FCC RADIO TEST REPORT FCC 47 CFR PART 15 SUBPART C

Test Standard	FCC : Part 15.247 IC : RSS-247 Issue 1 and RSS-GEN Issue 4
FCC ID	2ACIX-DBD
ISED No.	11946B-DBD
Trade name	Bowers & Wilkins
Product name	Powered subwoofer
Model No.	DB1D,DB2D,DB3D
Test Result	Pass

The test Result was tested by Compliance Certification Services Inc. The test data, data evaluation, test procedures, and equipment configurations shown in this report were given in ANSI C63.10: 2013 and compliance standards.

The test results of this report relate only to the tested sample (EUT) identified in this report.

The test Report of full or partial shall not copy. Without written approval of Compliance Certification Services Inc. (Wugu Laboratory)

The sample selected for test was production product and was provided by manufacturer.

Approved by:

Jam Clearing

Sam Chuang Manager Reviewed by:

our Chen

Zeus Chen Supervisor

Revision History

Rev.	Issue Date	Revisions	Revised By
00	November 24, 2016	Initial Issue	Doris Chu
01	December 27, 2016	1. Modify Test Standard in P.1	Angel Cheng
02	February 14, 2017	1. Added Bandedge Data in P. 34~41	Angel Cheng

Table of contents

1.	GEN	ERAL INFORMATION 4	•
	1.1	EUT INFORMATION 4	•
	1.2	EUT CHANNEL INFORMATION	,
	1.3	ANTENNA INFORMATION 5	,
	1.4	MEASUREMENT UNCERTAINTY6	;
	1.5	FACILITIES AND TEST LOCATION	,
	1.6	INSTRUMENT CALIBRATION	,
	1.7	SUPPORT AND EUT ACCESSORIES EQUIPMENT 8	;
2.	TEST	SUMMERY9)
3.	DESC	CRIPTION OF TEST MODES 10)
	3.1	THE WORST MODE OF OPERATING CONDITION)
	3.2	THE WORST MODE OF MEASUREMENT11	
	3.3	EUT DUTY CYCLE	
4.	TEST	RESULT13	,
	4.1	AC POWER LINE CONDUCTED EMISSION	,
	4.2	6DB BANDWIDTH AND OCCUPIED BANDWIDTH(99%)16	,
	4.3	OUTPUT POWER MEASUREMENT 18	;
	4.4	POWER SPECTRAL DENSITY 20)
	4.5	CONDUCTED BAND EDGE AND SPURIOUS EMISSION	
AI	4.6 PPENI	RADIATION BANDEDGE AND SPURIOUS EMISSION	;

1. GENERAL INFORMATION

EUT INFORMATION 1.1

Applicant	B&W Group Itd Dale Road Worthing, West Sussex BN11 2BH, United Kingdom			
Equipment	Powered subwoofer			
Model Name	DB1D, DB2D	,DB3		
		Model no.: DB1D	Model no.: DB2D	Model no.: DB3D
	Dimension	429 mm x 410 mm x 497 mm (with SPIKE)	377 mm x 360 mm x 447 mm (with SPIKE)	315.4 mm x 300 mm x 387.3 mm (with SPIKE)
	Main board	1 pcs (DB MAIN-P10 PCB)	1 pcs (DB MAIN-P10 PCB)	1 pcs (DB MAIN-P10 PCB)
	Power board	2 pcs	1 pcs	1 pcs
Model Discrepancy	Relay board	1 pcs (DB RELAY-01 PCB)	N/A	N/A
	Filter board	2 pcs	1 pcs	1 pcs
	Switch board	1 pcs	1 pcs	1 pcs
	Input rating	100V-120V~, 200V-240V~, 50/60Hz, 490W	100V-120V~, 200V-240V~, 50/60Hz, 490W	100V-120V~, 200V-240V~, 50/60Hz, 490W
	Speaker specification	Resistance= 8Ω, Power= 1000W	Resistance= 4Ω, Power= 500W	Resistance= 4Ω, Power= 500W
EUT Functions	BT : BLE			
Received Date	Nov. 10, 2016			
Date of Test	Nov. 15, 2016 ~ Nov 22, 2016			
Output Power (W)	BLE : 0.0003			
Power Operation	 AC Power core : 120V/60Hz DC Type : Battery DC Power Supply External DC adapter 			

Remark:

All listed models are using an identical RF module with the only differences on number of key buttons mounted for additional functions.

Due to similarity of RF product constructions of given model series, only dedicated model as described in test report with the most complexity constructions was selected for testing and record

Page 4 / 51

1.2 EUT CHANNEL INFORMATION

Frequency Range	2402MHz-2480MHz	
Modulation Type	GFSK for BLE-1Mbps	
Number of channel	40 Channels	

Remark:

Refer as ANSI 63.10:2013 clause 5.6.1 Table 4 and RSS-GEN Table A1 for test channels

Number of frequencies to be tested				
Frequency range inNumber ofLocation in frequencywhich device operatesfrequenciesrange of operation				
1 MHz or less	1	Middle		
1 MHz to 10 MHz	2	1 near top and 1 near bottom		
More than 10 MHz	3	1 near top, 1 near middle, and 1 near bottom		

1.3 ANTENNA INFORMATION

Antenna Category	 Integral: antenna permanently attache External dedicated antennas External Unique antenna connector 		
Antenna Type	 PIFA PCB Dipole Printed Coils 		
Antenna Gain	For DB1D: 1.99dBi For DB2D: 0.67dBi For DB3D: 0.39dBi		

1.4 MEASUREMENT UNCERTAINTY

UNCERTAINTY
+/- 1.2575
+/- 1.4003
+/- 1.1372
+/- 1.4003
+/- 4.0138
+/- 3.9483
+/- 2.5975
+/- 2.6112
+/- 2.7389
+/- 2.9683
+/- 1.8509
+/- 1.9869
+/- 2.9651
+/- 2.7807
+/- 3.6437
+/- 4.2982

Remark:

1. This uncertainty represents an expanded uncertainty expressed at approximately the 95% confidence level using a coverage factor of *k*=2

2. ISO/IEC 17025 requires that an estimate of the measurement uncertainties associated with the emissions test results be included in the report.

1.5 FACILITIES AND TEST LOCATION

All measurement facilities used to collect the measurement data are located at No.11, Wugong 6th Rd., Wugu Dist., New Taipei City 24891, Taiwan. (R.O.C.)

