# TEST REPORT

FCC ID: 2ACJAHNDPF1002 Product: Social Photo Frame Model No.: HN-DPF1002 Additional Model No.: DigiFrame 10X, HN-DPF10XX Trade Mark: N/A Report No.: TCT200622E046 Issued Date: Jun. 30, 2020

Shenzhen Harmony Technology Co., Ltd Block 2, Jiayuan Industrial Zone, Heping Community, high-tech park, No 2 Fuyuan Road, Fuyong, Bao'an, Shenzhen, China

Issued for:

Issued By:

Shenzhen Tongce Testing Lab. 1B/F., Building 1, Yibaolai Industrial Park, Qiaotou, Fuyong, Baoan District, Shenzhen, Guangdong, China TEL: +86-755-27673339

FAX: +86-755-27673332

**Note:** This report shall not be reproduced except in full, without the written approval of Shenzhen Tongce Testing Lab. This document may be altered or revised by Shenzhen Tongce Testing Lab. personnel only, and shall be noted in the revision section of the document. The test results in the report only apply to the tested sample.

### TABLE OF CONTENTS

TCT通测检测 TESTING CENTRE TECHNOLOGY

| Ġ. | Test Certification                            | ( <u>(</u> G)    |          | $(\mathbf{c})$ |           | 3    |
|----|-----------------------------------------------|------------------|----------|----------------|-----------|------|
| 2. | Test Result Summa                             |                  |          |                |           |      |
| 3. | EUT Description                               |                  |          |                |           |      |
| 4. | General Information                           |                  |          |                |           |      |
|    | 4.1. Test environment a                       |                  |          |                |           |      |
|    | 4.2. Description of Sup                       | port Units       |          |                |           | 8    |
| 5. | Facilities and Accre                          |                  |          |                |           |      |
|    | 5.1. Facilities                               |                  |          |                |           | 9    |
|    | 5.2. Location                                 |                  |          |                |           |      |
|    | 5.3. Measurement Unce                         | ertainty         | <u> </u> |                |           | 9    |
| 6. | Test Results and Me                           | easurement Dat   | a        |                |           | . 10 |
|    | 6.1. Antenna requireme                        |                  |          |                |           |      |
|    | 6.2. Conducted Emission                       | on               |          | <u> </u>       |           | 11   |
|    | 6.3. Maximum Conducted (Average) Output Power |                  |          |                |           | 15   |
|    | 6.4. Emission Bandwidth                       |                  |          |                |           |      |
|    | 6.5. Power Spectral De                        | nsity            |          |                |           | 17   |
|    | 6.6. Conducted Band E                         |                  |          |                |           |      |
|    | 6.7. Radiated Spurious                        |                  |          |                |           | 20   |
| A  | ppendix A: Test Resu                          | ult of Conducted | d Test   |                |           |      |
| Α  | ppendix B: Photogra                           | phs of Test Set  | up       |                |           |      |
| A  | ppendix C: Photogra                           | phs of EUT       |          |                |           |      |
|    |                                               |                  |          |                |           |      |
|    |                                               |                  |          |                |           |      |
|    |                                               |                  |          |                |           |      |
|    |                                               |                  |          |                | Page 2 of | 74   |

### 1. Test Certification

TCT 通测检测 TESTING CENTRE TECHNOLOGY

| Product:                 | Social Photo Frame                                                                                                       |  |  |  |  |
|--------------------------|--------------------------------------------------------------------------------------------------------------------------|--|--|--|--|
| Model No.:               | HN-DPF1002                                                                                                               |  |  |  |  |
| Additional<br>Model:     | DigiFrame 10X, HN-DPF10XX                                                                                                |  |  |  |  |
| Trade Mark:              | N/A 😵 🧐                                                                                                                  |  |  |  |  |
| Applicant:               | Shenzhen Harmony Technology Co., Ltd                                                                                     |  |  |  |  |
| Address:                 | Block 2, Jiayuan Industrial Zone, Heping Community, high-tech park,<br>No 2 Fuyuan Road, Fuyong, Bao'an, Shenzhen, China |  |  |  |  |
| Manufacturer:            | Shenzhen Harmony Technology Co., Ltd                                                                                     |  |  |  |  |
| Address:                 | Block 2, Jiayuan Industrial Zone, Heping Community, high-tech park,<br>No 2 Fuyuan Road, Fuyong, Bao'an, Shenzhen, China |  |  |  |  |
| Date of Test:            | Jun. 23, 2020 – Jun. 29, 2020                                                                                            |  |  |  |  |
| Applicable<br>Standards: | FCC CFR Title 47 Part 15 Subpart C Section 15.247<br>FCC KDB 558074 D01 15.247 Meas Guidance v05r02<br>ANSI C63.10:2013  |  |  |  |  |

Report No.: TCT200622E046

The above equipment has been tested by Shenzhen Tongce Testing Lab. and found compliance with the requirements set forth in the technical standards mentioned above. The results of testing in this report apply only to the product/system, which was tested. Other similar equipment will not necessarily produce the same results due to production tolerance and measurement uncertainties.

| Tested By:   | Brave. Zeng.        | Date:                                                                         | Jun. 29, 2020                                                                                                       |                                                                                                 |
|--------------|---------------------|-------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------|
| Reviewed By: | Brave Zeng          | –<br>Date:                                                                    | Jun. 30, 2020                                                                                                       | (C                                                                                              |
| Approved By: | Beryl Zhao<br>Tomsm | Date:                                                                         | Jun. 30, 2020                                                                                                       |                                                                                                 |
|              | Tomsin              | -                                                                             |                                                                                                                     | (C                                                                                              |
|              |                     |                                                                               | Page 3 d                                                                                                            | of 74                                                                                           |
|              | Reviewed By:        | Reviewed By:<br>Brave Zeng<br>Buy than<br>Beryl Zhao<br>Approved By:<br>TomSm | Brave Zeng       Brave Zeng       Reviewed By:     Buff that       Beryl Zhao       Approved By:     Toms m   Date: | Brave Zeng       Brave Zeng       Beryl Zhao       Approved By:     JomSm   Date: Jun. 30, 2020 |



### 2. Test Result Summary

| Requirement                         | CFR 47 Section      | Result | No. |
|-------------------------------------|---------------------|--------|-----|
| Antenna requirement                 | §15.203/§15.247 (c) | PASS   |     |
| AC Power Line Conducted<br>Emission | §15.207             | PASS   |     |
| Conducted Peak Output<br>Power      | §15.247 (b)(3)      | PASS   | Ċ   |
| 6dB Emission Bandwidth              | §15.247 (a)(2)      | PASS   | No. |
| Power Spectral Density              | §15.247 (e)         | PASS   |     |
| Band Edge                           | §15.247(d)          | PASS   |     |
| Spurious Emission                   | §15.205/§15.209     | PASS   |     |

#### Note:

1. PASS: Test item meets the requirement.

2. Fail: Test item does not meet the requirement.

3. N/A: Test case does not apply to the test object.

4. The test result judgment is decided by the limit of test standard.

Page 4 of 74

## 3. EUT Description

| •                                                |                                                                                                                                                             |     |
|--------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|
| Product:                                         | Social Photo Frame                                                                                                                                          | , C |
| Model No.:                                       | HN-DPF1002                                                                                                                                                  |     |
| Additional Model:                                | DigiFrame 10X, HN-DPF10XX                                                                                                                                   |     |
| Trade Mark:                                      | N/A                                                                                                                                                         |     |
| Operation Frequency:                             | 2412MHz~2462MHz (802.11b/802.11g/802.11n(HT20))                                                                                                             |     |
| Channel Separation:                              | 5MHz                                                                                                                                                        | 6   |
| Number of Channel:                               | 11 for 802.11b/802.11g/802.11n(HT20)                                                                                                                        |     |
| Modulation Technology:<br>(IEEE 802.11b)         | Direct Sequence Spread Spectrum (DSSS)                                                                                                                      |     |
| Modulation Technology:<br>(IEEE 802.11g/802.11n) | Orthogonal Frequency Division Multiplexing(OFDM)                                                                                                            |     |
| Data speed<br>(IEEE 802.11b):                    | 1Mbps, 2Mbps, 5.5Mbps, 11Mbps                                                                                                                               |     |
| Data speed<br>(IEEE 802.11g):                    | 6Mbps, 9Mbps, 12Mbps, 18Mbps, 24Mbps, 36Mbps, 48Mbps, 54Mbps                                                                                                |     |
| Data speed<br>(IEEE 802.11n):                    | Up to 150Mbps                                                                                                                                               |     |
| Antenna Type:                                    | FPC Antenna                                                                                                                                                 |     |
| Antenna Gain:                                    | 0dBi                                                                                                                                                        |     |
| Power Supply:                                    | AC 120V/60Hz                                                                                                                                                |     |
| AC adapter:                                      | Adapter Information:<br>MODEL: RSF-DY056-0502000<br>INPUT: AC 100-240V, 50/60Hz, 0.4A<br>OUTPUT: 5V, 2.0A                                                   |     |
| Remark:                                          | All models above are identical in interior structure, electrical circuits and components, and just model names are different for the marketing requirement. |     |
|                                                  |                                                                                                                                                             |     |

**Note:** The antenna gain listed in this report is provided by applicant, and the test laboratory is not responsible for this parameter.

### TCT通测检测 TESTING CENTRE TECHNOLOGY

#### Report No.: TCT200622E046

### Operation Frequency each of channel For 802.11b/g/n(HT20)

| Channel | Frequency | Channel | Frequency | Channel | Frequency | Channel | Frequency |
|---------|-----------|---------|-----------|---------|-----------|---------|-----------|
| 1       | 2412MHz   | 4       | 2427MHz   | 7       | 2442MHz   | 10      | 2457MHz   |
| 2       | 2417MHz   | 5       | 2432MHz   | 8       | 2447MHz   | 11      | 2462MHz   |
| 3       | 2422MHz   | 6       | 2437MHz   | 9       | 2452MHz   |         |           |

#### Note:

In section 15.31(*m*), regards to the operating frequency range over 10 MHz, the Lowest frequency, the middle frequency, and the highest frequency of channel were selected to perform the test, and the selected channel see below:

#### 802.11b/802.11g/802.11n (HT20)

| Channel             | Frequency |
|---------------------|-----------|
| The lowest channel  | 2412MHz   |
| The middle channel  | 2437MHz   |
| The Highest channel | 2462MHz   |

Page 6 of 74

### 4. General Information

### 4.1. Test environment and mode

| Operating Environment: |  |
|------------------------|--|
|------------------------|--|

| Condition             | Conducted Emission | Radiated Emission |  |  |
|-----------------------|--------------------|-------------------|--|--|
| Temperature:          | 25.0 °C            | 25.0 °C           |  |  |
| Humidity:             | 55 % RH            | 55 % RH           |  |  |
| Atmospheric Pressure: | 1010 mbar          | 1010 mbar         |  |  |

#### Test Mode:

Engineering mode: Keep

Keep the EUT in continuous transmitting by select channel and modulations with Fully-charged battery

The sample was placed 0.8m & 1.5m for the measurement below & above 1GHz above the ground plane of 3m chamber. Measurements in both horizontal and vertical polarities were performed. During the test, each emission was maximized by: having the EUT continuously working, investigated all operating modes, rotated about all 3 axis (X, Y & Z) and considered typical configuration to obtain worst position, manipulating interconnecting cables, rotating the turntable, varying antenna height from 1m to 4m in both horizontal and vertical polarizations. The emissions worst-case(Z axis) are shown in Test Results of the following pages.

We have verified the construction and function in typical operation. All the test modes were carried out with the EUT in transmitting operation, which was shown in this test report and defined as follows:

Per-scan all kind of data rate in lowest channel, and found the follow list which it was worst case.

| Mode         | Data rate |
|--------------|-----------|
| 802.11b      | 1Mbps     |
| 802.11g      | 6Mbps     |
| 802.11n(H20) | 6.5Mbps   |

#### Final Test Mode:

| Operation mode: | Keep the EUT in continuous transmitting |
|-----------------|-----------------------------------------|
|                 | with modulation                         |

1. For WIFI function, the engineering test program was provided and enabled to make EUT continuous transmit/receive.

2. According to ANSI C63.10 standards, the test results are both the "worst case" and "worst setup" 1Mbps for 802.11b, 6Mbps for 802.11g, 6.5Mbps for 802.11n(H20). Duty cycle setting during the transmission is 100% with maximum power setting for all modulations.

### 4.2. Description of Support Units

TCT 通测检测 TCT 通测检测

The EUT has been tested as an independent unit together with other necessary accessories or support units. The following support units or accessories were used to form a representative test configuration during the tests.

| Equipment | Model No. | Serial No. | FCC ID | Trade Name |
|-----------|-----------|------------|--------|------------|
|           |           |            |        |            |

#### Note:

- 1. All the equipment/cables were placed in the worst-case configuration to maximize the emission during the test.
- 2. Grounding was established in accordance with the manufacturer's requirements and conditions for the intended use.
- 3. For conducted measurements (Output Power, 6dB Emission Bandwidth, Power Spectral Density, Spurious Emissions), the antenna of EUT is connected to the test equipment via temporary antenna connector, the antenna connector is soldered on the antenna port of EUT, and the temporary antenna connector is listed in the Test Instruments.



## 5. Facilities and Accreditations

### 5.1. Facilities

The test facility is recognized, certified, or accredited by the following organizations:

FCC - Registration No.: 645098
 Shenzhen Tongce Testing Lab
 The 3m Semi-anechoic chamber has

The 3m Semi-anechoic chamber has been registered and fully described in a report with the (FCC) Federal Communications Commission. The acceptance letter from the FCC is maintained in our files.

