TEST REPORT of FCC PART 15 SUBPART E

Product :	XGS-PON 10G ONT Home Gateway
Brand:	FiberGateway XGS-PON
Model:	XSR150DX
Model Difference:	N/A
FCC ID:	2ACJF-FGW-XSR150DX
FCC Rule Part:	§15.407, Cat:NII
Applicant:	Altice Labs
Address:	Rua Eng Ferreira Pinto Basto - 3810-106 Aveiro - Portugal

Test Performed by:

International Standards Laboratory Corp. LT Lab. TEL: +886-3-263-8888 FAX: +886-3-263-8899 No. 120, Lane 180, Hsin Ho Rd., Lung-Tan Dist., Tao Yuan City 325, Taiwan

Report No.: ISL-22LR0095FE Issue Date : 2022/05/06

Test results given in this report apply only to the specific sample(s) tested and are traceable to national or international standard through calibration of the equipment and evaluating measurement uncertainty herein. The uncertainty of the measurement does not include in consideration of the test result unless the customer required the determination of uncertainty via the agreement, regulation or standard document specification. This test report shall not be reproduced except in full, without the written approval of International Standards Laboratory Corp.

VERIFICATION OF COMPLIANCE

Applicant:	Altice Labs
Product Description:	XGS-PON 10G ONT Home Gateway
Brand Name:	FiberGateway XGS-PON
Model No.:	XSR150DX
Model Difference:	N/A
FCC ID:	2ACJF-FGW-XSR150DX
Date of test:	$2022/04/18 \sim 2022/05/05$
Date of EUT Received:	2022/04/18

We hereby certify that:

All the tests in this report have been performed and recorded in accordance with the standards described above and performed by an independent electromagnetic compatibility consultant, International Standards Laboratory Corp.

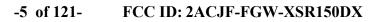
The test results contained in this report accurately represent the measurements of the characteristics and the energy generated by sample equipment under test at the time of the test. The sample equipment tested as described in this report is in compliance with the limits of above standards.

Test By:	Barry Lee	Date:	2022/05/06
Prepared By:	Barry Lee / Senior Engineer Gigi Jeh	Date:	2022/05/06
Approved By:	Gigi Yeh / Senior Engineer	_ Date:	2022/05/06

Jerry Liu / Assistant Manager

Version

Version No. Date Description		Description
00 2022/05/06		Initial creation of document


Uncertainty of Measurement

Parameter	Uncertainty (k=2)
Conducted Emission (AC power line)	±0.852 dB
Spurious emissions, radiated	±3.46 dB
RF power, conducted	±1.386 dB
Power Density	±1.432 dB
RF Frequency	±0.00298%
DC Voltage	$\pm 0.808\%$

Table of Contents

1.	Gene	ral Information	6
	1.1.	Product Description	6
	1.2.	Related Submittal(s) / Grant (s)	8
	1.3.	Test Methodology	8
	1.4.	Test Facility	8
	1.5.	Special Accessories	8
	1.6.	Equipment Modifications	8
2.	Syste	m Test Configuration	9
	2.1.	EUT Configuration	9
	2.2.	EUT Exercise	9
	2.3.	Test Procedure	9
	2.4.	Configuration of Tested System	10
	2.5.	Duty Cycle	11
3.	Sumi	nary of Test Results	12
4.	Desci	ription of Test Modes	13
5.	Cond	luced Emission Test	14
	5.1.	Standard Applicable	14
	5.2.	Measurement Equipment Used:	14
	5.3.	EUT Setup:	14
	5.4.	Measurement Procedure:	15
	5.5.	Measurement Result:	15
6.	OUT	PUT POWER / EIRP /SPECTRAL DENSITY MEASUREMENT	
	6.1.	Standard Applicable	18
	6.2.	Measurement Procedure	20
	6.3.	Measurement Equipment Used:	21
	6.4.	Measurement Equipment Used:	22
	6.5.	Measurement Result	23
7.	26dB	Emission Bandwidth Measurement	
	7.1.	Standard Applicable	56
	7.2.	Measurement Procedure	56
	7.3.	Measurement Equipment Used:	56
	7.4.	Test Set-up:	56
	7.5.	Measurement Result	57
8.	Unde	sirable emission – Radiated Measurement	
	8.1.	Standard Applicable	
	8.2.	EUT Setup	68
	8.3.	Measurement Procedure	69

	8.4.	Test SET-UP (Block Diagram of Configuration)	70
	8.5.	Measurement Equipment Used:	71
	8.6.	Field Strength Calculation	72
	8.7.	Measurement Result	72
9.	Trans	smission in the Absence of Data	
	9.1.	Standard Applicable	
	9.2.	Result:	
10.	Anter	na Requirement	
		Standard Applicable	
	10.2.	Antenna Connected Construction	
PH	OTOG	RAPHS OF SET UP	
PHO	OTOG	RAPHS OF EUT	

1. General Information

1.1. Product Description

General Information						
Product Name: XGS-PON 10G ONT Home Gateway						
Brand Name:	FiberGateway XG	FiberGateway XGS-PON				
Model Name:	XSR150DX					
Model Difference:	N/A					
Temperature Range	$5^{\circ}C$ to $+40^{\circ}C$					
	100~240VAC					
Power Supply:	Battery:	NA				
	Adaptor:	Model: WA	36N12F	U		
	WiFi In	formation				
WLAN Modular	BCM43684KRFB	G				
En mar Dan an	WLAN 5GHz Ba	and				
Frequency Range:	U-NII-1		5180	MHz~5240MHz		
Max Output Power:	5150MHz ~ 5250	MHz: 28.63dI	Bm			
	WLAN 5GHz Band					
	802.11	a U-NII-1	:	4		
	802.11n(HT20) U-NII-1	:	4		
Channel number:	802.11n(HT40) U-NII-1	:	2		
	802.11ac(VHT20	·		4		
	802.11ac(VHT40	·		2		
	802.11ac(VHT80	,	:	1		
	802.11ax(HE80) U-NII-1	:	1		
Power Tolerance:	+/- 1 dB					
Product HW Version:	PCB 1497					
Product SW Version:	Rev 2.3					
Product FW Version:	NA					
Test SW Version:	Rev 2.3					
RF power setting: Refer power table						

	Antenna Type	Brand	Model	Peak Gain(dBi)	Frequency Range(MHz)	Connector Type
1	PCB	Galtronics	02102140-06825-1	3.7	5150~5250MHz	U.FL
2	PCB	Galtronics	02102140-06825-2	3.5	5150~5250MHz	U.FL
3	PCB	Galtronics	02102140-06825-3	3.7	5150~5250MHz	U.FL
	PCB	Galtronics	02102140-06825-4	3.5	5150~5250MHz	U.FL

Channel List

Frequency Band	Modulation Mode	Channel No.	Frequency (MHz)
	802.11a	CH 36	5180
	802.11n HT20	CH 40	5200
	802.11ac VHT20	CH 44	5220
5150 - 5250 MHz	802.11ax HE20	CH 48	5240
	802.11n HT40	CH 38	5190
	802.11ac VHT40	CH 46	5230
	802.11ax HE40		
	802.11ac VHT80	CH 42	5210
	802.11ax HE80		

The EUT is compliance with IEEE 802.11 a/n/ac/ax Standard.

This report applies for Wifi frequency band 5150 MHz- 5250 MHz.

Remark: The above DUT's information was declared by manufacturer. Please refer to the specifications or user's manual for more detailed description.

1.2. Related Submittal(s) / Grant (s)

This submittal(s) (test report) is intended for <u>FCC ID: 2ACJF-FGW-XSR150DX</u> filing to comply with Section 15.407 of the FCC Part 15, Subpart E Rules.

1.3. Test Methodology

Both conducted and radiated testing were performed according to the procedures in ANSI C63.10: 2013. Radiated testing was performed at an antenna to EUT distance 3 meters.

KDB Document: 789033 D02 General U-NII Test Procedures New Rules v02r01

FCC 14-30 Revision UNII

594280 D02 U-NII Device Security v01r03

1.4. Test Facility

The measurement facilities used to collect the 3m Radiated Emission and AC power line conducted data are located on the address of International Standards Laboratory Corp. <LT Lab.> No. 120, Lane 180, Hsin Ho Rd., Lung-Tan Dist., Tao Yuan City 325, Taiwan which are constructed and calibrated to meet the FCC requirements in documents ANSI C63.10: 2013. FCC Registration Number is: 487532; Designation Number is: TW0997.

1.5. Special Accessories

Not available for this EUT intended for grant.

1.6. Equipment Modifications

Not available for this EUT intended for grant.

2. System Test Configuration

2.1. EUT Configuration

The EUT configuration for testing is installed on RF field strength measurement to meet the Commissions requirement and operating in a manner which intends to maximize its emission characteristics in a continuous normal application.

2.2. EUT Exercise

The EUT (Transmitter) was operated in the engineering mode to fix the Tx frequency that was for the purpose of the measurements.

2.3. Test Procedure

2.3.1 Conducted Emissions

The EUT is a placed on as turn table which is 0.8 m above ground plane. According to the requirements in Section 6 of ANSI C63.10: 2013. Con-ducted emissions from the EUT measured in the frequency range between 0.15 MHz and 30MHz using CISPR 16-1-1 Quasi-Peak and Average detector mode.

2.3.2 Radiated Emissions

The EUT is a placed on a turntable which is 0.8 m/1.5m (Frequency above 1GHz) above the ground plane. The turntable shall rotate 360 degrees to determine the position of maximum emission level. The EUT is set 3m away from the receiving antenna which varied from 1m to 4m to find out the highest emission. And also, each emission was to be maximized by changing the polarization of receiving antenna both horizontal and vertical. To find out the maximum emission, the relative positions of this hand-held transmitter (EUT) was rotated through three orthogonal axes and measurement procedures for electric field radiated emissions above 1 GHz the EUT measurement is to be made "while keeping the antenna in the 'cone of radiation' from that area and pointed at the area both in azimuth and elevation, with polarization oriented for maximum response." is still within the 3dB illumination BW of the measurement antenna according to the requirements in Section 6, 11 and 12 of ANSI C63.10: 2013.

2.4. Configuration of Tested System

Fig. 2-1 Configuration of Tested System

Radiated Emission

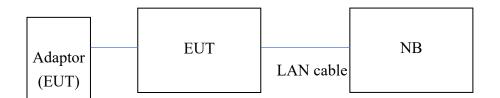
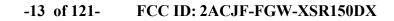


Table 2-1 Equipment Used in Tested System

Item	Equipment	Mfr/Brand	Model/ Type No.	Series No.	Data Cable	Power Cord
1	Adaptor (EUT)	APD	WA-36N12FU	D1227NGV 028736	NA	180cm
2	NB	HP	440-G1	NA	NA	180cm
3	LAN cable	NA	NA	50.6G829.0 01	180cm	NA

- **Note:** All the above equipment/cables were placed in worse case positions to maximize emission signals during emission test.
- **Grounding:** Grounding was in accordance with the manufacturer's requirements and conditions for the intended use.

2.5. Duty Cycle


If duty cycle of test signal is ≥ 98 %, duty factor is not required. If duty cycle of test signal is < 98 %, duty factor shall be considered. The output power = measured power + duty factor.

Mode	ON time (ms)	Total time (ms)	Duty Cycle	Duty Factor	1/Ton (kHz)	VBW for average de- tector (kHz)
а	2.057	2.087	98.563%	0.00	0.486	0.01
VHT20	1.925	1.955	98.465%	0.00	0.519	1
VHT40	0.954	0.972	98.148%	0.00	1.048	1.5
VHT80	0.444	0.481	92.308%	0.35	2.252	3
HE20	0.449	0.467	96.146%	0.17	2.227	3
HE40	0.268	0.283	94.700%	0.24	3.731	5
HE80	0.168	0.184	91.304%	0.40	5.952	6

3. Summary of Test Results

FCC Rules	Description Of Test	Result
§15.207	AC Power Line Conducted Emission	Compliant
§15.407(a)(2)	Output Power/ EIRP/ Spectral Density Measurement	Compliant
§15.407(a)	26dB Emission Bandwidth	Compliant
§15.407(e)	6dB Emission Bandwidth	Compliant
§15.407(b)	Undesirable Emission – Radiated Measurement	Compliant
§15.407(a)	Antenna Requirement	Compliant

4. Description of Test Modes

The EUT has been tested under operating condition. Test program used to control the EUT for staying in continuous transmitting mode is programmed.

HT modulation is the same as VHT, VHT was considered the worst case.

Following channels were selected for the final test as listed below.

Frequency Band (MHz)	Modulation Mode	Test Channel	Data Rate (Mbps)	
	802.11a	36, 40, 48	6	
	802.11 ac VHT20 802.11ax HE20	36, 40, 48	6.5	
5150 - 5250	802.11 ac VHT40 802.11ax HE40	38, 46	13.5	
	802.11ac VHT80 802.11ax HE80	42	29.3	

Directional gain = G_{ANT} + 10 log(N_{ANT}) dBi

5. Conduced Emission Test

5.1. Standard Applicable

According to §15.207, frequency range within 150kHz to 30MHz shall not exceed the Limit table as below.

Frequency range	Limits dB(uV)						
MHz	Quasi-peak	Average					
0.15 to 0.50	66 to 56	56 to 46					
0.50 to 5	56	46					
5 to 30	60	50					
Note							
1. The lower limit shall apply at the transition frequencies							

2. The limit decreases linearly with the logarithm of the frequency in the range 0.15 MHz to 0.50 MHz.

Location	Equipment Name	Brand	Model	S/N	Last Cal. Date	Next Cal. Date
Conduction 04	EMI Receiver 18	ROHDE&SCHWARZ	ESCI	101392	06/08/2021	06/08/2022
Conduction 04	Conduction 04-03 Cable	WOKEN	CFD 300-NL	Conduction 04-03	10/13/2021	10/13/2022
Conduction 04	LISN 18	ROHDE & SCHWARZ	ENV216	101424	06/27/2021	06/27/2022
Conduction 04	LISN 03	R&S	ESH3-Z5	828874/010	11/11/2021	11/11/2022
Conduction 04	ISN T8 07	Teseq GmbH	ISN T800	30834	09/02/2021	09/02/2022
Conduction 04	ISN T4 06	Teseq GmbH	ISN T400A	28574	10/29/2021	10/29/2022
Conduction 04	ISN T8 CAT6A_01	SCHWARZBECK	NTFM 8158	8158 0123	01/25/2022	01/25/2023
Conduction 04	CDN ISN ST08A_1	Teseq GmbH	CDN ISN ST08A	43352	10/07/2021	10/07/2022
Conduction 04	Capacitive Voltage Probe 01	SCHAFFNER	CVP 2200A	18711	02/23/2022	02/23/2023
Conduction 04	Current Probe	SCHAFFNER	SMZ 11	18030	02/23/2022	02/23/2023

5.2. Measurement Equipment Used:

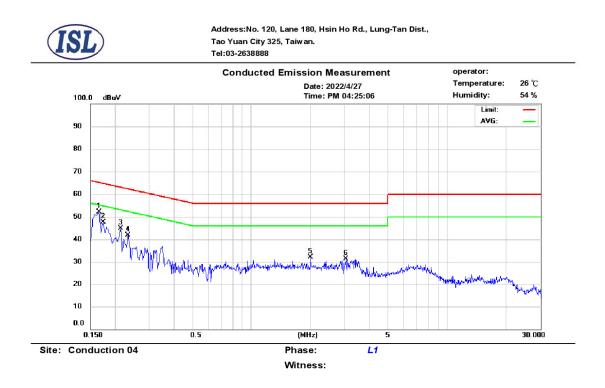
5.3. EUT Setup:

- 1. The conducted emission tests were performed in the test site, using the setup in accordance with the ANSI C63.10: 2013
- 2. The AC/DC Power adaptor of EUT was plug-in LISN. The EUT was placed flushed with the rear of the table.
- 3. The LISN was connected with ac power source.

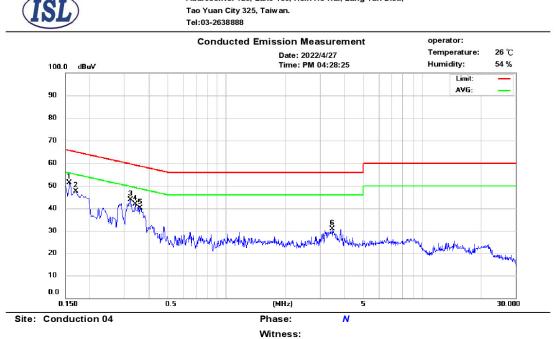
5.4. Measurement Procedure:

- 1. The EUT was placed on a table which is 0.8m above ground plane.
- 2. Maximum procedure was performed on the six highest emissions to ensure EUT compliance.
- 3. Repeat above procedures until all frequency measured were complete.
- 4. Both 120V & 240V have been verified, and 120V/60Hz was defined as the worst-case and record in the report.

5.5. Measurement Result:


The initial step in collecting conducted data is a spectrum analyzer peak scan of the measurement range. Significant peaks are then marked as shown on the following data page, and these signals are then quasi-peaked.

Note: Refer to next page for measurement data and plots.


AC POWER LINE CONDUCTED EMISSION TEST DATA

Operation Mode: Normal Operation

No.	Frequency (MHz)	QP_R (dBuV)	AVG_R (dBuV)	Correct Factor (dB)	QP Emission (dBuV)	QP Limit (dBuV)	QP Margin (dB)	AVG Emission (dBuV)	AVG Limit (dBuV)	AVG Margin (dB)
1	0.166	35.84	23.53	9.64	45.48	65.16	-19.68	33.17	55.16	-21.99
2	0.174	35.46	21.97	9.65	45.11	64.77	-19.66	31.62	54.77	-23.15
3	0.214	27.58	13.48	9.64	37.22	63.05	-25.83	23.12	53.05	-29.93
4	0.234	26.15	13.72	9.64	35.79	62.31	-26.52	23.36	52.31	-28.95
5	2.010	15.35	9.55	9.71	25.06	56.00	-30.94	19.26	46.00	-26.74
6	3.038	14.07	7.52	9.74	23.81	56.00	-32.19	17.26	46.00	-28.74

No.	Frequency (MHz)	QP_R (dBuV)	AVG_R (dBuV)	Correct Factor (dB)	QP Emission (dBuV)	QP Limit (dBuV)	QP Margin (dB)	AVG Emission (dBuV)	AVG Limit (dBuV)	AVG Margin (dB)
1	0.158	39.54	24.86	9.63	49.17	65.57	-16.40	34.49	55.57	-21.08
2	0.171	36.11	21.37	9.64	45.75	64.90	-19.15	31.01	54.90	-23.89
3	0.322	31.67	22.63	9.63	41.30	59.66	-18.36	32.26	49.66	-17.40
4	0.342	30.04	24.21	9.63	39.67	59.15	-19.48	33.84	49.15	-15.31
5	0.362	29.14	18.64	9.63	38.77	58.68	-19.91	28.27	48.68	-20.41
6	3.470	15.09	6.40	9.73	24.82	56.00	-31.18	16.13	46.00	-29.87

6. OUTPUT POWER / EIRP /SPECTRAL DENSITY MEASUREMENT

6.1. Standard Applicable

According to §15.407(a) Power limits:

(1) For the band 5.15-5.25 GHz.

(i) For an outdoor access point operating in the band 5.15 - 5.25 GHz, the maximum conducted output power over the frequency band of operation shall not exceed 1 W provided the maximum antenna gain does not exceed 6 dBi. In addition, the maximum power spectral density shall not exceed 17 dBm in any 1 megahertz band. If transmitting antennas of directional gain greater than 6 dBi are used, both the maximum conducted output power and the maximum power spectral density shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi. The maximum e.i.r.p. at any elevation angle above 30 degrees as measured from the horizon must not exceed 125 mW (21 dBm).

(ii) For an indoor access point operating in the band 5.15 – 5.25 GHz, the maximum conducted output power over the frequency band of operation shall not exceed 1 W provided the maximum antenna gain does not exceed 6 dBi. In addition, the maximum power spectral density shall not exceed 17 dBm in any 1 megahertz band. If transmitting antennas of directional gain greater than 6 dBi are used, both the maximum conducted output power and the maximum power spectral density shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

(iii) For fixed point-to-point access points operating in the band 5.15 – 5.25 GHz, the maximum conducted output power over the frequency band of operation shall not exceed 1 W. Fixed point-to-point U-NII devices may employ antennas with directional gain up to 23 dBi without any corresponding reduction in the maximum conducted output power or maximum power spectral density. For fixed point-to-point transmitters that employ a directional antenna gain greater than 23 dBi, a 1 dB reduction in maximum conducted output power and maximum power spectral density is required for each 1 dB of antenna gain in excess of 23 dBi. Fixed, point-to-point operations exclude the use of point-to-multipoint systems, omnidirectional applications, and multiple collocated transmitters transmitting the same information. The operator of the U-NII device, or if the equipment is professionally installed, the installer, is responsible for ensuring that systems employing high gain directional antennas are used exclusively for fixed, point-to-point operations.

