested and were obtained in the period between the date of initial receipt of samples and the date of issue of the report.

The apparatus was set up and exercised using the configurations, modes of operation and arrangements defined in this report only.

Particular operating modes, apparatus monitoring methods and performance criteria required by the standards tested to have been performed except where identified in Section 1.7 of this test report (Deviations from Test Standards).

For emissions testing, throughout this test report, "Pass" indicates that the results for the sample as tested were below the specified limit (refer also to Section 2, Measurement Uncertainty).

Where relevant, the apparatus was only assessed using the monitoring methods and susceptibility criteria defined in this report.

All testing with the exception of testing at the Open Area Test Site was performed under the following environmental conditions:

Temperature	: 17 to 23 °C
Humidity	: 45 to 75 %
Barometric Pressure	: 86 to 106 kPa

All dates used in this report are in the format dd/mm/yy.

This assessment has been performed in accordance with the requirements of ISO/IEC 17025.

1.7 Deviations from Test Standards

There were no deviations from the standards tested to.

Section 2:**Measurement Uncertainty****2.1 Measurement Uncertainty Values**

For the test data recorded the following measurement uncertainty was calculated :

Radio Testing – General Uncertainty Schedule

All statements of uncertainty are expanded standard uncertainty using a coverage factor of 1.96 to give a 95% confidence where no required test level exists.

[1] Adjacent Channel Power

Uncertainty in test result = **1.86dB**

[2] Carrier Power

Uncertainty in test result (Power Meter) = **1.08dB**

Uncertainty in test result (Spectrum Analyser) = **2.48dB**

[3] Effective Radiated Power

Uncertainty in test result = **4.71dB**

[4] Spurious Emissions

Uncertainty in test result = **4.75dB**

[5] Maximum frequency error

Uncertainty in test result (Frequency Counter) = **0.113ppm**
Uncertainty in test result (Spectrum Analyser) = **0.265ppm**

[6] Radiated Emissions, field strength OATS 14kHz-18GHz Electric Field

Uncertainty in test result (14kHz – 30MHz) = **4.8dB**,
Uncertainty in test result (30MHz – 1GHz) = **4.6dB**,
Uncertainty in test result (1GHz – 18GHz) = **4.7dB**

[7] Frequency deviation

Uncertainty in test result = **3.2%**

[8] Magnetic Field Emissions

Uncertainty in test result = **2.3dB**

[9] Conducted Spurious

Uncertainty in test result – Up to 8.1GHz = **3.31dB**
Uncertainty in test result – 8.1GHz – 15.3GHz = **4.43dB**
Uncertainty in test result – 15.3GHz – 21GHz = **5.34dB**
Uncertainty in test result – Up to 26GHz = **3.14dB**

[10] Channel Bandwidth

Uncertainty in test result = **15.5%**

[11] Amplitude and Time Measurement – Oscilloscope

Uncertainty in overall test level = **2.1dB**,
Uncertainty in time measurement = **0.59%**,
Uncertainty in Amplitude measurement = **0.82%**

[12] Power Line Conduction

Uncertainty in test result = **3.4dB**

[13] Spectrum Mask Measurements

Uncertainty in test result = **2.59% (frequency)**
Uncertainty in test result = **1.32dB (amplitude)**

[14] Adjacent Sub Band Selectivity

Uncertainty in test result = **1.24dB**

[15] Receiver Blocking – Listen Mode, Radiated

Uncertainty in test result = **3.42dB**

[16] Receiver Blocking – Talk Mode, Radiated

Uncertainty in test result = **3.36dB**

[17] Receiver Blocking – Talk Mode, Conducted

Uncertainty in test result = **1.24dB**

[18] Receiver Threshold

Uncertainty in test result = **3.23dB**

[19] Transmission Time Measurement

Uncertainty in test result = **7.98%**

Section 3:

Modifications

3.1 Modifications Performed During Assessment

No modifications were performed during the assessment

Section 4**General Test Procedures****4.1 Radiated Test Setup and Procedures**

Radiated electromagnetic emissions from the EUT are checked first by preview scans. Preview scans for all spectrum and modulation characteristics are checked, using a peak detector and where applicable worst case determined for function, operation, orientation etc for both vertical and horizontal polarisations

If the EUT connects to auxiliary equipment and is table or floor standing, the configurations prescribed in ANSI C63.10 are followed. Alternatively, a layout closest to normal use (as declared by the provider) is employed. (see EUT setup photographs for more detail)

For devices with intentional emissions below 30 MHz, a shielded loop antenna is used as the test antenna. It is placed at a 1 meter receive height and appropriate low frequency magnetic field extrapolation to the regulatory limit distance is employed. The EUT is rotated through 360° in the azimuth.

Emissions between 30 MHz and 1 GHz are measured using calibrated broadband antennas. Emissions above 1 GHz are characterized using standard gain horn antennas. Pre-amplifiers and filters are used where required. Care is taken to ensure that test receiver resolution bandwidth, video bandwidth and detector type(s) meet the regulatory requirements.

For both horizontal and vertical polarizations, The EUT is then rotated through 360° in azimuth until the highest emission is detected. At the previously determined azimuth the test antenna is raised and lowered from 1 to 4 m in height until a maximum emission level is detected, this maximum value is recorded.

Where regulations allow for direct measurement of field strength, power values measured on the test receiver / analyzer are converted to dBuV/m at the regulatory distance, using

$$FS = PR + AF + CL - PA + KG + DC - CF \text{ (dBuV/m)}$$

where

PR is the power recorded on receiver / spectrum analyzer (dBuV)

AF is the test antenna factor in dB/m,

CL is the cable loss in dB,

PA is the pre-amplifier gain dB, (when applicable)

DC is duty correction factor (when applicable) in dB, and

CF is a distance correction (employed only if measurements at alternate distance to limit) in dB.

This field strength value is then compared with the regulatory limit.

