

TEST REPORT

Report Number: 103224477MPK-003A Project Number: G103224477 October 18, 2017

Testing performed on the **FIBERGATEWAY** Model Number: GR240BG FCC ID: 2ACJF-FGW-GR240BG

> to FCC Part 15, Subpart E

> > For

Altice Labs, SA

Test Performed by: Intertek 1365 Adams Court Menlo Park, CA 94025 USA

Test Authorized by: Altice Labs, SA Rua Eng. Ferreira Pinto Basto 3810-106 Aveiro, Portugal

Prepared by:

Reviewed by:

Minh Ly

Krishna K

Date: October 18, 2017

Date: October 18, 2017

This report is for the exclusive use of Intertek's Client and is provided pursuant to the agreement between Intertek and its Client. Intertek's responsibility and liability are limited to the terms and conditions of the agreement. Intertek assumes no liability to any party, other than to the Client in accordance with the agreement, for any loss, expense or damage occasioned by the use of this report. Only the Client is authorized to copy or distribute this report and then only in its entirety. Any use of the Intertek name or one of its marks for the sale or advertisement of the tested material, product or service must first be approved in writing by Intertek. The observations and test results in this report are relevant only to the sample tested. This report by itself does not imply that the material, product, or service is or has ever been under an Intertek certification program. This report must not be used to claim product endorsement by A2LA, NIST nor any other agency of the U.S. Government.

VERIFICATION OF COMPLIANCE Report No. 103224477MPK-003A

Verification is hereby issued to the named APPLICANT and is VALID ONLY for the equipment identified hereon for use under the rules and regulations listed below.

Equipment Under Test: Trade Name: Model No.:

Applicant: Contact: Address:

Country

Tel. Number: Email: FIBERGATEWAY Altice Labs, SA GR240BG

Altice Labs, SA Ricardo Cunha Rua Eng. Ferreira Pinto Basto 3810-106 Aveiro Portugal

351234403200 Rcunha@ptinovacao.pt

FCC Part 15, Subpart E

Applicable Regulation:

Date of Test:

We attest to the accuracy of this report:

Minh Ly Project Engineer

Anderson Soungpanya Project Engineer

September 20 – October 11, 2017

Krishna K Vemuri Engineering Team Lead

TABLE OF CONTENTS

1.0	Intro	duction		4
	1.1	Summ	ary of Tests	4
2.0			iption	
	2.1		t Description	
	2.2		d Submittal(s) Grants	
	2.3		lethodology	
	2.4		acility	
	2.5	Measu	rement Uncertainty	6
3.0	Syste	em Test C	onfiguration	7
	3.1	Suppor	rt Equipment	7
	3.2		Diagram of Test Setup	
	3.3	Justific	cation	8
	3.4		of Operation During Test	
	3.5		cations required for Compliance	
	3.6	Additi	ons, deviations and exclusions from standards	9
4.0	Meas	urement	Results	
	4.1	Emissi	on Bandwidth and 99% Occupied Bandwidth	
		4.1.1	Procedure	
		4.1.2	Test Result	
	4.2	Maxim	num Conducted Output Power	21
		4.2.1	Requirement	
		4.2.2	Procedure	21
		4.2.3	Test Results	
	4.3	Peak P	ower Spectral Density	
		4.3.1	Requirement	
		4.3.2	Procedure	
		4.3.3	Test Result	
	4.4	Freque	ncy stability	45
		4.4.1	Requirement	
		4.4.2	Procedure	
		4.4.3	Result	
	4.5	Transn	nitter Radiated Emissions	47
		4.5.1	Requirement	47
		4.5.2	Procedure	
		4.5.3	Field Strength Calculation	
		4.5.4	Test Results	
		4.5.5	Test setup photographs	77
5.0	List o	of Test Ed	quipment	79
6.0	Доси	ment His	tory	
	2000		·····	

intertek Total Quality. Assured.

1.0 Introduction

1.1 Summary of Tests

Test	Reference FCC	Result
26 dB Emission Band width and 99% Occupied Bandwidth	15.407(a)(1)(2)(3)	Complies
Conducted Output Power	15.407(a)(1)(2)(3)	Complies
Peak Power Spectral Density	15.407(a)(1)(2)(3)	Complies
Undesirable Emissions	15.407(b)(1-8)	Complies
Transmitter Radiated Emissions	15.407(b)(1-8) 15.209, 15.205	Complies
Frequency stability	15.407(g)	Complies
Antenna Requirement	15.203	Complies
		(Unique Connector & Internal Antenna)
AC Line Conducted Emission	15.207	Complies*

*See Report 103224477MPK-002B for compliance data

EUT receive date:	September 18, 2017
EUT receive condition:	The pre-production version of the EUT was received in good condition with no apparent damage. As declared by the Applicant, it is identical to the production units.
Test start date:	September 20, 2017
Test completion date:	October 11, 2017

The test results in this report pertain only to the item tested.

intertek Total Quality. Assured.

2.0 General Description

2.1 Product Description

Altice Labs, SA supplied the following description of the EUT:

The FiberGateway GR240BG is an ONT (Optical Network Terminal) solution based on Rec. ITU-T G.984.x that supports triple play services (high speed internet, voice and video) which are deployed over Ethernet and Wi-Fi interfaces. GEM (GPON encapsulation method) is employed to adapt technologies. This system can be used in triple play service delivery network solutions. It includes Home Gateway functionalities, 4 GbE ports and Wi-Fi Dual-Band Concurrent (2.4 GHz bgn 4x4 + 5 GHz anac 4x4) for internet access and IPTV, 2 FXS ports for voice and 1 USB 2.0 port.

The information about the 5GHz radio, installed in the model GR240BG, is presented below.

Applicant	Altice Labs, SA
Model No.	GR240BG
FCC ID	2ACJF-FGW-GR240BG
Rated RF Output	802.11a: 20.63 dBm
	802.11n 20MHz: 20.67 dBm
	802.11n 40MHz: 17.70 dBm
	802.11ac 80MHz: 16.73 dBm
Frequency Range	U-NII 1: 5150 – 5250 MHz
Type of modulation	OFDM
Antenna(s) & Gain	Internal Antenna, 4.95 dBi calculated peak gain
	Ant 0 – DB1: 4.8dBi, Vertical
	Ant 1 – DB2: 3.4dBi, Horizontal
	Ant 2 – DB3: 4.0dBi, Horizontal
	Ant 3 – DB4: 5.1dBi, Vertical
Manufacturer Name &	Altice Labs, SA
Address	Rua Eng. Ferreira Pinto Basto
	3810-106 Aveiro
	Portugal

The EUT supports a wide range of data rates in the U-NII 1 band:

IEEE 802.11a IEEE 802.11n 20MHz IEEE 802.11n 40MHz IEEE 802.11ac 20MHz IEEE 802.11ac 40MHz IEEE 802.11ac 80MHz

Total Quality. Assured.

2.2 Related Submittal(s) Grants

None.

2.3 Test Methodology

Antenna conducted measurements were performed according to the FCC documents "Guidelines for Compliance Testing of Unlicensed National Information Infrastructure (U-NII) Devices Part 15, Subpart E" (789033 D02 General U-NII Test Procedures New Rules v01r04, and 662911 D01 Multiple Transmitter Output v02r01).

Both AC mains line-conducted and radiated emissions measurements were performed according to the procedures in ANSI C63.4. Radiated tests were performed at an antenna to EUT distance of 3 meters, unless stated otherwise in the **"Data Sheet"** of this Application.

All other measurements were made in accordance with the procedures in part 2 of CFR 47.

2.4 Test Facility

The test site used to collect the radiated data is site 1 (10-m semi-anechoic chamber). This test facility and site measurement data have been fully placed on file with the FCC, IC and A2LA accredited.

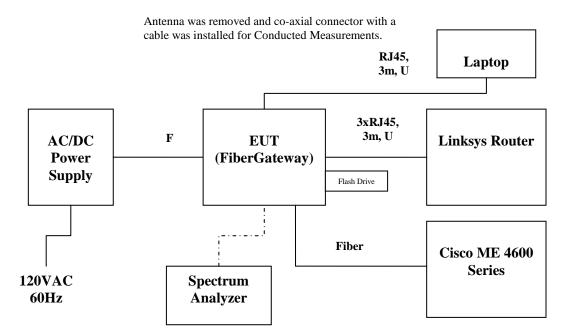
2.5 Measurement Uncertainty

Compliance with the limits was based on the results of the measurements and doesn't take into account the measurement uncertainty.

Measurement	Expanded Uncertainty (k=2)		
	0.15 MHz – 1 GHz	1 GHz – 6 GHz	>6 GHz
RF Power and Power Density – antenna conducted	1.1 dB	1.5 dB	
Unwanted emissions - antenna conducted	1.2 dB	1.7 dB	2.0 dB
Bandwidth – antenna conducted	50 Hz	100 Hz	_
Radiated emissions	4.2 dB	5.4 dI	3
AC mains conducted emissions	2.4 dB	-	-

intertek

Total Quality. Assured.


3.0 System Test Configuration

3.1 Support Equipment

Description	Manufacturer	Model No./ Part No.
Laptop	HP	EliteBook 8470p
Optical Line Termination	Cisco	Cisco ME 4600 Series
Flash Drive	Kingston	DT101G2 8GB
Telephone	TKT	1700137823
Telephone	Alcatel	N/A
Router	Linksys	BEFSR81

3.2 Block Diagram of Test Setup

Equipment Under Test					
Description	Manufacturer	Model Number	Serial Number		
FiberGateway (Radiated Unit)	Altice Labs, SA	GR240BG	5054494E912154CF		
AC/DC Power Adapter	Airline mechanical Co Ltd	EOSA+4B120-4000	AB1708240092570		
FiberGateway (Conducted Unit)	Altice Labs, SA	GR240BG	5054494E9121874F		

S = Shielded	$\mathbf{F} = $ With Ferrite
$\mathbf{U} = \mathbf{U}$ nshielded	$\mathbf{m} = Meter$

3.3 Justification

Preliminary testing was performed for all modulation/data rate modes. The following modes, in which the highest power was detected, were selected for final measurements:

```
OFDM, 6MB/s – for 802.11a (Power Setting on test firmware: 15)
OFDM, MCS0 – for 802.11n 20MHz (Power Setting on test firmware: 15)
OFDM, MCS0 – for 802.11n 40MHz (Power Setting on test firmware: 12)
OFDM, MCS0 – for 802.11ac 80MHz (Power Setting on test firmware: 12)
```

According to the manufacture, the FiberGateway utilizes cross-polarized antennas with two vertical (Ant 1 & Ant 4) and two Horizontal (Ant 2 & Ant 3). Per FCC KDB "662911 D01 Multiple Transmitter Output v02r01", the directional gain of the antenna is calculated as below:

Directional gain = $10 \log[(10_{G1/10} + 10_{G2/10} + ... + 10_{GN/10})/N_{ANT}] dBi$ Vertical Gain = $10 \log[(10^{(4.8/10)} + 10^{(5.1/10)})/2] = 4.9dBi$ Horizontal Gain = $10 \log[(10^{(3.4/10)} + 10^{(4/10)})/2] = 3.7dBi$

3.4 Mode of Operation During Test

During transmitter testing, the transmitter was setup to transmit continuously using the maximum RF power setting. Their corresponding output power in dBm can be found in section 4.2 of this report.

3.5 Modifications required for Compliance

The following modification was made by the manufacturer to the EUT in order to bring the EUT into compliance:

- Added a ferrite with double loop (Manufacture: Wurth Electronics, Part Number: 74271633S) at the DC input of the FiberGateway (See below).

3.6 Additions, deviations and exclusions from standards

No additions, deviations or exclusion have been made from standard.