Test site	Test Engineer	Remark
AC Conduction Room	Anderson Kuo	
Radiation	Ed Chiang	
RF Conducted	lan Tu	

Remark: The sites are constructed in conformance with the requirements of ANSI C63.7, ANSI C63.4 and CISPR Publication 22.

1.6 INSTRUMENT CALIBRATION

RF Conducted Test Site					
Equipment Manufacturer Model S/N Cal Due					
Spectrum Analyzer R&S FSV 40 101073 07/31/2017					

3M 966 Chamber Test Site					
Equipment	Manufacturer	Model	S/N	Cal Due	
Spectrum Analyzer	Agilent	E4446A	US42510252	12/07/2016	
Loop Ant	COM-POWER	AL-130	121051	02/24/2017	
Bilog Antenna	Sunol Sciences	JB3	A030105	07/02/2017	
Pre-Amplifier	EMEC	EM330	60609	06/07/2017	
Horn Antenna	ETC	MCTD 1209	DRH13M02003	09/01/2017	
Pre-Amplifier	MITEQ	AMF-6F-260400-40-8P	985646	01/13/2017	
Horn Antenna	EMCO	3116	26370	01/14/2017	
Antenna Tower	CCS	CC-A-1F	N/A	N.C.R	
Controller	CCS	CC-C-1F	N/A	N.C.R	
Turn Table	CCS	CC-T-1F	N/A	N.C.R	

AC Conducted Emissions Test Site					
Equipment Manufacturer Model S/N Cal Due					
LISN	R&S	ENV216	101054	05/10/2017	
Receiver	R&S	ESCI	101073	08/19/2017	

Remark: Each piece of equipment is scheduled for calibration once a year.

1.7 SUPPORT AND EUT ACCESSORIES EQUIPMENT

EUT Accessories Equipment						
No.	No. Equipment Brand Model Series No. FCC ID					
	N/A					

Support Equipment							
No.	No. Equipment Brand Model Series No. FCC ID						
	N/A						

1.8 Test methodology and applied standards

The test methodology, setups and results comply with all requirements in accordance with ANSI C63.10:2013, FCC Part 2, FCC Part 15.247, KDB 558074 D01 v03r05, RSS-247 Issue 1 and RSS-GEN Issue 4

1.9 Table of accreditations and listings

Country	Agency	Scope of Accreditation	Logo
USA	FCC	3M Semi Anechoic Chamber (FCC MRA: TW1039) to perform FCC Part 15 measurements	FCC MRA: TW1039
Canada	Industry Canada	3M Semi Anechoic Chamber (IC 2324G-1 / IC 2324G-2) to perform	Canadä IC 2324G-1 IC 2324G-2

2. TEST SUMMERY

FCC Standard Section	IC Standard Section	Report Section	Test Item	Result
15.203	-	1.2	Antenna Requirement	Pass
15.207(a)	RSS-GEN 8.8	4.1	AC Conducted Emission	Pass
15.247(a)(2)	RSS-247(5.2)(1)	4.2	6 dB Bandwidth	Pass
-	RSS-GEN 6.6	4.2	Occupied Bandwidth (99%)	Pass
15.247(b)	RSS-247(5.4)(4)	4.3	Output Power Measurement	Pass
15.247(e)	RSS-247(5.2)(2)	4.4	Power Spectral Density	Pass
15.247(d)	RSS-247(5.5)	4.5	Conducted Band Edge	Pass
15.247(d)	RSS-247(5.5)	4.5	Conducted Emission	Pass
15.247(d)	RSS-247(5.5)	4.6	Radiation Band Edge	Pass
15.247(d)	RSS-247(5.5)	4.6	Radiation Spurious Emission	Pass

3. DESCRIPTION OF TEST MODES

3.1 THE WORST MODE OF OPERATING CONDITION

Operation mode	BT4.0 Mode (1Mbps)
Test Channel Frequencies	1.Lowest Channel : 2402MHz 2.Middle Channel : 2440MHz 3.Highest Channel : 2480MHz

Remark:

1. EUT pre-scanned data rate of output power for each mode, the worst data rate were recorded in this report.

2. Baseline testing was performed on the three variants(DB1D; DB2D and DB3) to determine the worst case on all conducted test and radiated test. And Three variants of circuit were the same. Therefore worst case is DB1D.

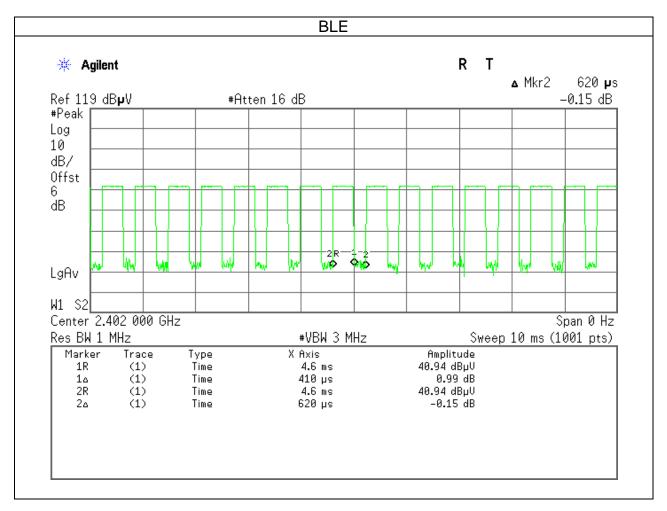
3.2 THE WORST MODE OF MEASUREMENT

AC Power Line Conducted Emission				
Test ConditionAC Power line conducted emission for line and neutral				
Voltage/Hz 120V/60Hz				
Test Mode	Mode 1:EUT power by AC power via Power cable.			
Worst Mode	Worst Mode Mode 1 Mode 2 Mode 3 Mode 4			

Radiated Emission Measurement Above 1G			
Test Condition	Band edge, Emission for Unwanted and Fundamental		
Voltage/Hz	120V/60Hz		
Test Mode	Mode 1:EUT power by AC power via Power cable.		
Worst Mode	🖾 Mode 1 🗌 Mode 2 🗌 Mode 3 🗌 Mode 4		
Worst Position Placed in fixed position. Worst Position Placed in fixed position at X-Plane (E2-Plane) Placed in fixed position at Y-Plane (E1-Plane) Placed in fixed position at Z-Plane (H-Plane)			
Worst Polarity			

Radiated Emission Measurement Below 1G				
Test Condition Radiated Emission Below 1G				
Voltage/Hz	Voltage/Hz 120V/60Hz			
Test Mode	Mode 1:EUT power by AC power via Power cable.			
Worst Mode	Worst Mode Mode 1 Mode 2 Mode 3 Mode 4			

Remark:


1. The worst mode was record in this test report.

2. EUT pre-scanned in three axis ,X,Y, Z and two polarity, Horizontal and Vertical for radiated measurement. The worst case(X-Plane and Horizontal) were recorded in this report

3. For below 1G, AC power line conducted emission and radiation emission were performed the EUT transmit at the highest output power channel as worse case.