(iv) For mobile and portable client devices in the 5.15 - 5.25 GHz band, the maximum conducted output power over the frequency band of operation shall not exceed 250 mW provided the maximum antenna gain does not exceed 6 dBi. In addition, the maximum power spectral density shall not exceed 11 dBm in any 1 megahertz band. If transmitting antennas of directional gain greater than 6 dBi are used, both the maximum conducted output power and the maximum power spectral density shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

6.2. Measurement Procedure

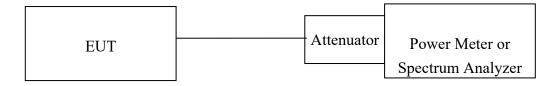
For Output Power

- 1. Place the EUT on the table and set it in transmitting mode.
- 2. Remove the antenna from the EUT and then connect a low loss RF cable from the antenna port to the power meter
- 3. Record the max. reading.
- 4. Repeat above procedures until all frequency measured were complete.

For Power Spectral Density

- 1. Place the EUT on the table and set it in transmitting mode.
- 2. Remove the antenna from the EUT and then connect a low loss RF cable from the antenna port to Spectrum.
- 3. Set RBW=1MHz,VBW=3MHz, Span=50MHz (Base Mode), Sweep time = Auto, traces 100 sweeps of video averaging
- 4. Record the max. reading.
- 5. Repeat above procedures until all frequency measured were complete.

Refer to KDB 789033 D02 General UNII Test Procedures New Rules v02r01



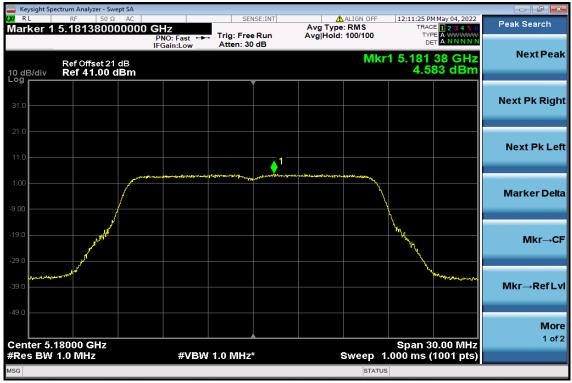
Location Conducted	Equipment Name	Brand	Model	S/N	Last Cal. Date	Next Cal. Date
Conducted	Power Meter	Anritsu	ML2495A	1116010	09/30/2021	09/30/2022
Conducted	Power Sensor	Anritsu	MA2411B	34NKF50	09/30/2021	09/30/2022
Conducted	Power Sensor	DARE	RPR3006W	13I00030SNO33	01/07/2022	01/07/2023
Conducted	Power Sensor	DARE	RPR3006W	13I00030SNO34	01/07/2022	01/07/2023
Conducted	Power Sensor	DARE	RPR3006W	14I00889SNO35	06/23/2021	06/23/2022
Conducted	Power Sensor	DARE	RPR3006W	14I00889SNO36	06/23/2021	06/23/2022
Conducted	Temperature Cham- ber	KSON	THS-B4H100	2287	04/26/2022	04/26/2023
Conducted	DC Power supply	ABM	8185D	N/A	01/06/2022	01/06/2023
Conducted	AC Power supply	EXTECH	CFC105W	NA	N/A	N/A
Conducted	Spectrum analyzer	Keysight	N9010A	MY56070257	09/28/2021	09/28/2022
Conducted	Test Software	DARE	Radiation Ver:2013.1.23	NA	NA	NA
Conducted (TS8997)	Wideband Radio Communication Tester	R&S	CMW500	168811	09/09/2021	09/09/2022
Conducted (TS8997)	Signal Generator	R&S	SMB100B	101085	09/09/2021	09/09/2022
Conducted (TS8997)	Vector Signal Gen- erator	R&S	SMBV100A	263246	09/09/2021	09/09/2022
Conducted (TS8997)	Signal analyzer 40GHz	R&S	FSV40	101884	09/07/2021	09/07/2022
Conducted (TS8997)	OSP150 extension unit CAM-BUS	R&S	OSP150	101107	09/10/2021	09/10/2022
Conducted (TS8997)	Test Software	R&S	EMC32 Ver:11.10.00	NA	NA	NA

6.3. Measurement Equipment Used:

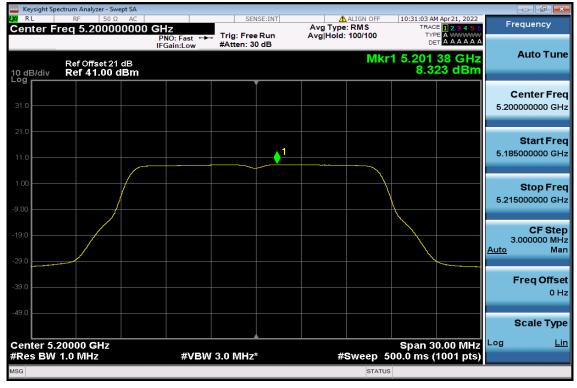
6.4. Measurement Equipment Used:

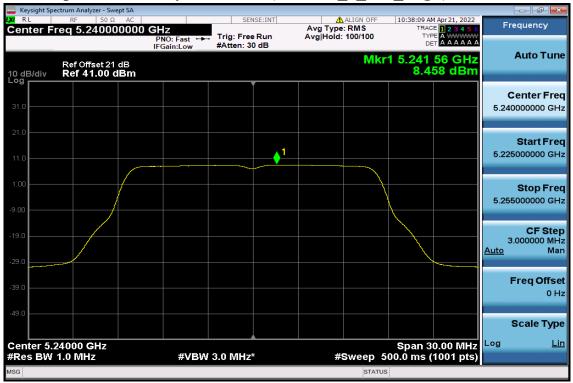
-23 of 121- FCC ID: 2ACJF-FGW-XSR150DX

6.5. Measurement Result


Band	Mode	Freq.	0	Output Po	wer (dBm	l)	Duty Factor	Total Output	Output Power
Dana	Widde	(MHz)	Chain 0	Chain 1	Chain 2	Chain 3	(dB)	Power (dBm)	Limit (dBm)
		5180	18.020	18.100	18.200	18.050	0.00		30.00
	11a	5200	22.010	22.150	22.150	22.340	0.00		30.00
		5240	21.970	22.010	21.950	22.040	0.00		30.00
		5180	17.460	17.510	17.340	17.150	0.00	23.39	30.00
	VHT20	5200	22.090	22.120	22.020	22.030	0.00	28.09	30.00
		5240	22.010	22.041	21.980	21.980	0.00	28.02	30.00
	VHT40	5190	15.410	15.470	15.470	15.410	0.00	21.46	30.00
UNII-1		5230	22.310	22.410	22.110	22.150	0.00	28.27	30.00
	VHT80	5210	13.760	13.820	13.830	13.730	0.35	20.15	30.00
		5180	17.240	17.340	17.230	17.350	0.17	23.48	30.00
	HE20	5200	22.410	22.460	22.420	22.470	0.17	28.63	30.00
		5240	22.240	22.310	22.240	22.310	0.17	28.47	30.00
		5190	15.570	15.620	15.720	15.670	0.24	21.91	30.00
	HE40	5230	21.980	21.980	22.040	22.040	0.24	28.27	30.00
	HE80	5210	13.350	13.560	13.320	13.450	0.40	19.84	30.00

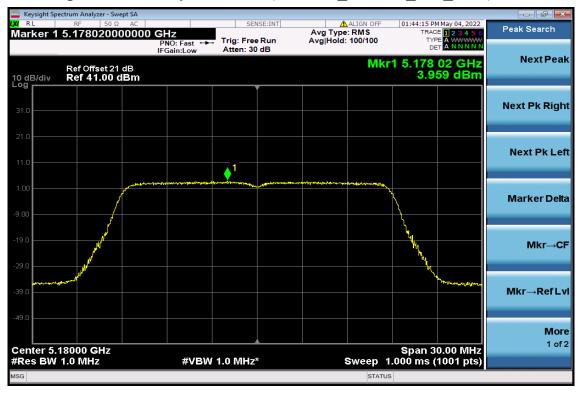
Dand	Mode	Frequency		PSD (dB	m/MHz)		Duty Factor	Total PSD	PSD Limit
Band	Mode	(MHz)	Chain 0	Chain 1	Chain 2	Chain 3	(dB)	(dBm/MHz)	(dBm/MHz)
		5180	4.583	4.559	3.615	4.313	0.00		17.00
	11a	5200	8.323	7.267	6.646	8.654	0.00		17.00
		5240	8.458	7.578	7.107	8.768	0.00		17.00
		5180	3.959	3.752	3.823	3.861	0.00	9.87	17.00
	VHT20	5200	8.627	8.569	8.685	8.710	0.00	14.67	17.00
		5240	8.545	8.827	8.574	8.639	0.00	14.67	17.00
	VHT40	5190	-0.758	-0.955	-1.033	-0.851	0.00	5.12	17.00
UNII-1		5230	5.795	5.776	5.908	5.922	0.00	11.87	17.00
	VHT80	5210	-5.779	-5.828	-5.655	-5.763	0.35	0.61	17.00
		5180	3.189	3.398	3.383	3.577	0.17	9.58	17.00
	HE20	5200	8.536	8.238	7.481	8.355	0.17	14.36	17.00
		5240	8.731	8.642	8.616	8.616	0.17	14.84	17.00
	HE40	5190	-0.801	-0.971	-0.874	-0.848	0.24	5.39	17.00
		5230	6.276	5.948	5.727	5.967	0.24	12.24	17.00
	HE80	5210	-5.899	-5.842	-5.918	-5.735	0.40	0.57	17.00


Power Spectral Density Measurement:



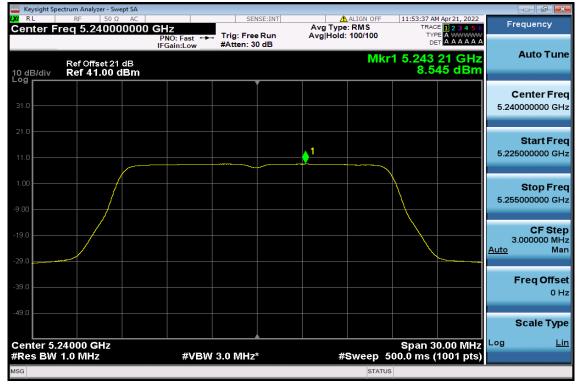
Power Spectral Density Data Plot (Chain 0_a_CH_Low)

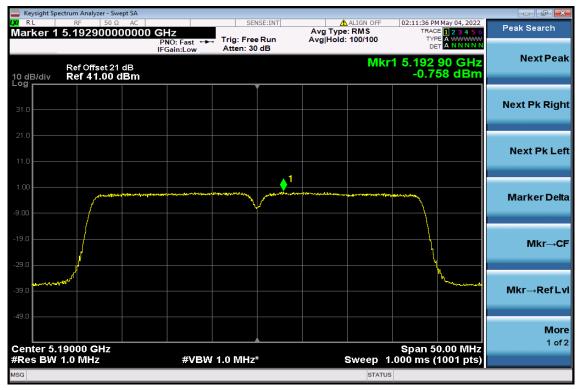
Power Spectral Density Data Plot (Chain 0_a_CH_Mid)



Power Spectral Density Data Plot (Chain 0_a_CH_High)

Power Spectral Density Test Plot (Chain 0_VHT20_CH_Low)





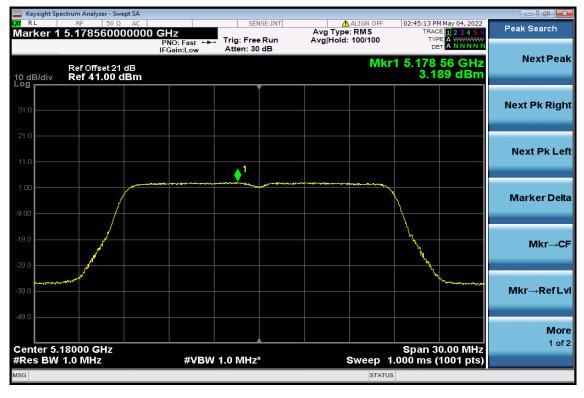
Power Spectral Density Test Plot (Chain 0_VHT20_CH_Mid)

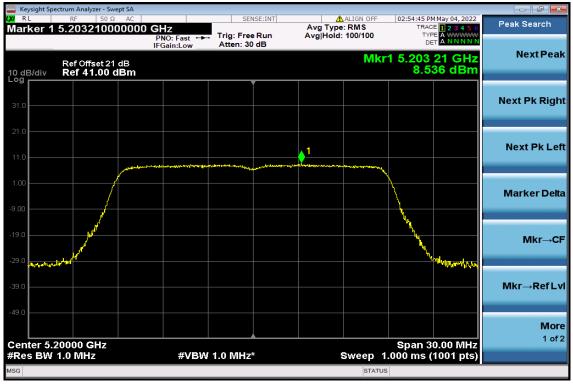
Power Spectral Density Test Plot (Chain 0_VHT20_CH_High)



Power Spectral Density Test Plot (Chain 0_VHT40_CH_Low)

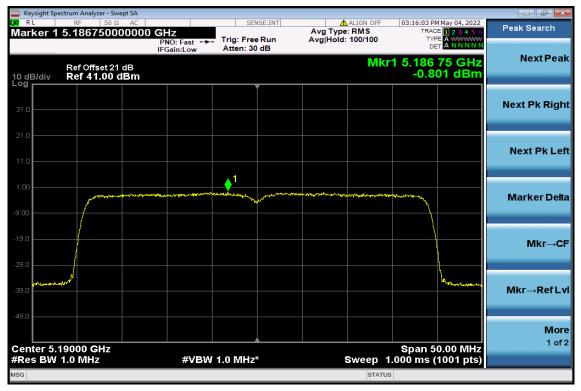
Power Spectral Density Test Plot (Chain 0_VHT40_CH_High)





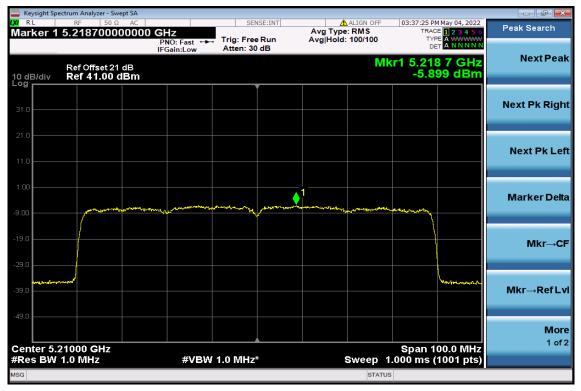
Power Spectral Density Test Plot (Chain 0_VHT80_CH_Low)

Power Spectral Density Test Plot (Chain 0_HE20_CH_Low)



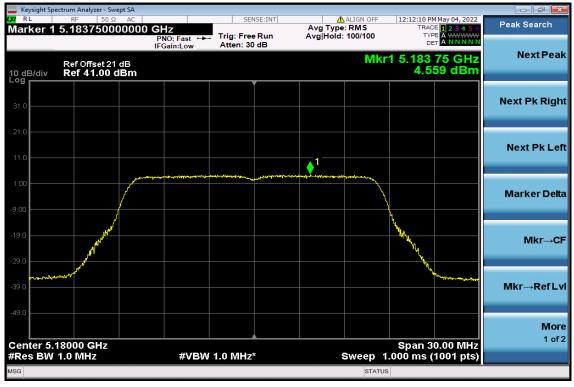
Power Spectral Density Test Plot (Chain 0_HE20_CH_Mid)

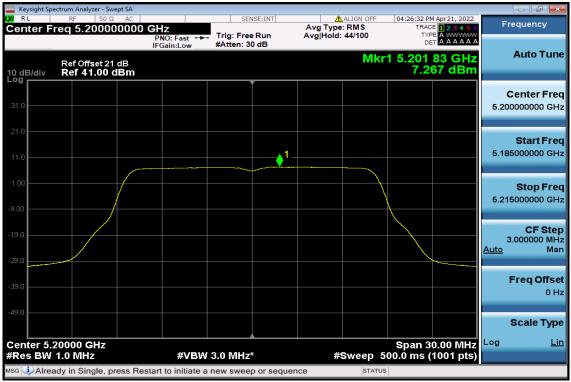
Power Spectral Density Test Plot (Chain 0_HE20_CH_High)



Power Spectral Density Test Plot (Chain 0_HE40_CH_Low)

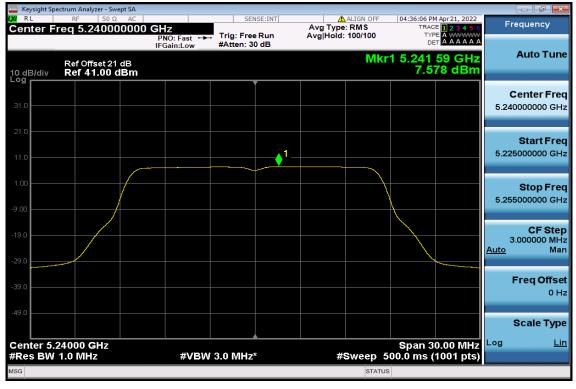
Power Spectral Density Test Plot (Chain 0_HE40_CH_High)

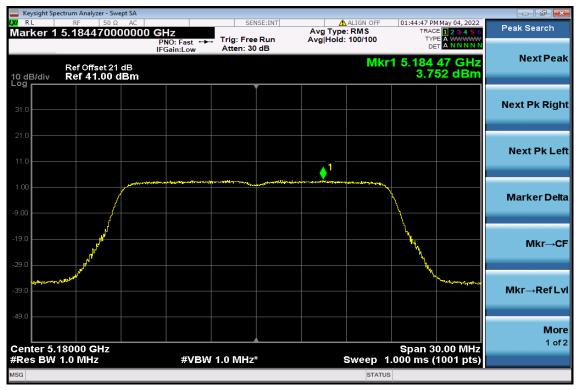




Power Spectral Density Test Plot (Chain 0_HE80_CH_Low)

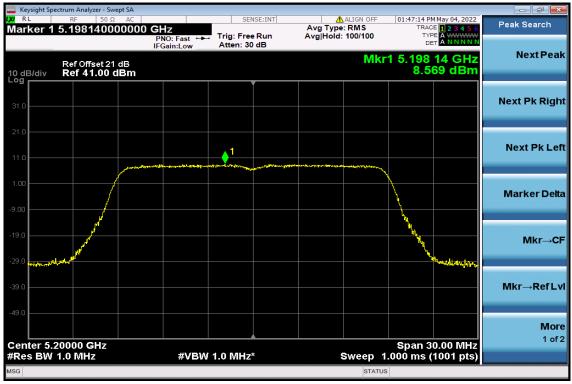
Power Spectral Density Data Plot (Chain 1_a_CH_Low)

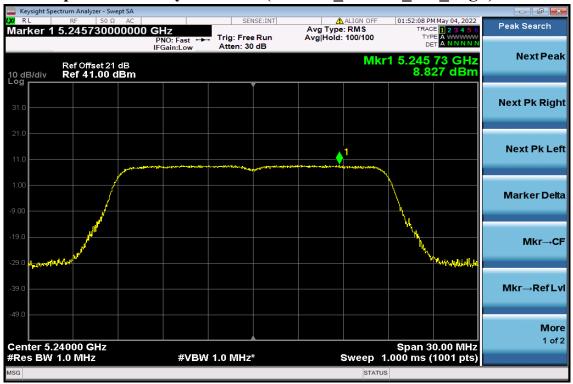




Power Spectral Density Data Plot (Chain 1_a_CH_Mid)

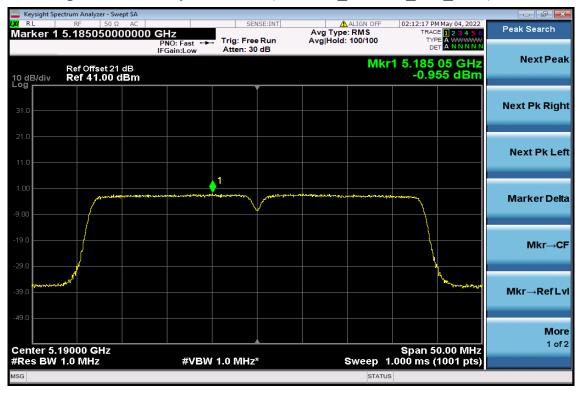
Power Spectral Density Data Plot (Chain 1_a_CH_High)

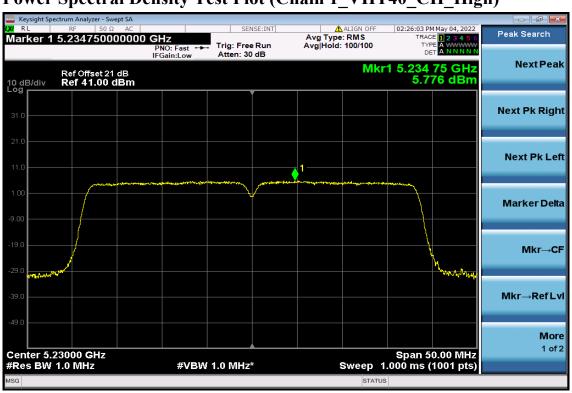




Power Spectral Density Test Plot (Chain 1_VHT20_CH_Low)