If effective radiated power (ERP) or effective isotropic radiated power (EIRP) is required, it is computed as per ANSI C63.10

$$P = \frac{(Ed)^2}{30G}$$

Where

P is the power, in W

E is the measured peak field strength, in V/m

d is the distance at which the measurement was made, in m

G is the numeric gain of the radiating element

If the gain of the radiating element is not known, then either the effective radiated power (ERP) or the effective isotropic radiated power (EIRP) may be calculated from the measured peak field strength, by using either G = 1.64 or G = 1, respectively,

4.2 Antenna Port Conducted Emissions

Antenna port conducted emissions can include, but are not limited to, Carrier power, Power Spectral Density, Occupied bandwidth and spurious emission.

Spurious Emissions from the EUT are checked first by preview scans. Preview scans for all spectrum and modulation characteristics are checked to identify frequencies to perform formal measurements on.

Formal are made on frequencies identified from the preview scans and fundamental emission(s). Measurements using the correct instrumentation (inc power meter, receiver, spectrum analyser) that operate with the required detector(s) and bandwidth.

Care is taken to ensure the measurement instrument is not overloaded by the presence of the transmitted signal by use of external attenuation and filtering where required.

Measured levels are corrected for cables, attenuators, and filters. If applicable, for the specific measurement, antenna gain is also taken into account.

Appendix A:**Formal Emission Test Results**

Abbreviations used in the tables in this appendix:

Spec	: Specification	ALSR	: Absorber Lined Screened Room
Mod	: Modification	OATS	: Open Area Test Site
EUT	: Equipment Under Test	ATS	: Alternative Test Site
SE	: Support Equipment	Ref	: Reference
L	: Live Power Line	Freq	: Frequency
N	: Neutral Power Line	MD	: Measurement Distance
E	: Earth Power Line	SD	: Spec Distance
Pk	: Peak Detector	Pol	: Polarisation
QP	: Quasi-Peak Detector	H	: Horizontal Polarisation
Av	: Average Detector	V	: Vertical Polarisation
CDN	: Coupling & decoupling network		

A1 Transmitter Peak Output Power

Carrier power was verified with the EUT transmitting on its lowest, centre and highest carrier frequency in turn.

Test Details:	
Regulation	Part 15.247(b)(1) RSS – 210, Annex 8, A8.4(1)
Measurement standard	ANSI C63.10:2009, RSS-GEN
EUT sample number	S22,S11
Modification state	0
SE in test environment	S13
SE isolated from EUT	S03
EUT set up	Refer to Appendix C

Channel Frequency (MHz)	Peak Carrier Power (W)	Limit (W)	Result
902.2	0.504	0.631	Pass
910.0	0.539		Pass
918.1	0.587		Pass

Notes:

Number of hopping channels employed is 50

Conducted Measurements

Highest Gain of any antenna to be used = 8 dBi

As per 15.247(b)(4) and Annex 8, A8.4(1) as the gain of the antenna is greater than 6dBi the conducted output power limit is reduced as appropriate, by the amount in dB that the directional gain of the antenna exceeds 6 dBi

Antenna gain exceeds 6 dBi by 2 dB therefore conducted output power limit of 1W (30 dBm) is reduced to 0.631W (28 dBm)

A2 Radiated Electric Field Emissions

Preliminary scans were performed using a peak detector with the RBW = 100kHz. The radiated electric field emission test applies to spurious emissions and harmonics that fall within the restricted bands. The maximum permitted field strength is listed in Section 15.209. The EUT was set to transmit on its lowest, centre and highest carrier frequency.

The following test site was used for final measurements as specified by the standard tested to:

3m open area test site :

3m alternative test site :

Test Details: 902.2 MHz	
Regulation	Part 15.247(d) and 15.205, RSS – 210, Annex 8, A8.5
Measurement standard	ANSI C63.10:2009, RSS – GEN, ANSI C63.4:2003
Frequency range	30MHz – 10GHz
EUT sample number	S22, S13, S05, S06, S10
Modification state	0
SE in test environment	S13
SE isolated from EUT	S03
EUT set up	Refer to Appendix C
Temperature	24°C
Photographs (Appendix F)	Photograph 1 and 2

The worst case radiated emission measurements for spurious emissions and harmonics that fall within the restricted bands are listed below:

FCC and IC restricted band

Ref No.	FREQ. (MHz)	MEAS Rx (dB μ V)	CABLE LOSS (dB)	ANT FACT. (dB/m)	PRE AMP (dB)	Filter loss (dB)	FIELD ST'GH (dB μ V/m)	FIELD ST'GH (μ V/m)	LIMIT (μ V/m)
1.	5456.06	48.4	3.8	33.9	35.7	0.4	50.84pk	348.33	5011
2.	8120	51.83	5.2	36.7	36.4	0.2	57.56pk	755.09	5011
3.	8120	36.37	5.2	36.7	36.4	0.2	39.73Av	96.93	500

Peak level at 5456.06MHz meets the average limit therefore average measurements not performed.

Radiated Electric Field Emissions:

Test Details: 910.0MHz	
Regulation	Part 15.247(d) and 15.205, RSS – 210, Annex 8, A8.5
Measurement standard	ANSI C63.10:2009, RSS – GEN, ANSI C63.4:2003
Frequency range	30MHz to 10 GHz
EUT sample number	S19, S13, S05, S06, S10
Modification state	0
SE in test environment	S13
SE isolated from EUT	S03
EUT set up	Refer to Appendix C
Temperature	24°C
Photographs (Appendix F)	Photograph 1 and 2

The worst case radiated emission measurements for spurious emissions and harmonics that fall within the restricted bands are listed below:

FCC and IC restricted band

Ref No.	FREQ. (MHz)	MEAS Rx (dB μ V)	CABLE LOSS (dB)	ANT FACT. (dB/m)	PRE AMP (dB)	Filter loss (dB)	FIELD ST'GH (dB μ V/m)	FIELD ST'GH (μ V/m)	LIMIT (μ V/m)
1.	2730	49.9	2.6	29.1	36	0.8	46.44pk	209.89	5011

Peak levels meet average limit therefore average measurements not performed.