4.0 Measurement Results

4.1 Emission Bandwidth and 99% Occupied Bandwidth

15.407(a)(1)(2)

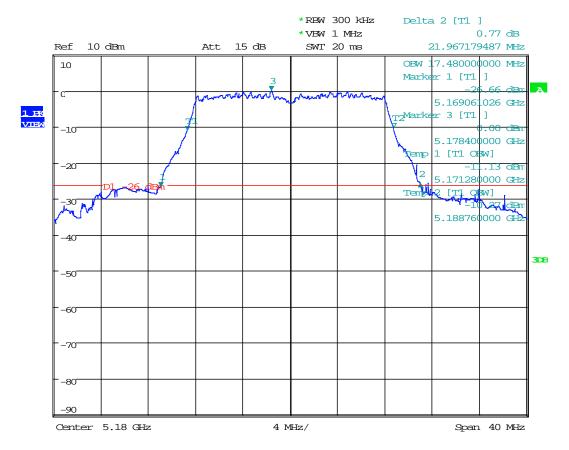
4.1.1 Procedure

The Procedure, described in the FCC Publication 789033 D02 General U-NII Test Procedures New Rules v01r04, was used. Specifically Section C for Emission Bandwidth and Section D was used for 99% Occupied Bandwidth.

The antenna port of the EUT was connected to the input of a spectrum analyzer (SA). For each RF output channel investigated, the spectrum analyzer center frequency was set to the channel carrier.

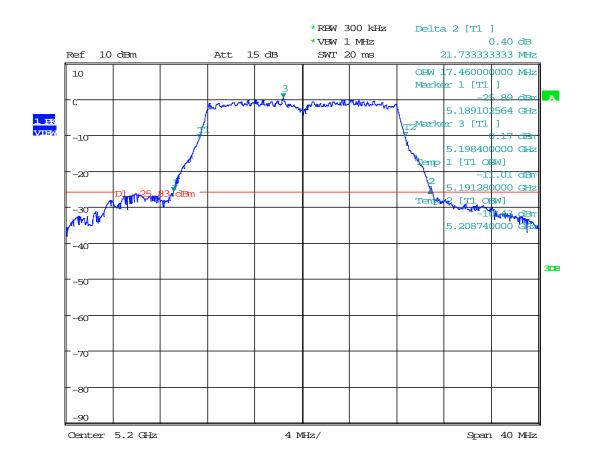
The Occupied bandwidth was measured using the build-in spectrum analyzer facility for 99% power bandwidth measurement.

Tested By:	Anderson Soungpanya
Test Date:	September 26, 2017

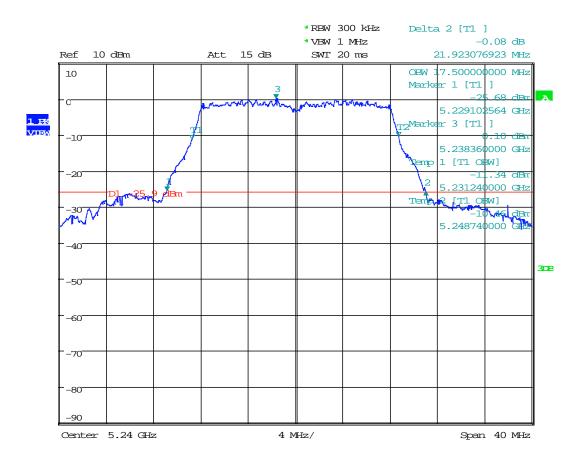

4.1.2 Test Result

Refer to the following plots for the test result:

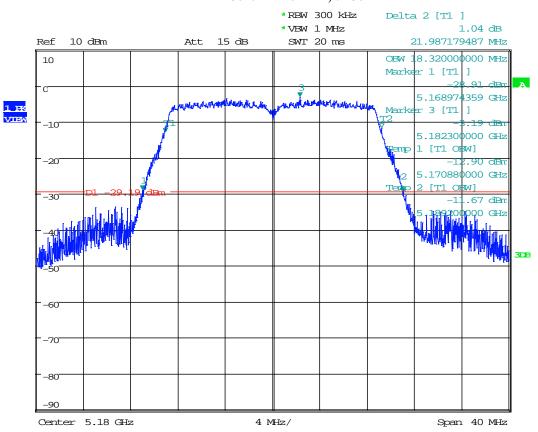
Mode	Channel	Frequency, MHz	26-dB Bandwidth, MHz	Occupied Bandwidth, MHz	Plot #
	36	5180	21.967	17.48	1.1
802.11a	40	5200	21.733	17.46	1.2
	48	5240	21.923	17.5	1.3
	36	5180	21.987	18.32	1.4
802.11n 20MHz	40	5200	21.923	18.34	1.5
2014112	48	5240	22.247	18.48	1.6
802.11n	38	5190	40.384	36.6	1.7
40MHz	46	5230	40.256	36.64	1.8
802.11ac 80MHz	42	5210	81.909	75.04	1.9


802.11a 5180MHz

Date: 26.SEP.2017 09:53:19

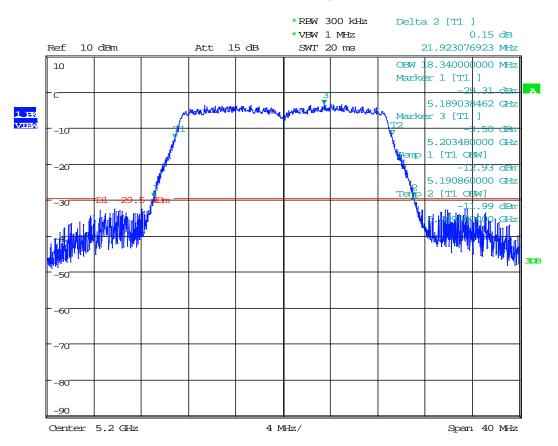

802.11a 5200MHz

Date: 26.SEP.2017 09:57:16


802.11a 5240MHz

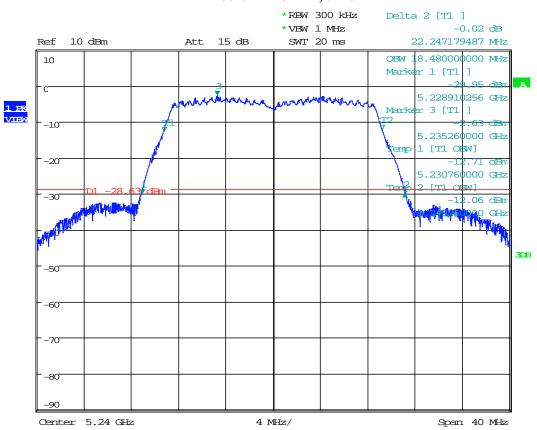
Date: 26.SEP.2017 10:05:47

*Upper 99% occupied bandwidth at 5248.74MHz. Therefore, it does not straddles into U-NII 2A band.



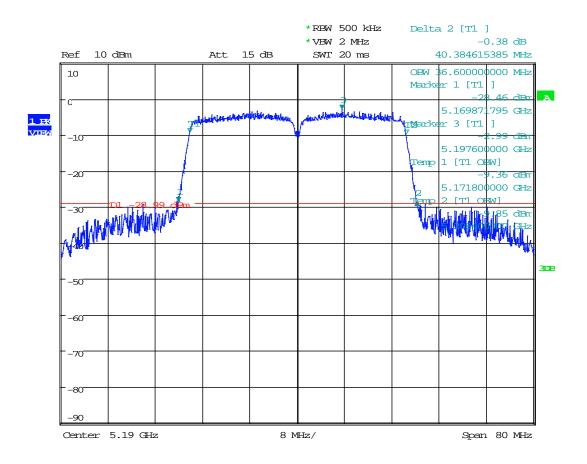
802.11n 20MHz, 5180MHz

Date: 26.SEP.2017 10:11:03



802.11n 20MHz, 5200MHz

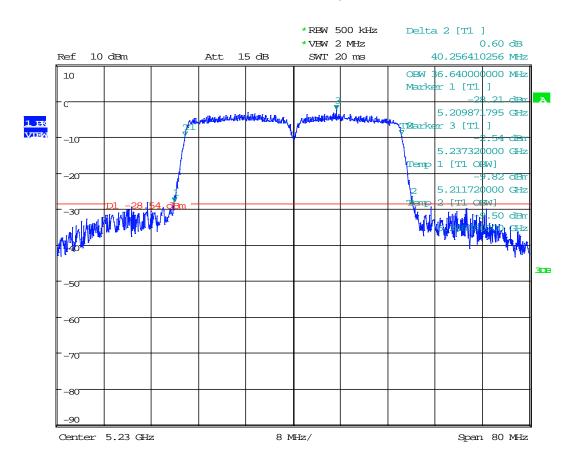
Date: 26.SEP.2017 10:13:10



802.11n 20MHz, 5240MHz

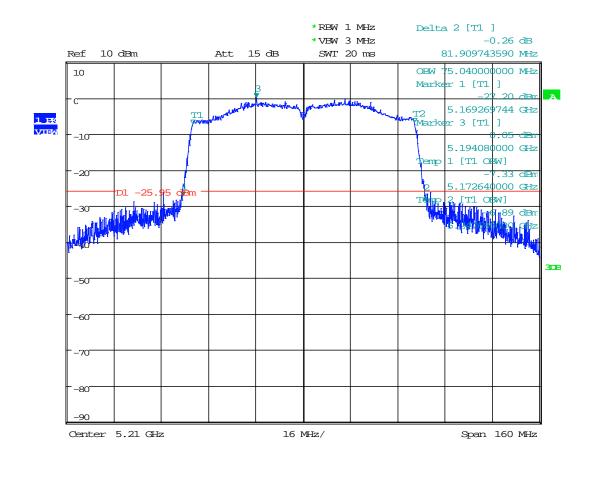
Date: 26.SEP.2017 10:32:50

*Upper 99% occupied bandwidth at 5248.24MHz. Therefore, it does not straddle into U-NII 2A band.



802.11n 40MHz, 5190MHz

Date: 26.SEP.2017 10:47:47


802.11n 40MHz, 5230MHz

Date: 26.SEP.2017 10:51:06

*Upper 99% occupied bandwidth at 5248.36MHz. Therefore, it does not straddle into U-NII 2A band.

Date: 26.SEP.2017 10:57:23

*Upper 99% occupied bandwidth at 5247.66MHz. Therefore, it does not straddle into U-NII 2A band.

4.2 Maximum Conducted Output Power FCC Rule 15.407(a)(1)(ii)

4.2.1 Requirement

For an indoor access point operating in the band 5.15-5.25 GHz, the maximum conducted output power over the frequency band of operation shall not exceed 1 W provided the maximum antenna gain does not exceed 6 dBi. In addition, the maximum power spectral density shall not exceed 17 dBm in any 1 megahertz band. If transmitting antennas of directional gain greater than 6 dBi are used, both the maximum conducted output power and the maximum power spectral density shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

4.2.2 Procedure

The Procedure, described in the FCC Publication 789033 D02 General U-NII Test Procedures New Rules v01r04, was used. Specifically Section E (2) (b) Method SA-1 for Maximum Conducted Output Power

The antenna port output of the EUT was connected to the input of a spectrum analyzer to measure the Maximum Conducted Transmitter Output Power.

Tested By:	Minh Ly
Test Date:	October 04, 2017

intertek Total Quality. Assured.