3.3 EUT DUTY CYCLE

Duty Cycle						
Configuration	TX ON (ms)	TX ALL (ms)	Duty Cycle (%)	Duty Factor(dB)		
BLE	0.41	0.62	69%	1.80		

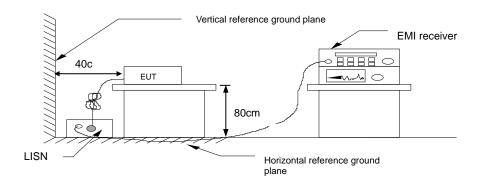
4. TEST RESULT

4.1 AC POWER LINE CONDUCTED EMISSION

4.1.1 Test Limit

According to §15.207(a) and RSS-GEN section 8.8,

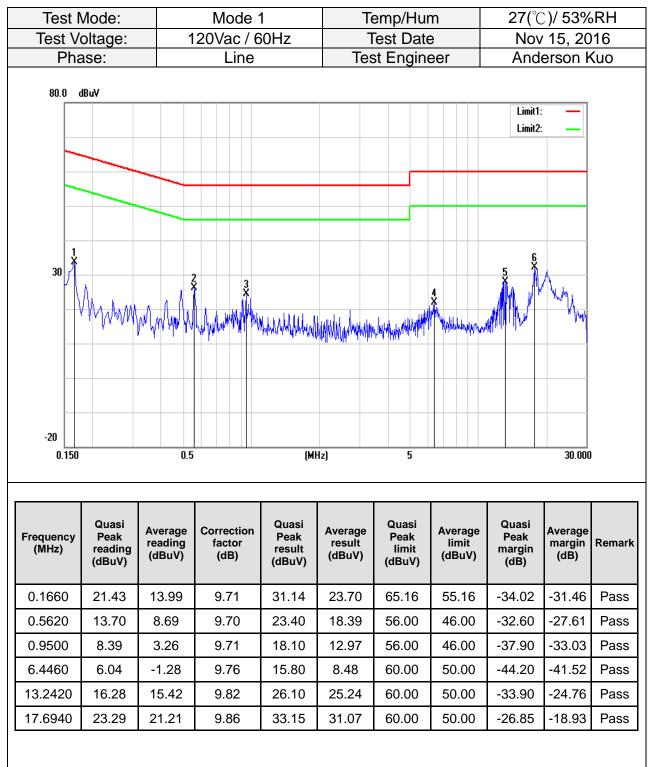
Frequency Range	Limits(dBµV)		
(MHz)	Quasi-peak	Average	
0.15 to 0.50	66 to 56*	56 to 46*	
0.50 to 5	56	46	
5 to 30	60	50	

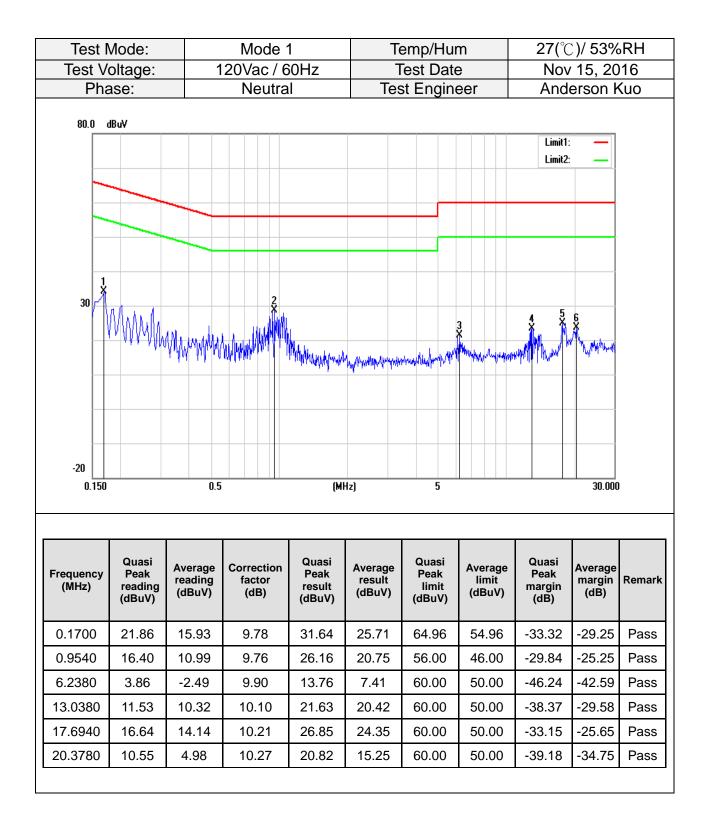

* Decreases with the logarithm of the frequency.

4.1.2 Test Procedure

Test method Refer as ANSI 63.10:2013 clause 6.2,

- 1. The EUT was placed on a non-conducted table, which is 0.8m above horizontal ground plane and 0.4m above vertical ground plane.
- 2. EUT connected to the line impedance stabilization network (LISN)
- 3. Receiver set RBW of 9kHz and Detector Peak, and note as quasi-peak and average.
- 4. Maximum procedure was performed on the six highest emissions to ensure EUT compliance.
- 5. Recorded Line for Neutral and Line.