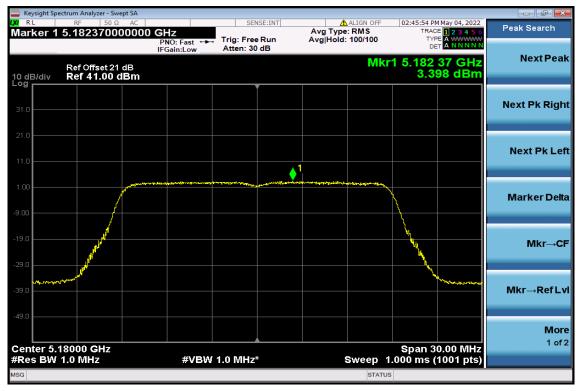
Power Spectral Density Test Plot (Chain 1_VHT20_CH_Mid)





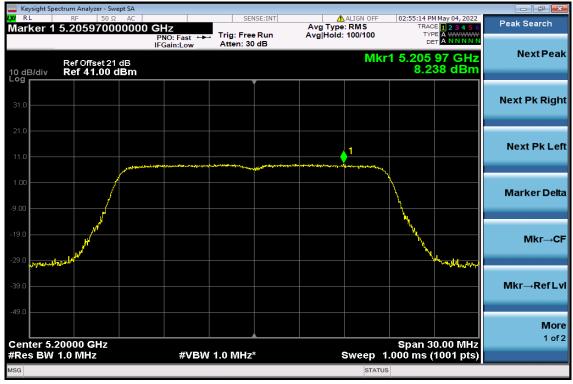
Power Spectral Density Test Plot (Chain 1_VHT20_CH_High)

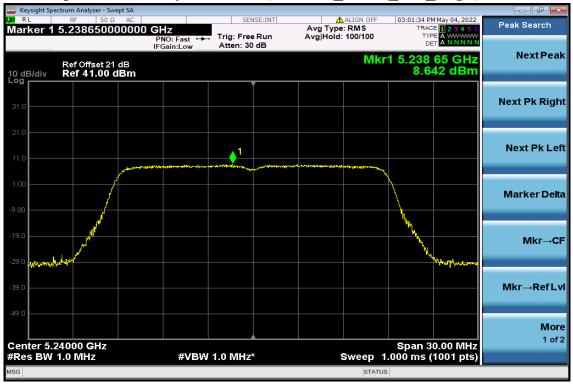
Power Spectral Density Test Plot (Chain 1_VHT40_CH_Low)



Power Spectral Density Test Plot (Chain 1_VHT40_CH_High)

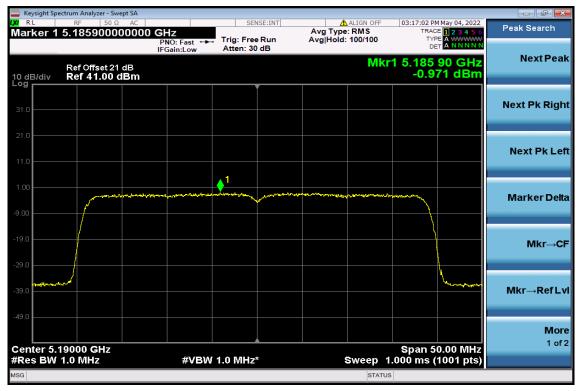
Power Spectral Density Test Plot (Chain 1_VHT80_CH_Low)


	ectrum Analyzer - Swept SA					
<mark>x/</mark> RL Marker 1	RF 50 Ω AC 5.197300000000	GHz	SENSE:INT	ALIGN OFF	02:39:21 PM May 04, 2022 TRACE 1 2 3 4 5 6	Peak Search
10 dB/div	Ref Offset 21 dB Ref 41.00 dBm	PNO: Fast ++ IFGain:Low	Trig: Free Run Atten: 30 dB	Avg Hold: 100/100	kr1 5.197 3 GHz -5.828 dBm	Next Peak
31.0						Next Pk Righ
21.0						Next Pk Lef
1.00 -9.00 	prove the second s	1		an and a start of the start of		Marker Delta
-19.0						Mkr→Ci
-39.0	and with the second				hourse sound	Mkr→RefLv
-49.0 Center 5.1 #Res BW	21000 GHz 1.0 MHz	#VBW	1.0 MHz*	Sweep	Span 100.0 MHz 1.000 ms (1001 pts)	More 1 of 2
MSG				STATU	IS	



Power Spectral Density Test Plot (Chain 1_HE20_CH_Low)

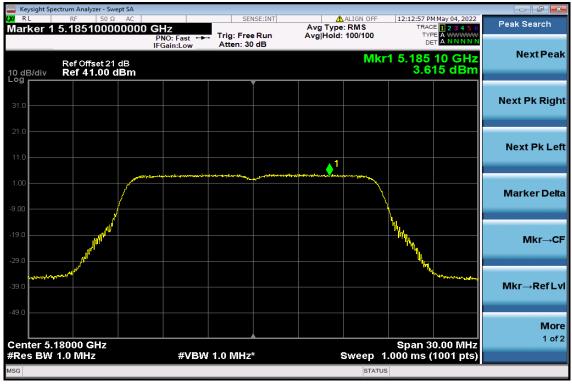
Power Spectral Density Test Plot (Chain 1_HE20_CH_Mid)





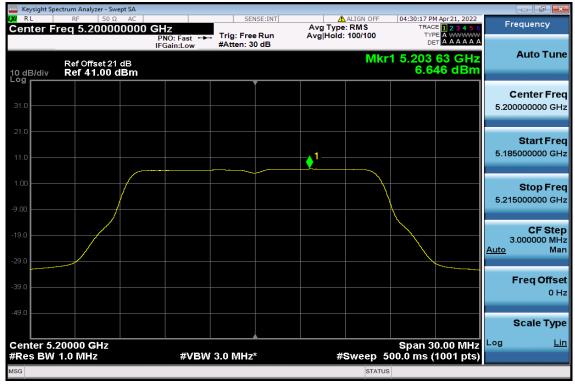
Power Spectral Density Test Plot (Chain 1_HE20_CH_High)

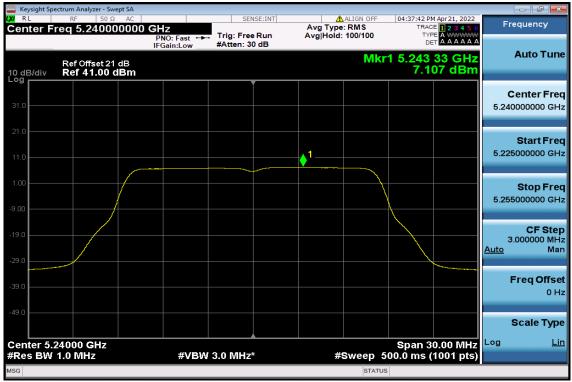
Power Spectral Density Test Plot (Chain 1_HE40_CH_Low)



Power Spectral Density Test Plot (Chain 1_HE40_CH_High)

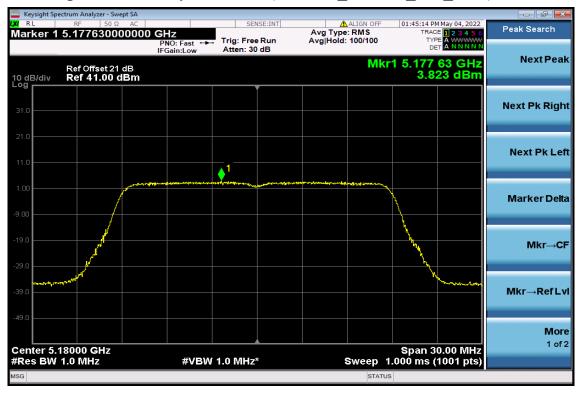
Power Spectral Density Test Plot (Chain 1_HE80_CH_Low)

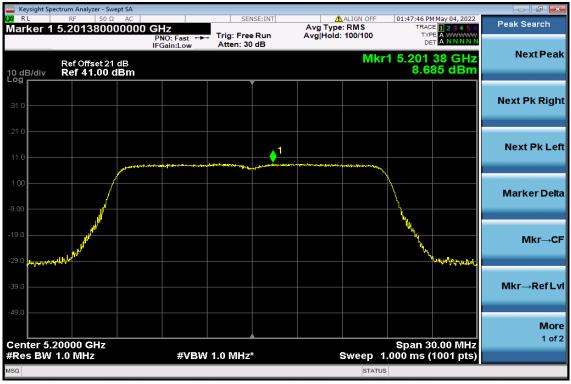

	ectrum Analyzer - Swept					
X/ RL Marker 1	RF 50 Ω		SENSE:INT	Avg Type: RMS	03:37:59 PM May 04, 2022 TRACE 1 2 3 4 5 6	Peak Search
10 dB/div	Ref Offset 21 dE Ref 41.00 dB	PNO: Fast ↔ IFGain:Low	Trig: Free Run Atten: 30 dB	Avg Hold: 100/100	cr1 5.197 4 GHz -5.842 dBm	Next Peak
31.0						Next Pk Right
21.0						Next Pk Lef
1.00 -9.00			war warden and warden a			Marker Delta
-19.0						Mkr→CF
-39.0						Mkr→RefLv
	21000 GHz 1.0 MHz	#VBW	1.0 MHz*	Sweep 1	Span 100.0 MHz I.000 ms (1001 pts)	More 1 of 2
MSG				STATU		



Power Spectral Density Data Plot (Chain 2_a_CH_Low)

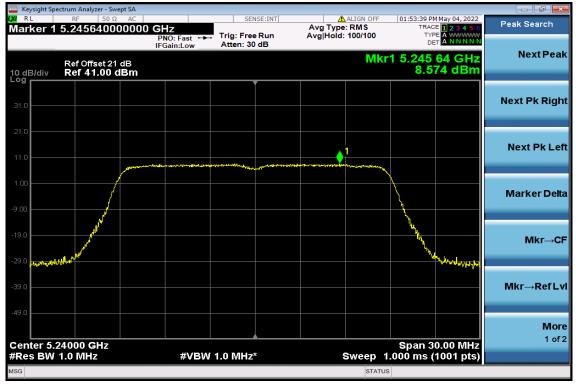
Power Spectral Density Data Plot (Chain 2_a_CH_Mid)

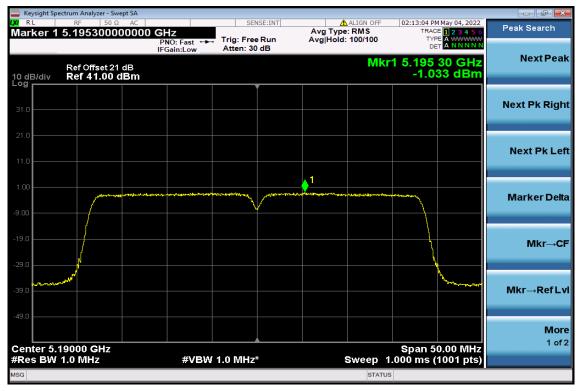




Power Spectral Density Data Plot (Chain 2_a_CH_High)

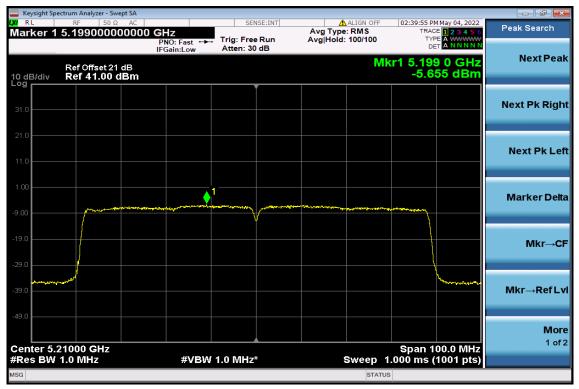
Power Spectral Density Test Plot (Chain 2_VHT20_CH_Low)





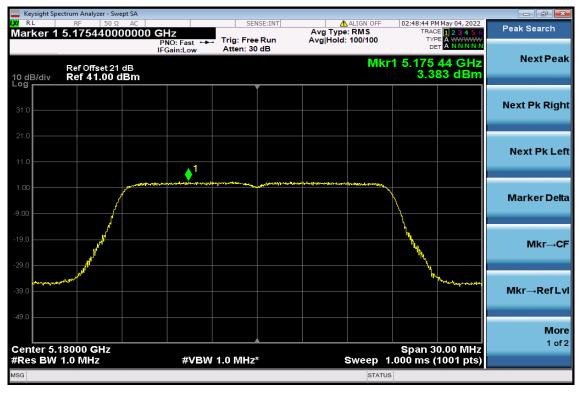
Power Spectral Density Test Plot (Chain 2_VHT20_CH_Mid)

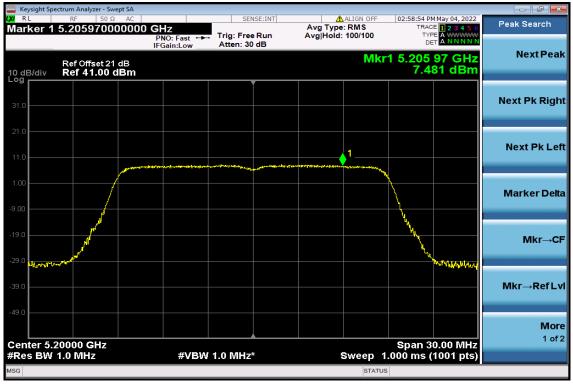
Power Spectral Density Test Plot (Chain 2_VHT20_CH_High)



Power Spectral Density Test Plot (Chain 2_VHT40_CH_Low)

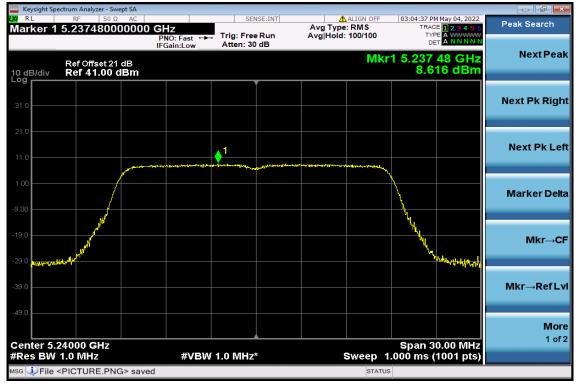
Power Spectral Density Test Plot (Chain 2_VHT40_CH_High)





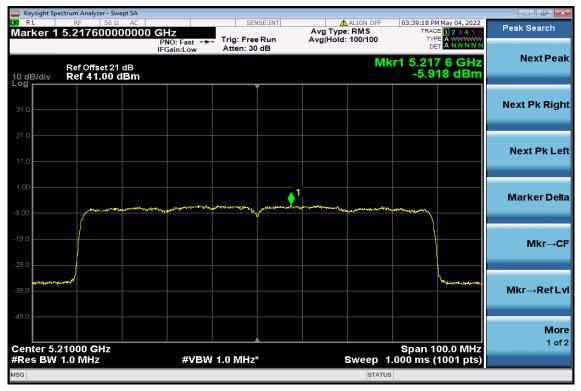
Power Spectral Density Test Plot (Chain 2_VHT80_CH_Low)

Power Spectral Density Test Plot (Chain 2_HE20_CH_Low)



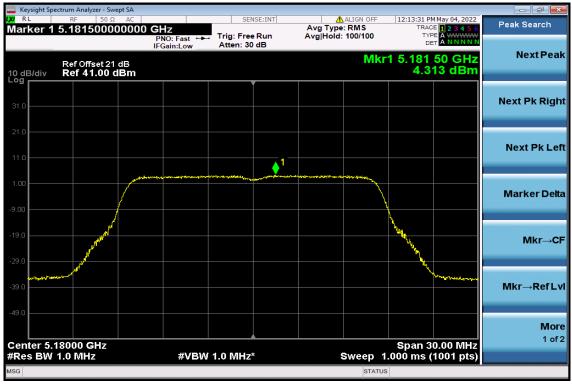
Power Spectral Density Test Plot (Chain 2_HE20_CH_Mid)

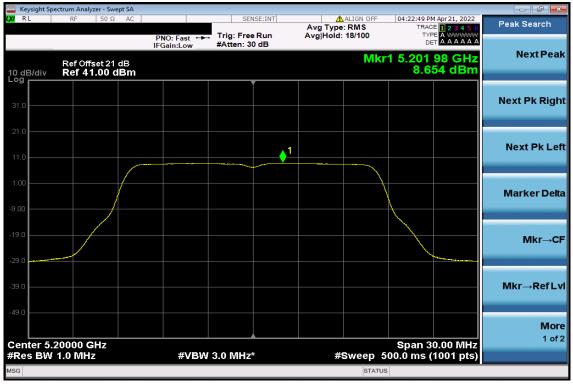
Power Spectral Density Test Plot (Chain 2_HE20_CH_High)



Power Spectral Density Test Plot (Chain 2_HE40_CH_Low)

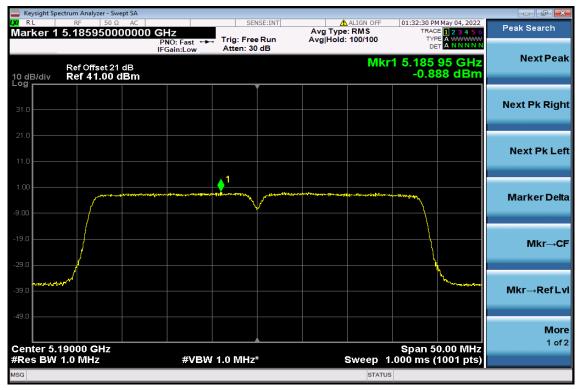
Power Spectral Density Test Plot (Chain 2_HE40_CH_High)





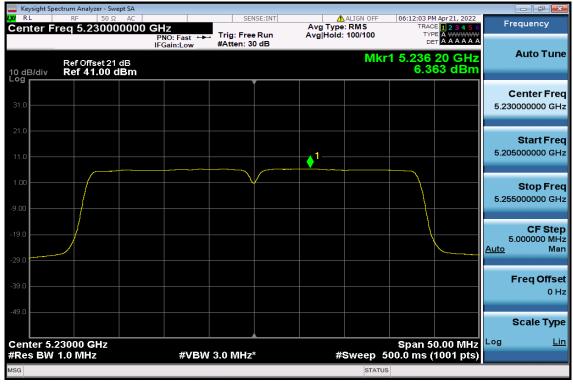
Power Spectral Density Test Plot (Chain 2_HE80_CH_Low)

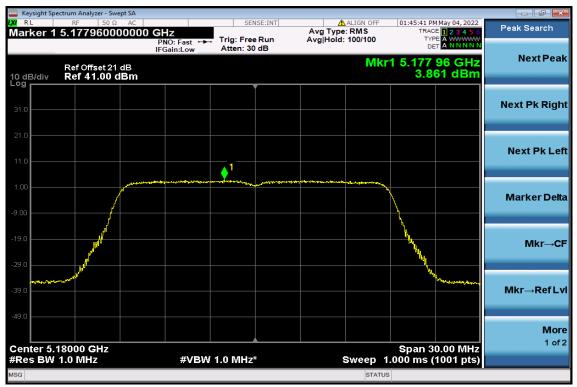
Power Spectral Density Data Plot (Chain 3_a_CH_Low)



Power Spectral Density Data Plot (Chain 3_a_CH_Mid)

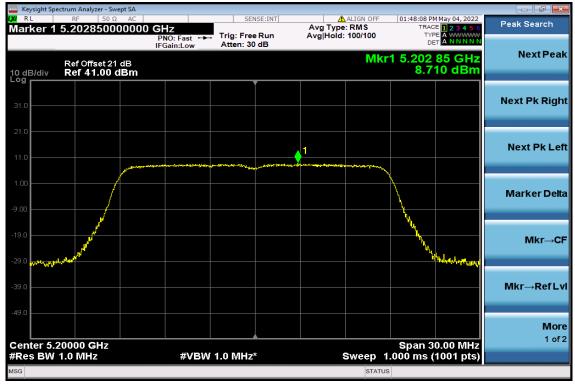
Power Spectral Density Data Plot (Chain 3_a_CH_High)

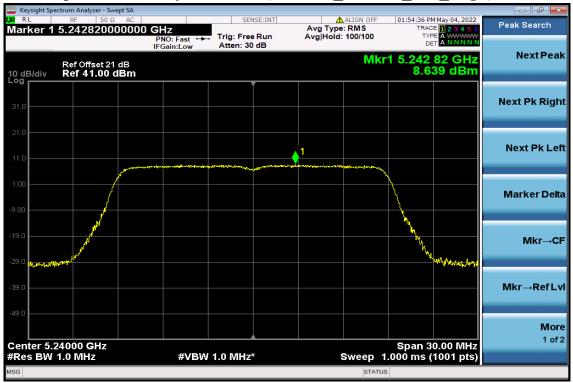

Keysight Spectrum Analyzer - Swept SA RL RF 50.0 AC				
RL RF 50 Ω AC enter Freq 5.240000000	GHZ	Avg Type: RMS	04:40:57 PM Apr 21, 2022 TRACE 1 2 3 4 5 6 TYPE A WWWWW	Frequency
Ref Offset 21 dB dB/div Ref 41.00 dBm	PN0: Fast →→ Trig: Free Run IFGain:Low #Atten: 30 dB		r1 5.242 40 GHz 8.768 dBm	Auto Tune
1.0				Center Fred 5.240000000 GHz
1.0		▲1		Start Fred 5.225000000 GH
.00				Stop Fred 5.255000000 GHz
9.0				CF Step 3.000000 MH <u>Auto</u> Mar
9.0				Freq Offse 0 H
enter 5.24000 GHz			Span 30.00 MHz	Scale Type Log <u>Lir</u>
Res BW 1.0 MHz	#VBW 3.0 MHz*	#Sweep	500.0 ms (1001 pts) ^{Js}	