4.2.3 Test Results

Refer to the following plots for the test result:

802.11a (6Mbps) – Conducted Average Power

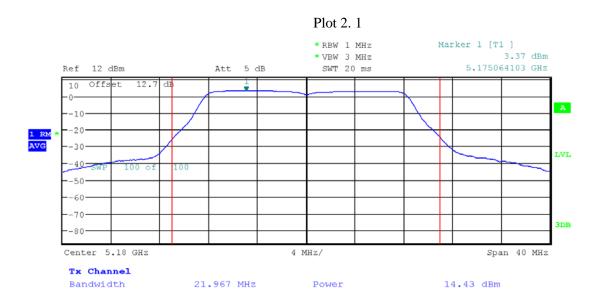
СН	Frequency MHz	Ant 0 – DB1 (dBm)	Plot #	Ant 1 – DB2 (dBm)	Plot #	Ant 2 – DB3 (dBm)	Plot #	Ant 3 – DB4 (dBm)	Plot #
36	5180	14.43	2.1	14.16	2.4	13.93	2.7	14.49	2.10
40	5200	14.49	2.2	14.62	2.5	14.29	2.8	14.92	2.11
48	5240	14.57	2.3	14.58	2.6	14.30	2.9	14.96	2.12

802.11n 20MHz (MCS0) – Conducted Average Power

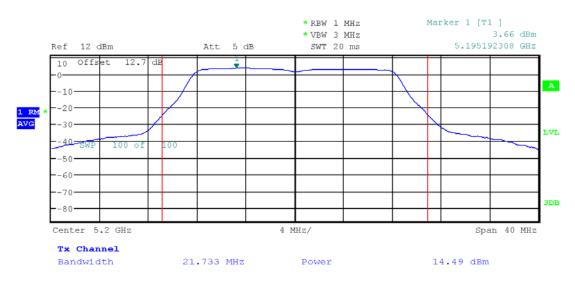
СН	Frequency MHz	Ant 0 – DB1 (dBm)	Plot #	Ant 1 – DB2 (dBm)	Plot #	Ant 2 – DB3 (dBm)	Plot #	Ant 3 – DB4 (dBm)	Plot #
36	5180	14.28	2.13	14.29	2.16	14.05	2.19	14.65	2.22
40	5200	14.67	2.14	14.64	2.17	14.25	2.20	14.99	2.23
48	5240	14.61	2.15	14.59	2.18	14.16	2.21	15.00	2.24

802.11n 40MHz (MCS0) - Conducted Average Power

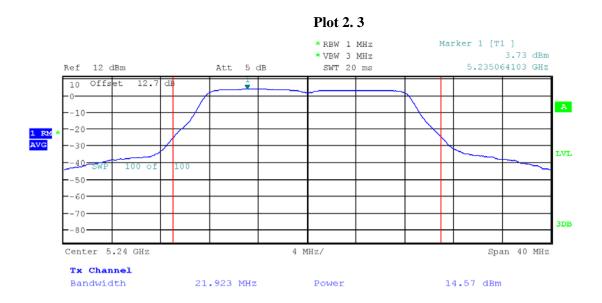
СН	Frequency MHz	Ant 0 – DB1 (dBm)	Plot #	Ant 1 – DB2 (dBm)	Plot #	Ant 2 – DB3 (dBm)	Plot #	Ant 3 – DB4 (dBm)	Plot #
38	5190	11.48	2.25	11.31	2.27	10.84	2.29	11.57	2.31
46	5230	11.69	2.26	11.71	2.28	11.34	2.30	11.97	2.32

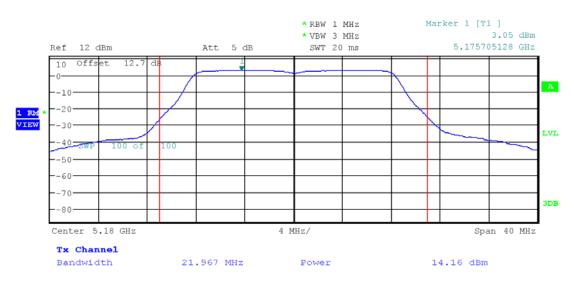

802.11ac 80MHz (MCS0) – Conducted Average Power

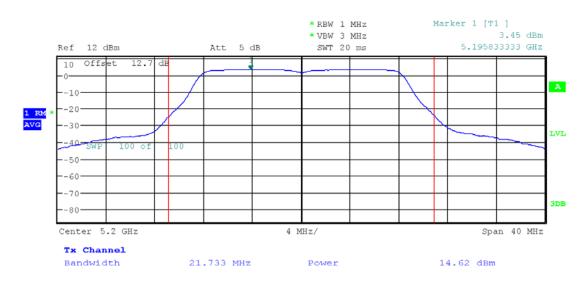
I	СН	Frequency MHz	Ant 0 – DB1 (dBm)	Plot #	Ant 1 – DB2 (dBm)	Plot #	Ant 2 – DB3 (dBm)	Plot #	Ant 3 – DB4 (dBm)	Plot #
	42	5210	10.73	2.33	10.90	2.34	10.03	2.35	11.10	2.36

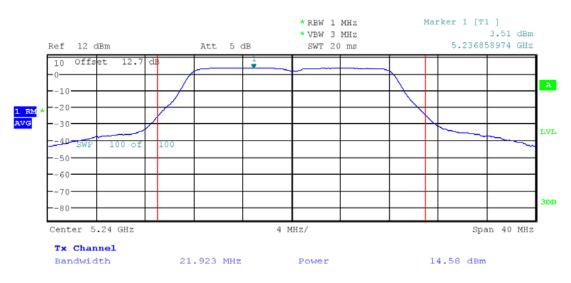


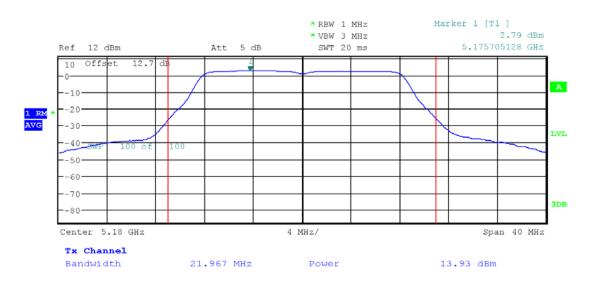
СН	Frequency (MHz)	Summed power (dBm)	Summed power (W)							
	802.11a									
36	5180	20.28	0.107							
40	5200	20.61	0.115							
48	5240	20.63	0.116							
	802.11n 20MHz									
36	5180	20.34	0.108							
40	5200	20.67	0.117							
48	5240	20.62	0.115							
		802.11n 40MHz								
38	5190	17.33	0.054							
46	5230	17.70	0.059							
		802.11ac 80MHz								
42	5210	16.73	0.047							