4.1.3 Test Setup



4.1.4 Test Result

<u>Pass</u>

Test Data

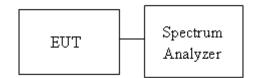
4.2 6DB BANDWIDTH AND OCCUPIED BANDWIDTH(99%)

4.2.1 Test Limit

According to §15.247(a)(2) and RSS-247 section 5.2(1)

6 dB Bandwidth :

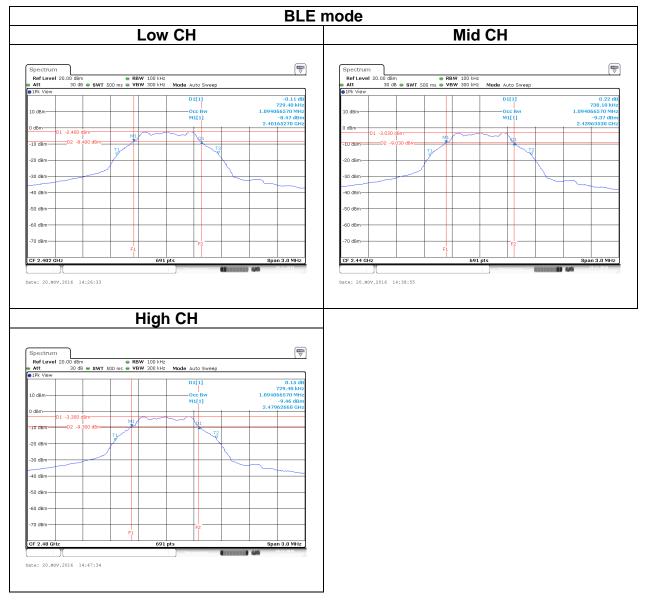
Limit	Shall be at least 500kHz
-------	--------------------------


Occupied Bandwidth(99%) : For reporting purposes only.

4.2.2 Test Procedure

Test method Refer as KDB 558074 D01 v03r05, section 8.1 and ANSI 63.10:2013 clause 6.9.2,

- 1. The EUT RF output connected to the spectrum analyzer by RF cable.
- 2. Setting maximum power transmit of EUT
- 3. SA set RBW = 100kHz, VBW = 300kHz and Detector = Peak, to measurement 6 dB Bandwidth and 99% Bandwidth.
- 4. Measure and record the result of 6 dB Bandwidth and 99% Bandwidth. in the test report.


4.2.3 Test Setup

4.2.4 Test Result

Test mode: BLE mode / 2402-2480 MHz						
Channel	Frequency (MHz)	OBW(99%) (MHz)	6dB BW (MHz)	6dB limit (kHz)		
Low	2402	1.0940	0.7294			
Mid	2440	1.0940	0.7381	>500		
High	2480	1.0940	0.7294			

Test Data

4.3 OUTPUT POWER MEASUREMENT

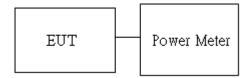
4.3.1 Test Limit

According to §15.247(b) and RSS-247 section 5.4(4)

Peak output power :

For systems using digital modulation in the 2400-2483.5 MHz, and 5725-5850 MHz bands: 1 Watt(30 dBm), base on the use of antennas with directional gain not exceed 6 dBi If transmitting antennas of directional gain greater than 6dBi are used the peak output power the conducted output power from the intentional radiator shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi. In case of point-to-point operation, the limit has to be reduced by 1dB for every 3 dB that the directional gain of the antenna exceeds 6 dBi.

Limit	Antenna not exceed 6 dBi : 30dBm
	$\begin{bmatrix} Limit = 30 - (DG - 6) \end{bmatrix}$ $\begin{bmatrix} O \\ O $


Average output power : For reporting purposes only.

4.3.2 Test Procedure

Test method Refer as KDB 558074 D01 v03r05, section 9.1.2.

- 1. The EUT RF output connected to the power meter by RF cable.
- 2. Setting maximum power transmit of EUT.
- 3. The path loss was compensated to the results for each measurement.
- 4. Measure and record the result of Peak output power and Average output power. in the test report.

4.3.3 Test Setup

4.3.4 Test Result

Peak output power :

			BT_I	LE Mode	e		
Config.	СН	Freq. (MHz)	PK Power (dBm)	EIRP PK Power (dBm)	PK Power (W)	EIRP PK Power (W)	FCC/IC Limit (dBm)
BLE	0	2402	-5.11	-3.11	0.0003	0.0005	
Data rate:	19	2440	-5.76	-3.76	0.0003	0.0004	30
1Mbps	39	2480	-6.10	-4.10	0.0002	0.0004	

Average output power :

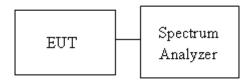
	BT	_LE Mo	de	
Config.	СН	Freq. (MHz)	Duty Factor (dB)	AV Power (dBm)
BLE	0	2402	1.80	-6.00
Data rate:	19	2440	1.59	-6.51
1Mbps	39	2480	1.59	-7.06

4.4 POWER SPECTRAL DENSITY

4.4.1 Test Limit

According to §15.247(e) and RSS-247 section 5.2(2)

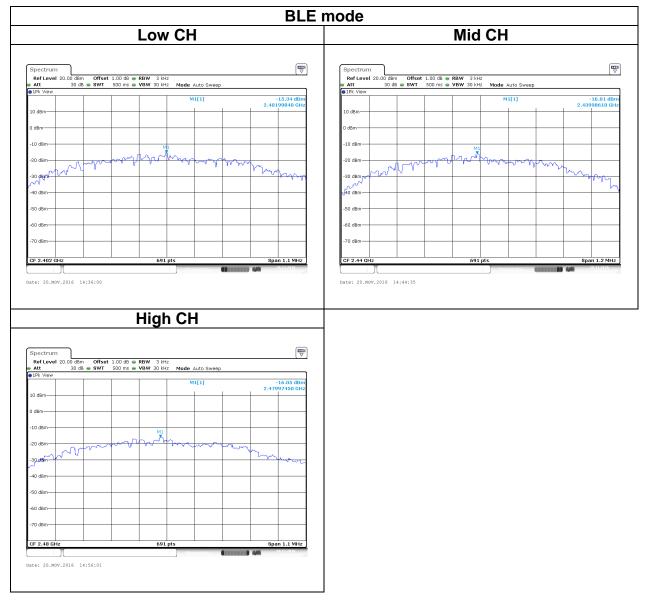
For digitally modulated systems, the power spectral density conducted from the intentional radiator to the antenna shall not be greater than 8 dBm in any 3 kHz band during any time interval of continuous transmission.


Limit	 Antenna not exceed 6 dBi : 8dBm Antenna with DG greater than 6 dBi : 8dBm [Limit = 8 - (DG - 6)] Point-to-point operation :
-------	--

4.4.2 Test Procedure

Test method Refer as KDB 558074 D01 v03r05, Section 10.2

- 1. The EUT RF output connected to the spectrum analyzer by RF cable.
- 2. Setting maximum power transmit of EUT
- 3. SA set RBW = 3kHz, VBW = 30kHz, Span = 1.5 times DTS Bandwidth (6 dB BW), Detector = Peak, Sweep Time = Auto and Trace = Max hold.
- 4. The path loss and Duty Factor were compensated to the results for each measurement by SA.
- 5. Mark the maximum level.
- 6. Measure and record the result of power spectral density in the test report.