Radiated Electric Field Emissions:

Test Details: 918.1 MHz	
Regulation	Part 15.247(d) and 15.205, RSS – 210, Annex 8, A8.5
Measurement standard	ANSI C63.10:2009, RSS – GEN, ANSI C63.4:2003
Frequency range	30MHz to 10 GHz
EUT sample number	S22, S13, S05, S06, S10
Modification state	0
SE in test environment	S13
SE isolated from EUT	S03
EUT set up	Refer to Appendix C
Temperature	24°C
Photographs (Appendix F)	Photograph 1 and 2

The worst case radiated emission measurements for spurious emissions and harmonics that fall within the restricted bands are listed below:

FCC and IC restricted bands

Ref No.	FREQ. (MHz)	MEAS Rx (dB μ V)	CABLE LOSS (dB)	ANT FACT. (dB/m)	PRE AMP (dB)	Filter loss (dB)	FIELD ST'GH (dB μ V/m)	FIELD ST'GH (μ V/m)	LIMIT (μ V/m)
1.	2754.32	53.05	2.7	29.1	36	0.7	49.58pk	301.30	5011
2.	4590.5	50.14	3.6	32.3	35.6	0.2	50.62pk	339.62	5011

Peak levels meet average limit therefore average measurements not performed.

Notes:

- 1 Any testing performed below 30 MHz was performed using a magnetic loop antenna in accordance with ANSI C63.10:2009: section 4.5, Table 1 and ANSI C63.4: 2003 section 8.2.1
- 2 In accordance with 15.35(b), above 1 GHz, emissions measured using a peak detector shall not exceed a level 20 dB above the average limit.
- 3 Measurements at 2400 & 2483.5 MHz were made to ensure band edge compliance.
- 4 Testing was performed with the EUT orientated in three orthogonal planes and the maximum emissions level recorded. In addition, the EUT antenna was varied within its range of motion in order to maximise emissions.
- 5 For Frequencies below 1 GHz, RBW= 100 kHz, testing was performed with CISPR16 compliant test receiver with QP detector. Above 1 GHz tests were performed using a spectrum analyser using the following settings:

Peak	RBW=VBW= 1MHz
Average	RBW=VBW= 1MHz

These settings as per ANSI C63.10:2009 and DA 00-705.

- 6 In accordance with DA 00-705, the average level of the spurious radiated emission may be reduced by the duty cycle correction factor. If the dwell time per channel (refer to the measured channel occupancy time, section A7 of this test report) of the hopping signal is less than 100ms then the average measurement may be further adjusted by the duty cycle correction factor which is derived from

$$20\log_{10}\left(\frac{\text{dwell time}}{100ms}\right)$$

The upper and lower frequency of the measurement range was decided according to Part 15: Clause 15.33(a) and 15.33(a)(1) and RSS-GEN 4.9

Radiated emission limits for emissions falling within the restricted bands.

Frequency of emission (MHz)	Field strength (μ V/m)	Measurement Distance (m)	Field strength (dB μ V/m)
30-88	100	3	40.0
88-216	150	3	43.5
216-960	200	3	46.0
Above 960	500	3	54.0

- (a) Where results have been measured at one distance, and a signal level displayed at another, the results have been extrapolated using the following formula:

$$\text{Extrapolation (dB)} = 20\log_{10}\left(\frac{\text{measurement distance}}{\text{specification distance}}\right)$$

The results displayed take into account applicable antenna factors and cable losses.

- (b) The levels may have been rounded for display purposes.
- (c) The following table summarises the effect of the EUT operating mode, internal configuration and arrangement of cables / samples on the measured emission levels :

	See (i)	See (ii)	See (iii)	See (iv)
Effect of EUT operating mode on emission levels				✓
Effect of EUT internal configuration on emission levels				✓
Effect of Position of EUT cables & samples on emission levels				✓
<p>(i) Parameter defined by standard and / or single possible, refer to Appendix D (ii) Parameter defined by client and / or single possible, refer to Appendix D (iii) Parameter had a negligible effect on emission levels, refer to Appendix D (iv) Worst case determined by initial measurement, refer to Appendix D</p>				

A3 Antenna Gain

The maximum antenna gain for the antenna types to be used with the EUT, as declared by the client, is 8 dBi.

As per 15.247(b)(4) and Annex 8, A8.4(1) as the gain of the antenna is greater than 6dBi the conducted output power limit is reduced as appropriate, by the amount in dB that the directional gain of the antenna exceeds 6 dBi

Antenna gain exceeds 6 dBi by 2 dB therefore conducted output power limit of 1W (30 dBm) is reduced to 0.631W (28 dBm)

A4 Unintentional Radiated Electric Field Emissions

Preliminary scans were performed using a peak detector with the RBW = 100kHz. The maximum permitted field strength is listed in Section 15.109 and RSS- GEN Section 7.2.3. The EUT was set to receive mode only on its lowest, centre and highest carrier frequency in turn.

The following test site was used for final measurements as specified by the standard tested to :

3m open area test site :

3m alternative test site :

Test Details:	
Regulation	Part 15.109, RSS – GEN, Section 7.2.3
Measurement standard	ANSI C63.10:2009, RSS – GEN, ANSI C63.4:2003
Frequency range	30MHz to 10 GHz
EUT sample number	S19, S13, S05, S06, S10
Modification state	0
SE in test environment	S13
SE isolated from EUT	S03
EUT set up	Refer to Appendix C
Temperature	24°C
Photographs (Appendix F)	1 & 2