• IC - Registration No.: 10668A-1

The 3m Semi-anechoic chamber of Shenzhen TCT Testing Technology Co., Ltd. has been registered by Certification and Engineering Bureau of Industry Canada for radio equipment testing

### 5.2. Location

Shenzhen Tongce Testing Lab

Address: 1B/F., Building 1, Yibaolai Industrial Park, Qiaotou, Fuyong, Baoan District, Shenzhen, Guangdong, China

TEL: +86-755-27673339

### 5.3. Measurement Uncertainty

The reported uncertainty of measurement  $y \pm U$ , where expended uncertainty U is based on a standard uncertainty multiplied by a coverage factor of k=2, providing a level of confidence of approximately 95 %.

| oonna |                               |         |     |
|-------|-------------------------------|---------|-----|
| No.   | Item                          | MU      |     |
| 1     | Conducted Emission            | ±2.56dB | C.  |
| 2     | RF power, conducted           | ±0.12dB |     |
| 3     | Spurious emissions, conducted | ±0.11dB |     |
| 4     | All emissions, radiated(<1G)  | ±3.92dB |     |
| 5     | All emissions, radiated(>1G)  | ±4.28dB |     |
| 6     | Temperature                   | ±0.1°C  |     |
| 7     | Humidity                      | ±1.0%   | No. |



### 6. Test Results and Measurement Data

### 6.1. Antenna requirement

#### Standard requirement: FCC Part15 C Section 15.203 /247(c)

#### 15.203 requirement:

An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator, the manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.

15.247(c) (1)(i) requirement:

(i) Systems operating in the 2400-2483.5 MHz band that is used exclusively for fixed. Point-to-point operations may employ transmitting antennas with directional gain greater than 6dBi provided the maximum conducted output power of the intentional radiator is reduced by 1 dB for every 3 dB that the directional gain of the antenna exceeds 6dBi.

#### E.U.T Antenna:

The WIFI antenna is fpc antenna which permanently attached, and the best case gain of the antenna is 0dBi.



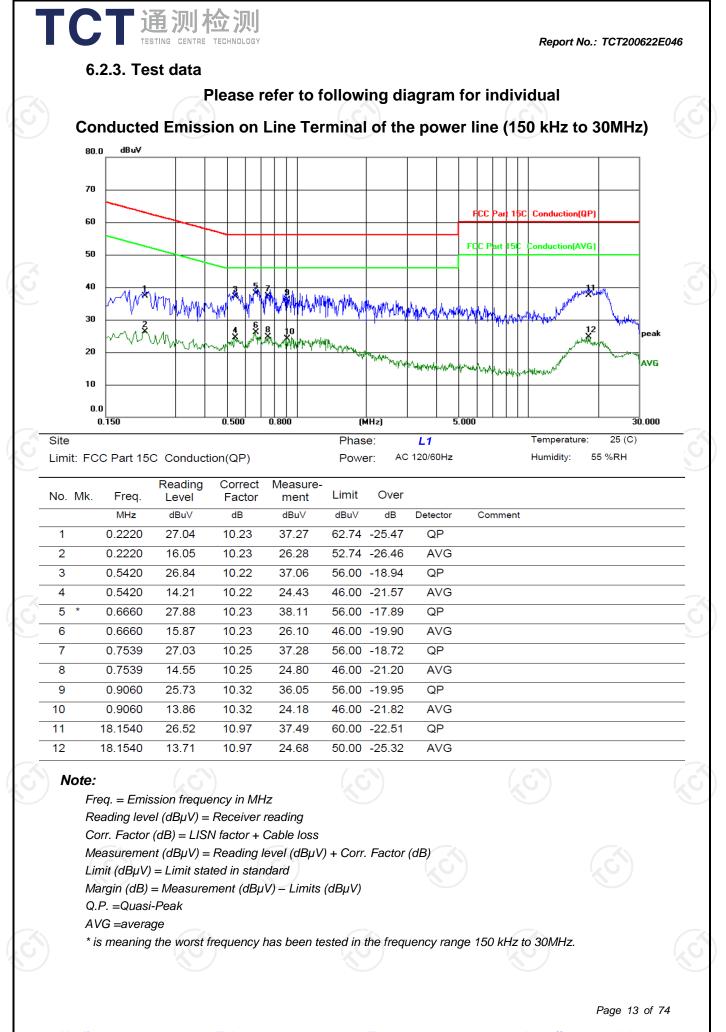
| 2. Conducted Emis<br>6.2.1. Test Specific |                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                            |                                                                                                                                                                                           |
|-------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Test Requirement:                         | FCC Part15 C Sectio                                                                                                                                                                                                                                                      | n 15.207                                                                                                                                                                                                   |                                                                                                                                                                                           |
| Fest Method:                              | ANSI C63.10:2013                                                                                                                                                                                                                                                         |                                                                                                                                                                                                            |                                                                                                                                                                                           |
| Frequency Range:                          | 150 kHz to 30 MHz                                                                                                                                                                                                                                                        |                                                                                                                                                                                                            |                                                                                                                                                                                           |
| Receiver setup:                           | RBW=9 kHz, VBW=3                                                                                                                                                                                                                                                         | 0 kHz, Sweep time                                                                                                                                                                                          | =auto                                                                                                                                                                                     |
| .imits:                                   | Frequency range<br>(MHz)<br>0.15-0.5<br>0.5-5<br>5-30                                                                                                                                                                                                                    | Limit (o<br>Quasi-peak<br>66 to 56*<br>56<br>60                                                                                                                                                            | BuV)<br>Average<br>56 to 46*<br>46<br>50                                                                                                                                                  |
|                                           | Referen                                                                                                                                                                                                                                                                  | ce Plane                                                                                                                                                                                                   |                                                                                                                                                                                           |
| Гest Setup:                               | E.U.T AC pov<br>Test table/Insulation plan<br>Remark:<br>E.U.T: Equipment Under Test<br>LISN: Line Impedence Stabilization<br>Test table height=0.8m                                                                                                                     | e EMI<br>Receiver                                                                                                                                                                                          | — AC power                                                                                                                                                                                |
| Fest Mode:                                | Charging + transmitti                                                                                                                                                                                                                                                    | ng with modulation                                                                                                                                                                                         |                                                                                                                                                                                           |
| Fest Procedure:                           | <ul> <li>provides a 50ohm measuring equipm</li> <li>2. The peripheral dev power through a locupling impedance refer to the block photographs).</li> <li>3. Both sides of A.C conducted interfere emission, the relation the interface cable ANSI C63.10: 2013</li> </ul> | abilization network<br>/50uH coupling im<br>ent.<br>ices are also conne<br>LISN that provides<br>a with 50ohm term<br>diagram of the<br>C. line are checke<br>ence. In order to fir<br>ve positions of equ | (L.I.S.N.). This<br>pedance for the<br>ected to the main<br>a 500hm/50uH<br>hination. (Please<br>test setup and<br>d for maximum<br>d the maximum<br>ipment and all of<br>ed according to |
| Fest Result:                              | PASS                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                            |                                                                                                                                                                                           |

Page 12 of 74

http://www.tct-lab.com



### 6.2.2. Test Instruments


Hotline: 400-6611-140

Tel: 86-755-27673339

Fax: 86-755-27673332

| Cond                       | lucted Emission       | Shielding R | oom Test Site (8 | 43)             |
|----------------------------|-----------------------|-------------|------------------|-----------------|
| Equipment                  | Manufacturer          | Model       | Serial Number    | Calibration Due |
| Test Receiver              | R&S                   | ESPI        | 101402           | Jul. 29, 2020   |
| LISN                       | Schwarzbeck           | NSLK 8126   | 8126453          | Sep. 11, 2020   |
| Coax cable<br>(9KHz-30MHz) | тст                   | CE-05       | N/A              | Sep. 08, 2020   |
| EMI Test Software          | Shurple<br>Technology | EZ-EMC      | N/A              | N/A             |

**Note:** The calibration interval of the above test instruments is 12 months and the calibrations are traceable to international system unit (SI).



|         | TES         | STING CENTRE        | TECHNOLOGY        |                  |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |              |             |       |       |        | Report No               | .: TCT20   | 0622E04 |
|---------|-------------|---------------------|-------------------|------------------|--------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------|-------------|-------|-------|--------|-------------------------|------------|---------|
| Con     |             | Emissic             | on on Ne          | eutral To        | ermin        | al of t                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | he pov       | ver         | lir   | ne    | (1     | 50 kHz t                | o 30M      | lHz)    |
| 00      |             |                     |                   |                  |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |              |             |       | Т     | Т      |                         |            |         |
| 70      |             |                     |                   |                  |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |              |             |       |       | _      |                         |            | _       |
| 60      |             |                     |                   |                  |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |              | F           | CC F  | Part  | 15C    | Conduction(QF           | <b>י</b> ן | -       |
| 50      |             |                     |                   |                  |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |              | FC          | C Pa  | art 1 | 5C     | Conduction(AVE          | ŋ          | -       |
| 40      | 1/2 1/2     | u <sup>M</sup> .M.5 |                   |                  |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |              |             |       | +     | +      | 11<br>Mar               | want       | -       |
| 30      |             | W W YRW             |                   |                  | MANAMAN      | White where the start has a start where the sta | 4 BANANG HAL | 1. April 1. | ₩µ!¥  | w     | 1. and | April March             | - <b>\</b> |         |
| 20      |             | www.                |                   | 10               | wy workt way | Although the gran                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | w www.       | www.        | um.   |       | Lanys  | 12<br>Martin and Martin | Mar Carrow | AVG     |
| 10      |             |                     |                   |                  |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |              |             | · · · | +     | +      |                         |            | -       |
| 0.      | .0<br>0.150 |                     | 0.500             | 0.800            | (1           | Hz)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 5            | .000        |       |       |        |                         |            | 30.000  |
| e       |             |                     |                   |                  | Phas         | se:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | N            |             |       |       |        | Temperature:            | 25 (C      | ;)      |
| nit: FC | C Part 150  | C Conducti          | ion(QP)           |                  | Powe         | er: AC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 120/60Hz     |             |       |       |        | Humidity:               | 55 %RH     |         |
| . Mk.   | Freq.       | Reading<br>Level    | Correct<br>Factor | Measure-<br>ment | Limit        | Over                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |              |             |       |       |        |                         |            |         |
|         | MHz         | dBuV                | dB                | dBu∨             | dBuV         | dB                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Detector     |             | Com   | nme   | nt     |                         |            |         |
|         | 0.1780      | 28.85               | 10.22             | 39.07            | 64.58        | -25.51                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | QP           |             |       |       |        |                         |            |         |
| 2       | 0.1780      | 16.75               | 10.22             | 26.97            | 54.58        | -27.61                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | AVG          |             |       |       |        |                         |            |         |
| 3       | 0.2260      | 27.97               | 10.23             | 38.20            | 62.60        | -24.40                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | QP           |             |       |       |        |                         |            |         |
| ļ       | 0.2260      | 17.07               | 10.23             | 27.30            | 52.60        | -25.30                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | AVG          |             |       |       |        |                         |            |         |
| 5       | 0.3502      | 23.95               | 10.22             | 34.17            | 58.96        | -24.79                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | QP           |             |       |       |        |                         |            |         |
| 6       | 0.3502      | 13.81               | 10.22             | 24.03            | 48.96        | -24.93                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | AVG          |             |       |       |        |                         |            |         |
| *       | 0.6900      | 27.10               | 10.23             | 37.33            | 56.00        | -18.67                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | QP           |             |       |       |        |                         |            |         |
| 3       | 0.6900      | 15.55               | 10.23             | 25.78            | 46.00        | -20.22                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | AVG          |             |       |       |        |                         |            |         |
|         | 1.0020      | 24.74               | 10.36             |                  |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |              |             |       |       |        |                         |            |         |

#### Note:

1.0020

16.2380

16.2380

11.67

26.56

11.20

10.36

10.86

10.86

22.03

37.42

22.06

46.00 -23.97

60.00 -22.58

50.00 -27.94

AVG

QP

AVG

10

11

12

CT通测检测

Freq. = Emission frequency in MHz Reading level  $(dB\mu V)$  = Receiver reading Corr. Factor (dB) = LISN factor + Cable loss Measurement  $(dB\mu V)$  = Reading level  $(dB\mu V)$  + Corr. Factor (dB)Limit  $(dB\mu V)$  = Limit stated in standard Margin (dB) = Measurement  $(dB\mu V)$  – Limits  $(dB\mu V)$ Q.P. =Quasi-Peak AVG =average

\* is meaning the worst frequency has been tested in the frequency range 150 kHz to 30MHz.