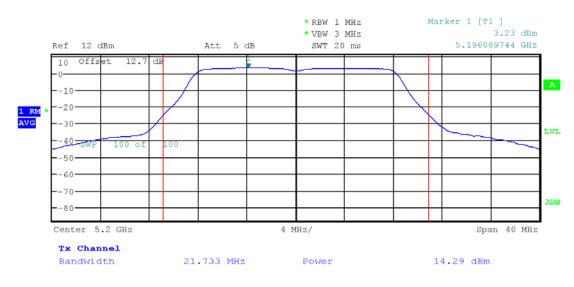


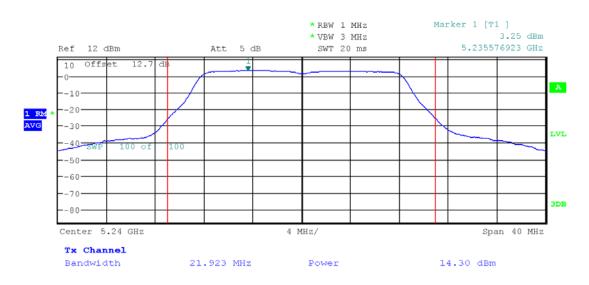


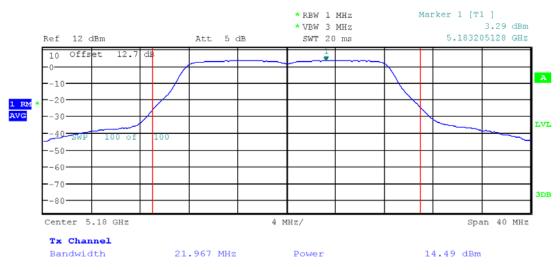


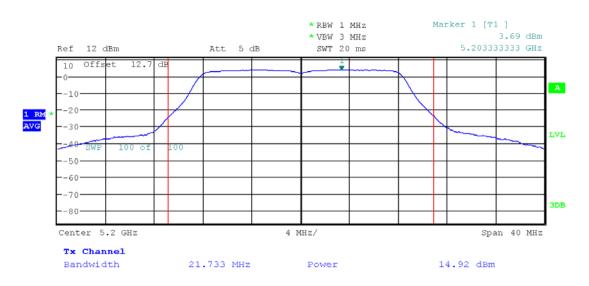


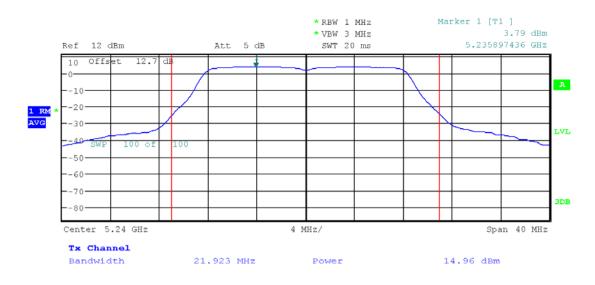


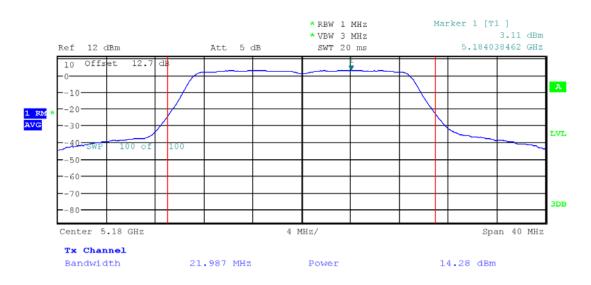


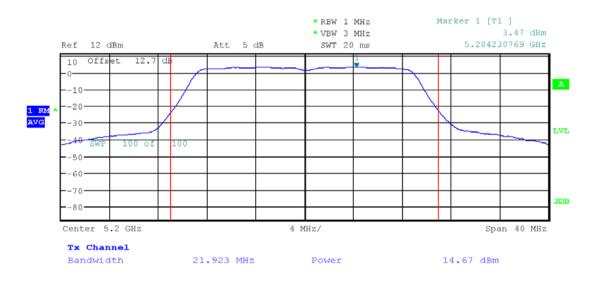


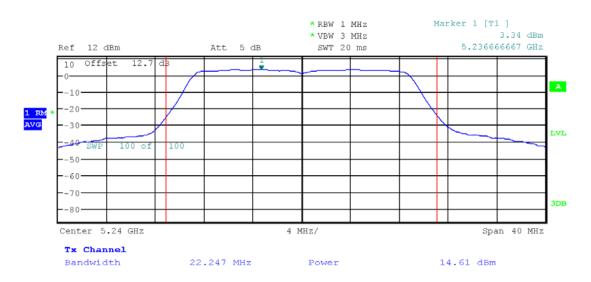


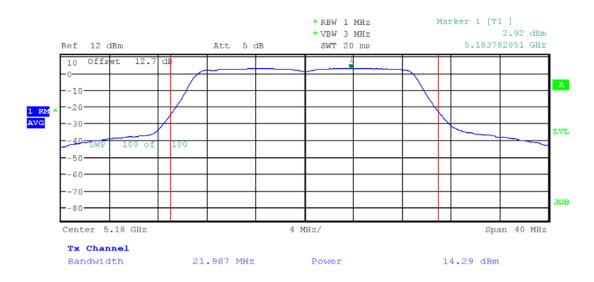


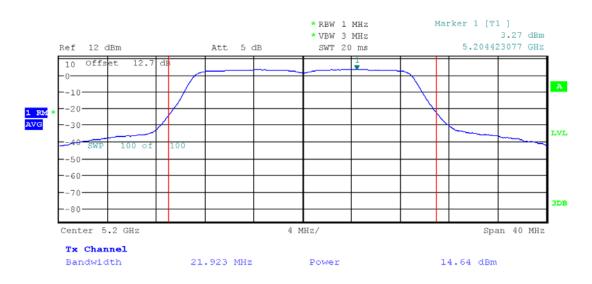


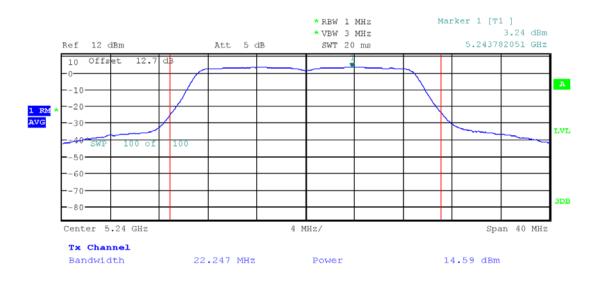




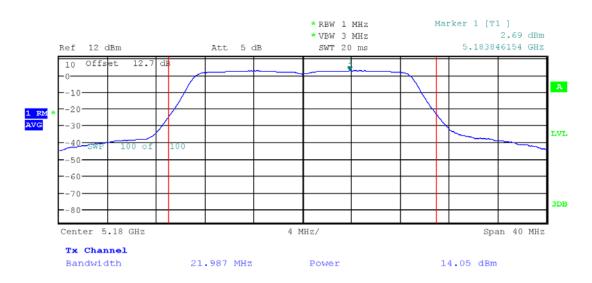


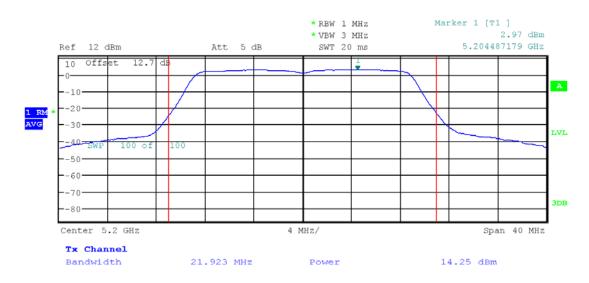


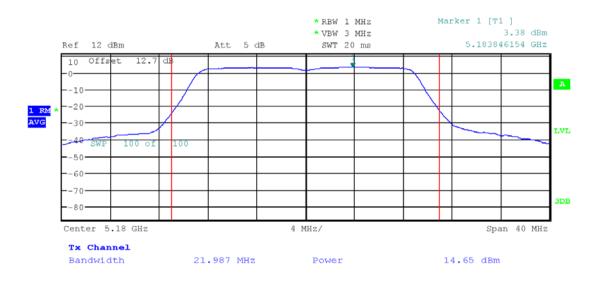




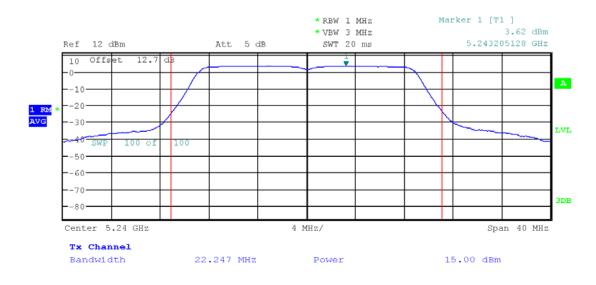
Plot 2. 16

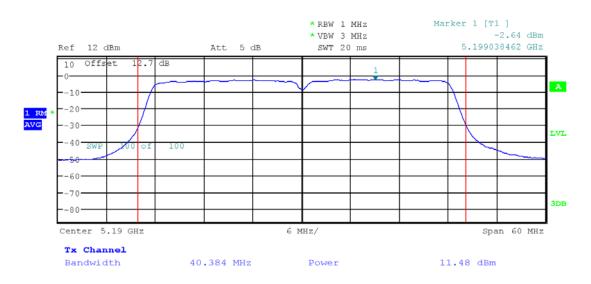


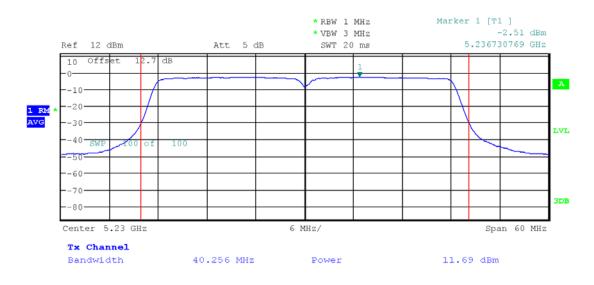


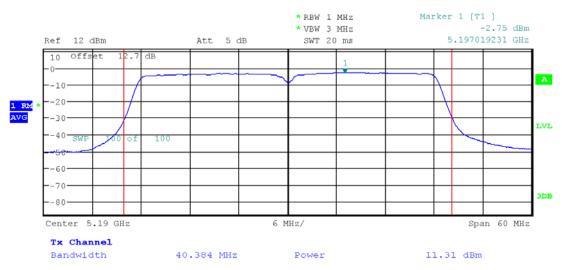


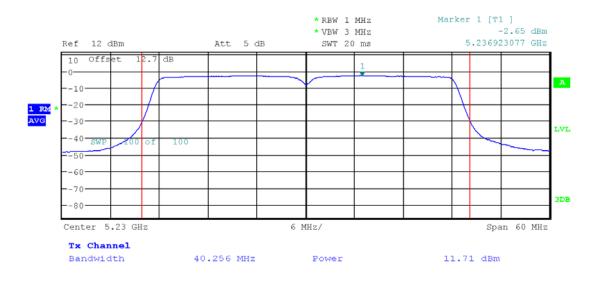
Plot 2. 20

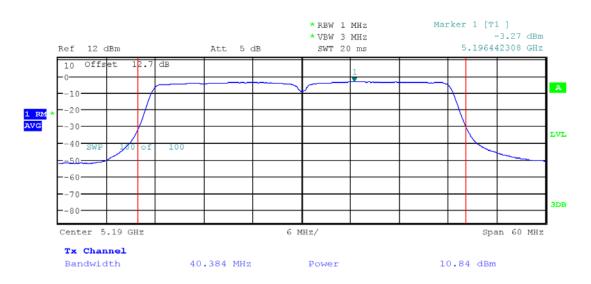


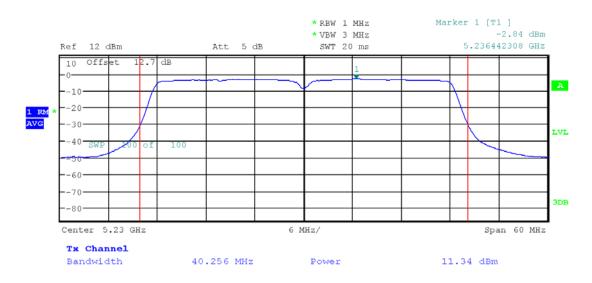


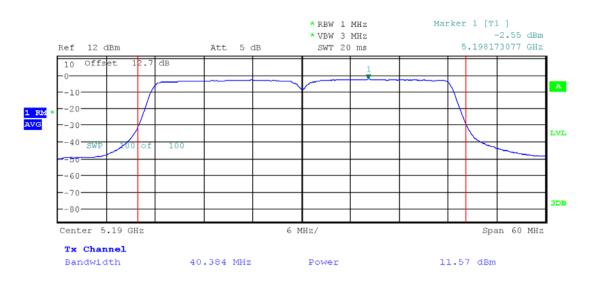


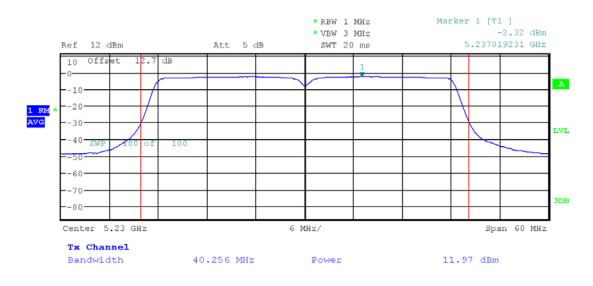




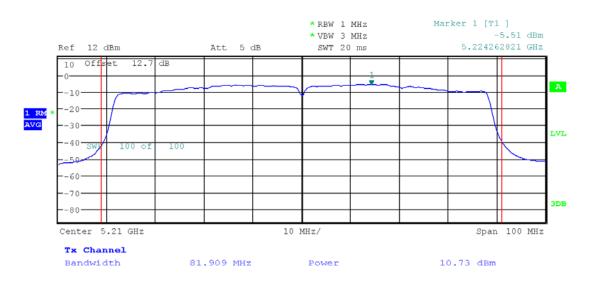

intertek Total Quality. Assured.

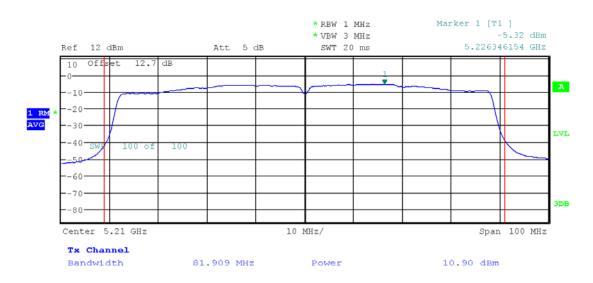


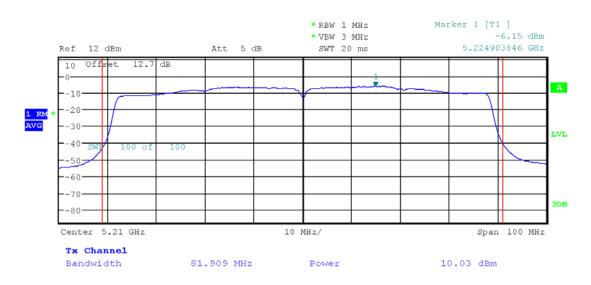


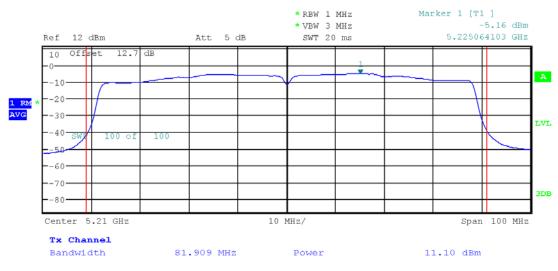


Plot 2. 30









Plot 2. 34

4.3 Peak Power Spectral Density FCC Rule 15.407(a)(1)(ii)

4.3.1 Requirement

For an indoor access point operating in the band 5.15-5.25 GHz, the maximum conducted output power over the frequency band of operation shall not exceed 1 W provided the maximum antenna gain does not exceed 6 dBi. In addition, the maximum power spectral density shall not exceed 17 dBm in any 1 megahertz band. If transmitting antennas of directional gain greater than 6 dBi are used, both the maximum conducted output power and the maximum power spectral density shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

4.3.2 Procedure

Each antenna port of the EUT was connected to the input of a spectrum analyzer to measure the Peak Power Spectral Density (PPSD) and recorded.

The Procedure, described in the FCC Publication 789033 D02 General U-NII Test Procedures New Rules v01r04, was used. Specifically procedure from Section F was utilized for Maximum Power Spectral Density (PSD).

Tested By:	Minh Ly
Test Date:	October 04, 2017

4.3.3 Test Result

Refer to the following plots for the test result

СН	Frequency MHz	Ant 0 – DB1 (dBm)	Plot #	Ant 1 – DB2 (dBm)	Plot #	Ant 2 – DB3 (dBm)	Plot #	Ant 3 – DB4 (dBm)	Plot #
36	5180	3.37	2.1	3.05	2.4	2.79	2.7	3.29	2.10
40	5200	3.66	2.2	3.45	2.5	3.23	2.8	3.69	2.11
48	5240	3.73	2.3	3.51	2.6	3.25	2.9	3.79	2.12

802.11a (6Mbps) - Peak Power Spectral Density

* Worse-case margin to 17dBm limit: -13.21dBm

802.11n 20MHz (MCS0) –Power Spectral Density

СН	Frequency MHz	Ant 0 – DB1 (dBm)	Plot #	Ant 1 – DB2 (dBm)	Plot #	Ant 2 – DB3 (dBm)	Plot #	Ant 3 – DB4 (dBm)	Plot #
36	5180	3.11	2.13	2.92	2.16	2.69	2.19	3.38	2.22
40	5200	3.47	2.14	3.27	2.17	2.97	2.20	3.71	2.23
48	5240	3.34	2.15	3.24	2.18	2.83	2.21	3.62	2.24

802.11n 40MHz (MCS0) –Power Spectral Density

СН	Frequency MHz	Ant 0 – DB1 (dBm)	Plot #	Ant 1 – DB2 (dBm)	Plot #	Ant 2 – DB3 (dBm)	Plot #	Ant 3 – DB4 (dBm)	Plot #
38	5190	-2.64	2.25	-2.75	2.27	-3.27	2.29	-2.55	2.31
46	5230	-2.51	2.26	-2.65	2.28	-2.84	2.30	-2.32	2.32

802.11n 40MHz (MCS0) - Power Spectral Density

СН	Frequency	Ant 0 – DB1	Plot	Ant 1 – DB2	Plot	Ant 2 – DB3	Plot	Ant 3 – DB4	Plot
	MHz	(dBm)	#	(dBm)	#	(dBm)	#	(dBm)	#
42	5210	-5.51	2.33	-5.32	2.34	-6.15	2.35	-5.16	2.36

MIMO - Power Spectral Density

СН	Frequency (MHz)	Summed PSD (dBm)Limit (dBm)		Margin (dB)
			802.11a	
36	5180	9.15	17	-7.85
40	5200	9.53	17	-7.47
48	5240	9.60	17	-7.40
		80	02.11n 20MHz	
36	5180	9.05	17	-7.95
40	5200	9.38	17	-7.62
48	5240	9.29	17	-7.71
		80	02.11n 40MHz	
38	5190	3.23	17	-13.77
46	5230	3.44	17	-13.56
		80	2.11ac 80MHz	
42	5210	0.50	17	-16.50

4.4 Frequency stability FCC 15.407(g)

4.4.1 Requirement

Manufacturers of U-NII devices are responsible for ensuring frequency stability such that an emission is maintained within the band of operation under all conditions of normal operation as specified in the user's manual.