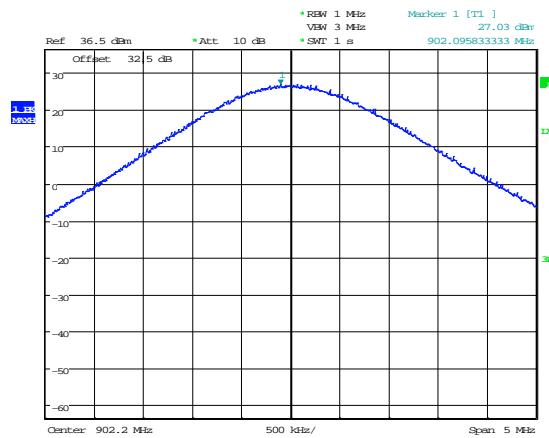
The worst case radiated emission measurements for spurious emissions and harmonics that fall within the restricted bands are listed below:

Ref No.	FREQ. (MHz)	MEAS Rx (dB μ V)	CABLE LOSS (dB)	ANT FACT. (dB/m)	PRE AMP (dB)	FIELD ST'GH (dB μ V/m)	EXTRAP FACT (dB)	FIELD ST'GH (μ V/m)	LIMIT (μ V/m)
1	30.00	8.7	0.8	17.8	-	27.3	-	23.17	100
2	34.25	7.1	0.8	15.6		23.5		14.88	100
3	36.75	11.9	0.9	14.2	-	27.0	-	22.44	100
4	37.30	13.1	0.9	13.9	-	27.9	-	24.89	100
5	39.35	19.3	0.9	12.7	-	33.0	-	44.46	100
6	39.70	14.6	0.9	12.6	-	28.1	-	25.38	100
7	39.85	14.3	1.0	12.5	-	27.7	-	24.35	100
8	43.35	9.3	1.0	10.7	-	21.0	-	11.26	100
9	56.00	17.8	1.0	5.8	-	24.6	-	16.98	100
10	60.00	23.6	1.1	5.2	-	29.9	-	31.22	100
11	60.50	23.9	1.1	5.2	-	30.2	-	32.36	100
12	63.90	23.7	1.1	5.0	-	29.8	-	31.01	100
13	64.20	23.8	1.1	5.0	-	30.0	-	31.44	100
14	64.85	25.0	1.2	5.1	-	31.2	-	36.48	100

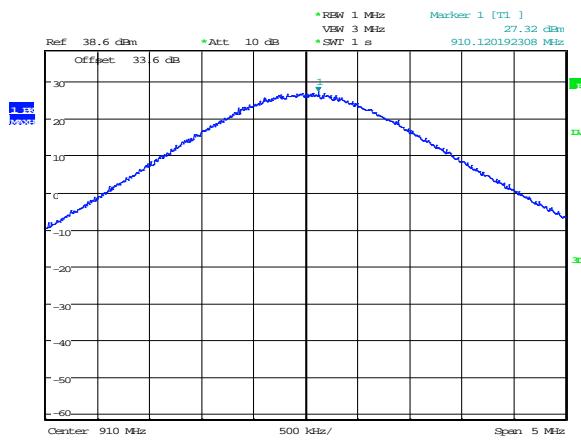
Ref No.	FREQ. (MHz)	MEAS Rx (dB μ V)	CABLE LOSS (dB)	ANT FACT. (dB/m)	PRE AMP (dB)	FIELD ST'GH (dB μ V/m)	EXTRAP FACT (dB)	FIELD ST'GH (μ V/m)	LIMIT (μ V/m)
15	65.15	24.2	1.2	5.1	-	30.5	-	33.34	100
16	65.35	25.0	1.2	5.1	-	31.3	-	36.60	100
17	70.60	15.1	1.2	5.4	-	21.7	-	12.11	100
18	105.75	15.6	1.5	11.1	-	28.2	-	25.64	150
19	106.65	15.4	1.5	11.2	-	28.1	-	25.32	150
20	107.65	15.8	1.5	11.3	-	28.6	-	26.82	150
21	109.05	14.4	1.5	11.3	-	27.2	-	22.99	150
22	115.15	11.1	1.6	11.5	-	24.2	-	16.22	150
Worse case Receiver emissions \geq 1GHz									
23	1826.46pk	51.57	2.27	27.1	36.3	45.11	-	180.09	5011

Note:-

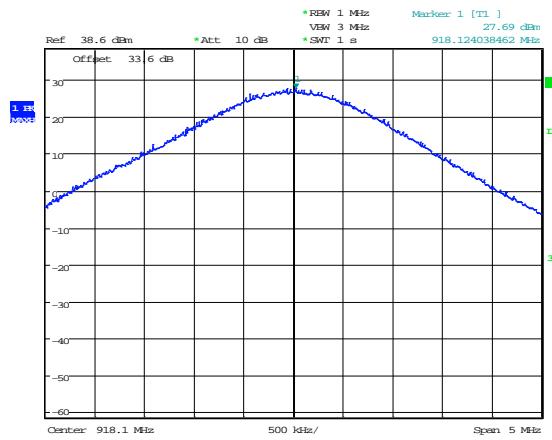
Worse case Receiver emissions \geq 1GHz Peak level meets the average limit therefore average measurements not performed.


Appendix B:

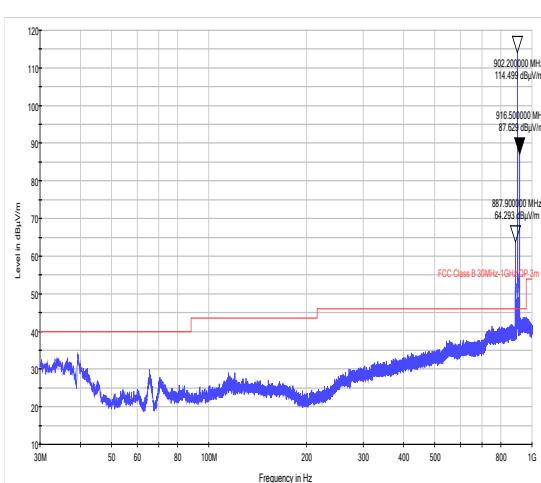
Supporting Graphical Data

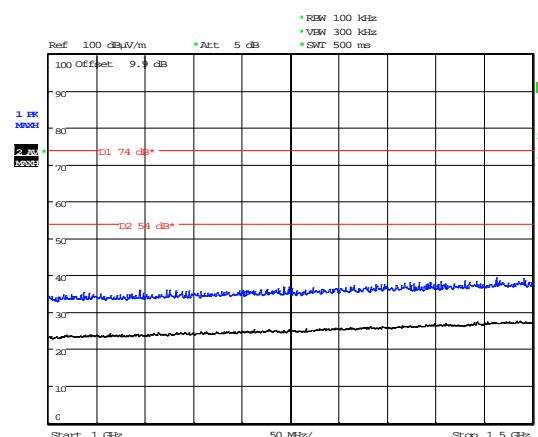

This appendix contains graphical data obtained during testing.