Power Spectral Density Test Plot (Chain 3_HT40_CH_Low)

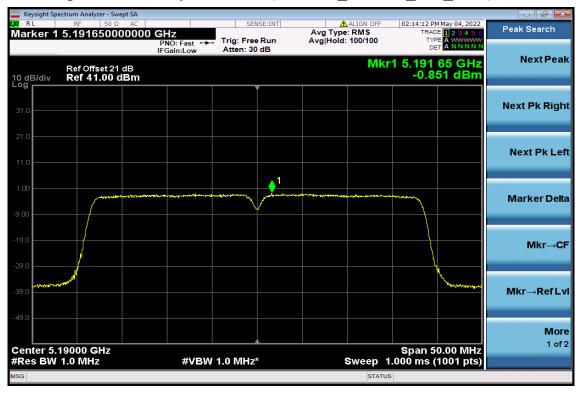
Power Spectral Density Test Plot (Chain 3_HT40_CH_High)

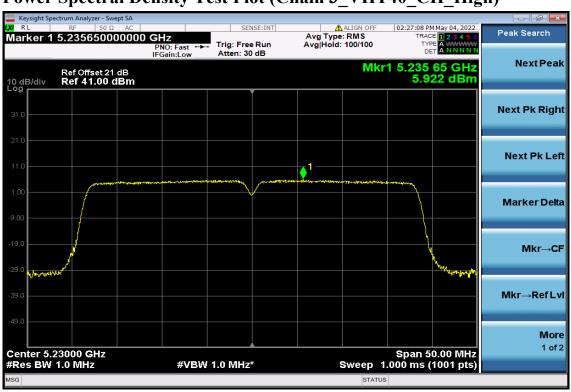




Power Spectral Density Test Plot (Chain 3_VHT20_CH_Low)

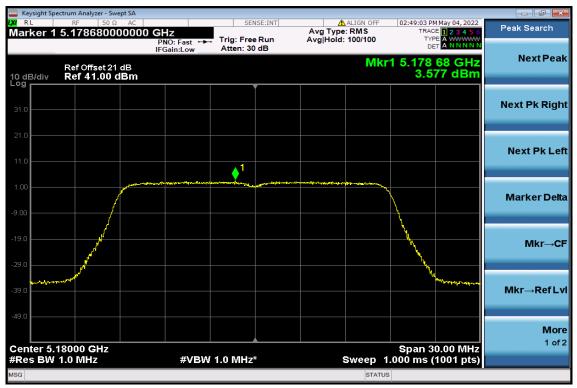
Power Spectral Density Test Plot (Chain 3_VHT20_CH_Mid)





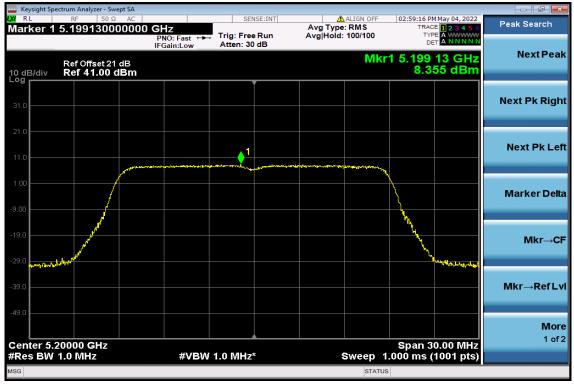
Power Spectral Density Test Plot (Chain 3_VHT20_CH_High)

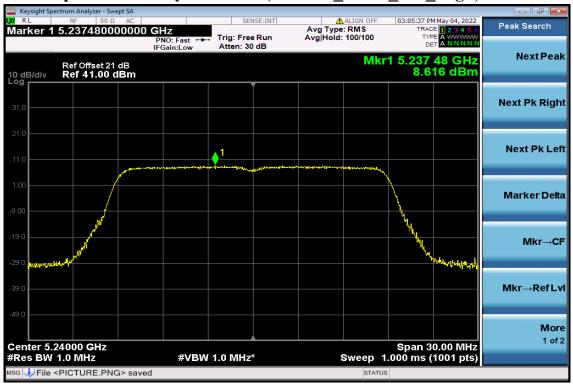
Power Spectral Density Test Plot (Chain 3_VHT40_CH_Low)



Power Spectral Density Test Plot (Chain 3_VHT40_CH_High)

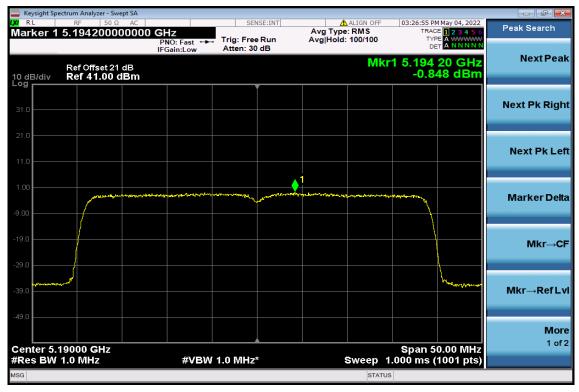
Power Spectral Density Test Plot (Chain 3_VHT80_CH_Low)

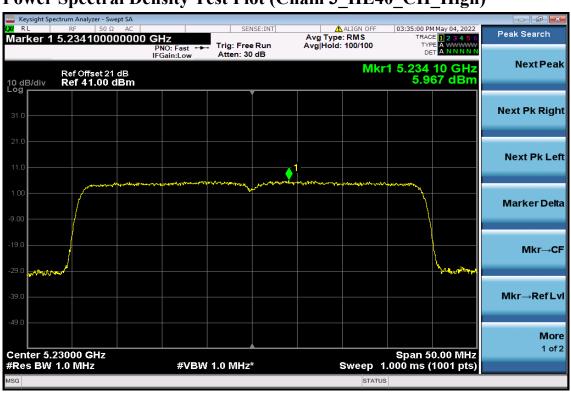

	ectrum Analyzer - Swept SA					- i <mark>-</mark>
<mark>x/</mark> RL Marker 1	RF 50 Ω AC) GHz	SENSE:INT	Avg Type: RMS	02:40:23 PM May 04, 2022 TRACE 1 2 3 4 5 6	Peak Search
10 dB/div	Ref Offset 21 dB Ref 41.00 dBm	PNO: Fast ++- IFGain:Low	Trig: Free Run Atten: 30 dB	Avg Hold: 100/100	cr1 5.196 5 GHz -5.763 dBm	Next Peak
31.0						Next Pk Right
21.0						Next Pk Lef
1.00 		1	unite and the second	Profiles and the second s	apartimpurada	Marker Delta
-19.0						Mkr→CF
-39.0	t					Mkr→RefLv
	21000 GHz 1.0 MHz	#VBW	1.0 MHz*	Sweep 1	Span 100.0 MHz I.000 ms (1001 pts)	More 1 of 2
MSG				STATU		



Power Spectral Density Test Plot (Chain 3_HE20_CH_Low)

Power Spectral Density Test Plot (Chain 3_HE20_CH_Mid)





Power Spectral Density Test Plot (Chain 3_HE20_CH_High)

Power Spectral Density Test Plot (Chain 3_HE40_CH_Low)

Power Spectral Density Test Plot (Chain 3_HE40_CH_High)

Power Spectral Density Test Plot (Chain 3_HE80_CH_Low)

	ectrum Analyzer - Swept SA					
<mark>x/</mark> RL Marker 1	RF 50 Ω AC 5.218100000000) GHz	SENSE:INT	Aug Type: RMS	03:39:46 PM May 04, 2022 TRACE 1 2 3 4 5 6	Peak Search
10 dB/div	Ref Offset 21 dB Ref 41.00 dBm	PNO: Fast ↔ IFGain:Low	Trig: Free Run Atten: 30 dB	Avg Hold: 100/100	kr1 5.218 1 GHz -5.735 dBm	Next Peak
31.0						Next Pk Righ
21.0						Next Pk Lef
1.00		and the second	and the second sec	1	a marine a	Marker Delta
-19.0						Mkr→Ci
-39.0					and the second sec	Mkr→RefLv
Center 5. #Res BW	21000 GHz 1.0 MHz	#VBW	1.0 MHz*	Sweep	Span 100.0 MHz 1.000 ms (1001 pts)	More 1 of 2
MSG				STATU		

7. 26dB Emission Bandwidth Measurement

7.1. Standard Applicable

According to §15.407(a). No Limit required.

7.2. Measurement Procedure

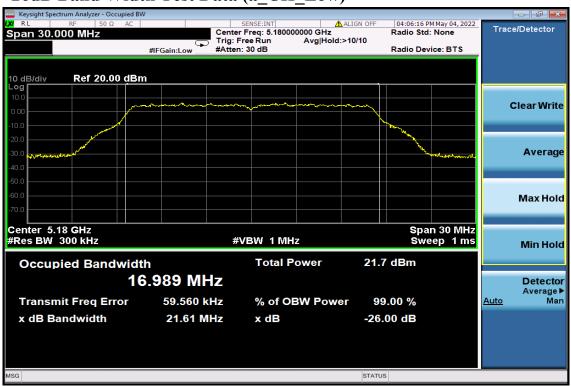
- 1. Place the EUT on the table and set it in transmitting mode.
- 2. Remove the antenna from the EUT and then connect a low loss RF cable from the antenna port to the spectrum analyzer.
- 3. Set the spectrum analyzer as RBW=1% to 5% of the OBW, VBW \ge 3 × RBW, Detector = Peak, Sweep=auto, Trace Max. hold
- 4. Mark the peak frequency and –26dB (upper and lower) frequency.
- 5. Repeat above procedures until all frequency measured were complete.

Refer to section D of KDB Document: KDB 789033 D02 General UNII Test Procedures New Rules v01r03

7.3. Measurement Equipment Used:

Refer to section 6.3 for details.

7.4. Test Set-up:

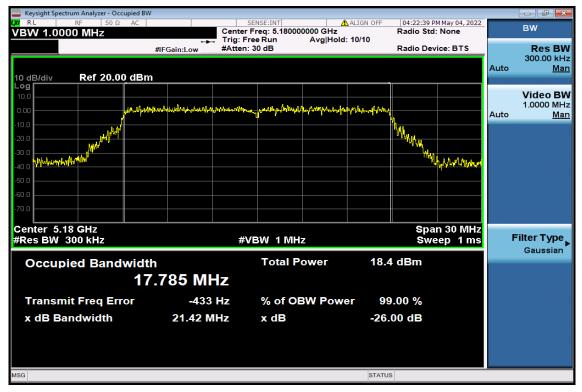

Refer to section 6.4 for details.

7.5. Measurement Result

Band	Mode	Frequency (MHz)	26dB Bandwidth (MHz)
		5180	21.61
	11a	5200	21.42
		5240	21.50
		5180	21.42
	VHT20	5200	21.85
		5240	21.75
	VHT40	5190	39.81
UNII-1	VH140	5230	40.01
	VHT80	5210	79.64
		5180	21.38
	HE20	5200	21.20
		5240	21.41
		5190	39.74
	HE40	5230	39.80
	HE80	5210	81.56

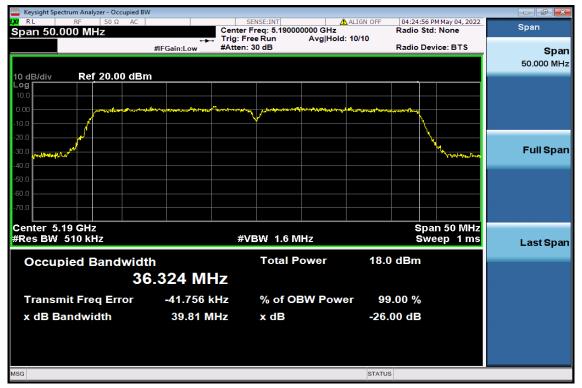
26dB Band Width Test Data (a_CH_Low)

26dB Band Width Test Data (a_CH_Mid)



26dB Band Width Test Data (a_CH_High)

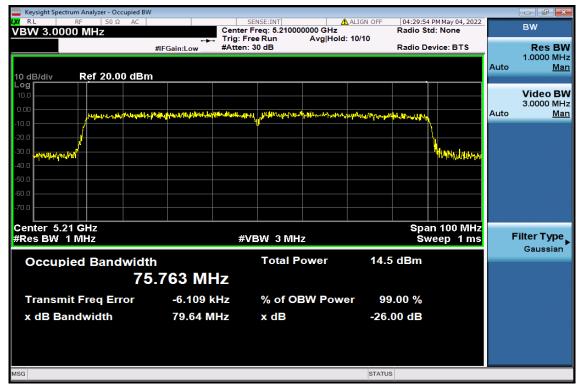
26dB Band Width Test Data (VHT20_CH_Low)



26dB Band Width Test Data (VHT20_CH_Mid)

26dB Band Width Test Data (VHT20_CH_High)

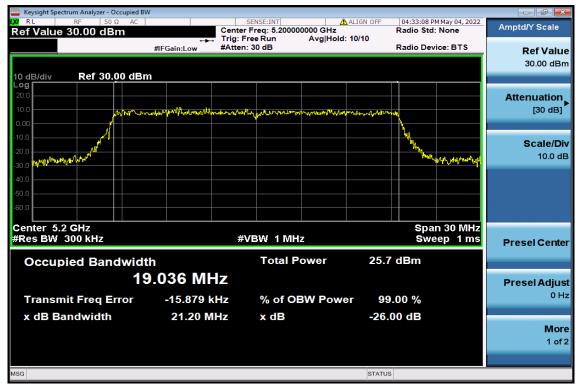
RL RF 50.0 AC SENSE:INT ALIGN OFF 11:53:54 AM Apr21, 2022 Center Freq 5.2400000000 GHz Center Freq: 5.24000000 GHz Radio Std: None Radio Device: BTS Radio Device: BTS Matter: Std Auge Center Freq: 5.24000000 GHz Center Freq: 5.24000000 GHz Radio Device: BTS Ref Offset 21 dB Image: Std Ref Offset 21 dB Std Std
Ref Offset 21 dB Avg Hold: 100/100 Radio Device: BTS 10 dB/div Ref 41.00 dBm Center Free 21.0 0 0 0 11.0 0 0 0 19.0 0 0 0 19.0 0 0 0 19.0 0 0 0 19.0 0 0 0 19.0 0 0 0 39.0 0 0 0
Ref Offset 21 dB Center Free 31.0
10 dB/div Ref 41.00 dBm Log Center Free 31.0 5.24000000 GH2 11.0 5.24000000 GH2 10.0 700 900 700 330 900 330 900
31.0
21.0
1.00 9.00 -19.0 -29.0 -39.0 -39.0
1.00 1.00 9.00 9.00 -19.0 9.00 -29.0 9.00 -39.0 9.00
-19.0 -29.0 -39.0
-29.0
Center 5.24 GHz Span 30 MHz
#Res BW 300 kHz #VBW 1 MHz Sweep 1 ms 3.000000 MHz
Auto Mar
Occupied Bandwidth Total Power 26.6 dBm
18.139 MHz Freq Offse
Transmit Freq Error -50.087 kHz % of OBW Power 99.00 %
x dB Bandwidth 21.75 MHz x dB -26.00 dB
MSG STATUS



26dB Band Width Test Data (VHT40_CH_Low)

26dB Band Width Test Data (VHT40_CH_High)

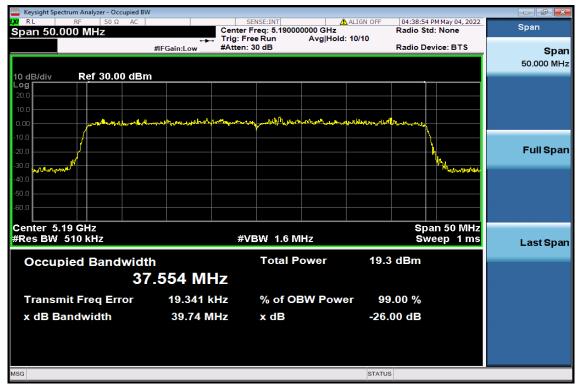
RL RF 50 Ω AC Center Freq 5.230000000	Trig:	SENSE:INT er Freq: 5.230000000 G Free Run Avg en: 30 dB	ALIGN OFF Hz Hold: 100/100	12:05:52 PI Radio Std: Radio Dev		Frequency
Ref Offset 21 dB 10 dB/div Ref 41.00 dBm Log						
21.0						Center Freq 5.230000000 GHz
11.0 1.00 -9.00	in a star of the second back of the		allenter Kine Karena and Karena an	And h h h		
-19.0 http://www.andline.org/ -29.0				· · · · · · · · · · · · · · · · · · ·	Land Malanda	
-49.0				Sna	n 50 MHz	
#Res BW 510 kHz		VBW 1.6 MHz	26.7		ep 1 ms	CF Step 5.000000 MHz <u>Auto</u> Man
Occupied Bandwidtl	.436 MHz	Total Power	20.7	авш		Freq Offset
Transmit Freq Error x dB Bandwidth	-35.794 kHz 40.01 MHz	% of OBW P x dB		0.00 % 00 dB		0 Hz
MSG			STATUS	5		



26dB Band Width Test Data (VHT80_CH_Low)

26dB Band Width Test Data (HE20_CH_Low)

🔤 Keysight Spectr	rum Analyzer -	Occupied BW								_	
		Ω AC			NSE:INT rea: 5.18000		ALIGN OFF	04:31:56 P	M May 04, 2022	Sp	an
Span 30.00	UU MHZ		↔	, Trig: Fre	e Run	Avg Hold	: 10/10				
			#IFGain:Low	#Atten: 3	0 dB			Radio Dev	/ice: BTS		Span
										3	0.000 MHz
10 dB/div	Ref 20	.00 dBm									
Log 10.0											
		anosherm	A Martin Martin	w was	July menou	u. man-ugal	man				
0.00	<i>,</i>										
-10.0											
-20.0	المعكول							W.,			
-30.0	may M.								www.	F	ull Span
-40.0											
-50.0											
-60.0											
-70.0											
Center 5.1	9 CH7							Sna	n 30 MHz		
#Res BW 3				#VE	3W 1 MH	z			eep 1 ms		ast Span
										L	ascəpan
Occupi	ied Ban	ldwidt	า		Total P	ower	20.	5 dBm			
		19	.043 MI	Hz							
Transmi	it Freq E	Frror	-26.802	kHz	% of O	BW Powe	er 99	9.00 %			
x dB Ba	ndwidth		21.38 N	IHz	x dB		-26.	00 dB			
MSG							STATU	s			
							0				



26dB Band Width Test Data (HE20_CH_Mid)

26dB Band Width Test Data (HE20_CH_High)

X RL RF 50 Ω AC Center Freq 5.240000000 GHz HICC HICC HICC HICC	SENSE Center Freq ← Trig: Free R in:Low #Atten: 30 d	: 5.240000000 GHz un Avg Hold: 1	Ra 0/10	dio Std: None	Frequency
10 dB/div Ref 30.00 dBm	III.LOW WRITE OF				Center Freq
10.0 0.00 -10.0 -20.0	alman and an		h h	Menore and a france of	5.240000000 GHz
-30.0 -40.0 -50.0 -60.0					
Center 5.24 GHz #Res BW 300 kHz	#VBW	1 MHz		Span 30 MHz Sweep 1 ms	CF Step 3.000000 MHz
Occupied Bandwidth 19.04	™ 15 MH5	otal Power	26.9 dE	3m	<u>Auto</u> Man Freq Offset
· · · · · · · · · · · · · · · · · · ·		6 of OBW Power dB	99.00 -26.00		0 Hz
MSG			STATUS		

26dB Band Width Test Data (HE40_CH_Low)

26dB Band Width Test Data (HE40_CH_High)

	V	· <u> </u>	_ 0 /		
RL RF 50 Ω AC Center Freq 5.230000000		SENSE:INT ter Freq: 5.230000000 GH I: Free Run Avg H	ALIGN OFF z old: 10/10	04:41:53 PM May 04, 202 Radio Std: None	Frequency
		ten: 30 dB		Radio Device: BTS	_
10 dB/div Ref 30.00 dBr	n				
20.0					Center Freq
0.00	and a second and the second second	- m per con perfect se	ware the second	munst	5.230000000 GHz
-10.0				\	
-20.0 mumant					h
-30.0					
-40.0					
-60.0					
Center 5.23 GHz				Span 50 MH:	
#Res BW 510 kHz		#VBW 1.6 MHz		Sweep 1 m	
Occupied Bandwidt	'n	Total Power	26.9	dBm	<u>Auto</u> Man
	7.528 MHz				Freq Offset
Transmit Freq Error	26.184 kHz	% of OBW Po		.00 %	0 Hz
x dB Bandwidth	39.80 MHz	x dB		00 dB	
	39.00 WITZ	хub	-20.0	UU UB	
MSG			STATUS		

26dB Band Width Test Data (HE80_CH_Low)

8. Undesirable emission – Radiated Measurement

8.1. Standard Applicable

According to §15.407(b), Undesirable Emission Limits: Except as shown in Paragraph (b)(7) of this section, the peak emissions outside of the frequency bands of operation shall be attenuated in accordance with the following limits:

- For transmitters operating in the 5.15-5.25 GHz band: all emissions outside of the 5.15-5.35 GHz band shall not exceed an e.i.r.p. of -27 dBm/MHz.
- (2) The above emission measurements shall be performed using a minimum resolution bandwidth of 1 MHz. A lower resolution bandwidth may be employed near the band edge, when necessary, provided the measured energy is integrated to show the total power over 1 MHz.
- (3) Unwanted emissions below 1 GHz must comply with the general field strength limits set forth in Section 15.209. Further, any U-NII devices using an AC power line are required to comply also with the conducted limits set forth in Section 15.207.
- (4) The provisions of Section 15.205 of this part apply to intentional radiators operating under this section.
- (5) When measuring the emission limits, the nominal carrier frequency shall be adjusted as close to the upper and lower frequency band edges as the design of the equipment permits.