### 6.3. Maximum Conducted (Average) Output Power

| Test Requirement: | FCC Part15 C Section 15.247 (b)(3)                                                                                                                                                                                                                                                                                                                                            |
|-------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Test Method:      | KDB 558074 D01 v05r02                                                                                                                                                                                                                                                                                                                                                         |
| Limit:            | 30dBm                                                                                                                                                                                                                                                                                                                                                                         |
| Test Setup:       | Spectrum Analyzer EUT                                                                                                                                                                                                                                                                                                                                                         |
| Test Mode:        | Transmitting mode with modulation                                                                                                                                                                                                                                                                                                                                             |
| Test Procedure:   | <ol> <li>The RF output of EUT was connected to the spectrum<br/>analyzer by RF cable and attenuator. The path loss<br/>was compensated to the results for each<br/>measurement.</li> <li>Set to the maximum power setting and enable the<br/>EUT transmit continuously.</li> <li>Measure the conducted output power and record the<br/>results in the test report.</li> </ol> |
| Test Result:      | PASS                                                                                                                                                                                                                                                                                                                                                                          |

### 6.3.2. Test Instruments

|                            | RI           | F Test Room | Ì             |                 |
|----------------------------|--------------|-------------|---------------|-----------------|
| Equipment                  | Manufacturer | Model       | Serial Number | Calibration Due |
| Spectrum Analyzer          | Agilent      | N9020A      | MY49100619    | Sep. 11, 2020   |
| RF Cable<br>(9KHz-26.5GHz) | тст          | RE-06       | N/A           | Sep. 11, 2020   |
| Antenna Connector          | тст          | RFC-01      | N/A           | Sep. 11, 2020   |

**Note:** The calibration interval of the above test instruments is 12 months and the calibrations are traceable to international system unit (SI).

| TCT 通测检<br>ESTING CENTRE TECH | アレロロマ Report No.: TCT200622E046                                                                                                                                                                                                                                                                                                                                                                |
|-------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 6.4.1. Test Specific          |                                                                                                                                                                                                                                                                                                                                                                                                |
| Test Requirement:             | FCC Part15 C Section 15.247 (a)(2)                                                                                                                                                                                                                                                                                                                                                             |
| Test Method:                  | KDB 558074 D01 v05r02                                                                                                                                                                                                                                                                                                                                                                          |
| Limit:                        | >500kHz                                                                                                                                                                                                                                                                                                                                                                                        |
| Test Setup:                   | Spectrum Analyzer EUT                                                                                                                                                                                                                                                                                                                                                                          |
| Test Mode:                    | Transmitting mode with modulation                                                                                                                                                                                                                                                                                                                                                              |
| Test Procedure:               | <ol> <li>Set to the maximum power setting and enable the EUT transmit continuously.</li> <li>Make the measurement with the spectrum analyzer's resolution bandwidth (RBW) = 100 kHz. Set the Video bandwidth (VBW) = 300 kHz. In order to make an accurate measurement. The 6dB bandwidth must be greater than 500 kHz.</li> <li>Measure and record the results in the test report.</li> </ol> |
| Test Result:                  | PASS                                                                                                                                                                                                                                                                                                                                                                                           |

#### 6.4.2. Test Instruments

|                            | RI           | F Test Room | 1             |                 |
|----------------------------|--------------|-------------|---------------|-----------------|
| Equipment                  | Manufacturer | Model       | Serial Number | Calibration Due |
| Spectrum Analyzer          | Agilent      | N9020A      | MY49100619    | Sep. 11, 2020   |
| RF Cable<br>(9KHz-26.5GHz) | тст          | RE-06       | N/A           | Sep. 11, 2020   |
| Antenna Connector          | ТСТ          | RFC-01      | N/A           | Sep. 11, 2020   |

**Note:** The calibration interval of the above test instruments is 12 months and the calibrations are traceable to international system unit (SI).

Page 16 of 74



### 6.5. Power Spectral Density

Report No.: TCT200622E046

| Test Requirement: | FCC Part15 C Section 15.247 (e)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|-------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Test Method:      | KDB 558074                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| Limit:            | The average power spectral density shall not be greater<br>than 8dBm in any 3kHz band at any time interval of<br>continuous transmission.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| Test Setup:       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|                   | Spectrum Analyzer EUT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| Test Mode:        | Transmitting mode with modulation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| Test Procedure:   | <ol> <li>The RF output of EUT was connected to the spectrum<br/>analyzer by RF cable and attenuator. The path loss<br/>was compensated to the results for each<br/>measurement.</li> <li>Set to the maximum power setting and enable the<br/>EUT transmit continuously.</li> <li>Make the measurement with the spectrum analyzer's<br/>resolution bandwidth (RBW): 3 kHz ≤ RBW ≤ 100<br/>kHz. Video bandwidth VBW ≥ 3 x RBW. Set the span<br/>to at least 1.5 times the OBW.</li> <li>Detector = RMS, Sweep time = auto couple.</li> <li>Employ trace averaging (RMS) mode over a minimum<br/>of 100 traces. Use the peak marker function to<br/>determine the maximum power level.</li> <li>Measure and record the results in the test report.</li> </ol> |
| Test Result:      | PASS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |

### 6.5.2. Test Instruments

|                            | RI           | F Test Room | 1             |                 |
|----------------------------|--------------|-------------|---------------|-----------------|
| Equipment                  | Manufacturer | Model       | Serial Number | Calibration Due |
| Spectrum Analyzer          | Agilent      | N9020A      | MY49100619    | Sep. 11, 2020   |
| RF Cable<br>(9KHz-26.5GHz) | тст          | RE-06       | N/A           | Sep. 11, 2020   |
| Antenna Connector          | тст          | RFC-01      | N/A           | Sep. 11, 2020   |

**Note:** The calibration interval of the above test instruments is 12 months and the calibrations are traceable to international system unit (SI).



#### **Conducted Band Edge and Spurious Emission Measurement** 6.6.

TCT 通测检测 TESTING CENTRE TECHNOLOGY

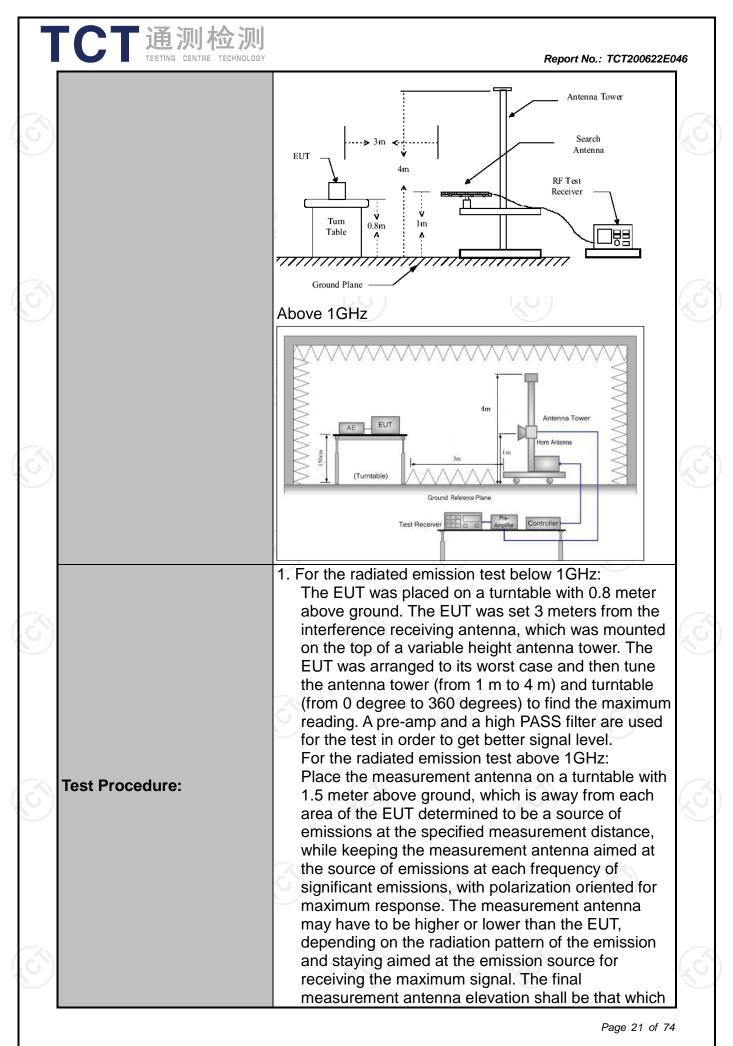
| Test Requirement: | FCC Part15 C S                                                                                                                                                                                                                                                                           | Section 15.247 (d)                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                       |
|-------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Fest Method:      | KDB558074                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                       |
| Limit:            | frequency band<br>non-restricted ba<br>30dB relative to<br>RF conducted<br>which fall in the<br>15.205(a), must                                                                                                                                                                          | d, the emissions<br>ands shall be attend<br>the maximum PSD<br>measurement and<br>restricted bands, a                                                                                                                                                                                                                                                                                      | le of the authorized<br>which fall in the<br>lated at least 20 dB /<br>level in 100 kHz by<br>radiated emissions<br>as defined in Section<br>he radiated emission                                                                                     |
| Гest Setup:       | Spectrum Analyzer                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                            | ut S                                                                                                                                                                                                                                                  |
| Test Mode:        |                                                                                                                                                                                                                                                                                          | de with modulation                                                                                                                                                                                                                                                                                                                                                                         | <u>(</u> )                                                                                                                                                                                                                                            |
| Test Procedure:   | analyzer by k<br>was compen-<br>measuremen<br>2. Set to the ma<br>EUT transmi<br>3. Set RBW = 10<br>Unwanted En-<br>bandwidth ou<br>shall be atter<br>maximum pe-<br>used. If the t<br>power limits<br>a time interva<br>paragraph sk<br>15.247(d).<br>4. Measure and<br>5. The RF funda | RF cable and attenu<br>sated to the results<br>nt.<br>ximum power setting<br>t continuously.<br>00 kHz, VBW=300 k<br>missions measured<br>utside of the authorizen<br>uated by at least 20<br>band peak PSD lev<br>eak conducted output<br>ransmitter complies<br>based on the use of<br>al, the attenuation re-<br>nall be 30 dB instead<br>record the results in<br>amental frequency st | for each<br>g and enable the<br>Hz, Peak Detector.<br>in any 100 kHz<br>zed frequency band<br>0 dB relative to the<br>el in 100 kHz when<br>it power procedure is<br>with the conducted<br>RMS averaging over<br>equired under this<br>d of 20 dB per |
| Test Result:      | PASS                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                       |

Page 18 of 74



### 6.6.2. Test Instruments

|                                                            | RI                | F Test Roor            | n                         |                       |                         |                    |                      |                    |                      |               |                       |                        |                      |               |
|------------------------------------------------------------|-------------------|------------------------|---------------------------|-----------------------|-------------------------|--------------------|----------------------|--------------------|----------------------|---------------|-----------------------|------------------------|----------------------|---------------|
| Equipment                                                  | Manufacturer      | Model                  | Serial Number             | Calibration Due       |                         |                    |                      |                    |                      |               |                       |                        |                      |               |
| Spectrum Analyzer                                          | Agilent           | N9020A                 | MY49100619                | Sep. 11, 2020         |                         |                    |                      |                    |                      |               |                       |                        |                      |               |
| RF Cable<br>(9KHz-26.5GHz)                                 | тст               | TCT RE-06 N/A Sep. 11, | T RE-06 N/A Sep. 11, 2    | RE-06 N/A Sep. 11,    | CT RE-06 N/A Sep. 11, 2 | RE-06 N/A Sep. 11, | RE-06 N/A Sep. 11, 2 | RE-06 N/A Sep. 11, | RE-06 N/A Sep. 11, 2 | TCT RE-06 N/A | TCT RE-06 N/A Sep. 11 | TCT RE-06 N/A Sep. 11, | CT RE-06 N/A Sep. 11 | Sep. 11, 2020 |
| Antenna Connector                                          | тст               | RFC-01                 | N/A                       | Sep. 11, 2020         |                         |                    |                      |                    |                      |               |                       |                        |                      |               |
| <b>Note:</b> The calibration inten<br>international syster |                   | truments is 12 r       | nonths and the calibratic | ons are traceable to  |                         |                    |                      |                    |                      |               |                       |                        |                      |               |
|                                                            |                   |                        |                           |                       |                         |                    |                      |                    |                      |               |                       |                        |                      |               |
|                                                            |                   |                        |                           |                       |                         |                    |                      |                    |                      |               |                       |                        |                      |               |
|                                                            |                   |                        |                           |                       |                         |                    |                      |                    |                      |               |                       |                        |                      |               |
|                                                            |                   |                        |                           |                       |                         |                    |                      |                    |                      |               |                       |                        |                      |               |
|                                                            |                   |                        |                           |                       |                         |                    |                      |                    |                      |               |                       |                        |                      |               |
|                                                            |                   |                        |                           |                       |                         |                    |                      |                    |                      |               |                       |                        |                      |               |
|                                                            |                   |                        |                           |                       |                         |                    |                      |                    |                      |               |                       |                        |                      |               |
|                                                            |                   |                        |                           |                       |                         |                    |                      |                    |                      |               |                       |                        |                      |               |
|                                                            |                   |                        |                           | Page 19 of 7          |                         |                    |                      |                    |                      |               |                       |                        |                      |               |
| Hotline: 400-6611-140                                      | Tel: 86-755-27673 | 339 Fax: 8             | 6-755-27673332 ht         | ttp://www.tct-lab.con |                         |                    |                      |                    |                      |               |                       |                        |                      |               |