Notes:

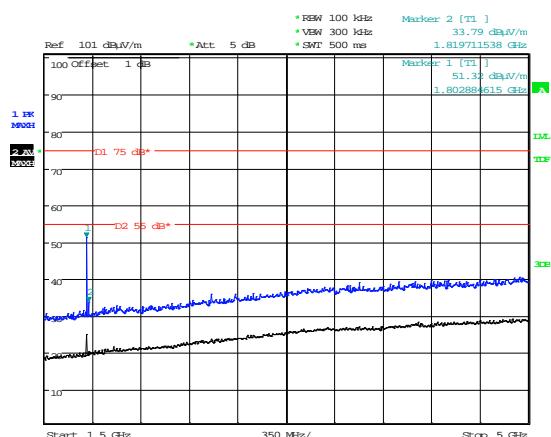

- (a) The radiated electric field emissions and conducted emissions graphical data in this appendix is preview data. For details of formal results, refer to Appendix A and Appendix B.
- (b) The time and date on the plots do not necessarily equate to the time of the test.
- (c) Where relevant, on power line conducted emission plots, the limit displayed is the average limit, which is stricter than the quasi peak limit.
- (d) Appendix C details the numbering system used to identify the sample and its modification state.
- (e) The plots presented in this appendix may not be a complete record of the measurements performed, but are a representative sample, relative to the final assessment.