§15.205- RESTRICTED BANDS OF OPERATIONS

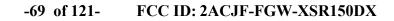
(a) Except as shown in paragraph (d) of this section, only spurious emissions are permitted in any of the frequency bands listed below:

MHz	MHz	MHz	GHz
0.090 - 0.110	16.42 - 16.423	399.9 - 410	4.5 - 5.15
¹ 0.495 - 0.505	16.69475 - 16.69525	608 - 614	5.35 - 5.46
2.1735 - 2.1905	16.80425 - 16.80475	960 - 1240	7.25 - 7.75
4.125 - 4.128	25.5 - 25.67	1300 - 1427	8.025 - 8.5
4.17725 - 4.17775	37.5 - 38.25	1435 - 1626.5	9.0 - 9.2
4.20725 - 4.20775	73 - 74.6	1645.5 - 1646.5	9.3 - 9.5
6.215 - 6.218	74.8 - 75.2	1660 - 1710	10.6 - 12.7
6.26775 - 6.26825	108 - 121.94	1718.8 - 1722.2	13.25 - 13.4
6.31175 - 6.31225	123 - 138	2200 - 2300	14.47 - 14.5
8.291 - 8.294	149.9 - 150.05	2310 - 2390	15.35 - 16.2
8.362 - 8.366	156.52475 -	2483.5 - 2500	17.7 - 21.4
8.37625 - 8.38675	156.52525	2655 - 2900	22.01 - 23.12
8.41425 - 8.41475	156.7 - 156.9	3260 - 3267	23.6 - 24.0
12.29 - 12.293	162.0125 - 167.17	3332 - 3339	31.2 - 31.8
12.51975 - 12.52025	167.72 - 173.2	3345.8 - 3358	36.43 - 36.5
12.57675 - 12.57725	240 - 285	3600 - 4400	(²)
13.36 - 13.41	322 - 335.4		

¹ Until February 1, 1999, this restricted band shall be 0.490-0.510 MHz.

² Above 38.6

(b) Except as provided in paragraphs (d) and (e), the field strength of emissions appearing within these frequency bands shall not exceed the limits shown in Section 15.209. At frequencies equal to or less than 1000 MHz, compliance with the limits in Section 15.209 shall be demonstrated using measurement instrumentation employing a CISPR quasi-peak detector. Above 1000 MHz, compliance with the emission limits in Section 15.209 shall be demonstrated based on the average value of the measured emissions. The provisions in Section 15.35 apply to these measurements.

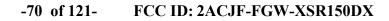


TCC TACT 15.207							
MEASURING DISTANCE OF 3 METER							
FREQUENCY RANGE FIELD STRENGTH FIELD STRENGTH							
(MHz)	(Microvolts/m)	(dBuV/m)					
30-88	100	40					
88-216	150	43.5					
216-960	200	46					
Above 960	500	54					

§15.209- RADIATED EMISSION LIMITS: GENERAL REQUIREMENTS FCC PART 15 209

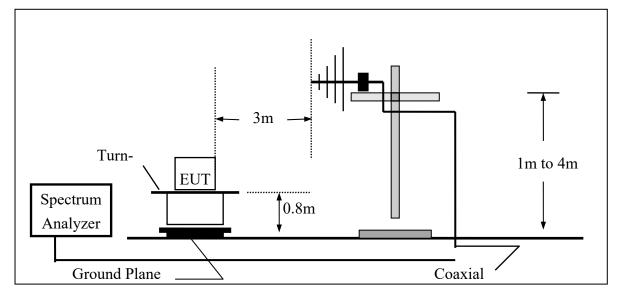
8.2. EUT Setup

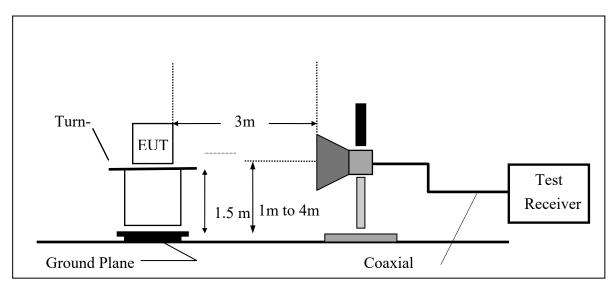
- 1. The radiated emission tests were performed in the 3 meter open-test site, using the setup in accordance with the ANSI C63.10: 2013
- 2. The EUT was put in the front of the test table. The host PC system was placed on the center of the back edge on the test table. The peripherals like modem, monitor printer, K/B, and mouse were placed on the side of the host PC system. The rear of the EUT and peripherals were placed flushed with the rear of the tabletop.
- 3. The keyboard was placed directly in the front of the monitor, flushed with the front tabletop. The mouse was placed next to the Keyboard, flushed with the back of keyboard.
- 4. The spacing between the peripherals was 10 centimeters.
- 5. External I/O cables were draped along the edge of the test table and bundle when necessary.
- 6. The host PC system was connected with 120Vac/60Hz power source.



8.3. Measurement Procedure

- 1. The EUT was placed on a turn table which is 0.8m/1.5m above ground plane.
- 2. The turn table shall rotate 360 degrees to determine the position of maximum emission level.
- 3. EUT is set 3m away from the receiving antenna which varied from 1m to 4m to find out the highest emissions.
- 4. Maximum procedure was performed on the six highest emissions to ensure EUT compliance.
- 5. And also, each emission was to be maximized by changing the polarization of receiving antenna both horizontal and vertical.
- 6. Repeat above procedures until all frequency measured were complete.


Refer to section F of KDB Document: KDB 789033 D02 General U-NII Test Procedures New Rules v02r01



8.4. Test SET-UP (Block Diagram of Configuration)

(A) Radiated Emission Test Set-Up, Frequency Below 1000MHz

(B) Radiated Emission Test Set-Up Frequency Over 1 GHz

Location Discretized Discretized Cal. Next Cal.						
Conducted	Equipment Name	Brand	Model	S/N	Date Date	Date
Chamber 19	Signal analyzer	R&S	FSV40	101919	8/18/2021	8/18/2022
Chamber 19	EMI Receiver	R&S	ESR3	102461	05/05/2021	05/05/2022
Chamber 19	Loop Antenna	EM	EM-6879	271	09/29/2021	09/29/2022
Chamber 19	Bilog Antenna (30MHz-1GHz)	Schwarzbeck	VULB9168 w 6dB Att.	9168-736	03/09/2022	03/09/2023
Chamber 19	Horn antenna (1GHz-18GHz)	ETS	3117	00218718	10/12/2021	10/12/2022
Chamber 19	Horn antenna (18GHz-26GHz)	Com-power	AH-826	081001	11/30/2021	11/30/2022
Chamber 19	Horn antenna (26GHz-40GHz)	Com-power	AH-640	100A	03/18/2022	03/18/2023
Chamber 19	Preamplifier (9kHz-1GHz)	HP	8447F	3113A04621	06/22/2021	06/22/2022
Chamber 19	Preamplifier (1GHz - 26GHz)	EM	EM01M26G	060681	05/07/2021	05/07/2022
Chamber 19	Preamplifier (26GHz-40GHz)	MITEQ	JS4-26004000- 27-5A	818471	05/07/2021	05/07/2022
Chamber 19	RF Cable (100kHz-26.5GHz)	Huber Suhner	Sucoflex 104A	MY1394/4A & 50886/4A	08/30/2021	08/30/2022
Chamber 19	RF Cable (18GHz-40GHz)	HUBER SU- HNER	Sucoflex 102	27963/2&37421/2	11/17/2021	11/17/2022
Chamber 19	Signal Generator	Anritsu	MG3692A	20311	12/28/2021	12/28/2022
Chamber 19	Test Software	Audix	E3 Ver:6.12023	N/A	N/A	N/A

8.5. Measurement Equipment Used:

8.6. Field Strength Calculation

The field strength is calculated by adding the Antenna Factor and Cable Factor and subtracting the Amplifier Gain and Duty Cycle Correction Factor (if any) from the measured reading. The basic equation with a sample calculation is as follows:

FS = RA + AF + CL - AG

Where	FS = Field Strength	CL = Cable Attenuation Factor (Cable Loss)
	RA = Reading Amplitude	AG = Amplifier Gain
	AF = Antenna Factor	

8.7. Measurement Result

Refer to attach tabular data sheets.

NOTE:

The resolution bandwidth and video bandwidth of test receiver/spectrum analyzer is 100kHz for Peak detection (PK) and Quasi-peak detection (QP) at frequency below 1GHz. And RBW 1MHz for frequency above 1GHz.

Operation Mode	a_mode	Test Date	2022/05/05
Channel Number	CH Low	Test By	Barry
Temperature	25 °C	Pol	Ver./Hor
Humidity	65 %		

No	Freq	Reading	Factor	Level	Limit	Margin	Remark	Pol
	MHz	dBuV	dB	dBuV/m	dBuV/m	dB		V/H
1	110.51	42.12	-8.92	33.20	43.50	-10.30	Peak	VERTICAL
2	311.30	35.79	-3.87	31.92	46.00	-14.08	Peak	VERTICAL
3	350.10	38.32	-3.52	34.80	46.00	-11.20	Peak	VERTICAL
4	399.57	41.78	-2.66	39.12	46.00	-6.88	Peak	VERTICAL
5	450.01	40.80	-1.08	39.72	46.00	-6.28	Peak	VERTICAL
6	750.71	35.05	4.45	39.50	46.00	-6.50	Peak	VERTICAL
1	299.66	41.10	-4.17	36.93	46.00	-9.07	Peak	HORIZONTAL
2	350.10	40.79	-3.52	37.27	46.00	-8.73	Peak	HORIZONTAL
3	450.01	40.56	-1.08	39.48	46.00	-6.52	Peak	HORIZONTAL
4	500.45	34.61	-0.69	33.92	46.00	-12.08	Peak	HORIZONTAL
5	649.83	33.32	2.26	35.58	46.00	-10.42	Peak	HORIZONTAL
6	833.16	32.43	5.27	37.70	46.00	-8.30	Peak	HORIZONTAL

- 1 emission is 20dB lower, so that emission as measured between 9kHz to 30MHz is not reported
- 2 Measuring frequencies from the lowest internal frequency to the 1GHz.
- 3 Radiated emissions measured in frequency range from 9MHz to 1000MHz were made with an instrument detector setting 9-90kHz/110-490kHz using PK/AV and other Frequency Band using PK/QP
- 4 Measurement result within this frequency range shown "-" in the table above means the reading of emissions are attenuated more than 20dB below the permissible limits or the field strength is too small to be measured.

Operation Mode	a mode	Test Date	2022/05/05
Channel Number	CH Mid	Test By	Barry
Temperature	25 °C	Pol	Ver./Hor
Humidity	65 %		

No	Freq	Reading	Factor	Level	Limit	Margin	Remark	Pol
	MHz	dBuV	dB	dBuV/m	dBuV/m	dB		V/H
1	350.10	38.57	-3.52	35.05	46.00	-10.95	Peak	VERTICAL
2	399.57	41.37	-2.66	38.71	46.00	-7.29	Peak	VERTICAL
3	450.01	40.53	-1.08	39.45	46.00	-6.55	Peak	VERTICAL
4	649.83	33.41	2.26	35.67	46.00	-10.33	Peak	VERTICAL
5	750.71	35.20	4.45	39.65	46.00	-6.35	Peak	VERTICAL
6	833.16	33.42	5.27	38.69	46.00	-7.31	Peak	VERTICAL
1	250.19	41.69	-6.08	35.61	46.00	-10.39	Peak	HORIZONTAL
2	350.10	40.55	-3.52	37.03	46.00	-8.97	Peak	HORIZONTAL
3	450.01	40.85	-1.08	39.77	46.00	-6.23	Peak	HORIZONTAL
4	649.83	32.96	2.26	35.22	46.00	-10.78	Peak	HORIZONTAL
5	833.16	33.14	5.27	38.41	46.00	-7.59	Peak	HORIZONTAL

Remark:

6

940.83

31.97

7.06

1 emission is 20dB lower, so that emission as measured between 9kHz to 30MHz is not reported

46.00

-6.97

Peak

2 Measuring frequencies from the lowest internal frequency to the 1GHz.

39.03

- 3 Radiated emissions measured in frequency range from 9MHz to 1000MHz were made with an instrument detector setting 9-90kHz/110-490kHz using PK/AV and other Frequency Band using PK/QP
- 4 Measurement result within this frequency range shown "-" in the table above means the reading of emissions are attenuated more than 20dB below the permissible limits or the field strength is too small to be measured.

HORIZONTAL

Operation Mode	a mode	Test Date	2022/05/05
Channel Number	ĊH High	Test By	Barry
Temperature	25 °C	Pol	Ver./Hor
Humidity	65 %		

No	Freq	Reading	Factor	Level	Limit	Margin	Remark	Pol
	MHz	dBuV	dB	dBuV/m	dBuV/m	dB		V/H
1	54.25	38.87	-5.75	33.12	40.00	-6.88	Peak	VERTICAL
2	399.57	41.36	-2.66	38.70	46.00	-7.30	Peak	VERTICAL
3	450.01	41.15	-1.08	40.07	46.00	-5.93	Peak	VERTICAL
4	649.83	33.90	2.26	36.16	46.00	-9.84	Peak	VERTICAL
5	750.71	34.78	4.45	39.23	46.00	-6.77	Peak	VERTICAL
6	833.16	34.24	5.27	39.51	46.00	-6.49	Peak	VERTICAL
1	226.91	42.02	-8.09	33.93	46.00	-12.07	Peak	HORIZONTAL
2	299.66	39.83	-4.17	35.66	46.00	-10.34	Peak	HORIZONTAL
3	350.10	40.75	-3.52	37.23	46.00	-8.77	Peak	HORIZONTAL
4	450.01	41.19	-1.08	40.11	46.00	-5.89	Peak	HORIZONTAL
5	649.83	33.77	2.26	36.03	46.00	-9.97	Peak	HORIZONTAL
6	833.16	33.73	5.27	39.00	46.00	-7.00	Peak	HORIZONTAL

- 1 emission is 20dB lower, so that emission as measured between 9kHz to 30MHz is not reported
- 2 Measuring frequencies from the lowest internal frequency to the 1GHz.
- 3 Radiated emissions measured in frequency range from 9MHz to 1000MHz were made with an instrument detector setting 9-90kHz/110-490kHz using PK/AV and other Frequency Band using PK/QP
- 4 Measurement result within this frequency range shown "-" in the table above means the reading of emissions are attenuated more than 20dB below the permissible limits or the field strength is too small to be measured.

ruunuteu spurious E			
Operation Mode	VHT20_mode	Test Date	2022/05/05
Channel Number	CH Low	Test By	Barry
Temperature	25 °C	Pol	Ver./Hor
Humidity	65 %		

Radiated S	nurious F	Emission	Measurement	Result (below	1GHz)
Itaulattu D	pui ivus i	2111331011	masur chicht	Itcoult (I UIIL)

No	Freq MHz	Reading dBuV	Factor dB	Level dBuV/m	Limit dBuV/m	Margin dB	Remark	Pol V/H
1	54.25	38.91	-5.75	33.16	40.00	-6.84	Peak	VERTICAL
2	306.45	38.77	-4.04	34.73	46.00	-11.27	Peak	VERTICAL
3	350.10	38.77	-3.52	35.25	46.00	-10.75	Peak	VERTICAL
4	399.57	41.62	-2.66	38.96	46.00	-7.04	Peak	VERTICAL
5	450.01	40.82	-1.08	39.74	46.00	-6.26	Peak	VERTICAL
6	750.71	35.69	4.45	40.14	46.00	-5.86	Peak	VERTICAL
1	228.85	41.11	-7.95	33.16	46.00	-12.84	Peak	HORIZONTAL
2	299.66	40.50	-4.17	36.33	46.00	-9.67	Peak	HORIZONTAL
3	350.10	40.91	-3.52	37.39	46.00	-8.61	Peak	HORIZONTAL
4	450.01	41.02	-1.08	39.94	46.00	-6.06	Peak	HORIZONTAL
5	649.83	32.87	2.26	35.13	46.00	-10.87	Peak	HORIZONTAL
6	842.86	31.74	5.39	37.13	46.00	-8.87	Peak	HORIZONTAL

- 1 emission is 20dB lower, so that emission as measured between 9kHz to 30MHz is not reported
- 2 Measuring frequencies from the lowest internal frequency to the 1GHz.
- 3 Radiated emissions measured in frequency range from 9MHz to 1000MHz were made with an instrument detector setting 9-90kHz/110-490kHz using PK/AV and other Frequency Band using PK/QP
- 4 Measurement result within this frequency range shown "-" in the table above means the reading of emissions are attenuated more than 20dB below the permissible limits or the field strength is too small to be measured.

Radiated Sparrous D	mission measurement result (below 10112)		
Operation Mode	VHT20_mode	Test Date	2022/05/05
Channel Number	CH Mid	Test By	Barry
Temperature	25 °C	Pol	Ver./Hor
Humidity	65 %		

No	Freq MHz	Reading dBuV	Factor dB	Level dBuV/m	Limit dBuV/m	Margin dB	Remark	Pol V/H
1	54.25	39.48	-5.75	33.73	40.00	-6.27	Peak	VERTICAL
2	350.10	38.16	-3.52	34.64	46.00	-11.36	Peak	VERTICAL
3	399.57	41.27	-2.66	38.61	46.00	-7.39	Peak	VERTICAL
4	450.01	40.69	-1.08	39.61	46.00	-6.39	Peak	VERTICAL
5	750.71	35.14	4.45	39.59	46.00	-6.41	Peak	VERTICAL
6	850.62	32.78	5.42	38.20	46.00	-7.80	Peak	VERTICAL
1	250.19	40.42	-6.08	34.34	46.00	-11.66	Peak	HORIZONTAL
2	299.66	40.22	-4.17	36.05	46.00	-9.95	Peak	HORIZONTAL
3	350.10	41.15	-3.52	37.63	46.00	-8.37	Peak	HORIZONTAL
4	450.01	40.76	-1.08	39.68	46.00	-6.32	Peak	HORIZONTAL
5	649.83	33.19	2.26	35.45	46.00	-10.55	Peak	HORIZONTAL
6	883.60	31.75	5.75	37.50	46.00	-8.50	Peak	HORIZONTAL

- 1 emission is 20dB lower, so that emission as measured between 9kHz to 30MHz is not reported
- 2 Measuring frequencies from the lowest internal frequency to the 1GHz.
- 3 Radiated emissions measured in frequency range from 9MHz to 1000MHz were made with an instrument detector setting 9-90kHz/110-490kHz using PK/AV and other Frequency Band using PK/QP
- 4 Measurement result within this frequency range shown "-" in the table above means the reading of emissions are attenuated more than 20dB below the permissible limits or the field strength is too small to be measured.

ruunueu spurious El			
Operation Mode	VHT20_mode	Test Date	2022/05/05
Channel Number	CH High	Test By	Barry
Temperature	25 °C	Pol	Ver./Hor
Humidity	65 %		

Radiated S	nurious I	Emission	Measurement	Result	(below	1GHz)
Itaulattu D	pullousi		masur chicht	I (C)UI(I UIIL)

No	Freq MHz	Reading dBuV	Factor dB	Level dBuV/m	Limit dBuV/m	Margin dB	Remark	Pol V/H
1	54.25	38.86	-5.75	33.11	40.00	-6.89	Peak	VERTICAL
2	350.10	38.11	-3.52	34.59	46.00	-11.41	Peak	VERTICAL
3	399.57	42.06	-2.66	39.40	46.00	-6.60	Peak	VERTICAL
4	450.01	40.15	-1.08	39.07	46.00	-6.93	Peak	VERTICAL
5	649.83	34.43	2.26	36.69	46.00	-9.31	Peak	VERTICAL
6	750.71	35.78	4.45	40.23	46.00	-5.77	Peak	VERTICAL
1	229.82	41.83	-7.89	33.94	46.00	-12.06	Peak	HORIZONTAL
2	299.66	40.32	-4.17	36.15	46.00	-9.85	Peak	HORIZONTAL
3	350.10	40.52	-3.52	37.00	46.00	-9.00	Peak	HORIZONTAL
4	450.01	41.17	-1.08	40.09	46.00	-5.91	Peak	HORIZONTAL
5	649.83	33.85	2.26	36.11	46.00	-9.89	Peak	HORIZONTAL
6	901.06	31.41	6.28	37.69	46.00	-8.31	Peak	HORIZONTAL

- 1 emission is 20dB lower, so that emission as measured between 9kHz to 30MHz is not reported
- 2 Measuring frequencies from the lowest internal frequency to the 1GHz.
- 3 Radiated emissions measured in frequency range from 9MHz to 1000MHz were made with an instrument detector setting 9-90kHz/110-490kHz using PK/AV and other Frequency Band using PK/QP
- 4 Measurement result within this frequency range shown "-" in the table above means the reading of emissions are attenuated more than 20dB below the permissible limits or the field strength is too small to be measured.