4.4.2 Procedure

The EUT was placed in a temperature chamber and setup to transmit. Procedures for frequency stability in ANSIC63.10:2013 section 6.8 was utilized.

The carrier frequency was measured with the spectrum analyzer with resolution bandwidth of 1 kHz for lower band edge measurement. For upper band edge, 99% occupied bandwidth was used. The temperature was varied from 0° C to 50° C, as declared by manufacturer.

The EUT in this report is powered by 120.0VAC which was varied to 85% and 115% for testing. Testing was performed at a temperature of 20° C.

After the temperature stabilized for approximately 20 minutes, the transmitting frequency was measured.

Tested By:	Anderson Soungpanya
Test Date:	September 29, 2017

4.4.3 Result

Temperature, ⁰ C	-26dB Band Edge at nominal voltage, (MHz)	Maximum deviation from frequency at 20°C, ppm		
Nominal Frequency: 5	5180 MHz			
50	5170.509946	3.707		
40	5170.519764	2.877		
30	5170.504487	4.653		
20	5170.558846	0.000		
10	5170.464744	3.675		
0	5170.584615	3.069		
Voltage at 20 ⁰ C	-26dB Band Edge at nominal voltage,	Maximum deviation		
	(MHz)	from frequency at 20°C, ppm		
120V - 15%	5170.526667	1.188		
120V + 15%	5170.524559	1.661		

Temperature, ⁰ C	99% Occupied Bandwidth Upper Band Edge, (MHz)
Nominal Frequency: 5	5180MHz
50	5248.730000
40	5248.700000
30	5248.730000
20	5248.740000
10	5248.760000
0	5248.750000
Voltage at 20 ⁰ C	99% Occupied Bandwidth Upper Band
voltage at 20 C	Edge, (MHz)
120V - 15%	5248.740000
120V + 15%	5248.730000

4.5 Transmitter Radiated Emissions FCC Rule 15.407(b) (1-8) 15.209, 15.205

4.5.1 Requirement

(b) Undesirable emission limits. Except as shown in paragraph (b) (7) of this section, the maximum emissions outside of the frequency bands of operation shall be attenuated in accordance with the following limits:

(1) For transmitters operating in the 5.15-5.25 GHz band: All emissions outside of the 5.15-5.35 GHz band shall not exceed an e.i.r.p. of -27 dBm/MHz.

(2) For transmitters operating in the 5.25-5.35 GHz band: All emissions outside of the 5.15-5.35 GHz band shall not exceed an e.i.r.p. of -27 dBm/MHz.

(3) For transmitters operating in the 5.47-5.725 GHz band: All emissions outside of the 5.47-5.725 GHz band shall not exceed an e.i.r.p. of -27 dBm/MHz.

(4) For transmitters operating in the 5.725-5.85 GHz band:

(i) All emissions shall be limited to a level of -27 dBm/MHz at 75 MHz or more above or below the band edge increasing linearly to 10 dBm/MHz at 25 MHz above or below the band edge, and from 25 MHz above or below the band edge increasing linearly to a level of 15.6 dBm/MHz at 5 MHz above or below the band edge, and from 5 MHz above or below the band edge increasing linearly to a level of 27 dBm/MHz at the band edge.

(5) The emission measurements shall be performed using a minimum resolution bandwidth of 1 MHz. A lower resolution bandwidth may be employed near the band edge, when necessary, provided the measured energy is integrated to show the total power over 1 MHz.

(6) Unwanted emissions below 1 GHz must comply with the general field strength limits set forth in §15.209. Further, any U-NII devices using an AC power line are required to comply also with the conducted limits set forth in §15.207.

(7) The provisions of §15.205 apply to intentional radiators operating under this section.

(8) When measuring the emission limits, the nominal carrier frequency shall be adjusted as close to the upper and lower frequency band edges as the design of the equipment permits.

Emissions which fall in the restricted bands, as defined in §15.205(a), must comply with the radiated emission limits specified in §15.209(a) (see §15.205(c)).

For transmitters operating in the 5.15–5.25 GHz band: all emissions outside of the 5.15–5.35 GHz band shall not exceed an EIRP of –27 dBm/MHz.

Note: An out-of-band emission that complies with both the average and peak limits of Section 15.209 is not required to satisfy the -27 dBm/MHz peak emission limit.

4.5.2 Procedure

Radiated emission measurements were performed from 30 MHz to 40 GHz according to the procedure described in ANSI C64.10. Spectrum Analyzer Resolution Bandwidth is 100 kHz or greater for frequencies 30 MHz to 1000 MHz, 1 MHz for frequencies above 1000 MHz. Above 1000 MHz Peak and Average measurements were performed.

The EUT is placed on a plastic turntable that is 80 cm in height for below 1000MHz and 1.5m in height for above 1GHz. If the EUT attaches to peripherals, they are connected and operational (as typical as possible). During testing, all cables were manipulated to produce worst-case emissions. The signal is maximized through rotation. The antenna height and polarization are varied during the search for maximum signal level. The antenna height is varied from 1 to 4 meters.

Radiated emissions are taken at 1 meter for Band Edge measurements. Radiated spurious emissions are taken at 3 meters for frequencies above 1 GHz and at 10 meters for frequencies below 1 GHz.

The 2.4GHz and 5GHz radio can transmit simultaneously; both of the transmitters are turned on during spurious emission to investigate for inter-modulation emission. Measurements made from 1 GHz to 18 GHz had a 2.4-2.5GHz and 5GHz (U-NII 1 & U-NII 3 band respectively) notch filter in place. A preamp was used from 30MHz to 40GHz.

All measurements were made with a Peak Detector and compared to QP limits for 30MHz - 1GHz and Average limits for 1GHz - 40 GHz.

Data is included of the worst-case configuration (the configuration which resulted in the highest emission levels).

4.5.3 Field Strength Calculation

Field Strength Calculation

The field strength is calculated by adding the Antenna Factor and Cable Factor, and subtracting the Amplifier Gain (if any) from the measured reading. The basic equation with a sample calculation is as follows:

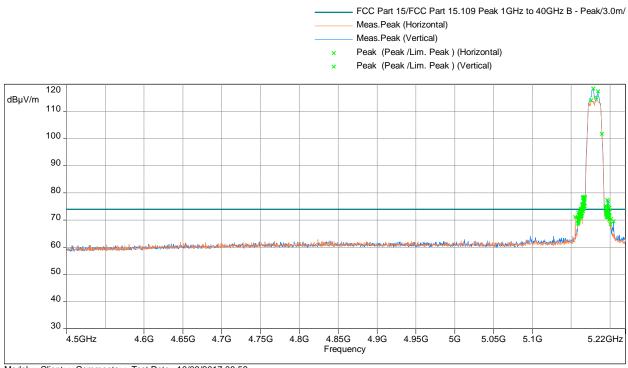
FS = RA + AF + CF - AG; if measurement is performed at a distance other than specified in the rule, a Distance Correction Factor (DCF) shall be added.

Where FS = Field Strength in $dB(\mu V/m)$ RA = Receiver Amplitude (including preamplifier) in $dB(\mu V)$; AF = Antenna Factor in dB(1/m)CF = Cable Attenuation Factor in dB; AG = Amplifier Gain in dB

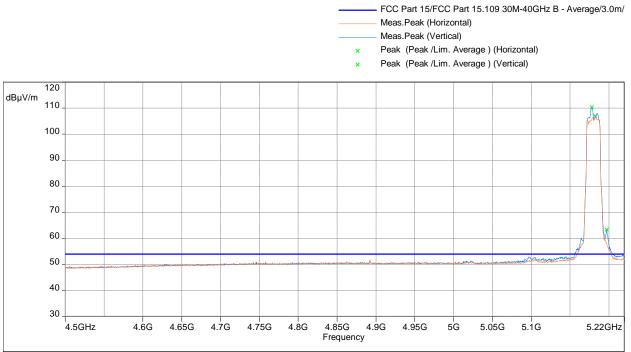
Assume a receiver reading of 52.0 dB(μ V) is obtained. The antennas factor of 7.4 dB(1/m) and cable factor of 1.6 dB is added. The amplifier gain of 29 dB is subtracted, giving field strength of 32 dB(μ V/m). This value in dB(μ V/m) was converted to its corresponding level in μ V/m.

$$\begin{split} &RA = 52.0 \ dB(\mu V) \\ &AF = 7.4 \ dB(1/m) \\ &CF = 1.6 \ dB \\ &AG = 29.0 \ dB \\ &FS = 52.0 + 7.4 + 1.6 - 29.0 = 32 \ dB(\mu V/m). \\ &Level \ in \ \mu V/m = Common \ Antilogarithm \ [(32 \ dB\mu V/m)/20] = 39.8 \ \mu V/m. \end{split}$$

4.5.4 Test Results

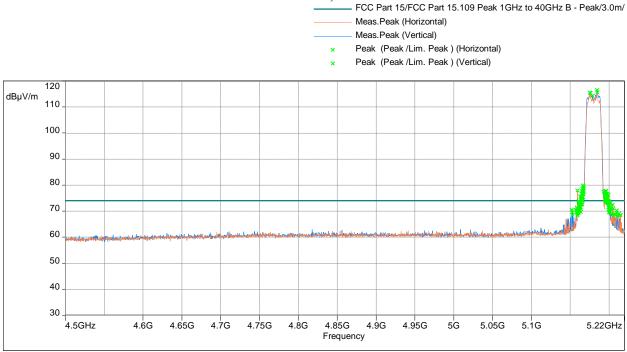

The data on the following pages list the significant emission frequencies, the limit and the margin of compliance where emissions are within 3dB of the limit.