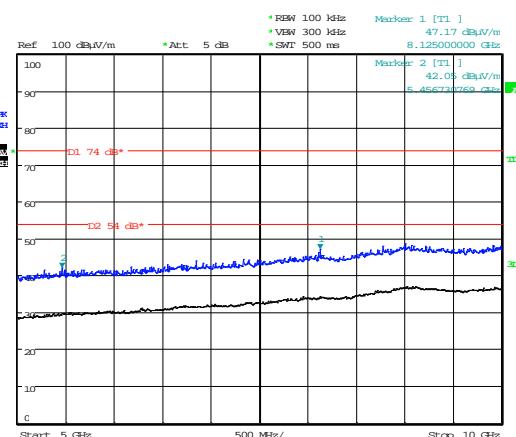
Conducted carrier power 902.2 MHz


Conducted carrier power 910.0MHz

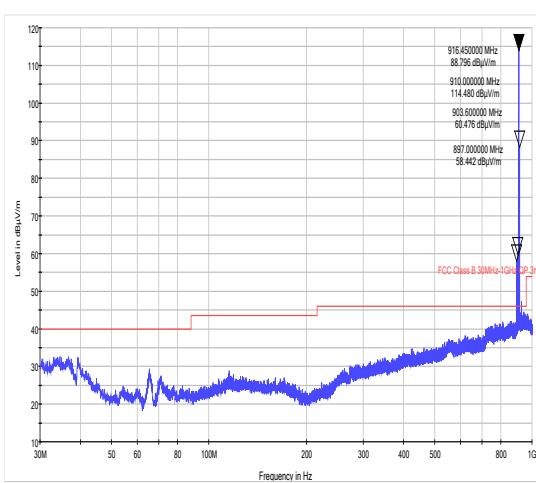

Conducted carrier power 918.1 MHz

Radiated Spurious emissions 902.2 MHz


30 MHz to 1 GHz


1 GHz to 1.5 GHz

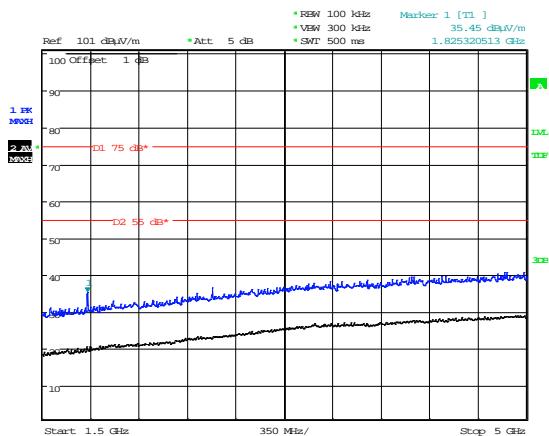
1.5 GHz to 5 GHz



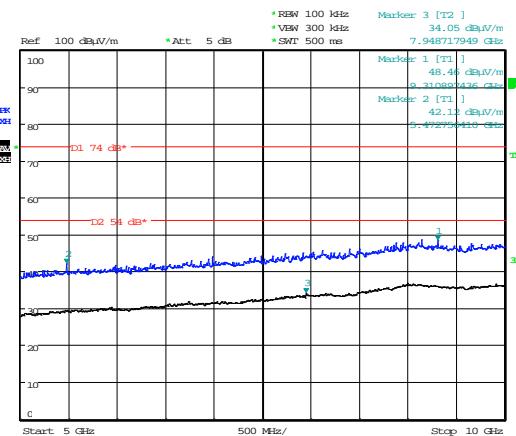
5 GHz to 10 GHz

Radiated Spurious emissions 910.0 MHz

30 MHz to 1 GHz

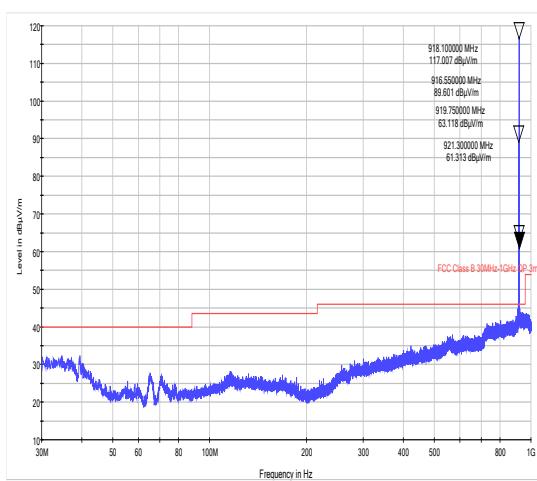


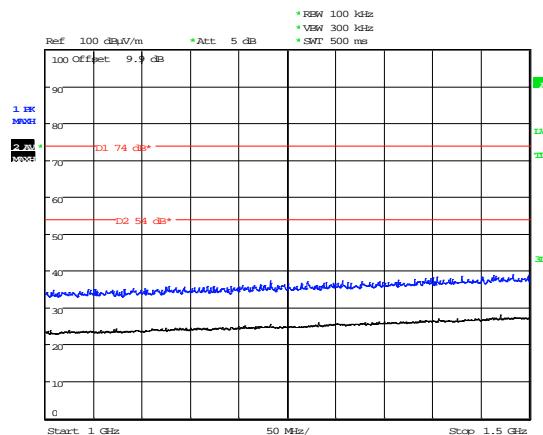
1 GHz to 1.5 GHz


Date: 23.DEC.2014 12:10:11

1.5 GHz to 5 GHz

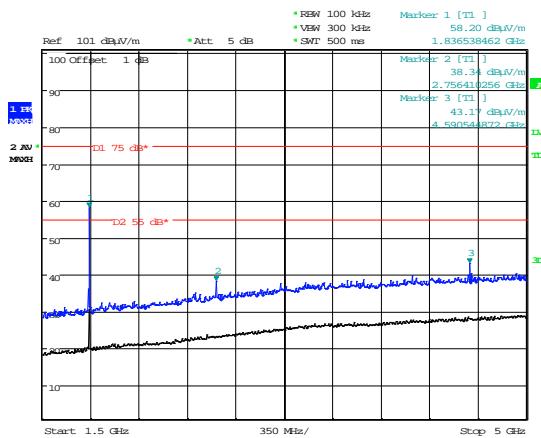
Date: 23.DEC.2014 11:47:45


5 GHz to 10 GHz

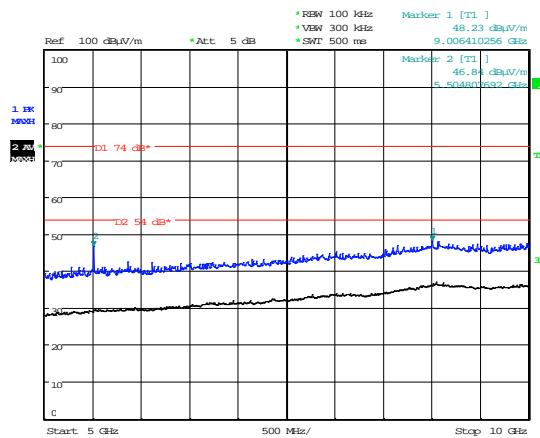

Date: 23.DEC.2014 10:29:05

Radiated Spurious emissions 918.1 MHz

30 MHz to 1 GHz

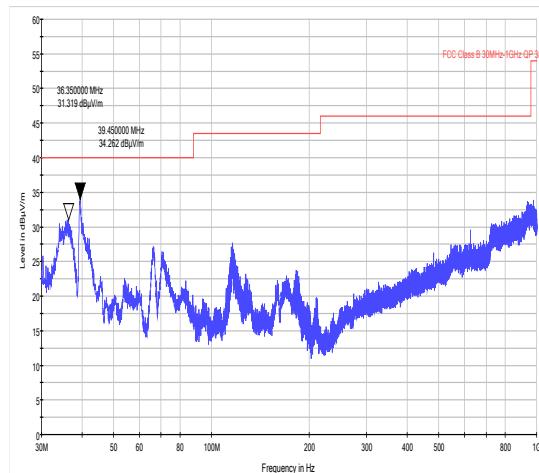


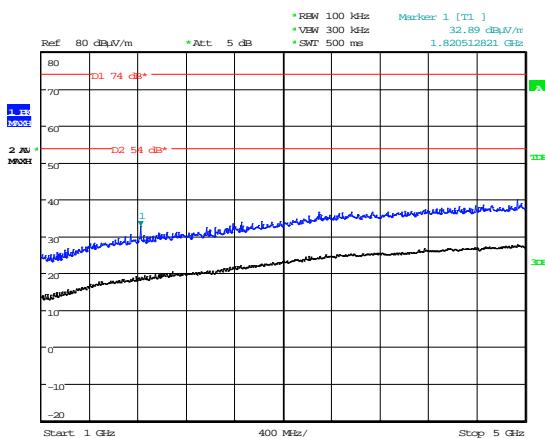
1 GHz to 1.5 GHz


Date: 23.DEC.2014 12:12:06

1.5 GHz to 5 GHz

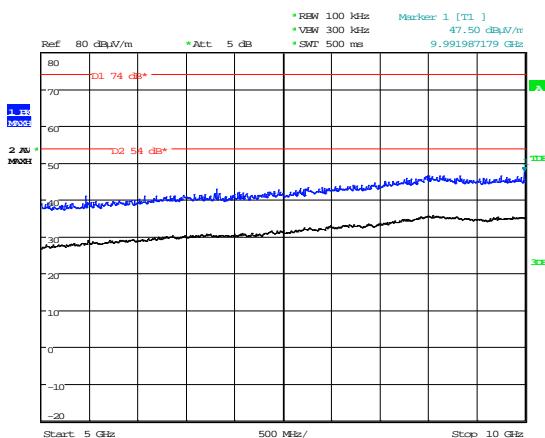
Date: 23.DEC.2014 11:50:41