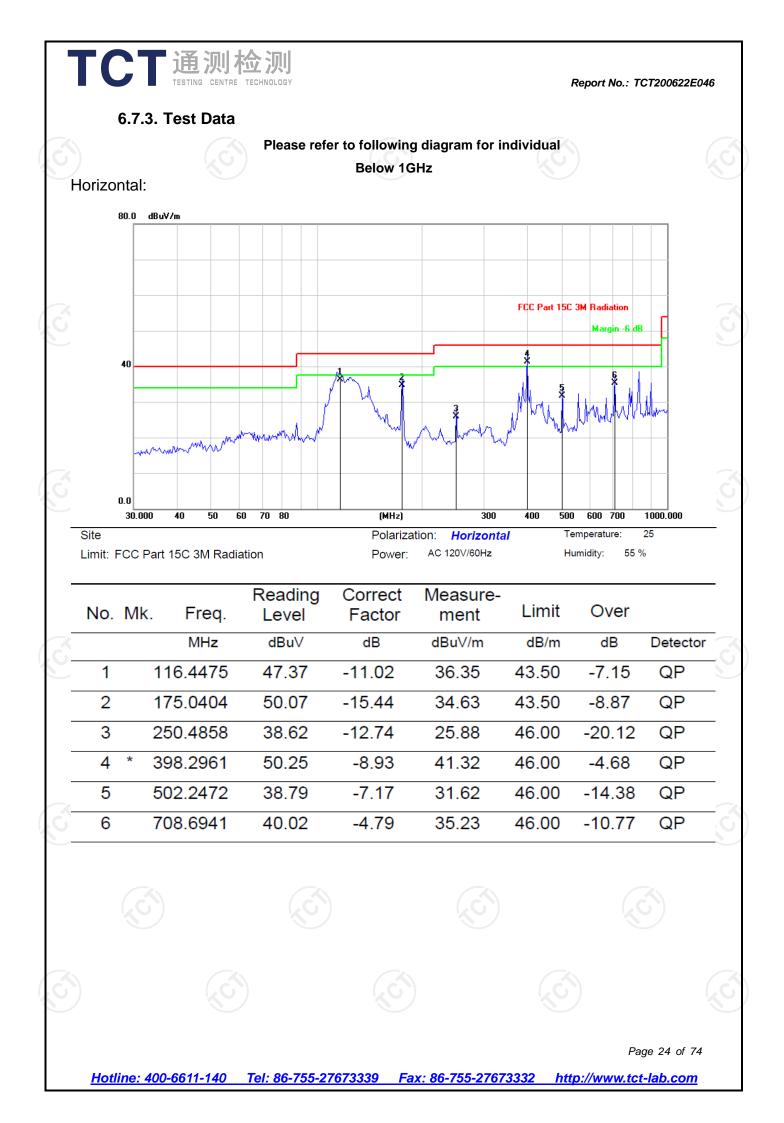

### 6.7. Radiated Spurious Emission Measurement

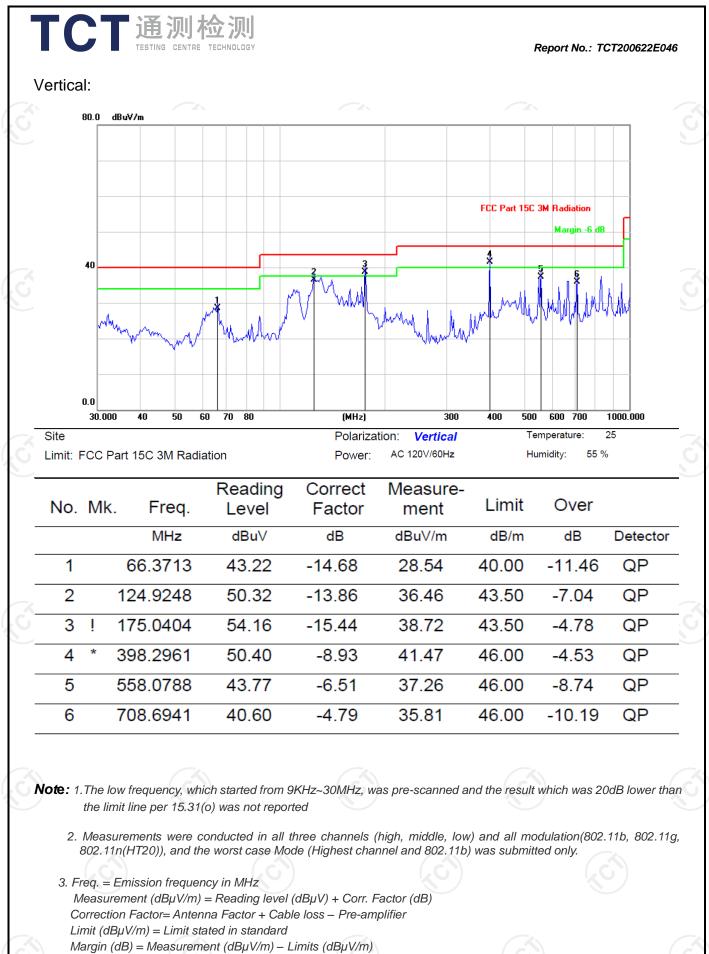
6.7.1. Test Specification

TCT通测检测 TESTING CENTRE TECHNOLOGY

| Test Requirement:     | FCC Part15                        | C Section         | 15.209                     |        |                                          |                    |  |  |
|-----------------------|-----------------------------------|-------------------|----------------------------|--------|------------------------------------------|--------------------|--|--|
| Fest Method:          | ANSI C63.10                       | ANSI C63.10: 2013 |                            |        |                                          |                    |  |  |
| Frequency Range:      | 9 kHz to 25 GHz                   |                   |                            |        |                                          |                    |  |  |
| Measurement Distance: | 3 m                               |                   |                            |        |                                          |                    |  |  |
| Antenna Polarization: | Horizontal &                      | Vertical          |                            |        |                                          |                    |  |  |
| Operation mode:       | Transmitting mode with modulation |                   |                            |        |                                          |                    |  |  |
| -                     | Frequency                         | Detector          | RBW                        | VBW    | Rer                                      | mark               |  |  |
|                       | 9kHz- 150kHz                      | Quasi-peak        |                            | 1kHz   |                                          | eak Value          |  |  |
| Receiver Setup:       | 150kHz-<br>30MHz                  | Quasi-peak        |                            | 30kHz  |                                          | eak Value          |  |  |
|                       | 30MHz-1GHz                        | Quasi-peak        | 120KHz                     | 300KHz | Quasi-pe                                 | eak Value          |  |  |
|                       |                                   | Peak              | 1MHz                       | 3MHz   | · · · · ·                                | Value              |  |  |
|                       | Above 1GHz                        | Peak              | 1MHz                       | 10Hz   | Averag                                   | je Value           |  |  |
|                       | Frequen                           | су                | Field Stre<br>(microvolts  |        |                                          | rement<br>(meters) |  |  |
|                       | 0.009-0.4                         | 490               | 2400/F(I                   |        |                                          | 00                 |  |  |
|                       | 0.490-1.7                         |                   | 24000/F(                   |        |                                          | 80                 |  |  |
|                       | 1.705-3                           | 80                | 30                         |        |                                          | 80                 |  |  |
|                       | 30-88                             | 17.4              | 100                        |        |                                          | 3                  |  |  |
|                       | 88-216                            |                   | 150                        |        |                                          | 3                  |  |  |
| _imit:                | 216-96<br>Above 9                 |                   | 200<br>500                 |        |                                          | <u>3</u><br>3      |  |  |
|                       |                                   |                   | 500                        |        | · · · · · · · · · · · · · · · · · · ·    |                    |  |  |
|                       | Frequency                         |                   | I Strength<br>volts/meter) | Distan | Measurement<br>Distance Dete<br>(meters) |                    |  |  |
|                       | Above 1GHz                        | z                 | 500                        | 3      |                                          | Average            |  |  |
|                       |                                   |                   | 5000 3                     |        | 6                                        | Peak               |  |  |
|                       | For radiated                      | emissions         | below 30                   | )MHz   | Computer                                 | Ъ                  |  |  |
| Fest setup:           | EUT                               | 1                 | п) <del>т</del> Г          | Pre -  | Amplifier                                | 1                  |  |  |
| Test setup:           | 0.8m                              | Turn table        | Plane                      |        | Amplifier                                | ]                  |  |  |
| Fest setup:           |                                   | Ground            |                            |        |                                          | ]                  |  |  |
| Test setup:           | 0.8m                              | Ground            |                            |        |                                          | ]                  |  |  |



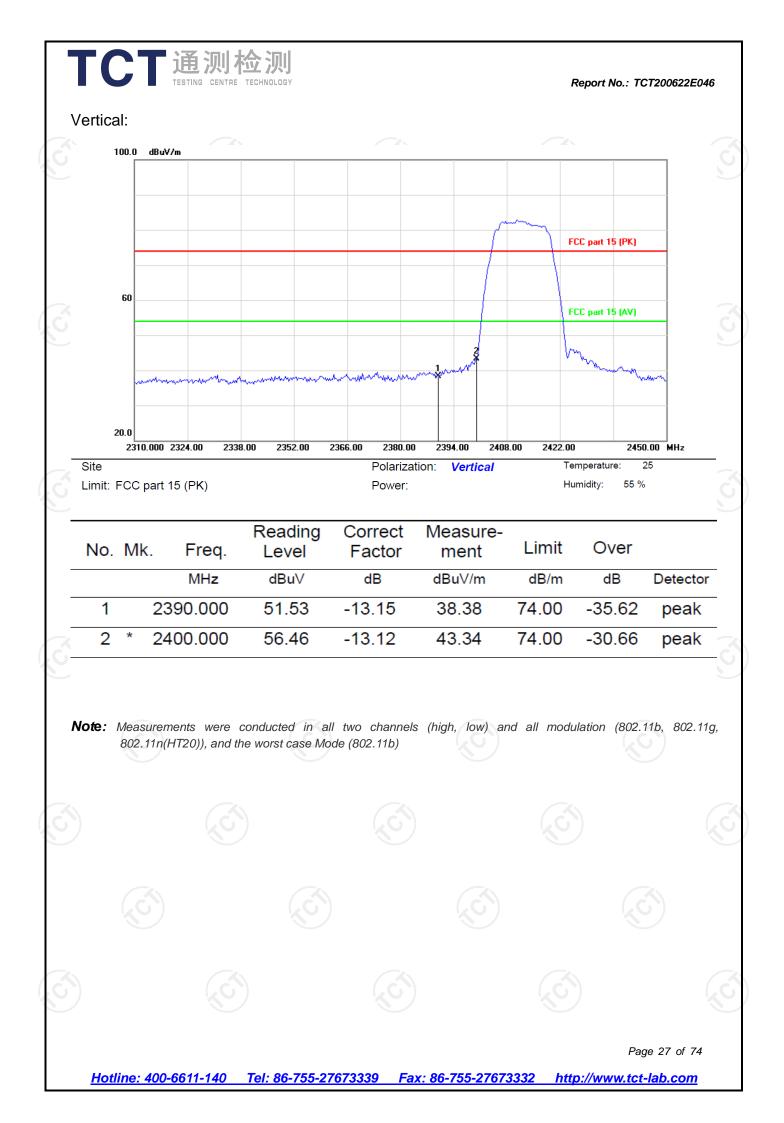

| 3  |              | ante<br>rest<br>abo<br>3. Corre<br>Rea<br>4. For r<br>of th<br>lowe<br>leve<br>mea<br>dete<br>5. Use<br>(1) \$<br>(2) \$<br>(2) \$<br>(3) \$<br>For<br>duty | <ul> <li>Report No.: TCT200622E04</li> <li>maximizes the emissions. The measurement<br/>antenna elevation for maximum emissions shall be<br/>restricted to a range of heights of from 1 m to 4 m<br/>above the ground or reference ground plane.</li> <li>Corrected Reading: Antenna Factor + Cable Loss +<br/>Read Level - Preamp Factor = Level</li> <li>For measurement below 1GHz, If the emission level<br/>of the EUT measured by the peak detector is 3 dB<br/>lower than the applicable limit, the peak emission<br/>level will be reported. Otherwise, the emission<br/>measurement will be repeated using the quasi-peak<br/>detector and reported.</li> <li>Use the following spectrum analyzer settings: <ul> <li>(1) Span shall wide enough to fully capture the<br/>emission being measured;</li> <li>(2) Set RBW=120 kHz for f &lt; 1 GHz; VBW ≥ RBW;<br/>Sweep = auto; Detector function = peak; Trace =<br/>max hold;</li> <li>(3) Set RBW = 1 MHz, VBW= 3MHz for f &gt; 1 GHz for<br/>peak measurement.</li> <li>For average measurement: VBW = 10 Hz, when<br/>duty cycle is no less than 98 percent. VBW ≥ 1/T,</li> </ul> </li> </ul> |                             |              |                                                                |  |  |
|----|--------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------|--------------|----------------------------------------------------------------|--|--|
| Те | est results: | the<br>tran                                                                                                                                                 | minimum tr<br>smitter is o                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | ansmission<br>n and is trai | duration ove | It where T is<br>er which the<br>its maximum<br>e of operation |  |  |
|    |              |                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                             |              |                                                                |  |  |
|    |              |                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                             |              |                                                                |  |  |
|    |              |                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                             |              |                                                                |  |  |
|    |              |                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                             |              |                                                                |  |  |
|    |              |                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                             |              |                                                                |  |  |