Test Results: 15.209/15.205 Restricted Band Emissions

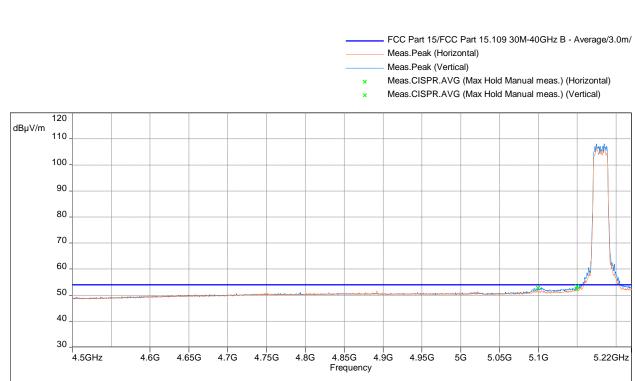

Tested By:	Minh Ly
Test Date:	September 26 – October 10, 2017

Out-of-Band Spurious Emissions at the Band Edge @1m Distance 802.11a, 5180 MHz

Model: ; Client: ; Comments: ; Test Date: 10/03/2017 08:59



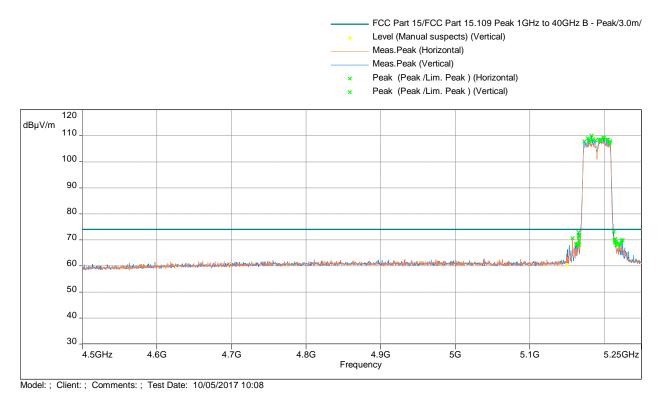
Model: ; Client: ; Comments: ; Test Date: 10/03/2017 08:51


Frequency (MHz)	Average (dBµV/m)	Lim. Avg (dBµV/m)	Margin (dB)	Height (m)	Angle (°)	Polarization	Correction (dB)
5149.905	52.2	54.0	-1.8	1.5	132.5	Horizontal	32.8
5098.522	53.7	54.0	-0.3	1.7	131.8	Vertical	32.6
5137.112	53.2	54.0	-0.8	1.6	131.8	Vertical	32.7
5150.000	53.3	54.0	-0.7	1.6	132.0	Vertical	32.8

Out-of-Band Spurious Emissions at the Band Edge @1m Distance 802.11 n 20MHz, 5180 MHz

Model: ; Client: ; Comments: ; Test Date: 10/03/2017 09:49

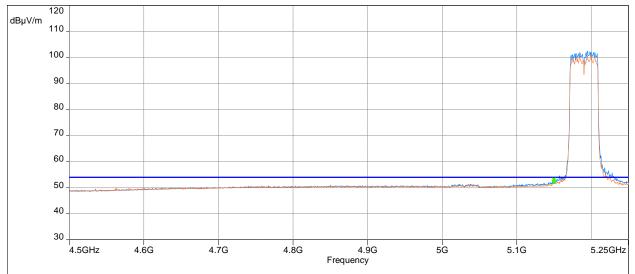
Model: ; Client: ; Comments: ; Test Date: 10/03/2017 09:10


intertek

Total Quality. Assured.

Frequency (MHz)	Average (dBµV/m)	Lim. Avg (dBµV/m)	Margin (dB)	Height (m)	Angle (°)	Polarization	Correction (dB)
5148.909	52.5	54.0	-1.5	1.7	148.3	Horizontal	32.8
5099.193	52.8	54.0	-1.2	1.6	148.3	Vertical	32.6
5150.000	53.3	54.0	-0.7	1.6	148.5	Vertical	32.8

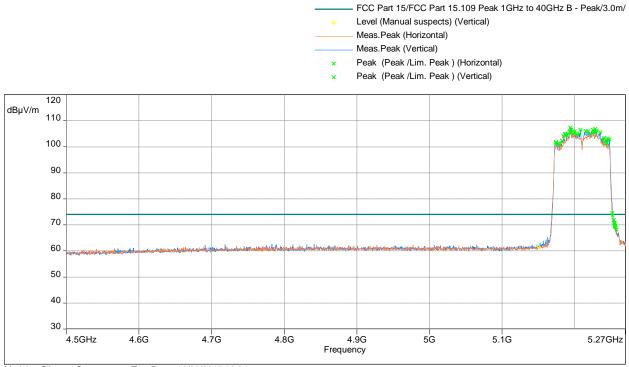
Out-of-Band Spurious Emissions at the Band Edge @1m Distance 802.11n 40MHz, 5190 MHz



Frequency (MHz)	Peak (dBµV/m)	Lim. PK (dBµV/m)	Margin (dB)	Height (m)	Angle (°)	Polarization	Correction (dB)
5150.000	60.36	74.0	-13.6	1.5	123.0	Vertical	32.8

FCC Part 15/FCC Part 15.109 30M-40GHz B - Average/3.0m/

- Level (Manual suspects) (Vertical)
- Meas.Peak (Horizontal)
- Meas.Peak (Vertical)
- × Meas.CISPR.AVG (Max Hold Manual meas.) (Horizontal)
- × Meas.CISPR.AVG (Max Hold Manual meas.) (Vertical)



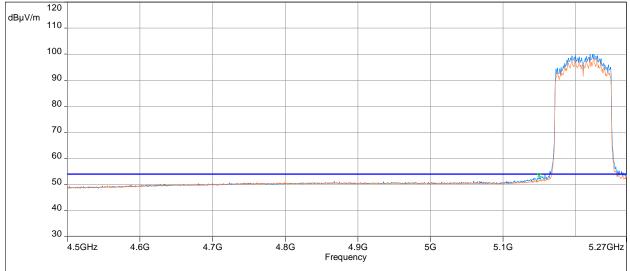
Model: ; Client: ; Comments: ; Test Date: 10/03/2017 10:55

Frequency (MHz)	Average (dBµV/m)	Lim. Avg (dBµV/m)	Margin (dB)	Height (m)	Angle (°)	Polarization	Correction (dB)
5149.704	52.0	54.0	-2.0	1.8	143.8	Horizontal	32.8
5150.000	53.2	54.0	-0.8	1.8	139.3	Vertical	32.8

Out-of-Band Spurious Emissions at the Band Edge @1m Distance 802.11ac 80MHz, 5210 MHz

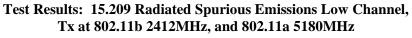
Model: ; Client: ; Comments: ; Test Date: 10/05/2017 10:34

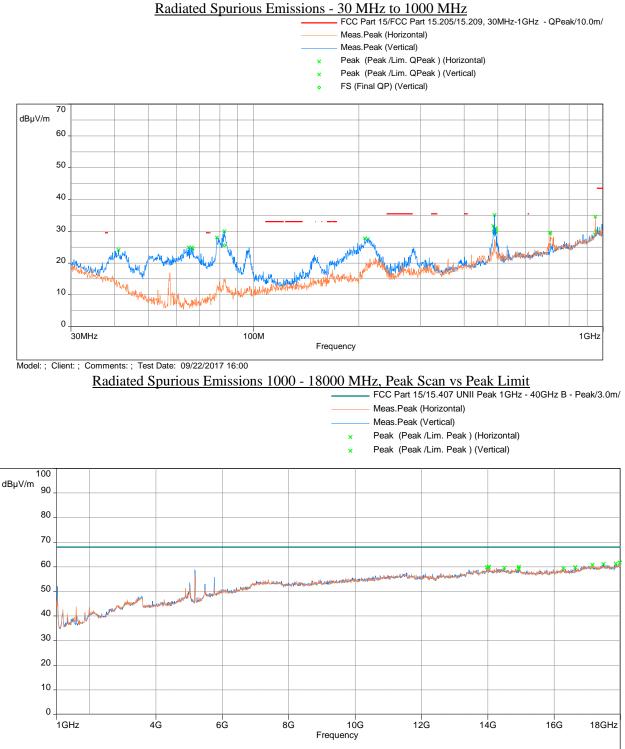
Frequency (MHz)	Peak (dBµV/m)	Lim. PK (dBµV/m)	Margin (dB)	Height (m)	Angle (°)	Polarization	Correction (dB)
5150.000	61.78	74.0	-12.2	1.5	110	Vertical	32.8



Meas.Peak (Horizontal)

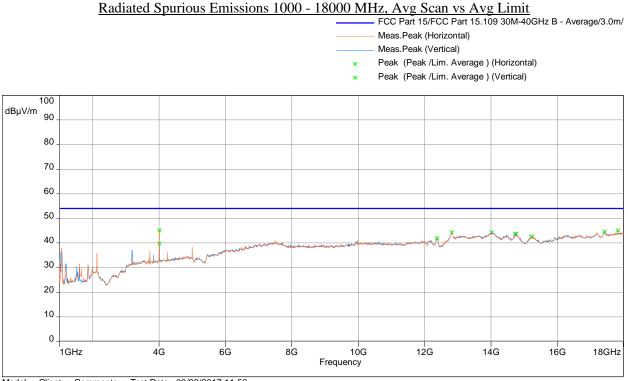
Meas.Peak (Vertical)


× Meas.CISPR.AVG (Max Hold Manual meas.) (Vertical)

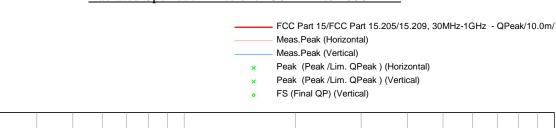


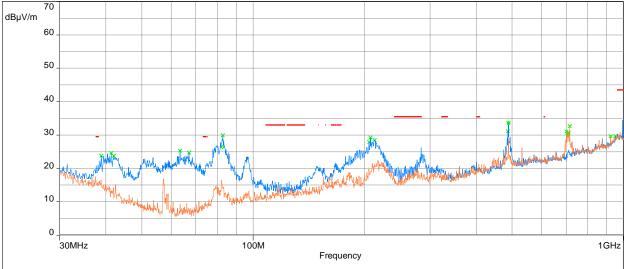
Model: ; Client: ; Comments: ; Test Date: 10/03/2017 12:40

Frequency (MHz)	Average (dBµV/m)	Lim. Avg (dBµV/m)	Margin (dB)	Height (m)	Angle (°)	Polarization	Correction (dB)
5150.000	53.4	54.0	-0.7	1.6	127.8	Vertical	32.8

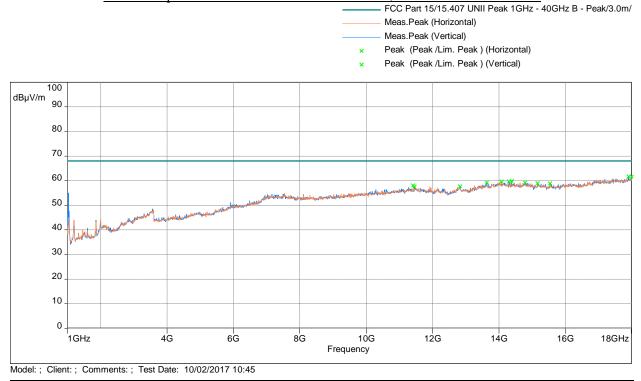


Model: ; Client: ; Comments: ; Test Date: 10/02/2017 10:56

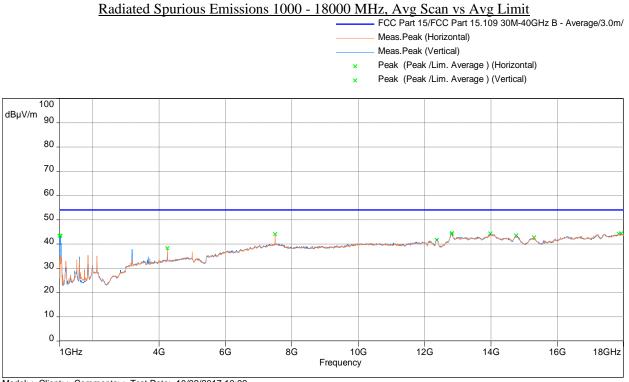


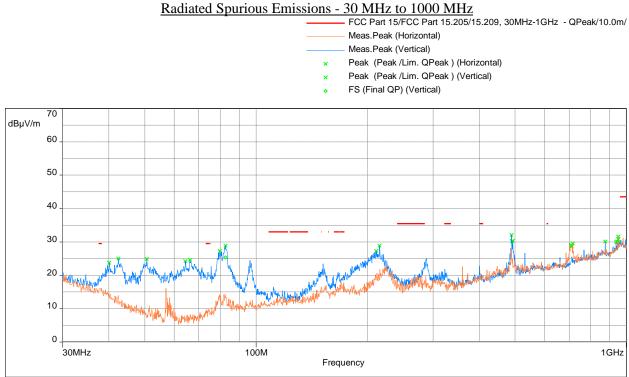



Model: ; Client: ; Comments: ; Test Date: 09/28/2017 11:56

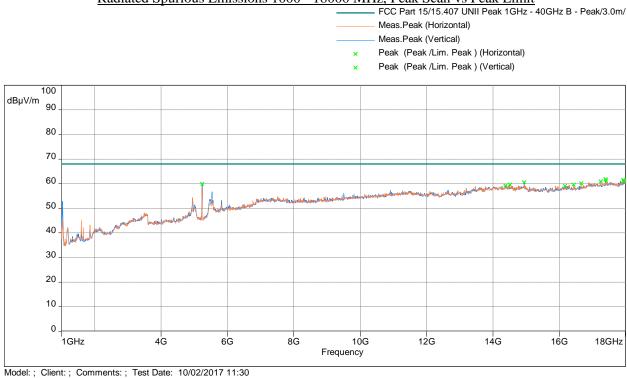


Test Results: 15.209 Radiated Spurious Emissions Mid Channel, Tx at 802.11b 2437MHz, and 802.11a 5200MHz Radiated Spurious Emissions - 30 MHz to 1000 MHz