Indiated Sparrous E			
Operation Mode	VHT40_mode	Test Date	2022/05/05
Channel Number	CH Low	Test By	Barry
Temperature	25 °C	Pol	Ver./Hor
Humidity	65 %		

Radiated S	nurious F	Emission	Measurement	Result (below	1GHz)
Itaulattu D	pui ivus i	2111331011	masur chicht	Itcoult (I UIIL)

No	Freq MHz	Reading dBuV	Factor dB	Level dBuV/m	Limit dBuV/m	Margin dB	Remark	Pol V/H
1	54.25	38.90	-5.75	33.15	40.00	-6.85	Peak	VERTICAL
2	111.48	41.99	-8.86	33.13	43.50	-10.37	Peak	VERTICAL
3	350.10	38.29	-3.52	34.77	46.00	-11.23	Peak	VERTICAL
4	399.57	41.88	-2.66	39.22	46.00	-6.78	Peak	VERTICAL
5	450.01	40.10	-1.08	39.02	46.00	-6.98	Peak	VERTICAL
6	750.71	36.25	4.45	40.70	46.00	-5.30	Peak	VERTICAL
1	230.79	41.29	-7.74	33.55	46.00	-12.45	Peak	HORIZONTAL
2	299.66	39.57	-4.17	35.40	46.00	-10.60	Peak	HORIZONTAL
3	350.10	40.93	-3.52	37.41	46.00	-8.59	Peak	HORIZONTAL
4	450.01	40.56	-1.08	39.48	46.00	-6.52	Peak	HORIZONTAL
5	649.83	33.53	2.26	35.79	46.00	-10.21	Peak	HORIZONTAL
6	859.35	31.85	5.56	37.41	46.00	-8.59	Peak	HORIZONTAL

- 1 emission is 20dB lower, so that emission as measured between 9kHz to 30MHz is not reported
- 2 Measuring frequencies from the lowest internal frequency to the 1GHz.
- 3 Radiated emissions measured in frequency range from 9MHz to 1000MHz were made with an instrument detector setting 9-90kHz/110-490kHz using PK/AV and other Frequency Band using PK/QP
- 4 Measurement result within this frequency range shown "-" in the table above means the reading of emissions are attenuated more than 20dB below the permissible limits or the field strength is too small to be measured.

Rudiated Sparious Emission Measurement Result (Below Tom2)								
Operation Mode	VHT40_mode	Test Date	2022/05/05					
Channel Number	CH High	Test By	Barry					
Temperature	25 °C	Pol	Ver./Hor					
Humidity	65 %							

Radiated S	nurious I	Emission	Measurement	Result	(below	1GHz)
Itaulattu D	pullousi		masur chicht	I (C)UI(I UIIL)

No	Freq MHz	Reading dBuV	Factor dB	Level dBuV/m	Limit dBuV/m	Margin dB	Remark	Pol V/H
1	54.25	38.83	-5.75	33.08	40.00	-6.92	Peak	VERTICAL
2	350.10	38.30	-3.52	34.78	46.00	-11.22	Peak	VERTICAL
3	399.57	41.67	-2.66	39.01	46.00	-6.99	Peak	VERTICAL
4	450.01	40.04	-1.08	38.96	46.00	-7.04	Peak	VERTICAL
5	649.83	33.80	2.26	36.06	46.00	-9.94	Peak	VERTICAL
6	750.71	35.40	4.45	39.85	46.00	-6.15	Peak	VERTICAL
1	250.19	39.98	-6.08	33.90	46.00	-12.10	Peak	HORIZONTAL
2	299.66	41.11	-4.17	36.94	46.00	-9.06	Peak	HORIZONTAL
3	350.10	40.95	-3.52	37.43	46.00	-8.57	Peak	HORIZONTAL
4	450.01	40.67	-1.08	39.59	46.00	-6.41	Peak	HORIZONTAL
5	820.55	30.96	5.07	36.03	46.00	-9.97	Peak	HORIZONTAL
6	917.55	31.42	6.55	37.97	46.00	-8.03	Peak	HORIZONTAL

- 1 emission is 20dB lower, so that emission as measured between 9kHz to 30MHz is not reported
- 2 Measuring frequencies from the lowest internal frequency to the 1GHz.
- 3 Radiated emissions measured in frequency range from 9MHz to 1000MHz were made with an instrument detector setting 9-90kHz/110-490kHz using PK/AV and other Frequency Band using PK/QP
- 4 Measurement result within this frequency range shown "-" in the table above means the reading of emissions are attenuated more than 20dB below the permissible limits or the field strength is too small to be measured.

Rudiated Sparious Emission Measurement Result (Below Toniz)								
Operation Mode	VHT80_mode	Test Date	2022/05/05					
Channel Number	CH Low	Test By	Barry					
Temperature	25 °C	Pol	Ver./Hor					
Humidity	65 %							

Radiated S	nurious F	Emission	Measurement	Result (below	1GHz)
Itaulattu D	pui ivus i	2111331011	masur chicht	Itcoult (I UIIL)

No	Freq MHz	Reading dBuV	Factor dB	Level dBuV/m	Limit dBuV/m	Margin dB	Remark	Pol V/H
1	55.22	38.59	-5.82	32.77	40.00	-7.23	Peak	VERTICAL
2	350.10	38.57	-3.52	35.05	46.00	-10.95	Peak	VERTICAL
3	399.57	42.16	-2.66	39.50	46.00	-6.50	Peak	VERTICAL
4	450.01	40.75	-1.08	39.67	46.00	-6.33	Peak	VERTICAL
5	649.83	33.94	2.26	36.20	46.00	-9.80	Peak	VERTICAL
6	750.71	36.69	4.45	41.14	46.00	-4.86	Peak	VERTICAL
1	227.88	41.39	-8.02	33.37	46.00	-12.63	Peak	HORIZONTAL
2	299.66	41.09	-4.17	36.92	46.00	-9.08	Peak	HORIZONTAL
3	350.10	40.85	-3.52	37.33	46.00	-8.67	Peak	HORIZONTAL
4	450.01	40.80	-1.08	39.72	46.00	-6.28	Peak	HORIZONTAL
5	649.83	34.20	2.26	36.46	46.00	-9.54	Peak	HORIZONTAL
6	859.35	31.94	5.56	37.50	46.00	-8.50	Peak	HORIZONTAL

- 1 emission is 20dB lower, so that emission as measured between 9kHz to 30MHz is not reported
- 2 Measuring frequencies from the lowest internal frequency to the 1GHz.
- 3 Radiated emissions measured in frequency range from 9MHz to 1000MHz were made with an instrument detector setting 9-90kHz/110-490kHz using PK/AV and other Frequency Band using PK/QP
- 4 Measurement result within this frequency range shown "-" in the table above means the reading of emissions are attenuated more than 20dB below the permissible limits or the field strength is too small to be measured.

Rudiated Sparious Emission measurement Result (below 10112)								
Operation Mode	HE80_mode	Test Date	2022/05/05					
Channel Number	CH Low	Test By	Barry					
Temperature	25 °C	Pol	Ver./Hor					
Humidity	65 %							

No	Freq MHz	Reading dBuV	Factor dB	Level dBuV/m	Limit dBuV/m	Margin dB	Remark	Pol V/H
1	54.25	38.49	-5.75	32.74	40.00	-7.26	Peak	VERTICAL
2	115.36	41.50	-8.55	32.95	43.50	-10.55	Peak	VERTICAL
3	275.41	39.36	-4.84	34.52	46.00	-11.48	Peak	VERTICAL
4	399.57	41.52	-2.66	38.86	46.00	-7.14	Peak	VERTICAL
5	450.01	41.07	-1.08	39.99	46.00	-6.01	Peak	VERTICAL
6	750.71	34.59	4.45	39.04	46.00	-6.96	Peak	VERTICAL
1	228.85	42.87	-7.95	34.92	46.00	-11.08	Peak	HORIZONTAL
2	299.66	39.80	-4.17	35.63	46.00	-10.37	Peak	HORIZONTAL
3	350.10	40.63	-3.52	37.11	46.00	-8.89	Peak	HORIZONTAL
4	450.01	40.81	-1.08	39.73	46.00	-6.27	Peak	HORIZONTAL
5	649.83	33.37	2.26	35.63	46.00	-10.37	Peak	HORIZONTAL
6	865.17	31.13	5.69	36.82	46.00	-9.18	Peak	HORIZONTAL

- 1 emission is 20dB lower, so that emission as measured between 9kHz to 30MHz is not reported
- 2 Measuring frequencies from the lowest internal frequency to the 1GHz.
- 3 Radiated emissions measured in frequency range from 9MHz to 1000MHz were made with an instrument detector setting 9-90kHz/110-490kHz using PK/AV and other Frequency Band using PK/QP
- 4 Measurement result within this frequency range shown "-" in the table above means the reading of emissions are attenuated more than 20dB below the permissible limits or the field strength is too small to be measured.

Opera Chan	ation Mode nel Number perature	a_: CH	mode H Low °C			,	Test Date Test By Humidity	2022/05/05 Barry 60 %
No	Freq MHz	Reading dBuV	Factor dB	Level dBuV/m	Limit dBuV/m	Margin dB	Remark	Pol V/H
1	10360.00	44.80	3.13	47.93	68.20	-20.27	Peak	VERTICAL
2	15540.00	44.57	9.24	53.81	74.00	-20.19	Peak	VERTICAL
1	10360.00	45.15	3.13	48.28	68.20	-19.92	Peak	HORIZONTAL
2	15540.00	44.23	9.24	53.47	74.00	-20.53	Peak	HORIZONTAL

- 1 Field strength limits for frequency above 1000MHz are based on average limits. However, Peak mode field strength shall not exceed the average limits specified plus 20dB.
- 2 Measurement of data within this frequency range shown "-" in the table above means the reading of emissions are attenuated more than 20dB below the permissible limits or the field strength is too small to be measured.

Chan	eration Modea_modeunnel NumberCH Midnperature25 °C		H Mid				Test Date Test By Humidity	2022/05/05 Barry 60 %
No	Freq	Reading	Factor	Level	Limit	Margin	Remark	Pol
	MHz	dBuV	dB	dBuV/m	dBuV/m	dB		V/H
1	10400.00	43.43	3.25	46.68	68.20	-21.52	Peak	VERTICAL
2	15600.00	42.84	9.29	52.13	74.00	-21.87	Peak	VERTICAL
1	10400.00	43.13	3.25	46.38	68.20	-21.82	Peak	HORIZONTAL
2	15600.00	42.25	9.29	51.54	74.00	-22.46	Peak	HORIZONTAL

Remark:

1 Field strength limits for frequency above 1000MHz are based on average limits. However, Peak mode field strength shall not exceed the average limits specified plus 20dB.

2 Measurement of data within this frequency range shown "-" in the table above means the reading of emissions are attenuated more than 20dB below the permissible limits or the field strength is too small to be measured.

Operation Mode Channel Number Temperature		ĊĪ	mode H High ℃				Test Date Test By Humidity	2022/05/05 Barry 60 %
No	Freq MHz	Reading dBuV	Factor dB	Level dBuV/m	Limit dBuV/m	Margin dB	Remark	Pol V/H
1	10480.00	45.26	3.42	48.68	68.20	-19.52	Peak	VERTICAL
2	15720.00	41.70	9.31	51.01	74.00	-22.99	Peak	VERTICAL
1	10480.00	44.18	3.42	47.60	68.20	-20.60	Peak	HORIZONTAL
2	15720.00	41.76	9.31	51.07	74.00	-22.93	Peak	HORIZONTAL

- 1 Field strength limits for frequency above 1000MHz are based on average limits. However, Peak mode field strength shall not exceed the average limits specified plus 20dB.
- 2 Measurement of data within this frequency range shown "-" in the table above means the reading of emissions are attenuated more than 20dB below the permissible limits or the field strength is too small to be measured.

Chan	ation Mode nel Number perature	CH	HT20_mo H Low °C	de		Test Date Test By Humidity	2022/05/05 Barry 60 %	
No	Freq MHz	Reading dBuV	Factor dB	Level dBuV/m	Limit dBuV/m	Margin dB	Remark	Pol V/H
1	10360.00	44.88	3.13	48.01	68.20	-20.19	Peak	VERTICAL
2	15540.00	43.72	9.24	52.96	74.00	-21.04	Peak	VERTICAL
1	10360.00	44.29	3.13	47.42	68.20	-20.78	Peak	HORIZONTAL
2	15540.00	42.91	9.24	52.15	74.00	-21.85	Peak	HORIZONTAL

- 1 Field strength limits for frequency above 1000MHz are based on average limits. However, Peak mode field strength shall not exceed the average limits specified plus 20dB.
- 2 Measurement of data within this frequency range shown "-" in the table above means the reading of emissions are attenuated more than 20dB below the permissible limits or the field strength is too small to be measured.

-	ation Mode nel Number		HT20_mo I Mid	de			Test Date Test By	2022/05/05 Barry
	erature		°C				Humidity	60 %
P		20	C					
No	Freq	Reading	Factor	Level	Limit	Margin	Remark	Pol
	MHz	dBuV	dB	dBuV/m	dBuV/m	dB		V/H
1	10400.00	44.85	3.25	48.10	68.20	-20.10	Peak	VERTICAL
2	15600.00	41.75	9.29	51.04	74.00	-22.96	Peak	VERTICAL
1	10400.00	44.74	3.25	47.99	68.20	-20.21	Peak	HORIZONTAL
2	15600.00	43.57	9.29	52.86	74.00	-21.14	Peak	HORIZONTAL

- 1 Field strength limits for frequency above 1000MHz are based on average limits. However, Peak mode field strength shall not exceed the average limits specified plus 20dB.
- 2 Measurement of data within this frequency range shown "-" in the table above means the reading of emissions are attenuated more than 20dB below the permissible limits or the field strength is too small to be measured.

-	ation Mode nel Number		HT20_mo H High	de			Test Date Test By	2022/05/05 Barry
Temp	erature	25	°C				Humidity	60 %
				1			1	
No	Freq	Reading	Factor	Level	Limit	Margin	Remark	Pol
	MHz	dBuV	dB	dBuV/m	dBuV/m	dB		V/H
1	10480.00	44.84	3.42	48.26	68.20	-19.94	Peak	VERTICAL
2	15720.00	43.36	9.31	52.67	74.00	-21.33	Peak	VERTICAL
1	10480.00	44.53	3.42	47.95	68.20	-20.25	Peak	HORIZONTAL
2	15720.00	43.05	9.31	52.36	74.00	-21.64	Peak	HORIZONTAL

- 1 Field strength limits for frequency above 1000MHz are based on average limits. However, Peak mode field strength shall not exceed the average limits specified plus 20dB.
- 2 Measurement of data within this frequency range shown "-" in the table above means the reading of emissions are attenuated more than 20dB below the permissible limits or the field strength is too small to be measured.

1	ation Mode nel Number		HT40_mo H Low	de			Test Date Test By	2022/05/05 Barry
	berature		°C				Humidity	60 %
	1	1	1		1			
No	Freq	Reading	Factor	Level	Limit	Margin	Remark	Pol
	MHz	dBuV	dB	dBuV/m	dBuV/m	dB		V/H
1	10380.00	44.20	3.19	47.39	68.20	-20.81	Peak	VERTICAL
2	15570.00	43.26	9.27	52.53	74.00	-21.47	Peak	VERTICAL
1	10380.00	41.73	3.19	44.92	68.20	-23.28	Peak	HORIZONTAL
2	15570.00	41.82	9.27	51.09	74.00	-22.91	Peak	HORIZONTAL

- 1 Field strength limits for frequency above 1000MHz are based on average limits. However, Peak mode field strength shall not exceed the average limits specified plus 20dB.
- 2 Measurement of data within this frequency range shown "-" in the table above means the reading of emissions are attenuated more than 20dB below the permissible limits or the field strength is too small to be measured.

Chan	ation Mode nel Number perature	CH	HT40_mo H High °C	de			Test Date Test By Humidity	2022/05/05 Barry 60 %
No	Freq	Reading	Factor	Level	Limit	Margin	Remark	Pol
	MHz	dBuV	dB	dBuV/m	dBuV/m	dB		V/H
1	10460.00	43.99	3.38	47.37	68.20	-20.83	Peak	VERTICAL
2	15690.00	42.91	9.29	52.20	74.00	-21.80	Peak	VERTICAL
1	10460.00	44.28	3.38	47.66	68.20	-20.54	Peak	HORIZONTAL
2	15690.00	43.73	9.29	53.02	74.00	-20.98	Peak	HORIZONTAL

- 1 Field strength limits for frequency above 1000MHz are based on average limits. However, Peak mode field strength shall not exceed the average limits specified plus 20dB.
- 2 Measurement of data within this frequency range shown "-" in the table above means the reading of emissions are attenuated more than 20dB below the permissible limits or the field strength is too small to be measured.

)		
-	ation Mode		HT80_mo	de		Test Date	2022/05/05	
Chanı	nel Number	CH	I Low				Test By	Barry
Temp	erature	25	°C				Humidity	60 %
1		20	U				2	
							•	
No	Freq	Reading	Factor	Level	Limit	Margin	Remark	Pol
	MHz	dBuV	dB	dBuV/m	dBuV/m	dB		V/H
1	10420.00	43.38	3.29	46.67	68.20	-21.53	Peak	VERTICAL

74.00

68.20

74.00

-22.88

-19.71

-22.61

Peak

Peak

Peak

VERTICAL

HORIZONTAL

HORIZONTAL

51.12

48.49

51.39

Radiated Spurious Emission Measurement Result (above 1GHz)

9.30

3.29

9.30

Remark:

2

1

2

15630.00

10420.00

15630.00

41.82

45.20

42.09

- 1 Field strength limits for frequency above 1000MHz are based on average limits. However, Peak mode field strength shall not exceed the average limits specified plus 20dB.
- 2 Measurement of data within this frequency range shown "-" in the table above means the reading of emissions are attenuated more than 20dB below the permissible limits or the field strength is too small to be measured.

Naula	ieu spurio	us E11115510	n wieasu	rement Ke	suit (above	; IGHZ)			
Opera	tion Mode	HI	E80_mode	e			Test Date	2022/05/05	
Chann	el Number	CH	I Low				Test By	Barry	
Tempe	erature	25	°C				Humidity	60 %	
NT	Enne	D 1'	Easter	τ1	T 1	Manala	D	D 1	_

No	Freq	Reading	Factor	Level	Limit	Margin	Remark	Pol
	MHz	dBuV	dB	dBuV/m	dBuV/m	dB		V/H
1	10420.00	44.21	3.29	47.50	68.20	-20.70	Peak	VERTICAL
2	15630.00	41.17	9.30	50.47	74.00	-23.53	Peak	VERTICAL
1	10420.00	44.06	3.29	47.35	68.20	-20.85	Peak	HORIZONTAL
2	15630.00	43.33	9.30	52.63	74.00	-21.37	Peak	HORIZONTAL

- 1 Field strength limits for frequency above 1000MHz are based on average limits. However, Peak mode field strength shall not exceed the average limits specified plus 20dB.
- 2 Measurement of data within this frequency range shown "-" in the table above means the reading of emissions are attenuated more than 20dB below the permissible limits or the field strength is too small to be measured.

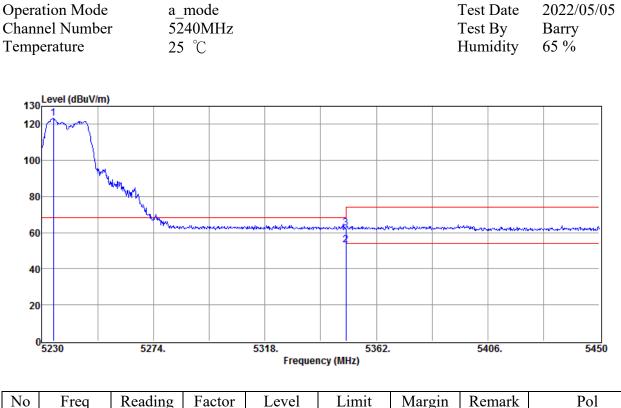
Band Edges test -Radiated

40				
60	he the ferror and a ferror the start	- an and and an one of the standard and a standard a	 unontrace and the	3
80			2	
100				
120				5
130 Level (dBuV/m	1)			

No	Freq	Reading	Factor	Level	Limit	Margin	Remark	Pol
	MHz	dBuV	dB	dBuV/m	dBuV/m	dB		V/H
1	5032.00	8.00	42.57	50.57	54.00	-3.43	Average	VERTICAL
2	5032.00	25.40	42.57	67.97	74.00	-6.03	Peak	VERTICAL
3	5150.00	10.27	42.69	52.96	54.00	-1.04	Average	VERTICAL
4	5150.00	23.56	42.69	66.25	68.20	-1.95	Peak	VERTICAL
5	5173.40	78.95	42.85	121.80	F		Peak	VERTICAL

Remark:

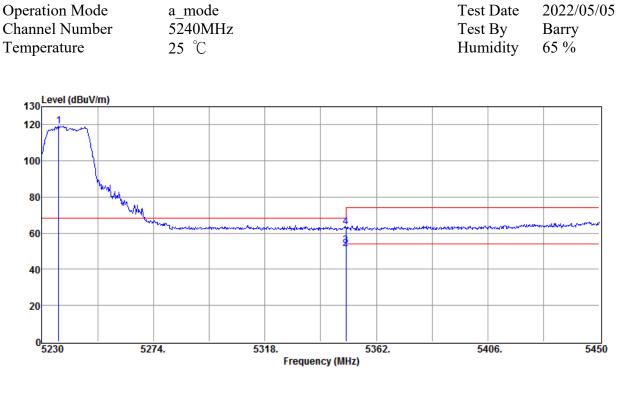
- 1 Measuring frequencies from the lowest internal frequency to the 10th of fundamental frequency
- 2 Field strength limits for frequency above 1000MHz are based on average limits. However, Peak mode field strength shall not exceed the average limits specified plus 20dB.
- 3 Measurement of data within this frequency range shown "-" in the table above means the reading of emissions are attenuated more than 20dB below the permissible limits or the field strength is too small to be measured.
- 4 Spectrum Peak mode IF bandwidth Setting : 1GHz- 40GHz, RBW= 1MHz, Sweep time= 200 ms., the VBW setting was 3 MHz.
- 5 Spectrum AV mode if bandwidth Setting : 1GHz- 40GHz, RBW= 1MHz, VBW ≥ 1/Ton, Sweep time= 200 ms.