4.4.3 Test Setup

4.4.4 Test Result

	Test mode: BL	E mode / 2402-2480 MHz	
Channel	Frequency (MHz)	PSD (dBm)	IC/FCC limit (dBm)
Low	2402	-15.34	
Mid	2440	-16.01	8
High	2480	-16.05	

Test Data

4.5 CONDUCTED BAND EDGE AND SPURIOUS EMISSION

4.5.1 Test Limit

According to §15.247(d) and RSS-247 section 5.5

In any 100 kHz bandwidth outside the authorized frequency band,

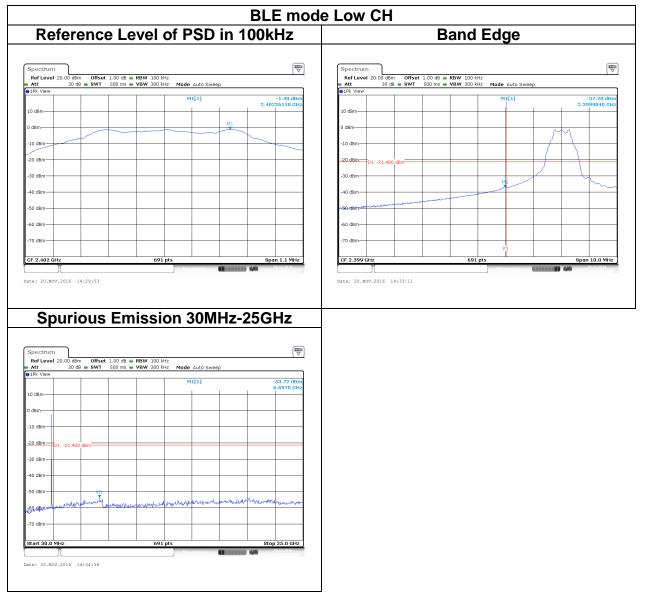
Non-restricted bands shall be attenuated at least 20 dB/30 dB relative to the maximum PSD level in 100 kHz by RF conducted or a radiated measurement which fall in the restricted bands, as defined in §15.205(a), must also comply with the radiated emission limits specified in §15.209(a).

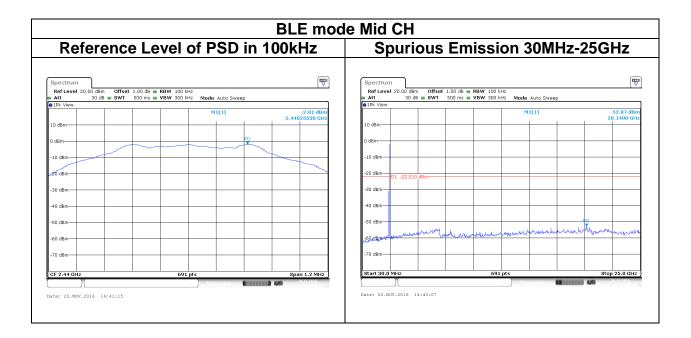
4.5.2 Test Procedure

Test method Refer as KDB 558074 D01 v03r05, Section 11.

1. EUT RF output port connected to the SA by RF cable, and the path loss was compensated to result.

2. SA setting, RBW=100kHz, VBW=300kHz, Detector=Peak, Trace mode = max hold, SWT = Auto.


3. In any 100 kHz bandwidth outside the authorized frequency band, shall be attenuated at least 20 dB relative to the maximum in-band peak PSD level in 100 kHz when conducted power procedure is used. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, the attenuation required under this paragraph shall be 30 dB instead of 20 dB.


4.5.3 Test Setup



4.5.4 Test Result

<u>Test Data</u>

4.6 RADIATION BANDEDGE AND SPURIOUS EMISSION

4.6.1 Test Limit

FCC according to §15.247(d), §15.209 and §15.205,

IC according to RSS-247 section 5.5, RSS-Gen, Section 8.9 and 8.10

In any 100 kHz bandwidth outside the authorized frequency band, all harmonic and spurious must be least 20 dB below the highest emission level with the authorized frequency band. Radiation emission which fall in the restricted bands must also follow the FCC section 15.209 as below limit in table.

Below 30 MHz

Frequency	Field Strength (microvolts/m)	Magnetic H-Field (microamperes/m)	Measurement Distance (metres)
9-490 kHz	2,400/F (F in kHz)	2,400/F (F in kHz)	300
490-1,705 kHz	24,000/F (F in kHz)	24,000/F (F in kHz)	30
1.705-30 MHz	30	N/A	30

Above 30 MHz

Frequency	Field Strength microvolts/m at 3 metres (watts, e.i.r.p.)					
(MHz)	Transmitters	Receivers				
30-88	100 (3 nW)	100 (3 nW)				
88-216	150 (6.8 nW)	150 (6.8 nW)				
216-960	200 (12 nW)	200 (12 nW)				
Above 960	500 (75 nW)	500 (75 nW)				

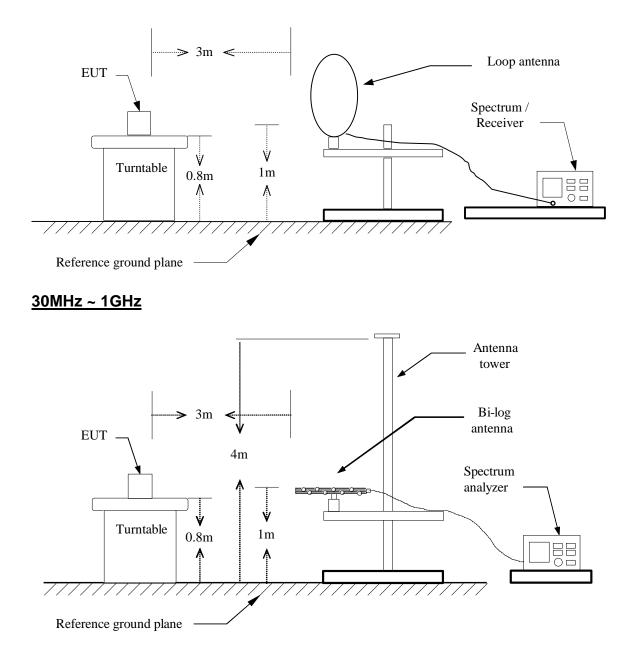
4.6.2 Test Procedure

Test method Refer as KDB 558074 D01 v03r05, Section 12.1.