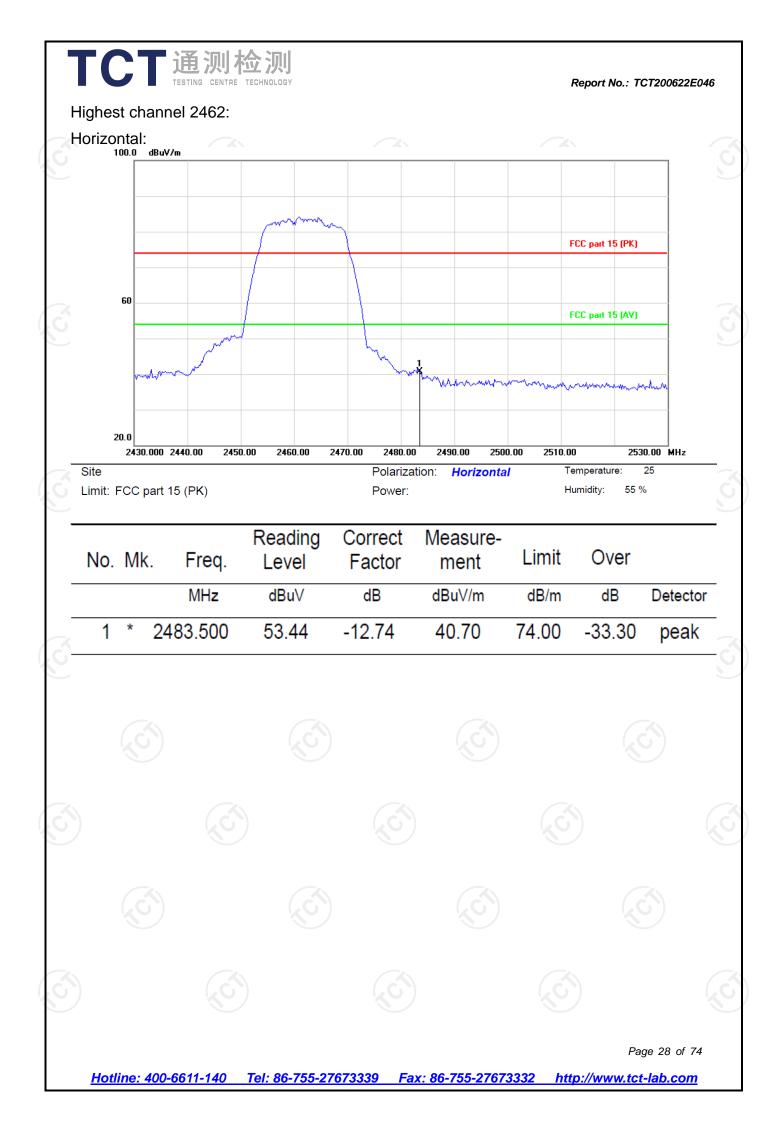

#### 6.7.2. Test Instruments

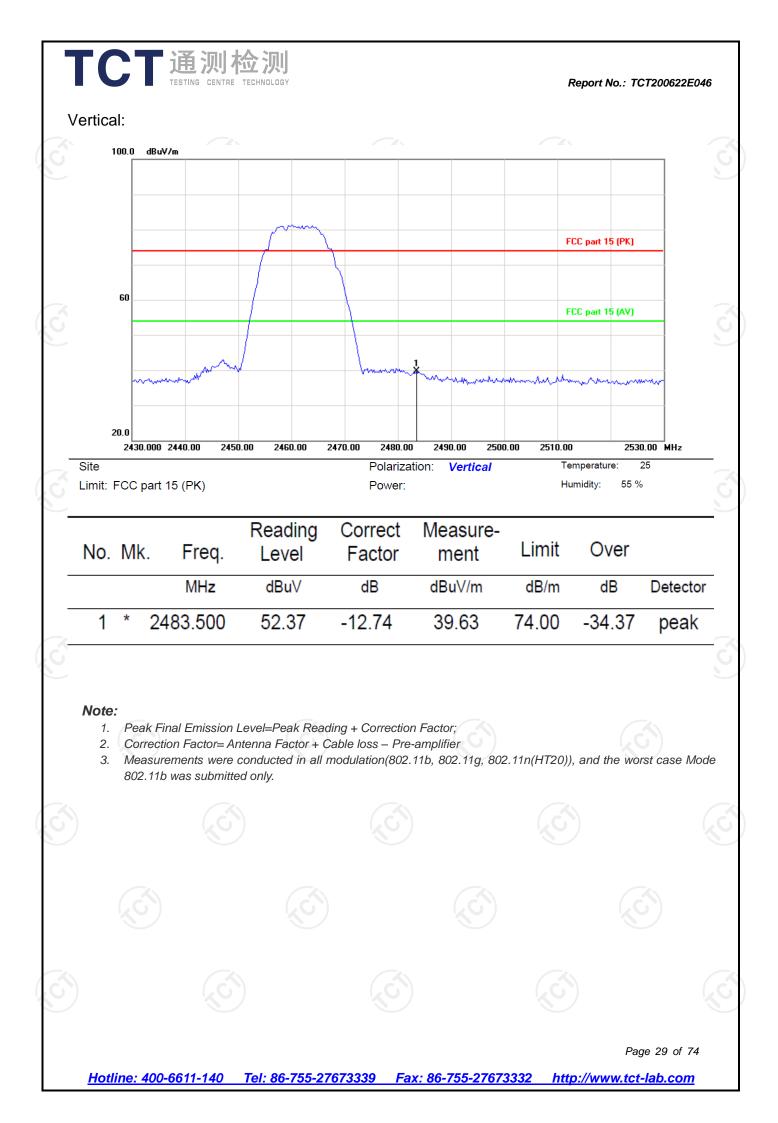
| Radiated Emission Test Site (966) |                                          |              |                  |                 |  |  |  |  |  |  |
|-----------------------------------|------------------------------------------|--------------|------------------|-----------------|--|--|--|--|--|--|
| Name of<br>Equipment              | Manufacturer                             | Model        | Serial<br>Number | Calibration Due |  |  |  |  |  |  |
| Test Receiver                     | ROHDE&SCHW<br>ARZ                        | ESIB7        | 100197           | Jul. 29, 2020   |  |  |  |  |  |  |
| Spectrum Analyzer                 | ROHDE&SCHW<br>ARZ                        | FSQ40        | 200061           | Sep. 11, 2020   |  |  |  |  |  |  |
| Pre-amplifier                     | EM Electronics<br>Corporation<br>CO.,LTD | EM30265      | 07032613         | Sep. 08, 2020   |  |  |  |  |  |  |
| Pre-amplifier                     | HP                                       | 8447D        | 2727A05017       | Sep. 08, 2020   |  |  |  |  |  |  |
| Loop antenna                      | ZHINAN                                   | ZN30900A     | 12024            | Sep. 11, 2020   |  |  |  |  |  |  |
| Broadband Antenna                 | Schwarzbeck                              | VULB9163     | 340              | Sep. 06, 2020   |  |  |  |  |  |  |
| Horn Antenna                      | Schwarzbeck                              | BBHA 9120D   | 631              | Sep. 06, 2020   |  |  |  |  |  |  |
| Horn Antenna                      | A-INFO                                   | LB-180400-KF | J211020657       | Sep. 06, 2020   |  |  |  |  |  |  |
| Antenna Mast                      | Keleto                                   | RE-AM        | N/A              | N/A             |  |  |  |  |  |  |
| Coax cable<br>(9KHz-40GHz)        | ТСТ                                      | RE-high-02   | N/A              | Sep. 08, 2020   |  |  |  |  |  |  |
| Coax cable<br>(9KHz-40GHz)        | тст                                      | RE-high-04   | N/A              | Sep. 08, 2020   |  |  |  |  |  |  |
| EMI Test Software                 | Shurple<br>Technology                    | EZ-EMC       | N/A              | N/A             |  |  |  |  |  |  |

**Note:** The calibration interval of the above test instruments is 12 months and the calibrations are traceable to international system unit (SI).

Page 23 of 74





Any value more than 10dB below limit have not been specifically reported. \* is meaning the worst frequency has been tested in the test frequency range

Page 25 of 74









#### Modulation Type: 802.11b Low channel: 2412 MHz AV reading Correction **Emission Level** Peak Frequency Ant. Pol. Peak limit AV limit Margin reading Factor Peak AV (MHz) (dBuV) (dBµV/m) (dBµV/m) (dB) H/V (dBµV) (dB/m) (dBµV/m) (dBµV/m) 74 4824 Н 48.56 ---0.75 49.31 54 -4.69 7236 -3.74 Н 40.39 ---9.87 50.26 ---74 54 Н ----------------------------4824 V 47.38 0.75 48.13 74 -5.87 54 \_-------7236 74 V 40.51 9.87 50.38 ---54 -3.62 ---V ---------------------------

Above 1GHz

|                    | Middle channel: 2437MHz |                           |                      |                                |                             |                           |                        |                      |                |  |  |  |  |
|--------------------|-------------------------|---------------------------|----------------------|--------------------------------|-----------------------------|---------------------------|------------------------|----------------------|----------------|--|--|--|--|
| Frequency<br>(MHz) | Ant. Pol.<br>H/V        | Peak<br>reading<br>(dBµV) | AV reading<br>(dBµV) | Correction<br>Factor<br>(dB/m) | Emissic<br>Peak<br>(dBµV/m) | n Level<br>AV<br>(dBµV/m) | Peak limit<br>(dBµV/m) | AV limit<br>(dBµV/m) | Margin<br>(dB) |  |  |  |  |
| 4874               | Н                       | 48.24                     |                      | 0.97                           | 49.21                       |                           | 74                     | 54                   | -4.79          |  |  |  |  |
| 7311               | Н                       | 41.49                     |                      | 9.83                           | 51.32                       |                           | 74                     | 54                   | -2.68          |  |  |  |  |
| /                  | C H                     |                           | L <sub>k</sub> O     |                                |                             |                           |                        |                      |                |  |  |  |  |
|                    |                         |                           |                      |                                |                             |                           |                        |                      |                |  |  |  |  |
| 4874               | V                       | 49.75                     |                      | 0.97                           | 50.72                       |                           | 74                     | 54                   | -3.28          |  |  |  |  |
| 7311               | V                       | 41.59                     |                      | 9.83                           | 51.42                       |                           | 74                     | 54                   | -2.58          |  |  |  |  |
| ×                  | V                       |                           |                      | (                              | ×                           |                           |                        |                      | (              |  |  |  |  |

|                    | High channel: 2462 MHz |                           |                      |                                |                             |                           |                        |                      |                |  |  |  |
|--------------------|------------------------|---------------------------|----------------------|--------------------------------|-----------------------------|---------------------------|------------------------|----------------------|----------------|--|--|--|
| Frequency<br>(MHz) | Ant. Pol.<br>H/V       | Peak<br>reading<br>(dBµV) | AV reading<br>(dBµV) | Correction<br>Factor<br>(dB/m) | Emissic<br>Peak<br>(dBµV/m) | n Level<br>AV<br>(dBµV/m) | Peak limit<br>(dBµV/m) | AV limit<br>(dBµV/m) | Margin<br>(dB) |  |  |  |
| 4924               | H                      | 49.57                     |                      | 1.18                           | 50.75                       |                           | 74                     | 54                   | -3.25          |  |  |  |
| 7386               | Н                      | 38.66                     | ×                    | 10.07                          | 48.73                       |                           | 74                     | 54                   | -5.27          |  |  |  |
|                    | Н                      |                           |                      |                                |                             |                           |                        | )                    |                |  |  |  |
| 400.4              |                        | 40.07                     |                      | 4.40                           | 50.45                       |                           | 74                     | <b>F</b> 4           | 0.05           |  |  |  |
| 4924               | V                      | 48.97                     |                      | 1.18                           | 50.15                       |                           | 74                     | 54                   | -3.85          |  |  |  |
| 7386               | V                      | 40.88                     |                      | 10.07                          | 50.95                       |                           | 74                     | 54                   | -3.05          |  |  |  |
| //                 | V                      |                           |                      |                                | ) /                         |                           |                        |                      |                |  |  |  |

#### Note:

1. Emission Level=Peak Reading + Correction Factor; Correction Factor= Antenna Factor + Cable loss - Pre-amplifier

2. Margin (dB) = Emission Level (Peak) (dB $\mu$ V/m)-Average limit (dB $\mu$ V/m)

3. The emission levels of other frequencies are very lower than the limit and not show in test report.

4. Measurements were conducted from 1 GHz to the 10th harmonic of highest fundamental frequency. The highest test frequency is 25GHz.

5. Data of measurement shown "---"in the above table mean that the reading of emissions is attenuated more than 20 dB below the limits or the field strength is too small to be measured.