Chanı	ntion Mode nel Number reature	r 51	mode 80 MHz °C				Test Date Test By Humidity	2022/05/05 Barry 65 %
130	Level (dBuV/m)							
120								<u>5</u>
100								
80						2		
60	would be a start of the second s	han para sa	henre menereden	,		eposenten set allanae	n an	3
40)							
20								
0	4500	4640.		4780.	4920).	5060.	5200
				Freque	ncy (MHz)			
No	Freq MHz	Reading dBuV	Factor dB	Level dBuV/m	Limit dBuV/m	Margin dB	Remark	Pol V/H

	MHz	dBuV	dB	dBuV/m	dBuV/m	dB		V/H
1	4985.80	8.23	42.63	50.86	54.00	-3.14	Average	HORIZONTAL
2	4985.80	24.39	42.63	67.02	74.00	-6.98	Peak	HORIZONTAL
3	5150.00	10.12	42.69	52.81	54.00	-1.19	Average	HORIZONTAL
4	5150.00	23.13	42.69	65.82	68.20	-2.38	Peak	HORIZONTAL
5	5178.30	75.62	42.88	118.50	F		Peak	HORIZONTAL

- 1 Measuring frequencies from the lowest internal frequency to the 10th of fundamental frequency
- 2 Field strength limits for frequency above 1000MHz are based on average limits. However, Peak mode field strength shall not exceed the average limits specified plus 20dB.
- 3 Measurement of data within this frequency range shown "-" in the table above means the reading of emissions are attenuated more than 20dB below the permissible limits or the field strength is too small to be measured.
- 4 Spectrum Peak mode IF bandwidth Setting : 1GHz- 40GHz, RBW= 1MHz, Sweep time= 200 ms., the VBW setting was 3 MHz.
- 5 Spectrum AV mode if bandwidth Setting : 1GHz- 40GHz, RBW= 1MHz, VBW ≥ 1/Ton, Sweep time= 200 ms.



No	Freq	Reading	Factor	Level	Limit	Margin	Remark	Pol
	MHz	dBuV	dB	dBuV/m	dBuV/m	dB		V/H
1	5234.62	80.10	43.06	123.16	F		Peak	VERTICAL
2	5350.00	10.12	43.05	53.17	54.00	-0.83	Average	VERTICAL
3	5350.00	19.41	43.05	62.46	68.20	-5.74	Peak	VERTICAL

- 1 Measuring frequencies from the lowest internal frequency to the 10th of fundamental frequency
- 2 Field strength limits for frequency above 1000MHz are based on average limits. However, Peak mode field strength shall not exceed the average limits specified plus 20dB.
- 3 Measurement of data within this frequency range shown "-" in the table above means the reading of emissions are attenuated more than 20dB below the permissible limits or the field strength is too small to be measured.
- 4 Spectrum Peak mode IF bandwidth Setting : 1GHz- 40GHz, RBW= 1MHz, Sweep time= 200 ms., the VBW setting was 3 MHz.
- 5 Spectrum AV mode if bandwidth Setting : 1GHz- 40GHz, RBW= 1MHz, VBW ≥ 1/Ton, Sweep time= 200 ms.

No	Freq	Reading	Factor	Level	Limit	Margin	Remark	Pol
	MHz	dBuV	dB	dBuV/m	dBuV/m	dB		V/H
1	5236.60	76.09	43.06	119.15	F		Peak	HORIZONTAL
2	5351.00	8.23	43.05	51.28	54.00	-2.72	Average	HORIZONTAL
3	5350.00	10.24	43.05	53.29	54.00	-0.71	Average	HORIZONTAL
4	5350.00	20.35	43.05	63.40	68.20	-4.80	Peak	HORIZONTAL

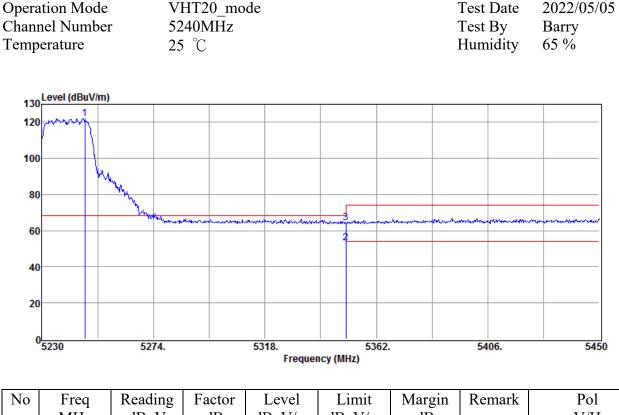
- 1 Measuring frequencies from the lowest internal frequency to the 10th of fundamental frequency
- 2 Field strength limits for frequency above 1000MHz are based on average limits. However, Peak mode field strength shall not exceed the average limits specified plus 20dB.
- 3 Measurement of data within this frequency range shown "-" in the table above means the reading of emissions are attenuated more than 20dB below the permissible limits or the field strength is too small to be measured.
- 4 Spectrum Peak mode IF bandwidth Setting : 1GHz- 40GHz, RBW= 1MHz, Sweep time= 200 ms., the VBW setting was 3 MHz.
- 5 Spectrum AV mode if bandwidth Setting : 1GHz- 40GHz, RBW= 1MHz, VBW ≥ 1/Ton, Sweep time= 200 ms.

Band Edges test -Radiated

	Euges lesi							
	ation Mode		HT20_mc	ode			Test Date	2022/05/05
	nel Number	-	80 MHz				Test By	Barry 65 %
Temp	erature	23	5 °C				Humidity	03 %0
130	Level (dBuV/m)							
120								5 /***
100)							
80						2		Jun -
60	had the street was a start of the street of	and the second		, may be a second and the second s	an a	and the second second second	nantur antagan fan ar yn dynau Manadol yn	3
40								
20								
C				1770			5050	
	4500	4638.		4776. Freque	491 ncy (MHz)	4.	5052.	5190
No	Freq	Reading	Factor	Level	Limit	Margin	n Remark	Pol
	MHz	dBuV	dB	dBuV/m	dBuV/m	dB		V/H
1	4960.92	7.24	42.56	49.80	54.00	-4.20	Average	VERTICAL
2	4960.92	24.50	42.56	67.06	74.00	-6.94	Peak	VERTICAL
3	5150.00	10.02	42.69	52.71	54.00	-1.29	Average	VERTICAL
4	5150.00	24.17	42.69	66.86	68.20	-1.34	Peak	VERTICAL
5	5176.89	79.86	42.87	122.73	F		Peak	VERTICAL

Remark:

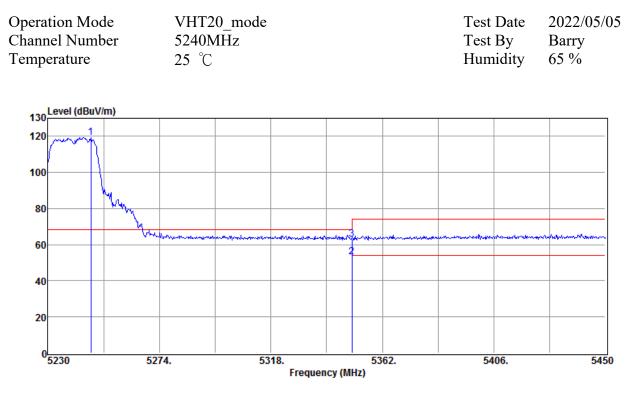
- 1 Measuring frequencies from the lowest internal frequency to the 10th of fundamental frequency
- 2 Field strength limits for frequency above 1000MHz are based on average limits. However, Peak mode field strength shall not exceed the average limits specified plus 20dB.
- 3 Measurement of data within this frequency range shown "-" in the table above means the reading of emissions are attenuated more than 20dB below the permissible limits or the field strength is too small to be measured.
- 4 Spectrum Peak mode IF bandwidth Setting : 1GHz- 40GHz, RBW= 1MHz, Sweep time= 200 ms., the VBW setting was 3 MHz.
- 5 Spectrum AV mode if bandwidth Setting : 1GHz- 40GHz, RBW= 1MHz, VBW ≥ 1/Ton, Sweep time= 200 ms.



Temperature	5180 MHz 25 ℃		Test By Humidity	Barry 65 %
130 Level (dBuV/m)				
120				5
100				
80				
60	partition of the second s	underson manager attended the second s	New months provided a horizon and	5
40				
20				
0 <mark>4500</mark>	l638. 4776	i. 4914. Frequency (MHz)	5052.	5190

No	Freq	Reading	Factor	Level	Limit	Margin	Remark	Pol
	MHz	dBuV	dB	dBuV/m	dBuV/m	dB		V/H
1	4925.04	7.92	42.46	50.38	54.00	-3.62	Average	HORIZONTAL
2	4925.04	23.08	42.46	65.54	74.00	-8.46	Peak	HORIZONTAL
3	5150.00	10.01	42.69	52.70	54.00	-1.30	Average	HORIZONTAL
4	5150.00	24.82	42.69	67.51	68.20	-0.69	Peak	HORIZONTAL
5	5187.24	76.39	42.94	119.33	F		Peak	HORIZONTAL

- 1 Measuring frequencies from the lowest internal frequency to the 10th of fundamental frequency
- 2 Field strength limits for frequency above 1000MHz are based on average limits. However, Peak mode field strength shall not exceed the average limits specified plus 20dB.
- 3 Measurement of data within this frequency range shown "-" in the table above means the reading of emissions are attenuated more than 20dB below the permissible limits or the field strength is too small to be measured.
- 4 Spectrum Peak mode IF bandwidth Setting : 1GHz- 40GHz, RBW= 1MHz, Sweep time= 200 ms., the VBW setting was 3 MHz.
- 5 Spectrum AV mode if bandwidth Setting : 1GHz- 40GHz, RBW= 1MHz, VBW ≥ 1/Ton, Sweep time= 200 ms.

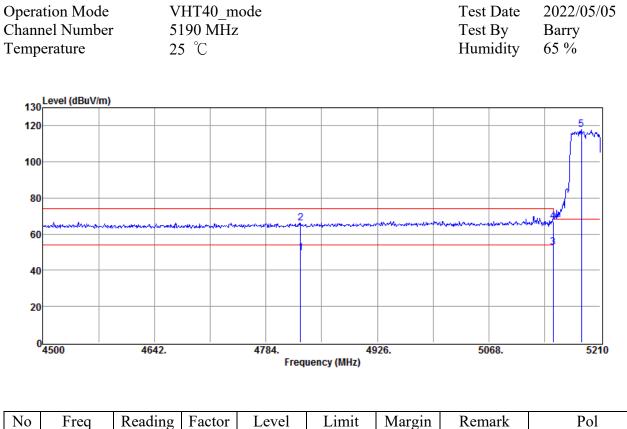


No	Freq	Reading	Factor	Level	Limit	Margin	Remark	Pol
	MHz	dBuV	dB	dBuV/m	dBuV/m	dB		V/H
1	5246.94	78.98	43.07	122.05	F		Peak	VERTICAL
2	5350.00	9.98	43.05	53.03	54.00	-0.97	Average	VERTICAL
3	5350.00	21.42	43.05	64.47	68.20	-3.73	Peak	VERTICAL

- 1 Measuring frequencies from the lowest internal frequency to the 10th of fundamental frequency
- 2 Field strength limits for frequency above 1000MHz are based on average limits. However, Peak mode field strength shall not exceed the average limits specified plus 20dB.
- 3 Measurement of data within this frequency range shown "-" in the table above means the reading of emissions are attenuated more than 20dB below the permissible limits or the field strength is too small to be measured.
- 4 Spectrum Peak mode IF bandwidth Setting : 1GHz- 40GHz, RBW= 1MHz, Sweep time= 200 ms., the VBW setting was 3 MHz.
- 5 Spectrum AV mode if bandwidth Setting : 1GHz- 40GHz, RBW= 1MHz, VBW ≥ 1/Ton, Sweep time= 200 ms.

No	Freq	Reading	Factor	Level	Limit	Margin	Remark	Pol
	MHz	dBuV	dB	dBuV/m	dBuV/m	dB		V/H
1	5246.94	76.36	43.07	119.43	F		Peak	HORIZONTAL
2	5350.00	10.12	43.05	53.17	54.00	-0.83	Average	HORIZONTAL
3	5350.00	19.73	43.05	62.78	68.20	-5.42	Peak	HORIZONTAL

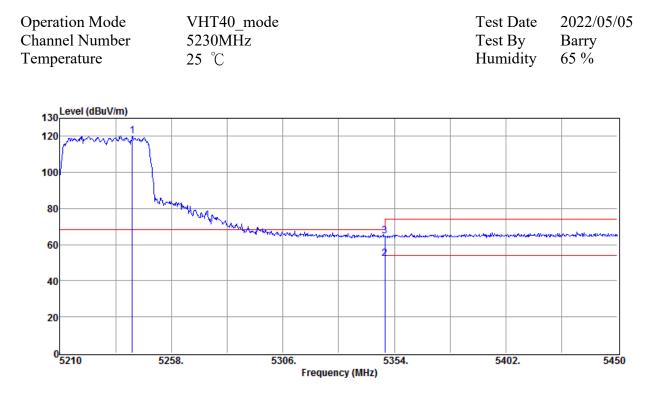
- 1 Measuring frequencies from the lowest internal frequency to the 10th of fundamental frequency
- 2 Field strength limits for frequency above 1000MHz are based on average limits. However, Peak mode field strength shall not exceed the average limits specified plus 20dB.
- 3 Measurement of data within this frequency range shown "-" in the table above means the reading of emissions are attenuated more than 20dB below the permissible limits or the field strength is too small to be measured.
- 4 Spectrum Peak mode IF bandwidth Setting : 1GHz- 40GHz, RBW= 1MHz, Sweep time= 200 ms., the VBW setting was 3 MHz.
- 5 Spectrum AV mode if bandwidth Setting : 1GHz- 40GHz, RBW= 1MHz, VBW ≥ 1/Ton, Sweep time= 200 ms.


Band Edges test -Radiated

	Luges lesi	-Naulatet	1					
-	ntion Mode nel Number		HT40_n 190 MHz				Test Date Test By	2022/05/05 Barry
Temp	erature	2:	5°C				Humidity	65 %
-	Level (dBuV/m)				2			
20								
C	4500	4642.	I	4784.		926.	5068.	5210
				Freq	uency (MHz)			
No	Freq MHz	Reading dBuV	Factor dB	Level dBuV/m	Limit dBuV/m	Margin dB	Remark	Pol V/H
1	4918.90	7.23	42.45	49.68	54.00	-4.32	Average	VERTICAL
2	4918.90	22.93	42.45	65.38	74.00	-8.62	Peak	VERTICAL
3	5150.00	10.21	42.69	52.90	54.00	-1.10	Average	VERTICAL
4	5150.00	24.24	42.69	66.93	68.20	-1.27	Peak	VERTICAL
5	5183.02	77.73	42.92	120.65	F		Peak	VERTICAL

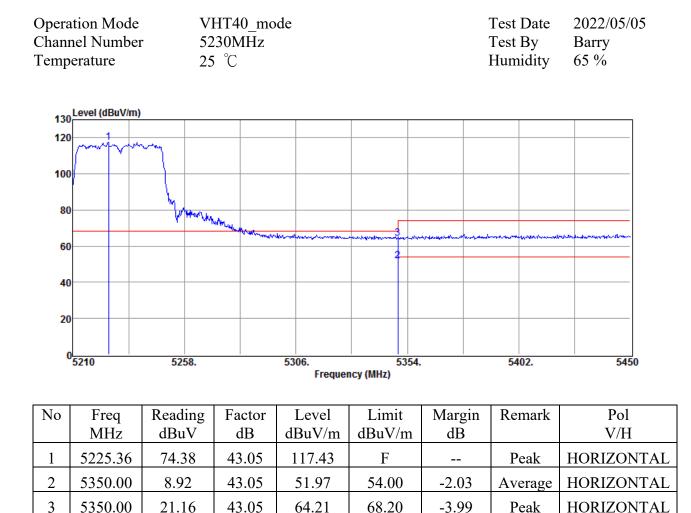
Remark:

- 1 Measuring frequencies from the lowest internal frequency to the 10th of fundamental frequency
- 2 Field strength limits for frequency above 1000MHz are based on average limits. However, Peak mode field strength shall not exceed the average limits specified plus 20dB.
- 3 Measurement of data within this frequency range shown "-" in the table above means the reading of emissions are attenuated more than 20dB below the permissible limits or the field strength is too small to be measured.
- 4 Spectrum Peak mode IF bandwidth Setting : 1GHz- 40GHz, RBW= 1MHz, Sweep time= 200 ms., the VBW setting was 3 MHz.
- 5 Spectrum AV mode if bandwidth Setting : 1GHz- 40GHz, RBW= 1MHz, VBW ≥ 1/Ton, Sweep time= 200 ms.



No	Freq	Reading	Factor	Level	Limit	Margin	Remark	Pol
	MHz	dBuV	dB	dBuV/m	dBuV/m	dB		V/H
1	4828.02	7.24	42.33	49.57	54.00	-4.43	Average	HORIZONTAL
2	4828.02	23.93	42.33	66.26	74.00	-7.74	Peak	HORIZONTAL
3	5150.00	10.13	42.69	52.82	54.00	-1.18	Average	HORIZONTAL
4	5150.00	24.13	42.69	66.82	68.20	-1.38	Peak	HORIZONTAL
5	5185.86	74.97	42.94	117.91	F		Peak	HORIZONTAL

- 1 Measuring frequencies from the lowest internal frequency to the 10th of fundamental frequency
- 2 Field strength limits for frequency above 1000MHz are based on average limits. However, Peak mode field strength shall not exceed the average limits specified plus 20dB.
- 3 Measurement of data within this frequency range shown "-" in the table above means the reading of emissions are attenuated more than 20dB below the permissible limits or the field strength is too small to be measured.
- 4 Spectrum Peak mode IF bandwidth Setting : 1GHz- 40GHz, RBW= 1MHz, Sweep time= 200 ms., the VBW setting was 3 MHz.
- 5 Spectrum AV mode if bandwidth Setting : 1GHz- 40GHz, RBW= 1MHz, VBW ≥ 1/Ton, Sweep time= 200 ms.



No	Freq	Reading	Factor	Level	Limit	Margin	Remark	Pol
	MHz	dBuV	dB	dBuV/m	dBuV/m	dB		V/H
1	5241.20	77.15	43.06	120.21	F		Peak	VERTICAL
2	5350.00	9.02	43.05	52.07	54.00	-1.93	Average	VERTICAL
3	5350.00	21.62	43.05	64.67	68.20	-3.53	Peak	VERTICAL

- 1 Measuring frequencies from the lowest internal frequency to the 10th of fundamental frequency
- 2 Field strength limits for frequency above 1000MHz are based on average limits. However, Peak mode field strength shall not exceed the average limits specified plus 20dB.
- 3 Measurement of data within this frequency range shown "-" in the table above means the reading of emissions are attenuated more than 20dB below the permissible limits or the field strength is too small to be measured.
- 4 Spectrum Peak mode IF bandwidth Setting : 1GHz- 40GHz, RBW= 1MHz, Sweep time= 200 ms., the VBW setting was 3 MHz.
- 5 Spectrum AV mode if bandwidth Setting : 1GHz- 40GHz, RBW= 1MHz, VBW ≥ 1/Ton, Sweep time= 200 ms.

- 1 Measuring frequencies from the lowest internal frequency to the 10th of fundamental frequency
- 2 Field strength limits for frequency above 1000MHz are based on average limits. However, Peak mode field strength shall not exceed the average limits specified plus 20dB.
- 3 Measurement of data within this frequency range shown "-" in the table above means the reading of emissions are attenuated more than 20dB below the permissible limits or the field strength is too small to be measured.
- 4 Spectrum Peak mode IF bandwidth Setting : 1GHz- 40GHz, RBW= 1MHz, Sweep time= 200 ms., the VBW setting was 3 MHz.
- 5 Spectrum AV mode if bandwidth Setting : 1GHz- 40GHz, RBW= 1MHz, VBW ≥ 1/Ton, Sweep time= 200 ms.