1. The EUT is placed on a turntable, Above 1 GHz is 1.5m and below 1 GHz is 0.8m above ground plane. The EUT Configured un accordance with ANSI C63.10, and the EUT set in a continuous mode.

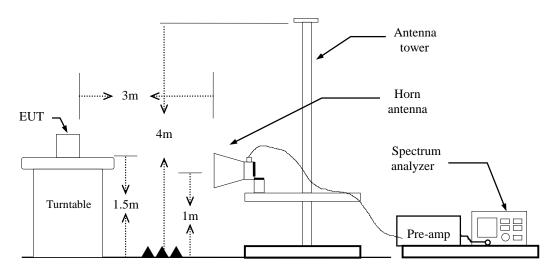
2. The turntable shall be rotated for 360 degrees to determine the position of maximum emission level. And EUT is set 3m away from the receiving antenna, which is scanned from 1m to 4m above the ground plane to find out the highest emissions. Measurement are made polarized in both the vertical and the horizontal positions with antenna.

3. Span shall wide enough to full capture the emission measured. The SA from 30MHz to 26.5GHz set to the low, Mid and High channels with the EUT transmit.


- 4. The SA setting following :
 - (1) Below 1G : RBW = 100kHz, VBW ≥ 3 RBW, Sweep = Auto, Detector = Peak, Trace = Max hold.
 - (2) Above 1G:
 - (2.1) For Peak measurement : RBW = 1MHz, VBW ≥ 3 RBW, Sweep = Auto, Detector = Peak, Trace = Max hold.
 - (2.2) For Average measurement : RBW = 1MHz, VBW

[·]If Duty Cycle ≥ 98%, VBW=10Hz.

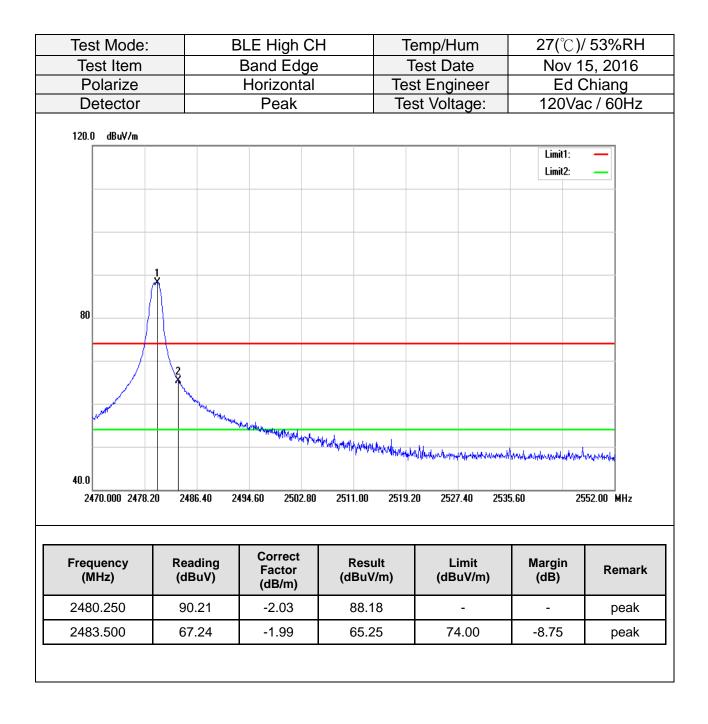
'If Duty Cycle < 98%, VBW=1/T.

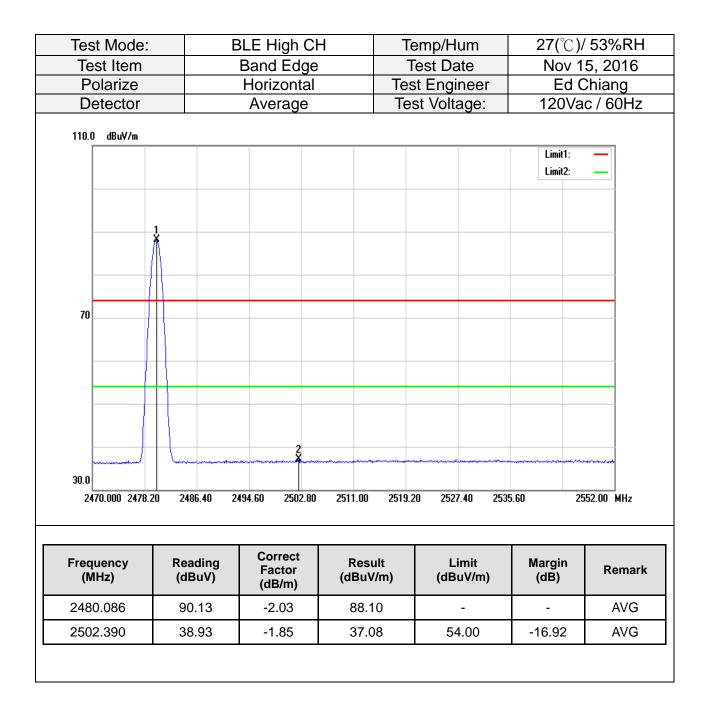

Configuration	Duty Cycle (%)	VBW
BLE	69%	2.4kHz

4.6.3 Test Setup <u>9kHz ~ 30MHz</u>

CELERF Compliance Certification Services Inc.