6. All the restriction bands are compliance with the limit of 15.209.

CT 通测检测 TESTING CENTRE TECHNOLOGY

Page 30 of 74

|                    |                  |                           |                      |                                | ype: 802.11                 |                |                        |                      |                |
|--------------------|------------------|---------------------------|----------------------|--------------------------------|-----------------------------|----------------|------------------------|----------------------|----------------|
|                    |                  |                           |                      |                                | I: 2412 MH                  |                |                        |                      |                |
| Frequency<br>(MHz) | Ant. Pol.<br>H/V | Peak<br>reading<br>(dBµV) | AV reading<br>(dBuV) | Correction<br>Factor<br>(dB/m) | Emissic<br>Peak<br>(dBµV/m) | AV<br>(dBµV/m) | Peak limit<br>(dBµV/m) | AV limit<br>(dBµV/m) | Margin<br>(dB) |
| 4824               | Н                | 49.27                     |                      | 0.75                           | 50.02                       |                | 74                     | 54                   | -3.98          |
| 7236               | Н                | 40.39                     |                      | 9.87                           | 50.26                       |                | 74                     | 54                   | -3.74          |
|                    | Н                |                           |                      |                                |                             |                |                        |                      |                |
|                    |                  |                           |                      |                                |                             | (A)            |                        |                      |                |
| 4824               | ΟV               | 47.98                     |                      | 0.75                           | 48.73                       | $\mathcal{O}$  | 74                     | 54                   | -5.27          |
| 7236               | V                | 40.56                     |                      | 9.87                           | 50.43                       |                | 74                     | 54                   | -3.57          |
|                    | V                |                           |                      |                                |                             |                |                        |                      |                |
|                    |                  |                           |                      |                                |                             |                |                        |                      |                |
|                    |                  |                           | М                    | iddle chanr                    | nel: 2437MF                 | lz             |                        |                      |                |
| Frequency<br>(MHz) | Ant. Pol.<br>H/V | Peak<br>reading           | AV reading<br>(dBµV) | Correction<br>Factor           | Emissic<br>Peak             | n Level<br>AV  | Peak limit<br>(dBµV/m) | AV limit<br>(dBµV/m) | Margin<br>(dB) |
| (11112)            | 11/ V            | (dBµV)                    | (uphv)               | (dB/m)                         | (dBµV/m)                    | (dBµV/m)       | (ubµ v/m)              | (uph vill)           | (ub)           |
| 4874               | Н                | 47.55                     |                      | 0.97                           | 48.52                       |                | 74                     | 54                   | -5.48          |
| 7311               | Н                | 40.99                     |                      | 9.83                           | 50.82                       |                | 74                     | 54                   | -3.18          |
|                    | Н                |                           |                      |                                | /                           |                |                        |                      |                |
|                    |                  |                           | k v                  | )                              |                             |                |                        | ku k                 |                |
| 4874               | V                | 47.71                     |                      | 0.97                           | 48.68                       |                | 74                     | 54                   | -5.32          |
| 7311               | V                | 40.52                     |                      | 9.83                           | 50.35                       |                | 74                     | 54                   | -3.65          |
|                    | V                |                           |                      |                                |                             |                |                        |                      |                |
| 6                  |                  |                           |                      |                                |                             |                |                        |                      | (              |
|                    |                  |                           | Н                    | ligh channe                    | el: 2462 MH                 |                |                        |                      |                |
| requency           | Ant. Pol.        | Peak                      | AV reading           | Correction                     |                             | on Level       | Peak limit             | AV limit             | Margin         |
| (MHz)              | H/V              | reading<br>(dBµV)         | (dBµV)               | Factor<br>(dB/m)               | Peak<br>(dBµV/m)            | AV<br>(dBµV/m) | (dBµV/m)               | (dBµV/m)             | (dB)           |
| 4924               | Н                | 47.95                     |                      | 1.18                           | 49.13                       |                | 74                     | 54                   | -4.87          |
| 7386               | H H              | 39.44                     |                      | 10.07                          | 49.51                       |                | 74                     | 54                   | -4.49          |
|                    | H                |                           |                      |                                |                             |                |                        |                      |                |
| 4924               | V                | 47.86                     |                      | 1.18                           | 49.04                       |                | 74                     | 54                   | -4.96          |
| 7386               | V                | 39.94                     |                      | 10.07                          | 50.01                       |                | 74                     | 54                   | -3.99          |
|                    | V                |                           |                      |                                |                             |                |                        |                      |                |
| Note:              | v                |                           | 1 1                  |                                |                             |                | (-G)                   |                      |                |

3. The emission levels of other frequencies are very lower than the limit and not show in test report.

4. Measurements were conducted from 1 GHz to the 10th harmonic of highest fundamental frequency. The highest test frequency is 25GHz.

5. Data of measurement shown "---"in the above table mean that the reading of emissions is attenuated more than 20 dB below the limits or the field strength is too small to be measured.

6. All the restriction bands are compliance with the limit of 15.209.

■ NIZ 2001 4人 2001

|                    |                  |                           |                      |                                | : 802.11n (l<br>el: 2412 MH |                           |                          |                      |                |
|--------------------|------------------|---------------------------|----------------------|--------------------------------|-----------------------------|---------------------------|--------------------------|----------------------|----------------|
|                    |                  | Peak                      |                      | Correction                     | 1                           | n Level                   |                          |                      |                |
| Frequency<br>(MHz) | Ant. Pol.<br>H/V | reading<br>(dBµV)         | AV reading<br>(dBuV) | Factor<br>(dB/m)               | Peak<br>(dBµV/m)            | AV<br>(dBµV/m)            | Peak limit<br>(dBµV/m)   | AV limit<br>(dBµV/m) | Margin<br>(dB) |
| 4824               | Н                | 49.33                     |                      | 0.75                           | 50.08                       |                           | 74                       | 54                   | -3.92          |
| 7236               | Н                | 40.52                     |                      | 9.87                           | 50.39                       |                           | 74                       | 54                   | -3.61          |
|                    | Н                |                           |                      |                                |                             |                           |                          |                      |                |
|                    |                  |                           |                      |                                |                             |                           |                          | (A)                  |                |
| 4824               | ΟV               | 47.77                     |                      | 0.75                           | 48.52                       | $\mathcal{O}^{1}$         | 74                       | 54                   | -5.48          |
| 7236               | V                | 41.07                     | <u> </u>             | 9.87                           | 50.94                       |                           | 74                       | 54                   | -3.06          |
|                    | V                |                           |                      |                                |                             |                           |                          |                      |                |
|                    |                  |                           |                      |                                |                             |                           |                          |                      |                |
|                    |                  |                           | M                    | iddle chanr                    | nel: 2437MF                 |                           | Ch.                      |                      |                |
| Frequency          | Ant. Pol.        | Peak                      | AV reading           | Correction                     |                             | on Level                  | Peak limit               | AV limit             | Margin         |
| (MHz)              | H/V              | reading<br>(dBµV)         | (dBµV)               | Factor<br>(dB/m)               | Peak<br>(dBµV/m)            | AV<br>(dBµV/m)            | (dBµV/m)                 | (dBµV/m)             | (dB)           |
| 4874               | Н                | 48.49                     |                      | 0.97                           | 49.46                       |                           | 74                       | 54                   | -4.54          |
| 7311               | Н                | 40.85                     |                      | 9.83                           | 50.68                       |                           | 74                       | 54                   | -3.32          |
|                    | Н                |                           | <del>-</del>         |                                |                             | -                         |                          |                      |                |
|                    |                  |                           |                      |                                |                             |                           |                          | ku )                 |                |
| 4874               | V                | 47.66                     |                      | 0.97                           | 48.63                       |                           | 74                       | 54                   | -5.37          |
| 7311               | V                | 40.94                     |                      | 9.83                           | 50.77                       |                           | 74                       | 54                   | -3.23          |
|                    | V                |                           |                      |                                |                             |                           |                          |                      |                |
|                    |                  |                           |                      |                                |                             |                           |                          |                      |                |
| (` ر               |                  | $(\mathbf{x}\mathbf{G})$  | Н                    | igh channe                     | el: 2462 MH                 | Z                         | $(\mathbf{x}\mathbf{G})$ |                      |                |
| Frequency<br>(MHz) | Ant. Pol.<br>H/V | Peak<br>reading<br>(dBµV) | AV reading<br>(dBµV) | Correction<br>Factor<br>(dB/m) | Emissic<br>Peak<br>(dBµV/m) | n Level<br>AV<br>(dBµV/m) | Peak limit<br>(dBµV/m)   | AV limit<br>(dBµV/m) | Margin<br>(dB) |
| 4924               | H                | 48.62                     |                      | 1.18                           | 49.8                        |                           | 74                       | 54                   | -4.20          |
| 7386               | H                | 41.38                     |                      | 10.07                          | 51.45                       |                           | 74                       | 54                   | -2.55          |
|                    | Н                |                           |                      |                                |                             |                           |                          |                      |                |
|                    |                  |                           |                      |                                |                             |                           |                          |                      |                |
| 4924               | V                | 47.49                     |                      | 1.18                           | 48.67                       |                           | 74                       | 54                   | -5.33          |
| 7386               | V                | 40.56                     |                      | 10.07                          | 50.63                       |                           | 74                       | 54                   | -3.37          |
|                    | V                |                           |                      | (                              |                             |                           |                          |                      | (              |

2. Margin (dB) = Emission Level (Peak) (dB $\mu$ V/m)-Average limit (dB $\mu$ V/m)

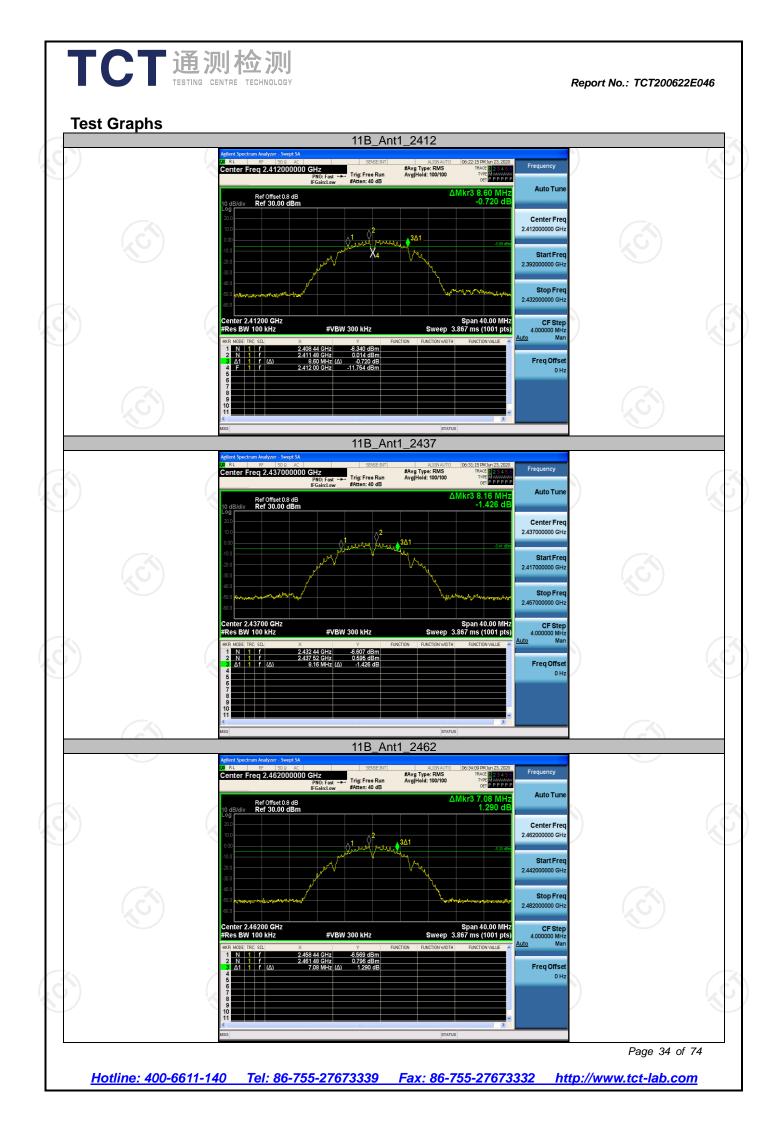
3. The emission levels of other frequencies are very lower than the limit and not show in test report.

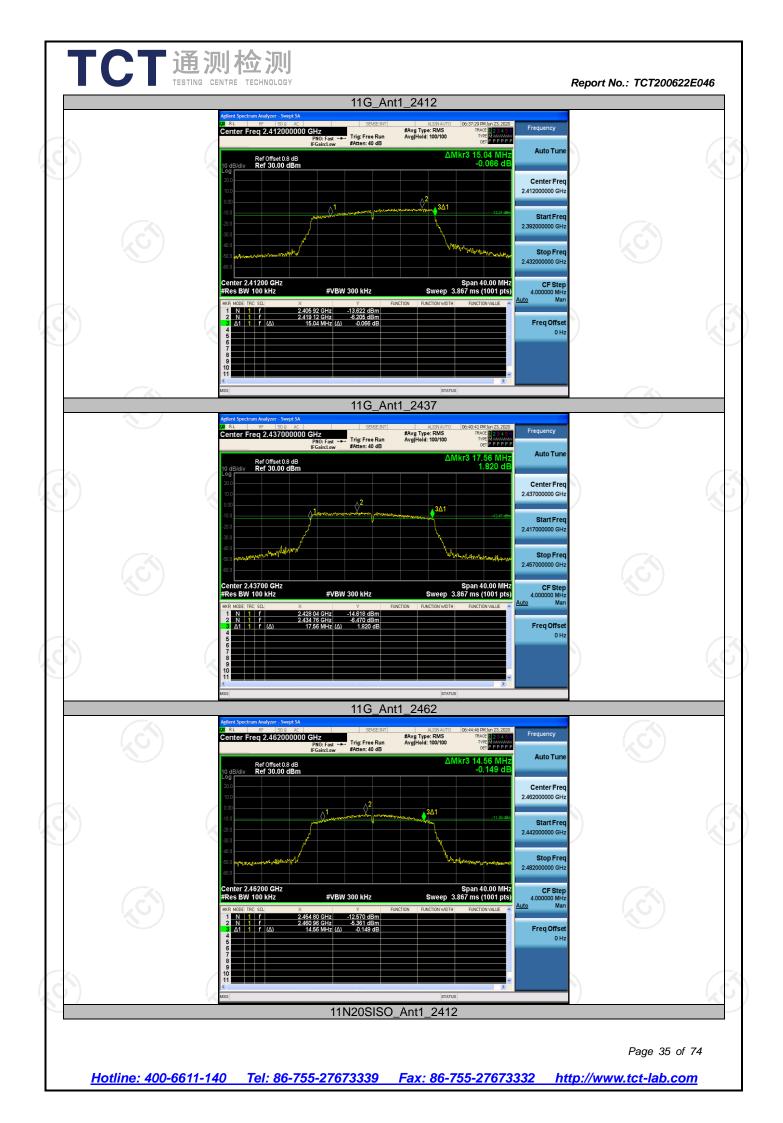
4. Measurements were conducted from 1 GHz to the 10th harmonic of highest fundamental frequency. The highest test frequency is 25GHz.

5. Data of measurement shown "---"in the above table mean that the reading of emissions is attenuated more than 20 dB below the limits or the field strength is too small to be measured.