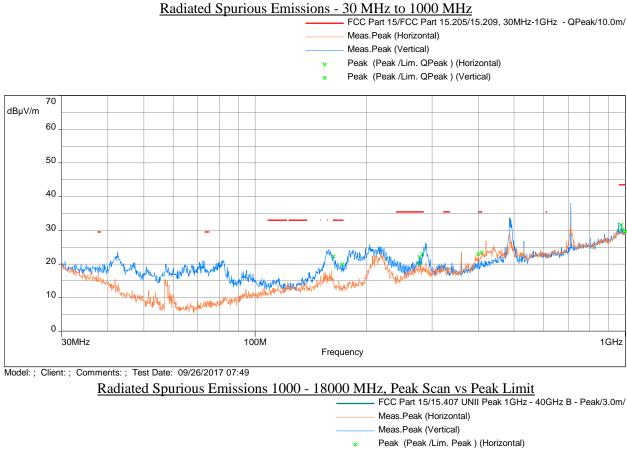
Model: ; Client: ; Comments: ; Test Date: 10/02/2017 10:32

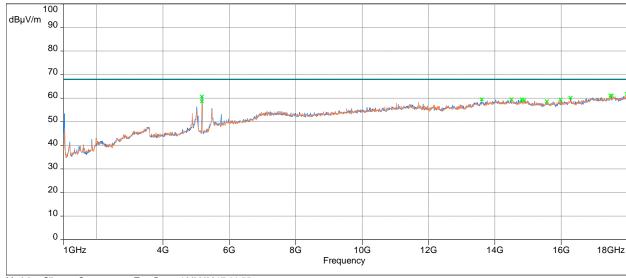


Test Results: 15.209 Radiated Spurious Emissions High Channel, Tx at 802.11b 2462MHz, and 802.11a 5240MHz

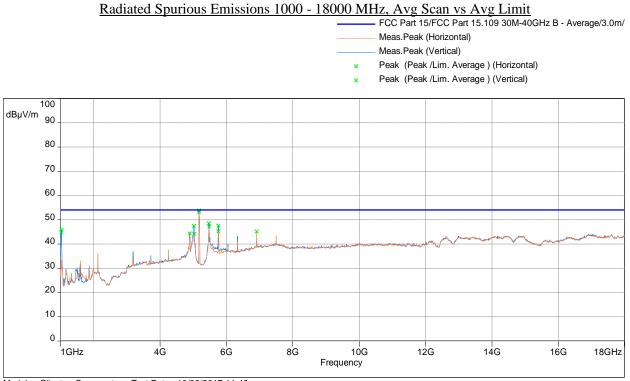
Model: ; Client: ; Comments: ; Test Date: 09/22/2017 16:25

Radiated Spurious Emissions 1000 - 18000 MHz, Peak Scan vs Peak Limit


Radiated Spurious Emissions 1000 - 18000 MHz, Avg Scan vs Avg Limit

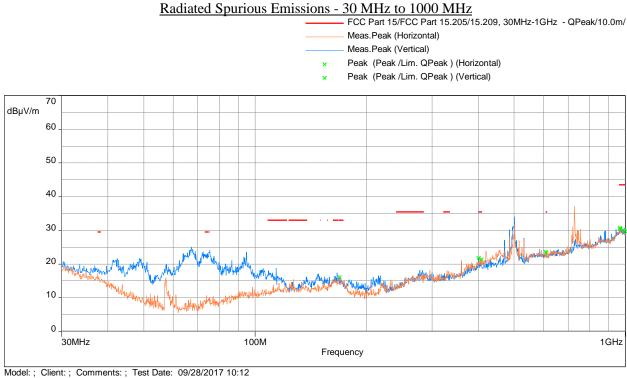

[•] Emission at 5537.3MHz peak is not in restricted band (15.205). Therefore the limit of 15.209 does not apply to this particular frequency. Compliance for this frequency outside the restricted band is shown in report number 103224477MPK-002A; section 4.4.

Test Results: 15.209 Radiated Spurious Emissions Low Channel, Tx at 802.11g 2412MHz, and 802.11n 20MHz 5180MHz

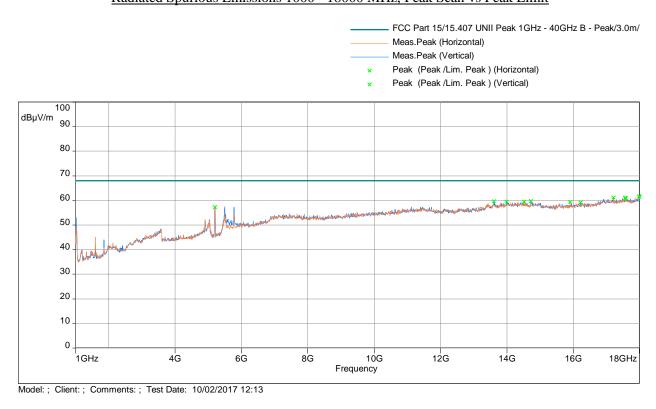


Peak (Peak /Lim. Peak) (Vertical)

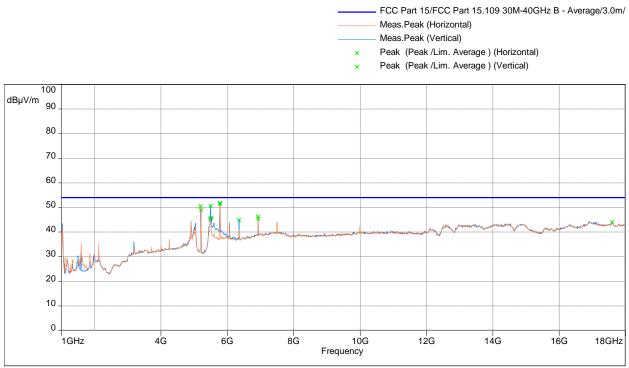
Model: ; Client: ; Comments: ; Test Date: 10/02/2017 11:55



Model: ; Client: ; Comments: ; Test Date: 10/02/2017 11:49

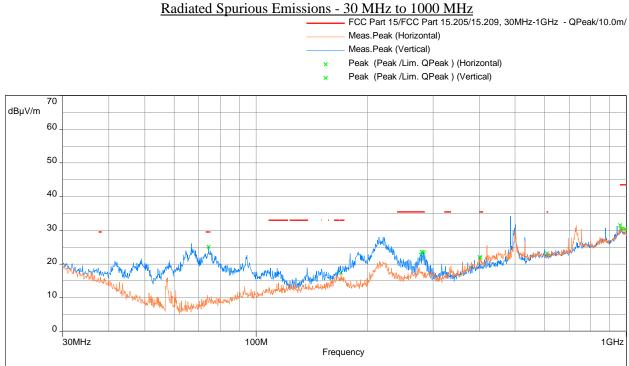

• Emission at 5472.7MHz peak is not in restricted band (15.205). Therefore the limit of 15.209 does not apply to this particular frequency. Compliance for this frequency outside the restricted band is shown in report number 103224477MPK-002A; section 4.4.

Test Results: 15.209 Radiated Spurious Emissions Mid Channel, Tx at 802.11g 2437MHz, and 802.11n 20MHz 5200MHz



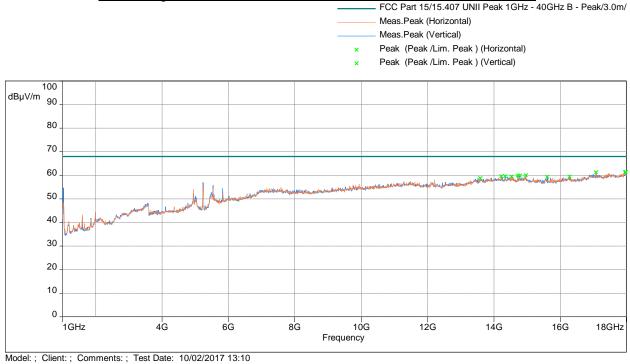
Radiated Spurious Emissions 1000 - 18000 MHz, Peak Scan vs Peak Limit

Radiated Spurious Emissions 1000 - 18000 MHz, Avg Scan vs Avg Limit

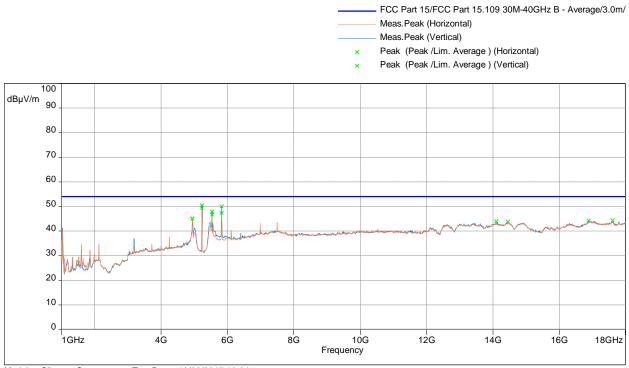


Model: ; Client: ; Comments: ; Test Date: 10/02/2017 12:07

• Emission at 5525.4MHz and 5777MHz peak is not in restricted band (15.205). Therefore the limit of 15.209 does not apply to this particular frequency. Compliance for this frequency outside the restricted band is shown in report number 103224477MPK-002A; section 4.4.