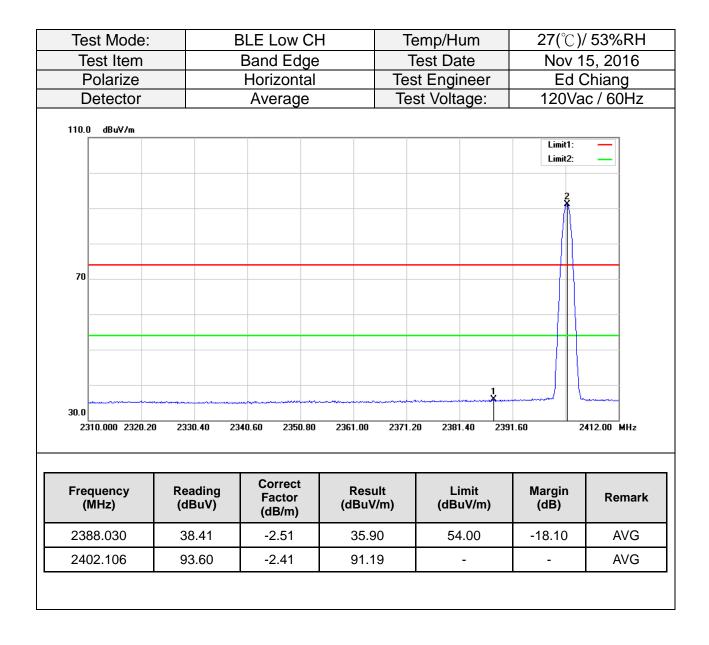
Above 1 GHz

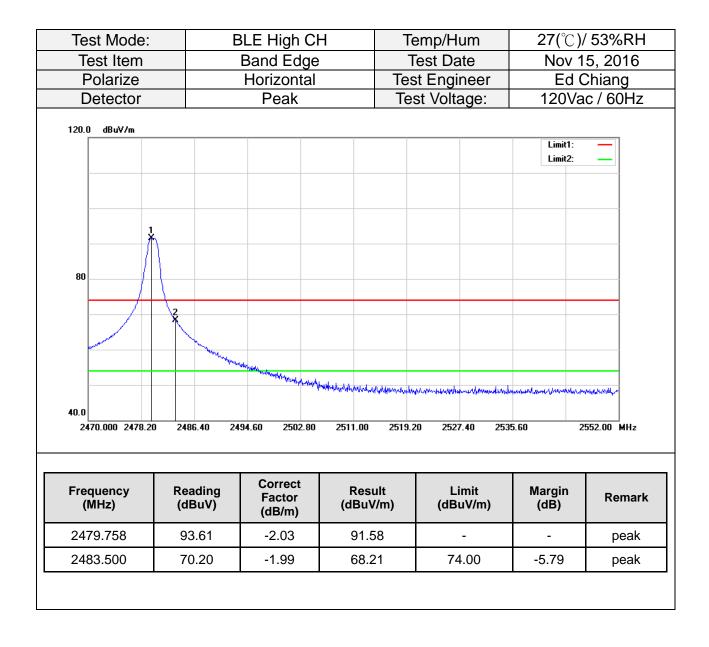

4.6.4 Test Result

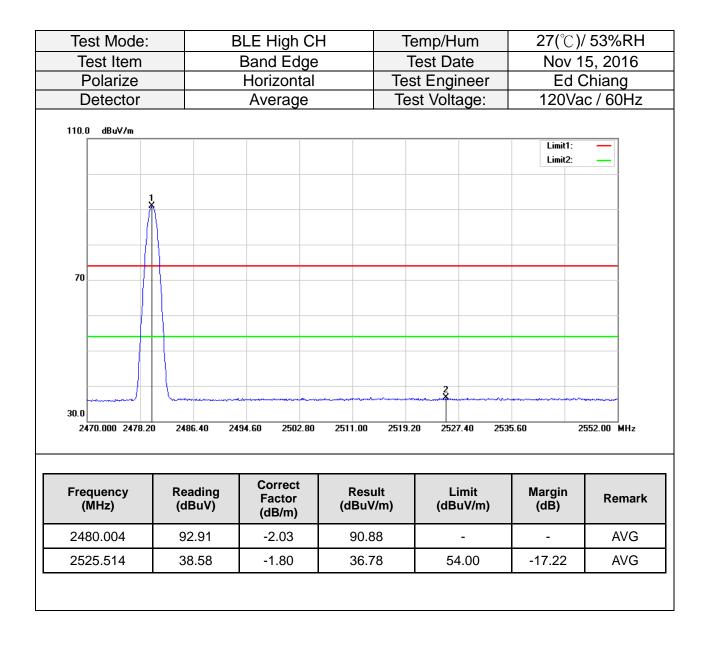

Band Edge Test Data

For DB1D

Test Mode:		BLE Low CH	-	Temp/	Hum	27(°C).	/ 53%RH
Test Item		Band Edge	•	Test I	Date	Nov 1	5, 2016
Polarize		Horizontal		Test En	gineer	Ed (Chiang
Detector		Peak		Test Vo			nc / 60Hz
120.0 dBuV/m		1	, i	1			
						Limit1: Limit2:	_
						2	
80							
					1		
	- 11 1 4 4 1 1 - 1 - 1 - 1 - 4 h	waylasseymaticka	hiperphysologicality	y and you go have a start of the second	and a start and a start and a start a st		
10 0	aller and a state of the state	Presenting and a second of a second					
40.0 2310.000 2320.2	20 2330.40	2340.60 2350.80	2361.00	2371.20 2	381.40 239	1.60 24	412.00 MHz
Frequency (MHz)	Reading (dBuV)	Correct Factor (dB/m)	Resul (dBuV/		Limit IBuV/m)	Margin (dB)	Remark
2389.866	61.58	-2.49	59.09)	74.00	-14.91	peak
2401.800	94.76	-2.41	92.35	5	-	-	peak