6. All the restriction bands are compliance with the limit of 15.209.

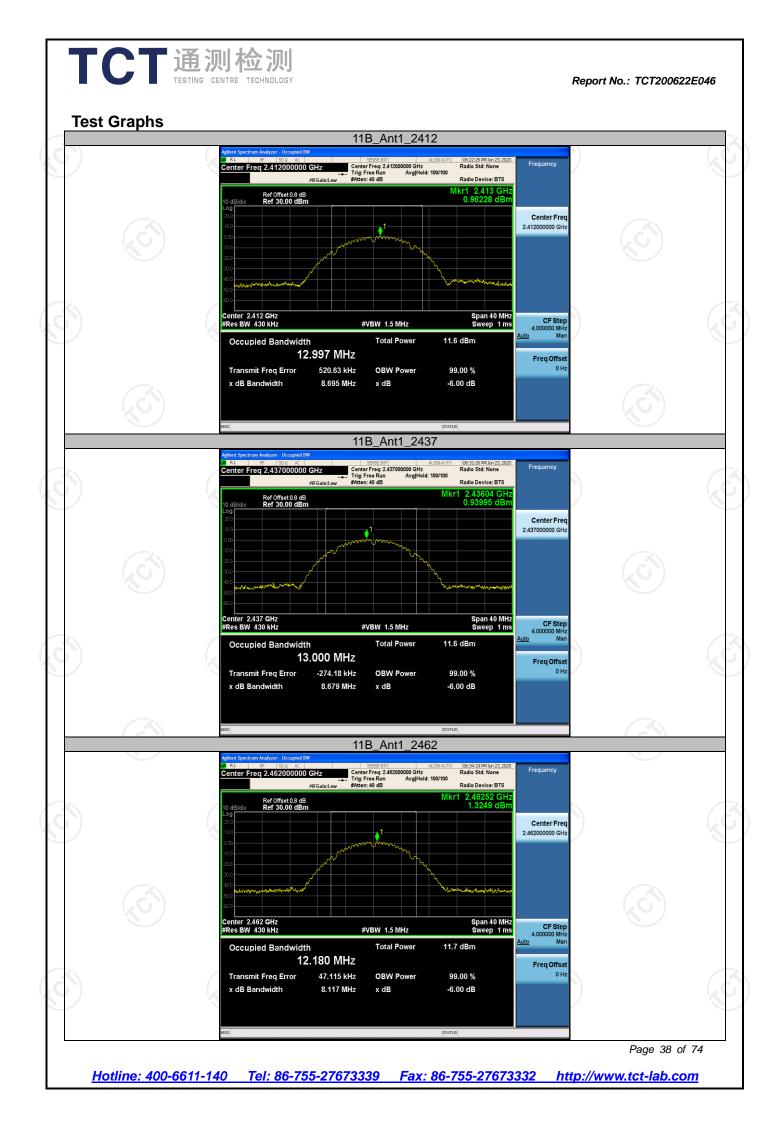


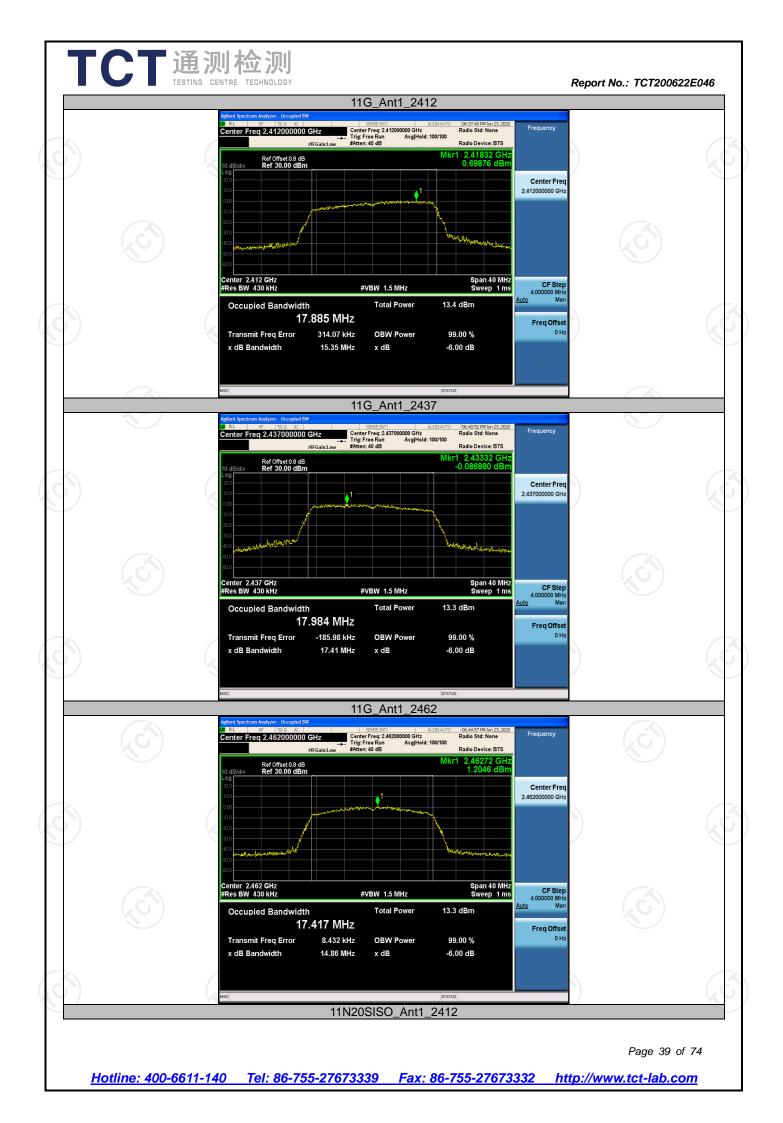

### Appendix A: Test Result of Conducted Test

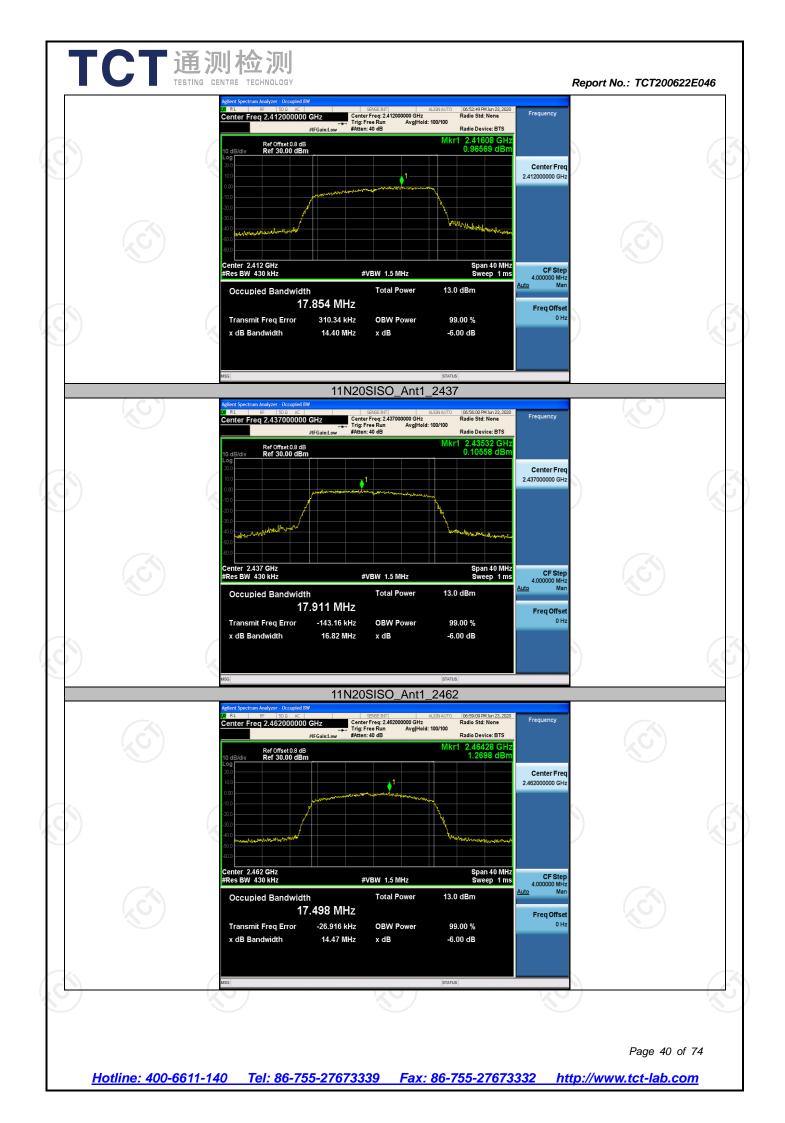

Appendix A: DTS Bandwidth


**Test Result** 

TCT 通测检测 TESTING CENTRE TECHNOLOGY

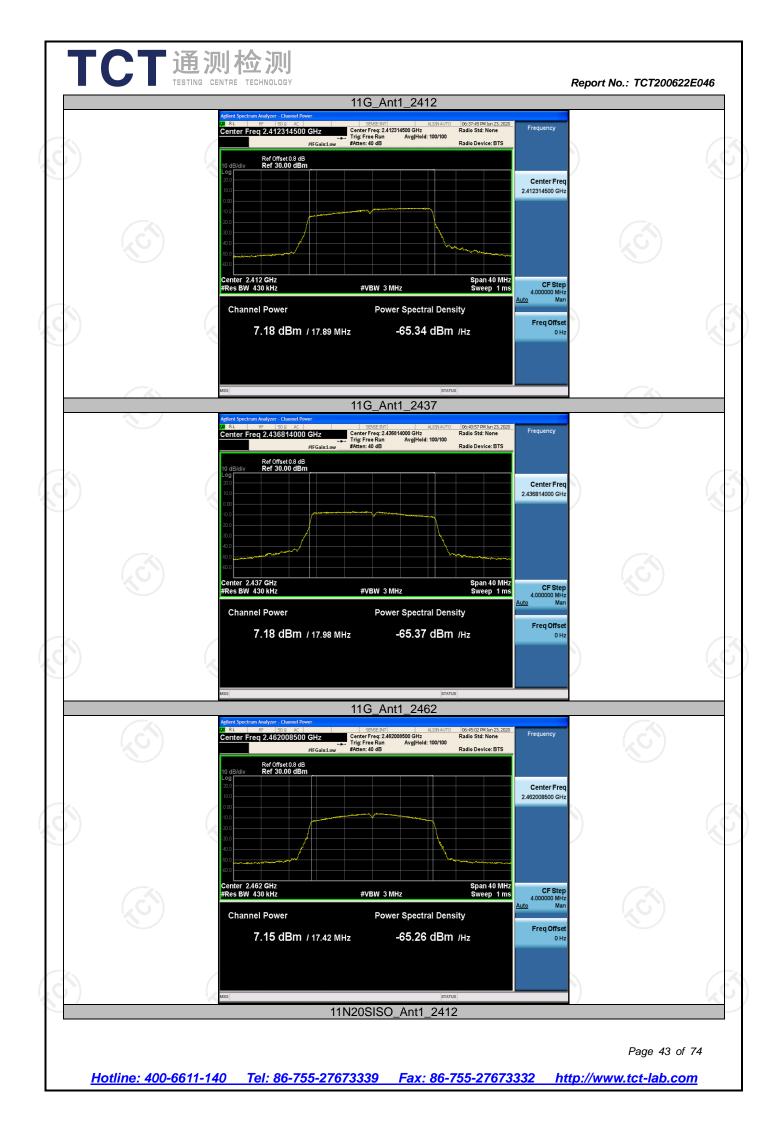

| TestMode  | Antenna | Channel                      | DTS BW [MHz]               | FL [MHz]<br>2408.440                         | FH [MHz]                                     | Limit [MHz]              | Verdict                      |  |
|-----------|---------|------------------------------|----------------------------|----------------------------------------------|----------------------------------------------|--------------------------|------------------------------|--|
| 11B       | Ant1    | 2412<br>2437<br>2462<br>2412 | 2462 7.080                 |                                              | 2417.040<br>2440.600<br>2465.520<br>2420.960 | 0.5<br>0.5<br>0.5<br>0.5 | PASS<br>PASS<br>PASS<br>PASS |  |
| 11G       | Ant1    | 2437<br>2462<br>2412         | 17.560<br>14.560<br>14.480 | 2405.920<br>2428.040<br>2454.800<br>2406.480 | 2445.600<br>2469.360<br>2420.960             | 0.5<br>0.5<br>0.5        | PASS<br>PASS<br>PASS         |  |
| 11N20SISO | Ant1    | 2437<br>2462                 | 17.720<br>15.320           | 2428.080<br>2454.480                         | 2445.800<br>2469.800                         | 0.5<br>0.5               | PASS<br>PASS                 |  |
|           |         |                              |                            |                                              |                                              |                          |                              |  |
|           |         |                              |                            |                                              |                                              |                          |                              |  |
|           |         |                              |                            |                                              |                                              |                          |                              |  |
|           |         |                              |                            |                                              |                                              |                          |                              |  |
|           |         |                              |                            |                                              |                                              |                          |                              |  |
|           |         |                              |                            |                                              |                                              |                          |                              |  |
|           |         |                              |                            |                                              |                                              |                          |                              |  |
|           |         |                              |                            |                                              |                                              |                          |                              |  |
|           |         |                              |                            |                                              |                                              | Page                     | 33 of 74                     |  |