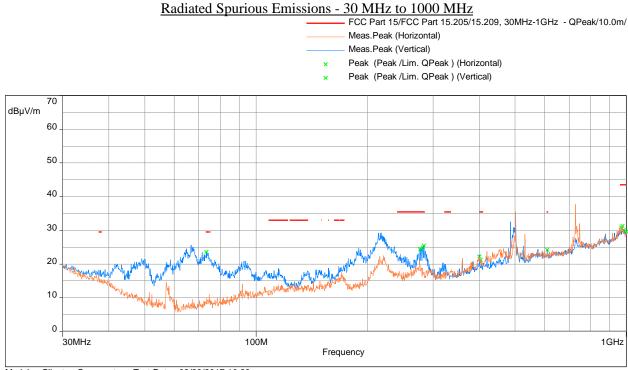


Test Results: 15.209 Radiated Spurious Emissions High Channel, Tx at 802.11g 2462MHz and 802.11n 20MHz 5240MHz

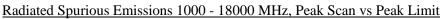

Model: ; Client: ; Comments: ; Test Date: 09/28/2017 10:26

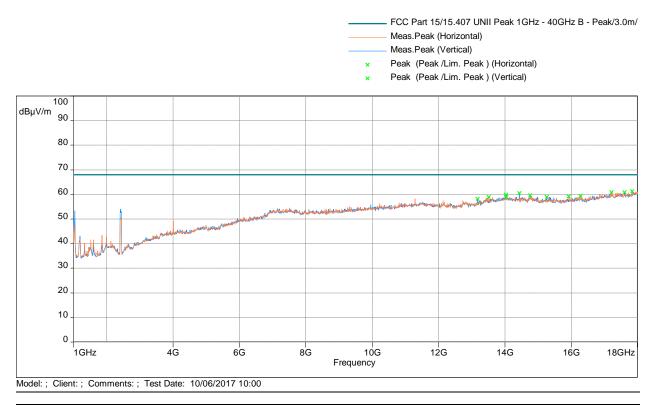
Radiated Spurious Emissions 1000 - 18000 MHz, Peak Scan vs Peak Limit

Radiated Spurious Emissions 1000 - 18000 MHz, Avg Scan vs Avg Limit

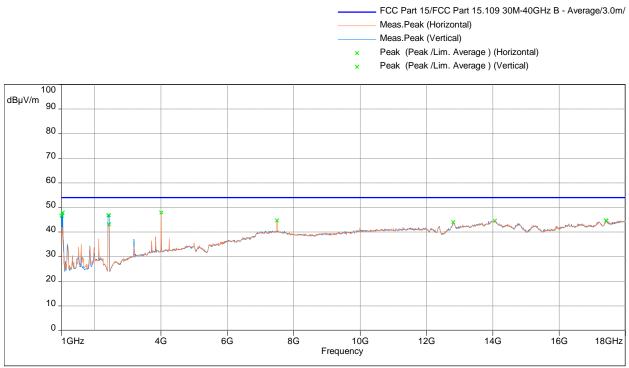


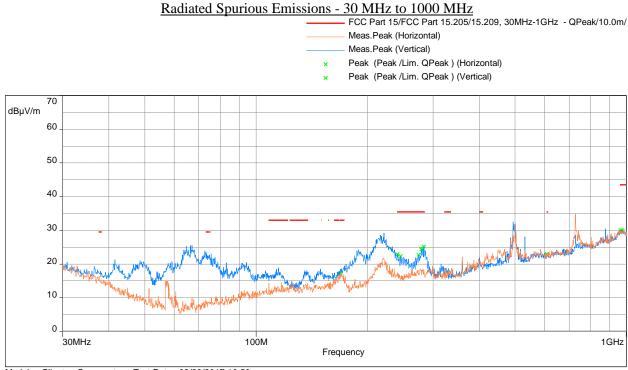
Model: ; Client: ; Comments: ; Test Date: 10/02/2017 13:04

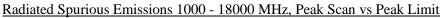

• Emission at 5539MHz and 5821MHz peak is not in restricted band (15.205). Therefore the limit of 15.209 does not apply to this particular frequency. Compliance for this frequency outside the restricted band is shown in report number 103224477MPK-002A; section 4.4.

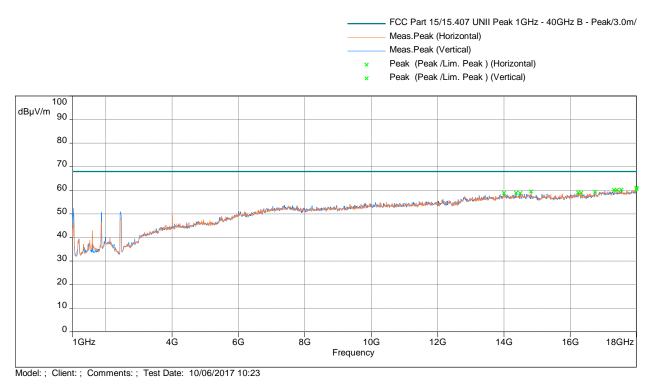


Test Results: 15.209 Radiated Spurious Emissions Low Channel, Tx at 802.11n 40MHz 2422MHz, and 802.11n 40MHz 5190MHz


Model: ; Client: ; Comments: ; Test Date: 09/28/2017 10:39

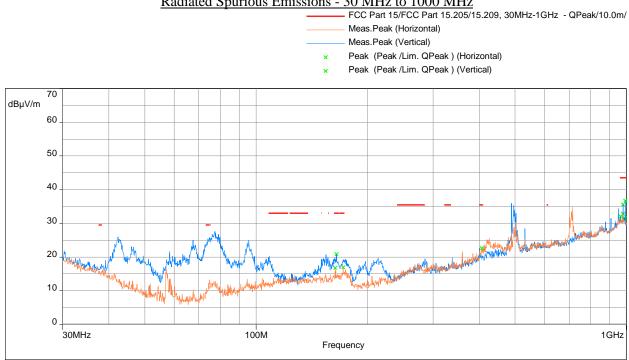

Radiated Spurious Emissions 1000 - 18000 MHz, Avg Scan vs Avg Limit


Model: ; Client: ; Comments: ; Test Date: 10/06/2017 09:47

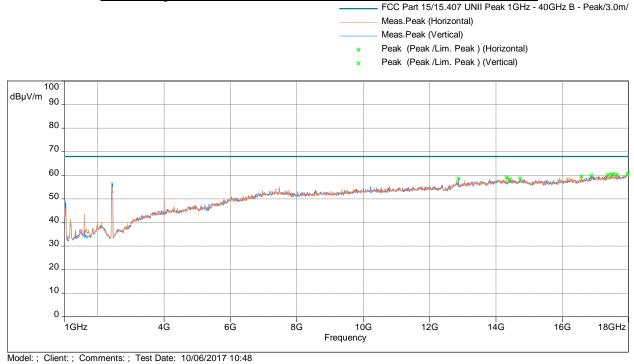


Test Results: 15.209 Radiated Spurious Emissions High Channel, Tx at 802.11n 40MHz 2452MHz, and 802.11n 40MHz 5230MHz

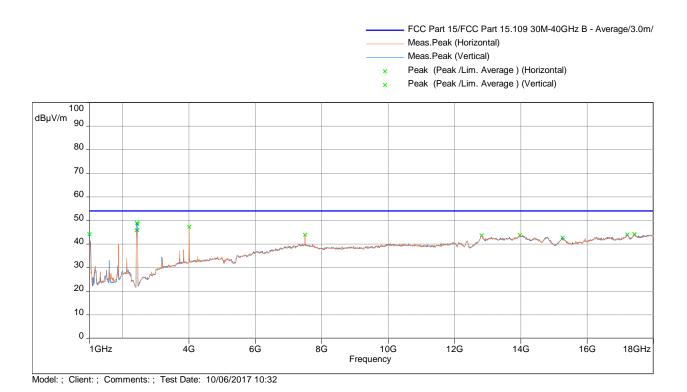
Model: ; Client: ; Comments: ; Test Date: 09/28/2017 10:50


Radiated Spurious Emissions 1000 - 18000 MHz, Avg Scan vs Avg Limit

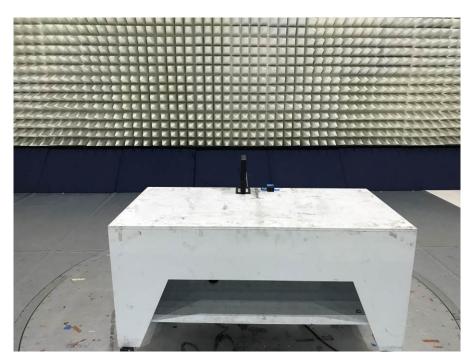
Model: ; Client: ; Comments: ; Test Date: 10/06/2017 10:14

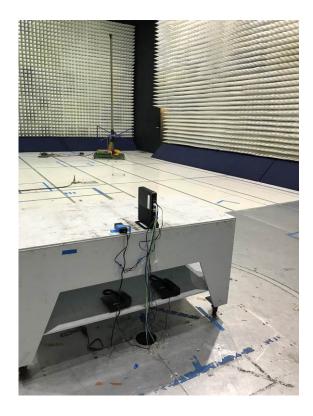


Test Results: 15.209 Radiated Spurious Emission, Tx at 802.11n 40MHz 2437MHz, and 802.11ac 80MHz 5210MHz Radiated Spurious Emissions - 30 MHz to 1000 MHz

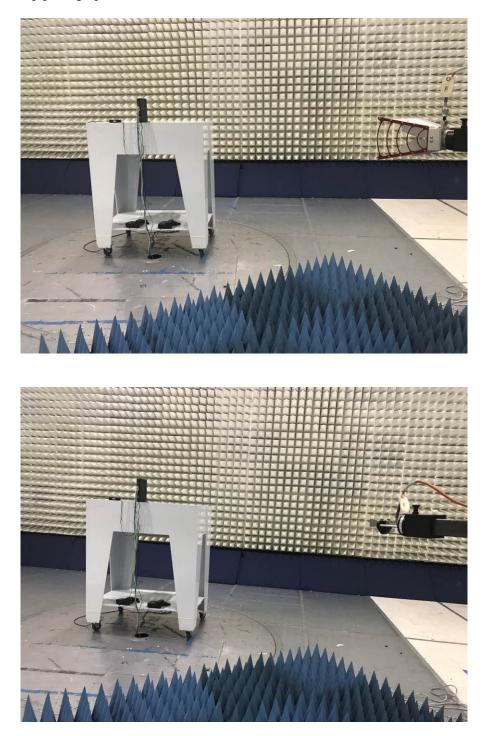

Model: ; Client: ; Comments: ; Test Date: 10/09/2017 10:19

Radiated Spurious Emissions 1000 - 18000 MHz, Peak Scan vs Peak Limit


Radiated Spurious Emissions 1000 - 18000 MHz, Avg Scan vs Avg Limit



4.5.5 Test setup photographs


The following photographs show the testing configurations used.

4.5.5 Test setup photographs (Continued)

5.0 List of Test Equipment

intertek

Total Quality. Assured.

Measurement equipment used for emission compliance testing utilized the equipment on the following list:

Equipment	Manufacturer	Model/Type	Asset #	Cal Int	Cal Due
Spectrum Analyzer	Rohde and Schwarz	FSU	ITS 00913	12	01/12/18
EMI Receiver	Rohde and Schwarz	ESU	ITS 00961	12	07/10/18
Pyramidal Horn Antenna	EMCO	3160-09	ITS 00571	#	#
Pyramidal Horn Antenna	EMCO	3160-10	ITS 00572	#	#
Horn Antenna	ETS-Lindgren	3117	ITS 00982	12	02/03/18
BI-Log Antenna	Teseq	CBL 6111D	ITS 01058	12	08/11/18
Pre-Amplifier (18-40GHz)	Miteq	TTA1840-35-S-M	ITS 01393	12	04/18/18
Pre-Amplifier (1-18GHz)	Miteq	AMF-4D-001180-24-10P	ITS 00526	12	01/04/18
Pre-Amplifier	Sonoma Instrument	310	ITS 00942	12	01/19/18
Notch Filter	Micro-Tronics	BRM50702	ITS 01166	12	02/08/18
Notch Filter	Micro-Tronics	BRM50703	ITS 01167	12	01/19/18
Notch Filter	Micro-Tronics	BRM50705	ITS 01169	12	01/19/18
RF Cable	TRU Corporation	TRU CORE 300	ITS 01462	12	08/19/18
RF Cable	TRU Corporation	TRU CORE 300	ITS 01465	12	08/19/18
RF Cable	TRU Corporation	TRU CORE 300	ITS 01470	12	08/19/18
Attenuator	Mini Circuits	BW-N3W5+	ITS 01315	12	10/19/17
Attenuator	Narda	FSCM99899	ITS 01583	12	08/31/18
RF Cable	Megaphase	EMC1-K1K1-236	ITS 01538	12	06/13/18
RF Cable	Megaphase	TM40-K1K1-19	ITS 01154	12	01/26/18
Transient Limiter	COM-POWER	LIT-153A	ITS 01452	12	06/19/18
RF Cable	Megaphase	TM40-K1K1-59 RF	ITS 01156	12	01/26/18

No Calibration required

Software used for emission compliance testing utilized the following:

Name	Manufacturer	Version	Template/Profile
BAT-EMC	Nexio	3.16.0.64	Alticelabs, ML.bpp Altice, 10-03.bpp
RS Commander	Rohde Schwarz	1.6.4	Not Applicable (Screen grabber)

6.0 Document History

Revision/ Job Number	Writer Initials	Reviewer Initials	Date	Change
1.0 / G103224477	ML	KV	October 18, 2017	Original document