5 GHz to 10 GHz


Date: 23.DEC.2014 10:33:32

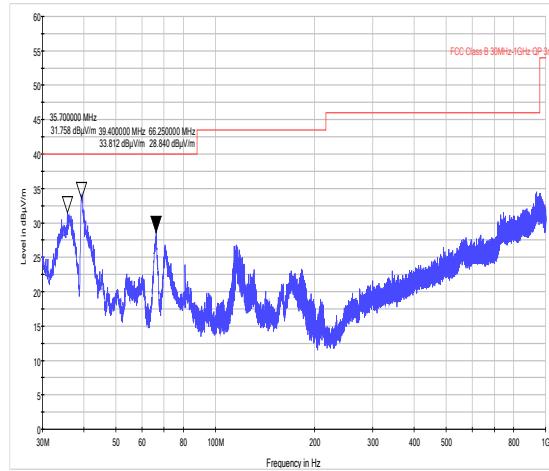
Unintentional Radiated Spurious emissions 902.2 MHz

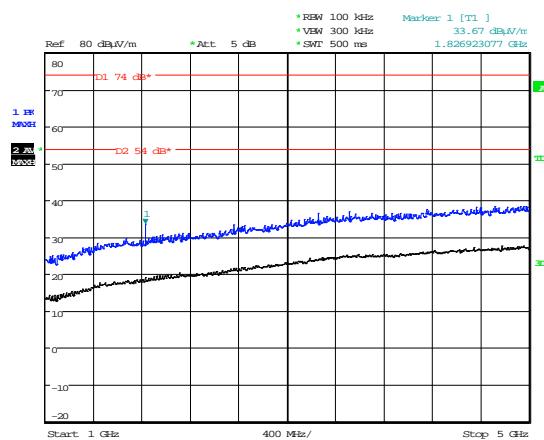
30 MHz to 1 GHz



1 GHz to 5 GHz

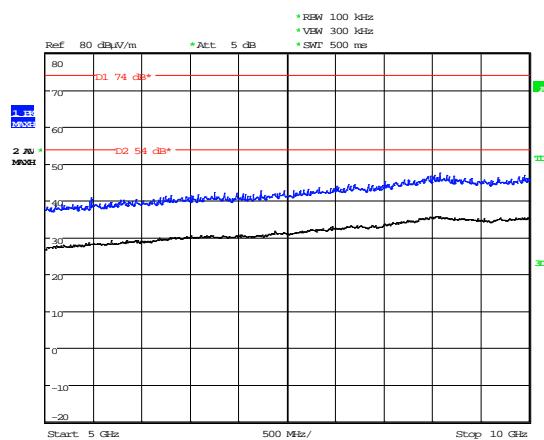
Date: 23.DEC.2014 15:47:29


5 GHz to 10 GHz


Date: 23.DEC.2014 15:48:40

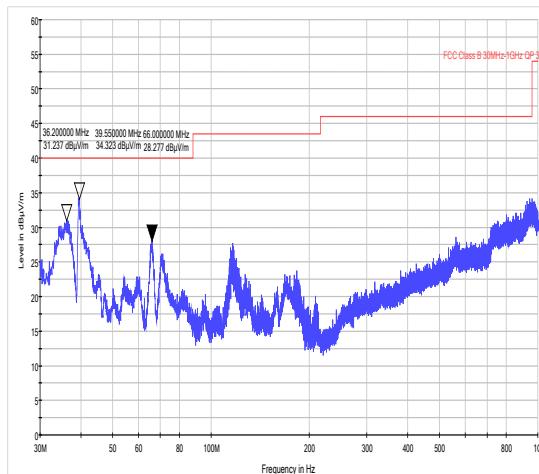
Unintentional Radiated Spurious emissions 910.0 MHz

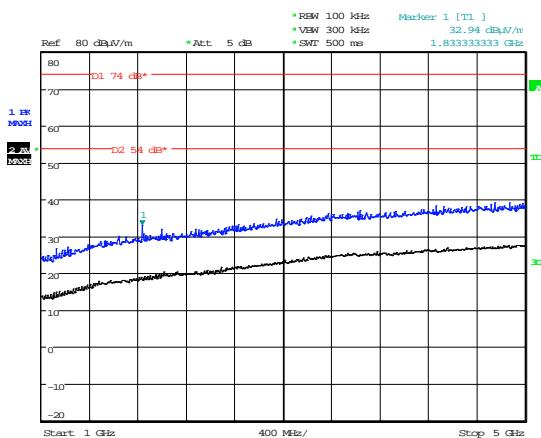
30 MHz to 1 GHz



1 GHz to 5 GHz

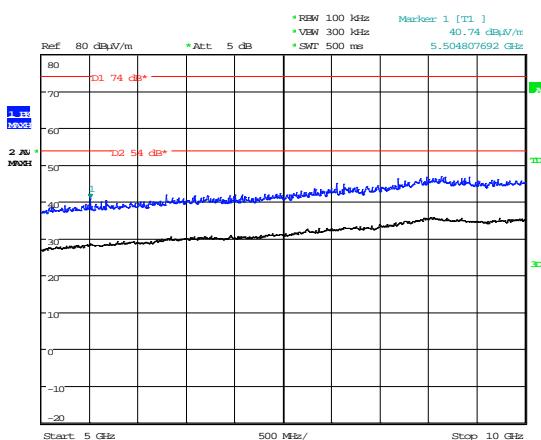
Date: 23.DEC.2014 15:56:30


5 GHz to 10 GHz


Date: 23.DEC.2014 16:01:59

Unintentional Radiated Spurious emissions 918.1 MHz

30 MHz to 1 GHz



1 GHz to 5 GHz

Date: 23.DEC.2014 16:10:23

5 GHz to 10 GHz

Date: 23.DEC.2014 16:15:39

Appendix C:**Additional Test and Sample Details**

This appendix contains details of:

1. The samples submitted for testing.
2. Details of EUT operating mode(s)
3. Details of EUT configuration(s) (see below).
4. EUT arrangement (see below).