Report No.: TCT200622E046 **Occupied Channel Bandwidth Test Result** TestMode Antenna Channel OCB [MHz] Limit [MHz] Verdict FL [MHz] FH [MHz] 2412 12.997 2406.022 2419.019 PASS ---11B Ant1 2437 13.000 2430.226 2443.226 PASS PASS 2462 12.180 2455.957 2468.137 ---/ 2412 2403.372 2421.257 PASS 17.885 -----24<u>37</u> PASS 17.984 2427.822 2445.806 11G Ant1 ----2462 17.417 2453.300 2470.717 PASS ----17.854 2403.383 2421.237 PASS 2412 ---11N20SISO Ant1 2437 17.911 2427.901 2445.812 PASS ----2462 17.498 2453.224 2470.722 PASS ---Page 37 of 74 Hotline: 400-6611-140 Tel: 86-755-27673339 Fax: 86-755-27673332 http://www.tct-lab.com









| est Result |         | ximum coi            |   |                      |                      |                      |
|------------|---------|----------------------|---|----------------------|----------------------|----------------------|
| TestMode   | Antenna | Channel              |   | Result [dBm]         | Limit [dBm           |                      |
| 11B        | Ant1    | 2412<br>2437<br>2462 |   | 8.69<br>8.67<br>8.78 | <=30<br><=30<br><=30 | PASS<br>PASS<br>PASS |
| 11G        | Ant1    | 2412<br>2437<br>2462 |   | 7.18<br>7.18<br>7.15 | <=30<br><=30<br><=30 | PASS<br>PASS<br>PASS |
| 11N20SISO  | Ant1    | 2412<br>2437<br>2462 | G | 6.98<br>6.88<br>6.88 | <=30<br><=30<br><=30 | PASS<br>PASS<br>PASS |
|            |         |                      |   |                      |                      |                      |
|            |         |                      |   |                      |                      |                      |
|            |         |                      |   |                      |                      |                      |
|            |         |                      |   |                      |                      |                      |
|            |         |                      |   |                      |                      |                      |
|            |         |                      |   |                      |                      |                      |
|            |         |                      |   |                      |                      |                      |
|            |         |                      |   |                      |                      |                      |

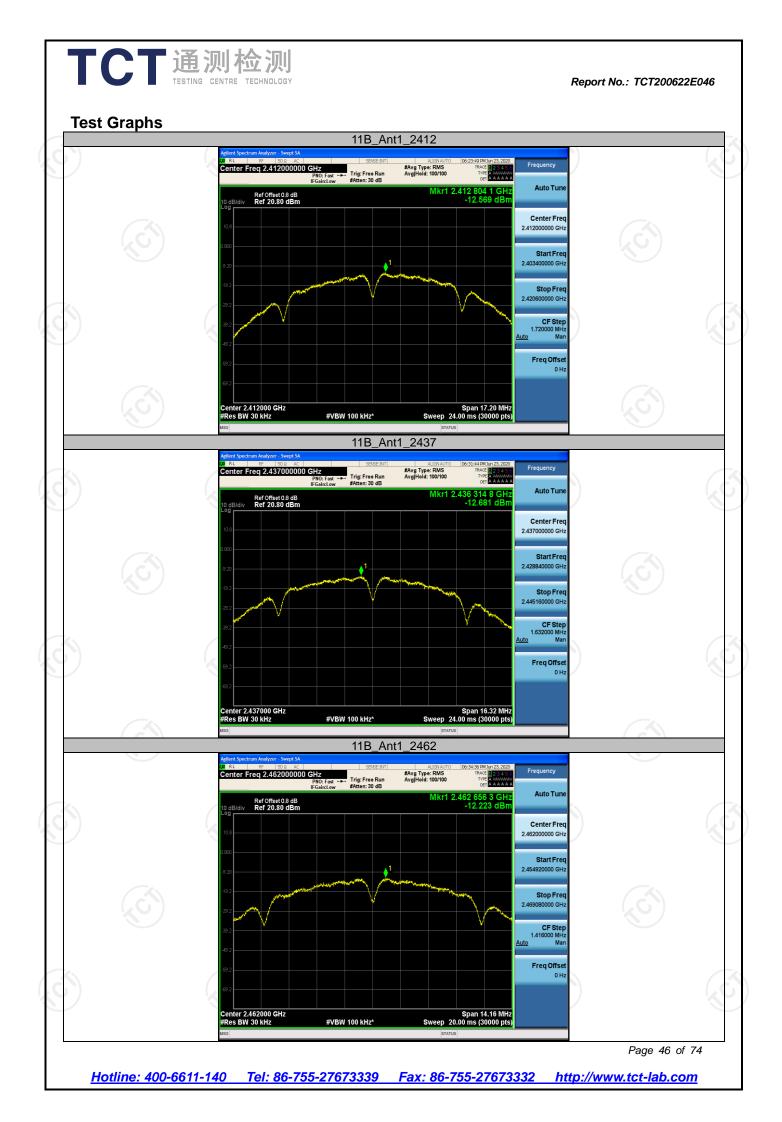


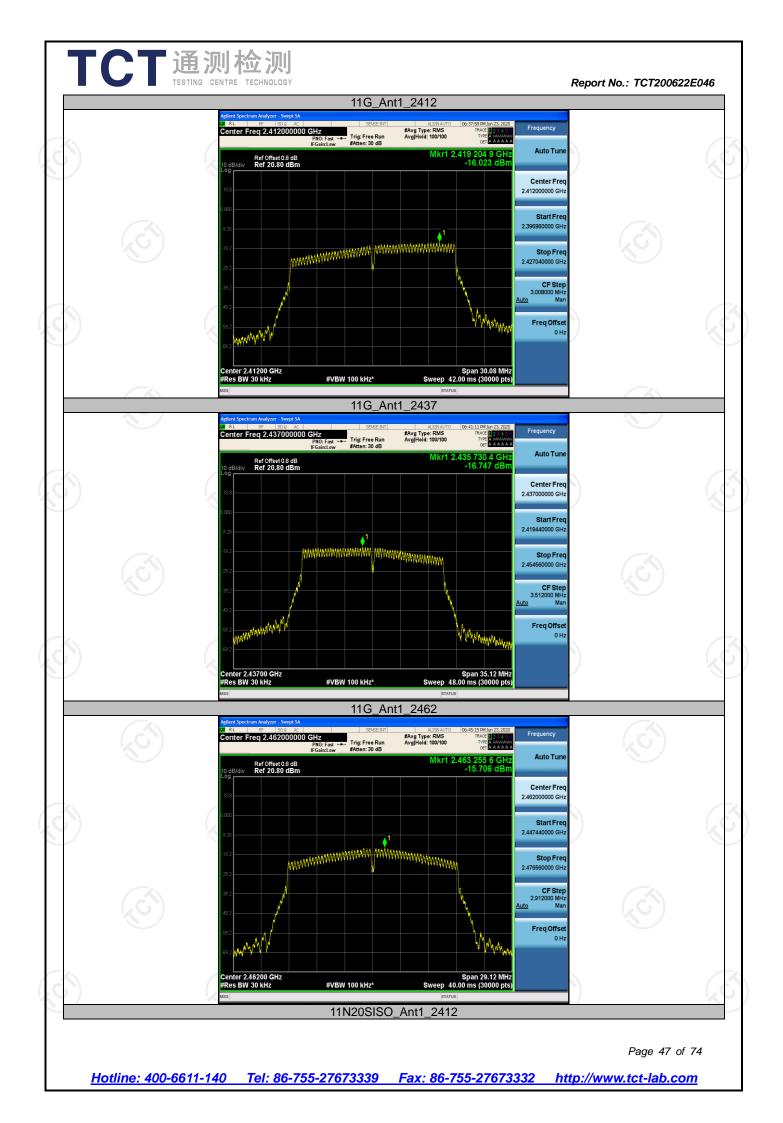


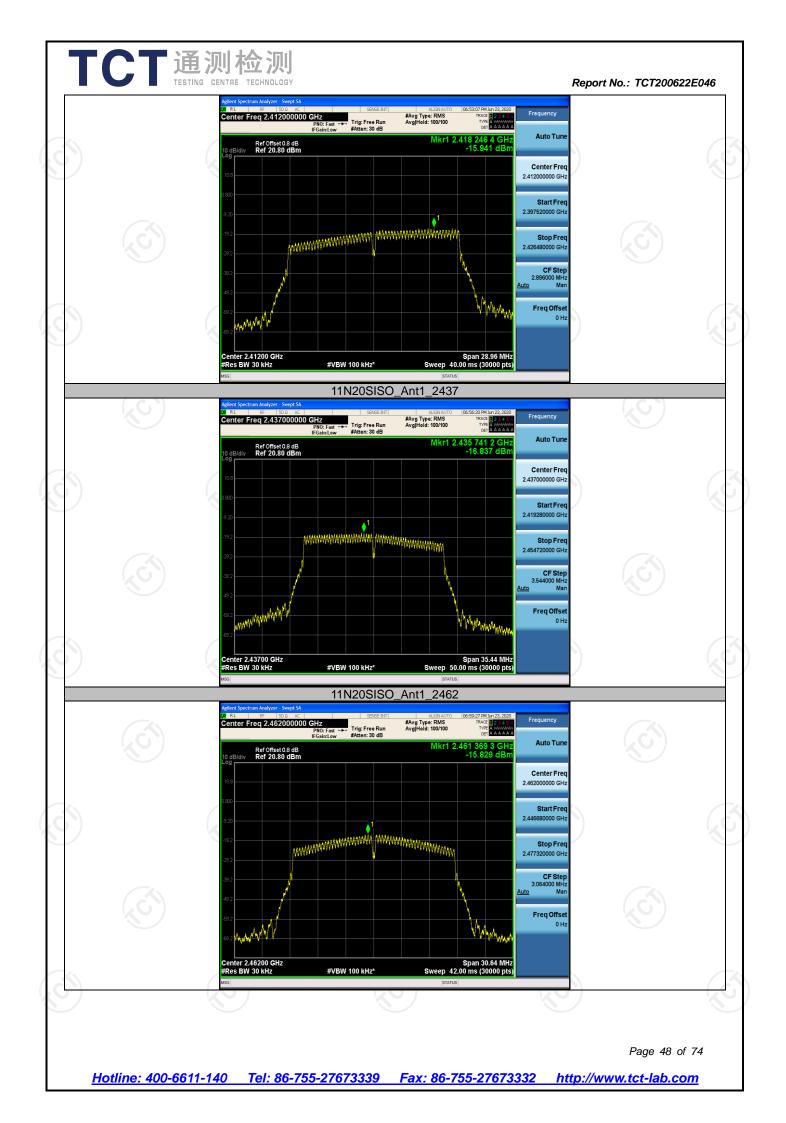


## **Test Result**

TCT 通测检测 TESTING CENTRE TECHNOLOGY


## Maximum power spectral density


| Mode      | Channel | Meas.Level<br>[dBm/30KHz] | Meas.Level<br>[dBm/3KHz] | Verdict |
|-----------|---------|---------------------------|--------------------------|---------|
| 11B       | LCH     | -12.57                    | -22.57                   | PASS    |
| 11B       | MCH     | -12.68                    | -22.68                   | PASS    |
| 11B       | НСН     | -12.22                    | -22.22                   | PASS    |
| 11G       | LCH     | -16.02                    | -26.02                   | PASS    |
| 11G       | MCH     | -16.75                    | -26.75                   | PASS    |
| 11G       | НСН     | -15.71                    | -25.71                   | PASS    |
| 11N20SISO | LCH     | -15.94                    | -25.94                   | PASS    |
| 11N20SISO | MCH     | -16.84                    | -26.84                   | PASS    |
| 11N20SISO | HCH     | -15.83                    | -25.83                   | PASS    |


## Note:

Compensate 10dB is for Exchange rate of RBW

Exchange rate of RBW = 10\*log10(Reference bandwidth/RBW at measurement) = -10[dB] where Reference bandwidth = 3 KHz







| Test Res               | ult                     | $(\mathbf{C})$                       |                                                 |                                                  |                                                      |                                                             |                                        |
|------------------------|-------------------------|--------------------------------------|-------------------------------------------------|--------------------------------------------------|------------------------------------------------------|-------------------------------------------------------------|----------------------------------------|
| TestMode<br>11B<br>11G | Antenna<br>Ant1<br>Ant1 | ChName<br>Low<br>High<br>Low<br>High | Channel<br>2412<br>2462<br>2412<br>2412<br>2462 | RefLevel [dBm]<br>0.44<br>1.09<br>-5.64<br>-5.25 | Result [dBm]<br>-52.65<br>-57.02<br>-45.17<br>-55.85 | Limit [dBm]<br><=-29.56<br><=-28.91<br><=-35.64<br><=-35.25 | Verdic<br>PASS<br>PASS<br>PASS<br>PASS |
| 11N20SISO              | Ant1                    | Low<br>High                          | 2412<br>2462                                    | -5.80<br>-5.59                                   | -46.94<br>-56.25                                     | <=-35.8<br><=-35.59                                         | PASS<br>PASS                           |
|                        |                         |                                      |                                                 |                                                  |                                                      |                                                             |                                        |
|                        |                         |                                      |                                                 |                                                  |                                                      |                                                             |                                        |
|                        |                         |                                      |                                                 |                                                  |                                                      |                                                             |                                        |
|                        |                         |                                      |                                                 |                                                  |                                                      |                                                             |                                        |
|                        |                         |                                      |                                                 |                                                  |                                                      |                                                             |                                        |
|                        |                         |                                      |                                                 |                                                  |                                                      |                                                             |                                        |
|                        |                         |                                      |                                                 |                                                  |                                                      |                                                             |                                        |
|                        |                         |                                      |                                                 |                                                  |                                                      |                                                             |                                        |