Band Edges test -Radiated

Danu	Luges lesi	i -Radiated						
1			HT80_mc 210 MHz	ode		Test Date Test By	2022/05/05 Barry	
Temp	erature	25	ъ°С				Humidity	65 %
130	Level (dBuV/m)							
120								5
								and a stand and
100)							
80)							<u>/</u>
	market the market	w.m.h.m.m.m.m.m.	and have made and	ng tan-adhar (ang adhang adhar dhadha	2	Northern with the production	and the second	
60					- 1			
40)							
20)							
(4500	4650.		4800.	49	50.	5100.	5250
				Freque	ncy (MHz)			
No	Freq	Reading	Factor	Level	Limit	Margin	Remark	Pol
110	MHz	dBuV	dB	dBuV/m	dBuV/m		Kennark	V/H
1	4940.25	7.93	42.50	50.43	54.00	-3.57	Average	VERTICAL
2	4940.25	25.00	42.50	67.50	74.00	-6.50	Peak	VERTICAL
3	5150.00	10.01	42.69	52.70	54.00	-1.30	Average	VERTICAL
4	5150.00	21.87	42.69	64.56	68.20	-3.64	Peak	VERTICAL
_								

Remark:

5 5223.00

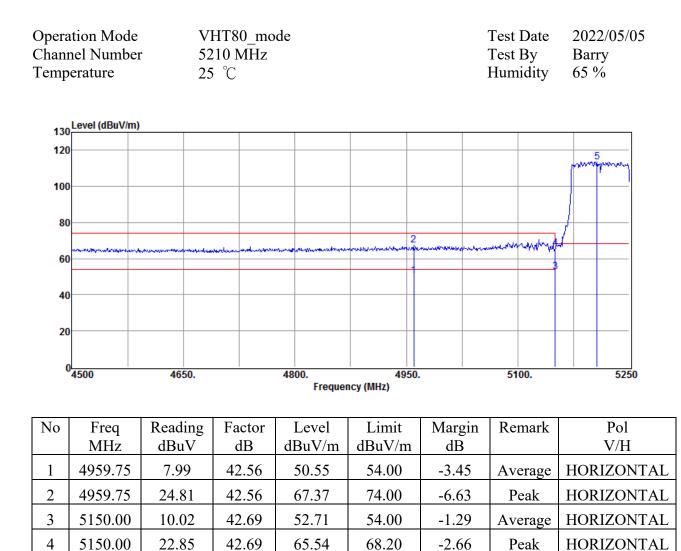
1 Measuring frequencies from the lowest internal frequency to the 10th of fundamental frequency

116.28

2 Field strength limits for frequency above 1000MHz are based on average limits. However, Peak mode field strength shall not exceed the average limits specified plus 20dB.

F

- 3 Measurement of data within this frequency range shown "-" in the table above means the reading of emissions are attenuated more than 20dB below the permissible limits or the field strength is too small to be measured.
- 4 Spectrum Peak mode IF bandwidth Setting : 1GHz- 40GHz, RBW= 1MHz, Sweep time= 200 ms., the VBW setting was 3 MHz.
- 5 Spectrum AV mode if bandwidth Setting : 1GHz- 40GHz, RBW= 1MHz, VBW ≥ 1/Ton, Sweep time= 200 ms.


Note: "F" denotes fundamental frequency

73.23 43.05

VERTICAL

Peak

5

5206.50

1 Measuring frequencies from the lowest internal frequency to the 10th of fundamental frequency

113.59

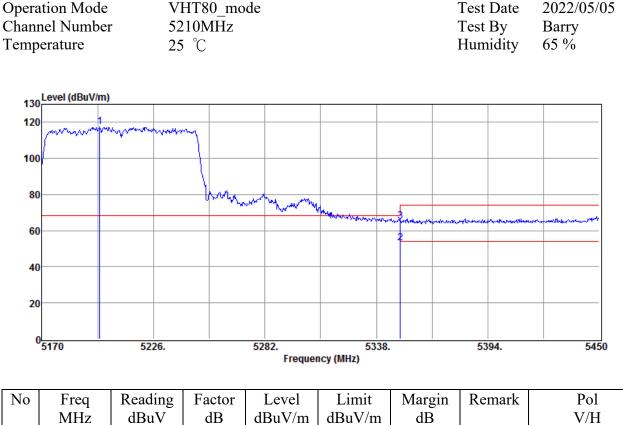
2 Field strength limits for frequency above 1000MHz are based on average limits. However, Peak mode field strength shall not exceed the average limits specified plus 20dB.

F

- 3 Measurement of data within this frequency range shown "-" in the table above means the reading of emissions are attenuated more than 20dB below the permissible limits or the field strength is too small to be measured.
- 4 Spectrum Peak mode IF bandwidth Setting : 1GHz- 40GHz, RBW= 1MHz, Sweep time= 200 ms., the VBW setting was 3 MHz.
- 5 Spectrum AV mode if bandwidth Setting : 1GHz- 40GHz, RBW= 1MHz, VBW ≥ 1/Ton, Sweep time= 200 ms.

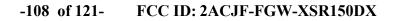
Note: "F" denotes fundamental frequency

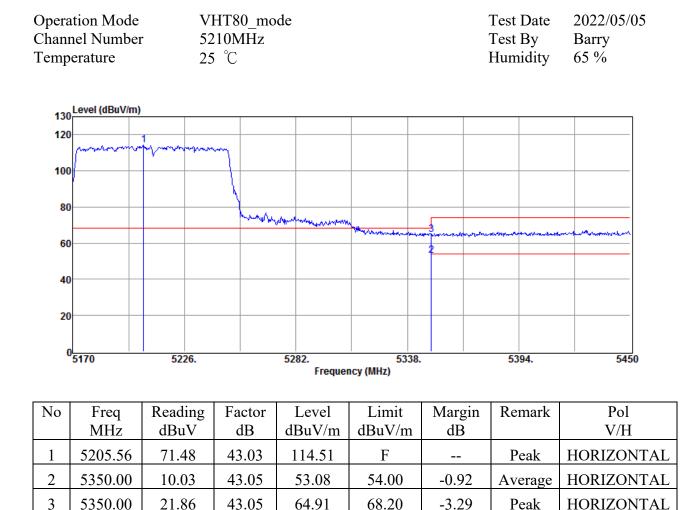
70.55


43.04

HORIZONTAL

Peak


--



1.0		1	1			11110		
	MHz	dBuV	dB	dBuV/m	dBuV/m	dB		V/H
1	5199.12	74.61	43.02	117.63	F		Peak	VERTICAL
2	5350.00	10.02	43.05	53.07	54.00	-0.93	Average	VERTICAL
3	5350.00	22.01	43.05	65.06	68.20	-3.14	Peak	VERTICAL

- 1 Measuring frequencies from the lowest internal frequency to the 10th of fundamental frequency
- 2 Field strength limits for frequency above 1000MHz are based on average limits. However, Peak mode field strength shall not exceed the average limits specified plus 20dB.
- 3 Measurement of data within this frequency range shown "-" in the table above means the reading of emissions are attenuated more than 20dB below the permissible limits or the field strength is too small to be measured.
- 4 Spectrum Peak mode IF bandwidth Setting : 1GHz- 40GHz, RBW= 1MHz, Sweep time= 200 ms., the VBW setting was 3 MHz.
- 5 Spectrum AV mode if bandwidth Setting : 1GHz- 40GHz, RBW= 1MHz, VBW ≥ 1/Ton, Sweep time= 200 ms.

- 1 Measuring frequencies from the lowest internal frequency to the 10th of fundamental frequency
- 2 Field strength limits for frequency above 1000MHz are based on average limits. However, Peak mode field strength shall not exceed the average limits specified plus 20dB.
- 3 Measurement of data within this frequency range shown "-" in the table above means the reading of emissions are attenuated more than 20dB below the permissible limits or the field strength is too small to be measured.
- 4 Spectrum Peak mode IF bandwidth Setting : 1GHz- 40GHz, RBW= 1MHz, Sweep time= 200 ms., the VBW setting was 3 MHz.
- 5 Spectrum AV mode if bandwidth Setting : 1GHz- 40GHz, RBW= 1MHz, VBW ≥ 1/Ton, Sweep time= 200 ms.

Band Edges test -Radiated

Danu E	uges lest -	Naulattu						
1			80_mod	e	Test Date	2022/05/05		
			10 MHz ℃		Test By	Barry 65 %		
Temper	ature	25	C				Humidity	03 %
130	vel (dBuV/m)							
120								5 non-thing
100								
100								
80								<u> </u>
**	eneretester en aterier	annen telnen der mannet	and the second	and a second		when mendend	and an and a start and the	
60					-		3	
40								
20								
20								
045	00	4650.		4800.	495	0.	5100.	5250
				Freque	ency (MHz)			
	-		-	- 1	-··		D 1	
No	Freq MHz	Reading dBuV	Factor dB	Level dBuV/m	Limit dBuV/m	Margin dB	Remark	Pol V/H
1	4938.00	8.23	42.50	50.73	54.00	-3.27	Average	VERTICAL
							Average	
2	4938.00	24.67	42.50	67.17	74.00	-6.83	Peak	VERTICAL
3	5150.00	10.26	42.69	52.95	54.00	-1.05	Average	VERTICAL
4	5150.00	21.75	42.69	64.44	68.20	-3.76	Peak	VERTICAL

Remark:

5

5222.25

74.95

43.05

1 Measuring frequencies from the lowest internal frequency to the 10th of fundamental frequency

118.00

2 Field strength limits for frequency above 1000MHz are based on average limits. However, Peak mode field strength shall not exceed the average limits specified plus 20dB.

F

__

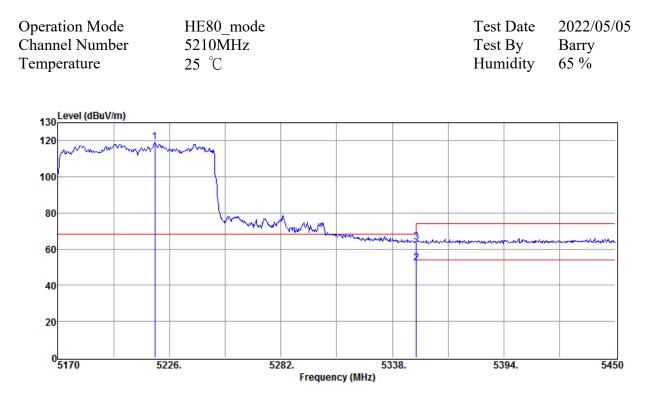
Peak

- 3 Measurement of data within this frequency range shown "-" in the table above means the reading of emissions are attenuated more than 20dB below the permissible limits or the field strength is too small to be measured.
- 4 Spectrum Peak mode IF bandwidth Setting : 1GHz- 40GHz, RBW= 1MHz, Sweep time= 200 ms., the VBW setting was 3 MHz.
- 5 Spectrum AV mode if bandwidth Setting : 1GHz- 40GHz, RBW= 1MHz, VBW ≥ 1/Ton, Sweep time= 200 ms.

Note: "F" denotes fundamental frequency

VERTICAL

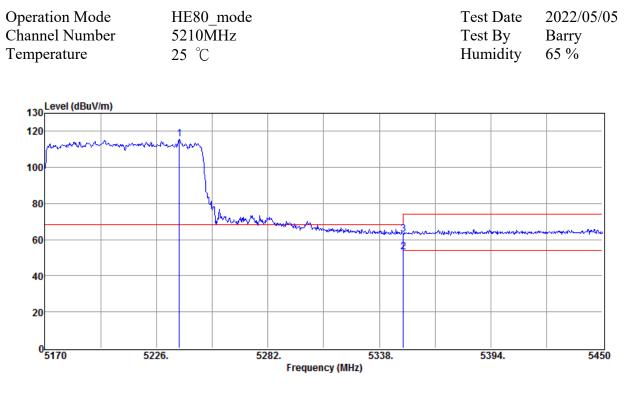
peration Mode hannel Number emperature	HE80_mod 5210 MHz 25 °C	e	Test Date Test By Humidity	2022/05/05 Barry 65 %	
emperature	25 0			Tunneity	05 /0
Level (dBuV/m)					
130					
120					5
					and the second of the
100					<u> </u>
80					/
	-	2	and the second states and	mound any work will and	
60				3	
40					
20					
04500 44	5 50.	4800.	4950.	5100.	5250
1000		Frequenc		5100.	5250


No	Freq	Reading	Factor	Level	Limit	Margin	Remark	Pol
	MHz	dBuV	dB	dBuV/m	dBuV/m	dB		V/H
1	4826.25	7.03	42.33	49.36	54.00	-4.64	Average	HORIZONTAL
2	4826.25	24.44	42.33	66.77	74.00	-7.23	Peak	HORIZONTAL
3	5150.00	10.24	42.69	52.93	54.00	-1.07	Average	HORIZONTAL
4	5150.00	22.88	42.69	65.57	68.20	-2.63	Peak	HORIZONTAL
5	5238.00	72.83	43.06	115.89	F		Peak	HORIZONTAL

Remark:

- 1 Measuring frequencies from the lowest internal frequency to the 10th of fundamental frequency
- 2 Field strength limits for frequency above 1000MHz are based on average limits. However, Peak mode field strength shall not exceed the average limits specified plus 20dB.
- 3 Measurement of data within this frequency range shown "-" in the table above means the reading of emissions are attenuated more than 20dB below the permissible limits or the field strength is too small to be measured.
- 4 Spectrum Peak mode IF bandwidth Setting : 1GHz- 40GHz, RBW= 1MHz, Sweep time= 200 ms., the VBW setting was 3 MHz.
- 5 Spectrum AV mode if bandwidth Setting : 1GHz- 40GHz, RBW= 1MHz, VBW ≥ 1/Ton, Sweep time= 200 ms.

Note: "F" denotes fundamental frequency


No	Freq	Reading	Factor	Level	Limit	Margin	Remark	Pol
	MHz	dBuV	dB	dBuV/m	dBuV/m	dB		V/H
1	5218.72	76.03	43.05	119.08	F		Peak	VERTICAL
2	5350.00	9.02	43.05	52.07	54.00	-1.93	Average	VERTICAL
3	5350.00	20.69	43.05	63.74	68.20	-4.46	Peak	VERTICAL

Remark:

- 1 Measuring frequencies from the lowest internal frequency to the 10th of fundamental frequency
- 2 Field strength limits for frequency above 1000MHz are based on average limits. However, Peak mode field strength shall not exceed the average limits specified plus 20dB.
- 3 Measurement of data within this frequency range shown "-" in the table above means the reading of emissions are attenuated more than 20dB below the permissible limits or the field strength is too small to be measured.
- 4 Spectrum Peak mode IF bandwidth Setting : 1GHz- 40GHz, RBW= 1MHz, Sweep time= 200 ms., the VBW setting was 3 MHz.
- 5 Spectrum AV mode if bandwidth Setting : 1GHz- 40GHz, RBW= 1MHz, VBW ≥ 1/Ton, Sweep time= 200 ms.

Note: "F" denotes fundamental frequency

No	Freq	Reading	Factor	Level	Limit	Margin	Remark	Pol
	MHz	dBuV	dB	dBuV/m	dBuV/m	dB		V/H
1	5237.48	72.73	43.06	115.79	F		Peak	HORIZONTAL
2	5350.00	10.03	43.05	53.08	54.00	-0.92	Average	HORIZONTAL
3	5350.00	20.15	43.05	63.20	68.20	-5.00	Peak	HORIZONTAL

Remark:

- 1 Measuring frequencies from the lowest internal frequency to the 10th of fundamental frequency
- 2 Field strength limits for frequency above 1000MHz are based on average limits. However, Peak mode field strength shall not exceed the average limits specified plus 20dB.
- 3 Measurement of data within this frequency range shown "-" in the table above means the reading of emissions are attenuated more than 20dB below the permissible limits or the field strength is too small to be measured.
- 4 Spectrum Peak mode IF bandwidth Setting : 1GHz- 40GHz, RBW= 1MHz, Sweep time= 200 ms., the VBW setting was 3 MHz.
- 5 Spectrum AV mode if bandwidth Setting : 1GHz- 40GHz, RBW= 1MHz, VBW ≥ 1/Ton, Sweep time= 200 ms.

Note: "F" denotes fundamental frequency

9. Transmission in the Absence of Data

9.1. Standard Applicable

According to §15.407(c)

The device shall automatically discontinue transmission in case of either absence of information to transmit or operational failure. These provisions are not intended to preclude the transmission of control or signaling information or the use of repetitive codes used by certain digital technologies to complete frame or burst intervals. Applicants shall include in their application for equipment authorization a description of how this requirement is met.

9.2. Result:

Compliance. This device automatically discontinue transmission in case of either absence of information to transmit or operational failure.

10. Antenna Requirement

10.1. Standard Applicable

According to §15.203, Antenna requirement.

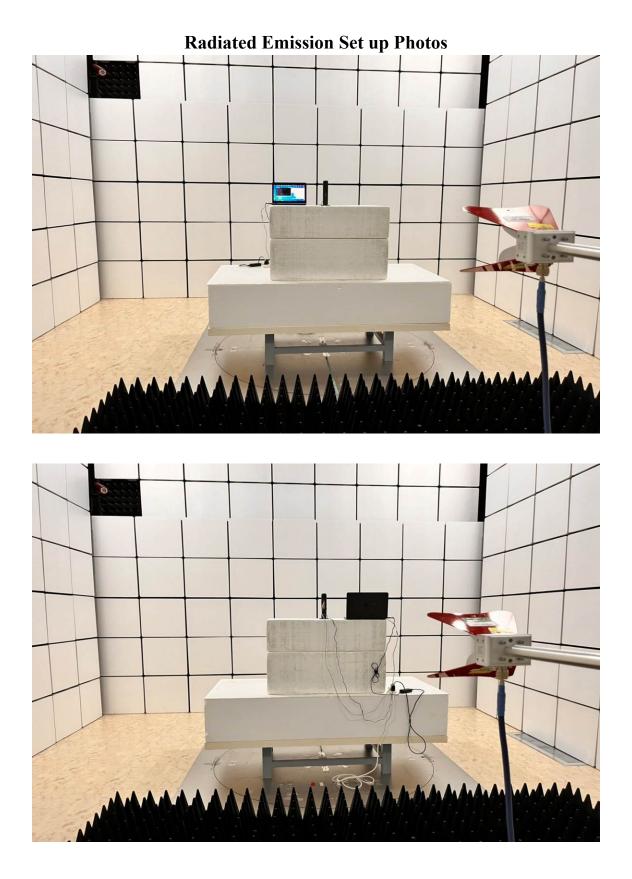
An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator shall be considered sufficient to comply with the provisions of this Section. The manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited. This requirement does not apply to carrier current devices or to devices operated under the provisions of Sections 15.211, 15.213, 15.217, 15.219, or 15.221. Further, this requirement does not apply to intentional radiators that must be professionally installed, such as perimeter protection systems and some field disturbance sensors, or to other intentional radiators which, in accordance with Section 15.31(d), must be measured at the installation site. However, the installer shall be responsible for ensuring that the proper antenna is employed so that the limits in this Part are not exceeded.

10.2. Antenna Connected Construction

The directional gins of antenna used for transmitting is below table, and the antenna connector is designed with unique type RF connector and no consideration of replacement. Please see EUT photo and antenna spec. for details.

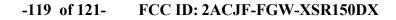
	Antenna Type	Brand	Model	Peak Gain(dBi)	Frequency Range(MHz)	Connector Type
1	PCB	Galtronics	02102140-06825-1	3.7	5150~5250MHz	U.FL
2	PCB	Galtronics	02102140-06825-2	3.5	5150~5250MHz	U.FL
3	PCB	Galtronics	02102140-06825-3	3.7	5150~5250MHz	U.FL
	PCB	Galtronics	02102140-06825-4	3.5	5150~5250MHz	U.FL

Antenna Designation:

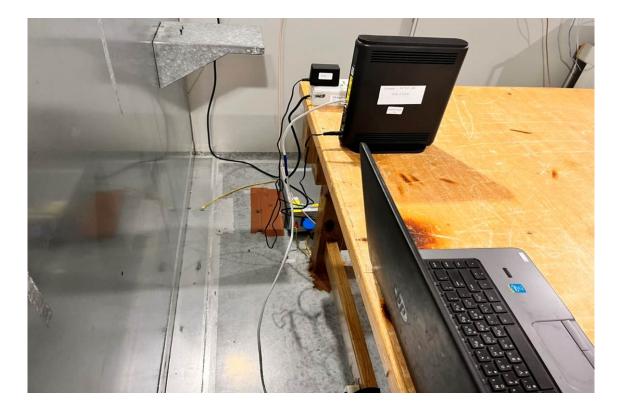

APPENDIX 1 PHOTOGRAPHS OF SET UP

0/ CILL 0

Radiated Emission Set up Photos



International Standards Laboratory Corp.



Conducted Emission Set up Photo

International Standards Laboratory Corp.

APPENDIX 2 PHOTOGRAPHS OF EUT

Refer to file ISL-22LR0095P

International Standards Laboratory Corp.