Throughout testing, the following numbering system is used to identify the sample and its modification state:

Sample No: Sxx Mod w

where:

xx	= sample number	eg. S01
w	= modification number	eg. Mod 2

The following terminology is used throughout the test report:

Support Equipment (SE) is any additional equipment required to exercise the EUT in the applicable operating mode. Where relevant SE is divided into two categories:

SE in test environment: The SE is positioned in the test environment and is not isolated from the EUT (e.g. on the table top during REFE testing).

SE isolated from the EUT: The SE is isolated via filtering from the EUT. (e.g. equipment placed externally to the ALSR during REFE testing).

EUT configuration refers to the internal set-up of the EUT. It may include for example:

- Positioning of cards in a chassis.
- Setting of any internal switches.
- Circuit board jumper settings.
- Alternative internal power supplies.

Where no change in EUT configuration is **possible**, the configuration is described as “single possible configuration”.

EUT arrangement refers to the termination of EUT ports / connection of support equipment, and where relevant, the relative positioning of samples (EUT and SE) in the test environment.

For further details of the test procedures and general test set ups used during testing please refer to the related document "EMC Test Methods - An Overview", which can be supplied by TRaC Global upon request.

C1) Test samples

The following samples of the apparatus were submitted by the client for testing :

Sample No.	Description	Identification
S22	SBS-T-902	P0002
S13	LNA Switch	None
S10	Procom cxl 900-6lw (Antenna)	None
S06	Coaxial Cable	None
S05	Coaxial Cable	None

Description	
Hardware build level	V2.1.5 Pre series
Software revision level	Radio firmware 0.33

The following samples of apparatus were submitted by the client as host, support or drive equipment (auxiliary equipment):

Sample No.	Description	Identification
S03	Linux PC	None
S13	Cat 6 Patch Cable	None

The following samples of apparatus were supplied by TRaC Global as support or drive equipment (auxiliary equipment):

Identification	Description
None	

C2) EUT Operating Mode During Testing.

During testing, the EUT was exercised as described in the following tables :

Test	Description of Operating Mode
All tests detailed in this report	EUT Transmitting a modulated carrier at top, middle or bottom frequency or hopping as required

Test	Description of Operating Mode:
Receiver conducted and radiated (ERP) spurious emissions	EUT active but non-transmitting.

Test	Description of Operating Mode:
PLCE	ETU hopping across all channels in either TX or RX mode.

C3) EUT Configuration Information.

The EUT was submitted for testing in one single possible configuration.

C4) List of EUT Ports

The tables below describe the termination of EUT ports:

Sample : S22, S13
Tests : Conducted

Port	Description of Cable Attached	Cable length	Equipment Connected
Ethernet	Cat 6 Patch cable	5m	S03

Sample : S19, S13
Tests : Radiated Emissions

Port	Description of Cable Attached	Cable length	Equipment Connected
Ethernet	Cat 6 Patch cable	5m	S03

* Only connected during setup.

C5 Details of Equipment Used

TRaC No	Equipment Type	Equipment Description	Manufacturer	Last Cal Calibration	Calibration Period	Due For Calibration
UH004	ESVS10	Receiver	R&S	27/02/2014	12	27/02/2015
UH093	CBL6112B	Bilog	Chase	08/07/2013	24	08/07/2015
UH281	FSU46	Spectrum Analyser	R&S	26/03/2014	12	26/03/2015
UH405	FSU26	Spectrum Analyser	R&S	16/04/2014	12	16/04/2015
L138	3115	1-18GHz Horn	EMCO	17/10/2013	24	17/10/2015
L139	3115	1-18GHz Horn	EMCO	20/09/2013	24	20/09/2015
L352	ESVS10	Receiver	R&S	21/03/2014	12	21/03/2015
L572	8449B	Pre Amp	Agilent	11/02/2014	12	11/02/2015
REF940	ATS	Radio Chamber - PP	Rainford EMC	09/07/2013	24	09/07/2015
REF977	SH4141	High Pass Filter	BSC	25/02/2013	24	25/02/2015

Appendix D:

Additional Information

No additional information is included within this test report.

Appendix E:**Calculation of the duty cycle correction factor**

Using a spectrum analyser in zero span mode, centred on the fundamental carrier frequency with a RBW of 1MHz and a video Bandwidth of 1MHz the sweep time was set accordingly to capture the pulse train. The transmit pulsewidths and period was measured. A plots of the pulse train is contained in Appendix B of this test report.

If the pulse train was less than 100 ms, including blanking intervals, the duty cycle was calculated by averaging the sum of the pulsewidths over one complete pulse train. However if the pulse train exceeds 100ms then the duty cycle was calculated by averaging the sum of the pulsewidths over the 100ms width with the highest average value. (The duty cycle is the value of the sum of the pulse widths in one period (or 100ms), divided by the length of the period (or 100ms). The duty cycle correction factor was then expressed in dB and the peak emissions adjusted accordingly to give an average value of the emission.

Correction factor dB = $20 \times (\text{Log}_{10} \text{ Calculated Duty Cycle})$

Therefore the calculated duty cycle was determined:

The pulse train period was greater than >100ms and in as shown from the plots in contained in appendix B of this test report.

Duty cycle = the sum of the highest average value pulsewidths over 100ms
100ms

e.g

$$= \frac{7.459\text{ms}}{100\text{ms}} = 0.07459$$

0.07459 or 7.459%

Correction factor (dB) = $20 \times (\text{Log}_{10} 0.07459) = -22.54\text{dB}$

The section is for information on how duty cycle correction is calculated.
Please note that duty cycle correction may not be applicable.

Appendix F:

Photographs and Figures

The following photographs were taken of the test samples:

1. Radiated electric field emissions arrangement: Overview
2. Radiated electric field emissions arrangement: Overview

Photograph 1

Photograph 2