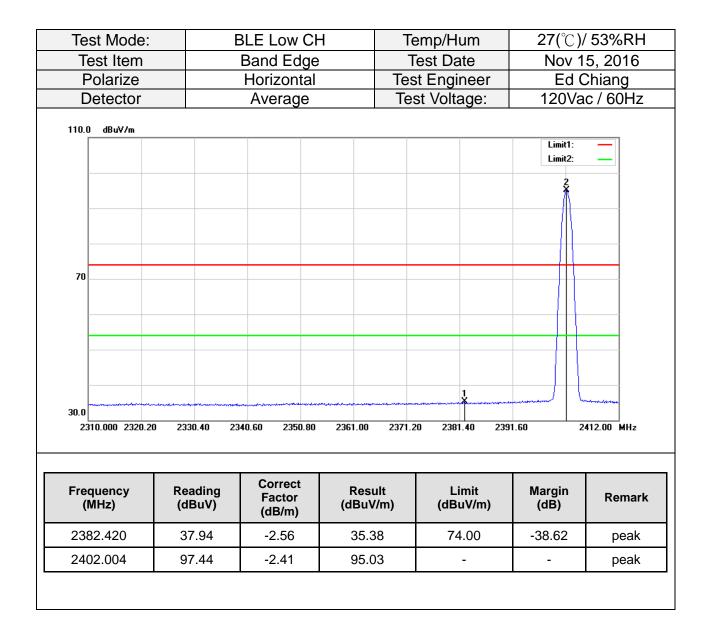

Test Mode:		E	BLE Low (СН	Temp/Hum		27	27(°∁)/ 53%RH	
Test Item			Band Edg	je	Т	est Date	Ν	Nov 15, 2016	
Polarize		Horizontal			st Enginee		Ed Cl		
Detector			Average)	Tes	st Voltage:	: 1	20Vac	/ 60Hz
110.0 dBuV/m									
								imit1: imit2:	-
								2	
70									
				·····	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~		4	/ \	
30.0 2310.000 2320.2	0 222	0.40 23	40.60 2350.	80 2361.00	2371.2	0 2381.40	2391.60	2417	2.00 MHz
2310.000 2320.2	.0 233	0.40 23	HU.UU 2000.	2301.00	2371.2	.0 2301.40	2331.00	2412	
Frequency (MHz)		iding BuV)	Correct Factor (dB/m)	Res (dBu)		Limit (dBuV/m) Mar (dl		Remark
2388.030	38	5.41	-2.51	35.	90	54.00	-18	.10	AVG
2402.106	93	.60	-2.41	91.	19	-	-		AVG

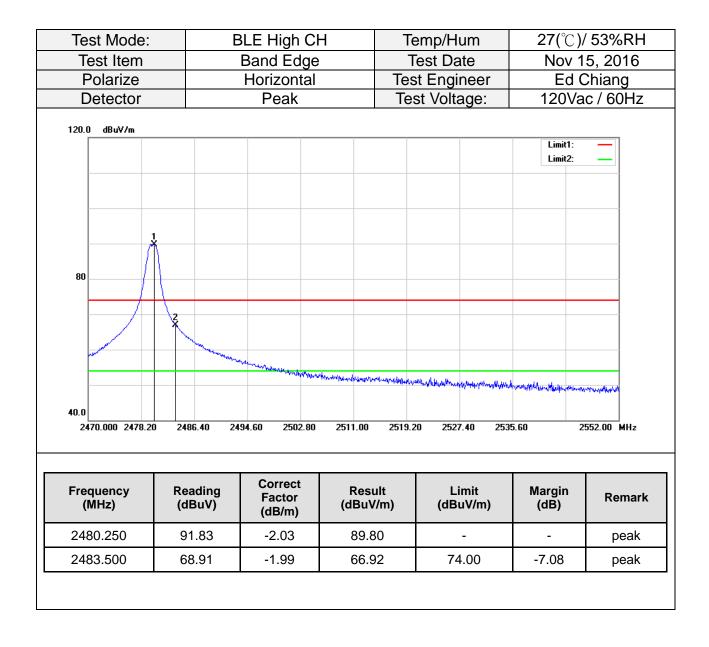


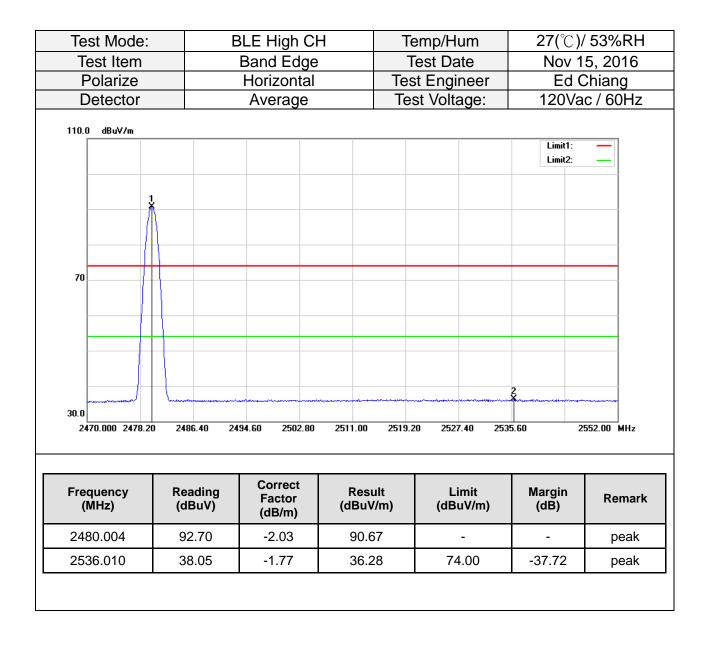


For DB2D

	Mode:			LE Low Cl			emp/Hur			C) / 53%	
	st Item			Band Edge			est Date			/ 15, 20	
	larize		Horizontal Test Engineer				d Chian				
De	tector			Peak		Tes	st Voltag	je:	120	Vac / 60	Hz
120.0	dBuV/m										
									Limit Limit		
									2 X		
80											
								1			
					المراجع والمراجع	handharden	Ally and a many life all and	(n) ^{en}			
40.0	upuintpopuntumpinenensi	uhminitation	newshinewalkedher	the work of the second	Arred Marian Constant Constant						
	.000 2320.20) 2330.4	10 2340	0.60 2350.80	2361.00	2371.20	0 2381.4	D 2391	1.60	2412.00 N	Hz
Frequ (MF		Read (dBu		Correct Factor (dB/m)	Res (dBu)		Lim (dBuV		Margin (dB)	Rei	nark
		61.8	31	-2.49	59.	32	74.0	00	-14.68	ре	eak
2389	.968										







For DB3D

Test Mode:		BLE Low CH		emp/Hum	()	′ 53%RH
Test Item		Band Edge		Test Date		5, 2016
Polarize		Horizontal		st Engineer		Chiang
Detector		Peak	Te	est Voltage:	120Va	c / 60Hz
120.0 dBu∀/m						
					Limit1: Limit2:	_
					2	
80						
				and the second sec		
	metralizzantiantikantikantikantikantikantikantika	encedanted by the Andrewsky of the	driven and the second second second second			
2310.000 2320.2	0 2330.40 2	340.60 2350.80	2361.00 2371	.20 2381.40 239	1.60 24	412.00 MHz
Frequency (MHz)	Reading (dBuV)	Correct Factor (dB/m)	Result (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Remark
	64.77	-2.49	62.28	74.00	-11.72	peak
2389.458						

Below 1G Test Data

Test Mode:		BT Mode		Temp/ł	Hum	27(°∁)/ 53%RH		
Test Item	3	80MHz-1GH	Z	Test D		Nov 15, 2016		
Polarize		Vertical		Test Eng		Ed Chiang		
Detector	Pea	k and Qusi-j	beak	Test Vol	tage:	120Va	c / 60Hz	
80.0 dBuV/m						Limit1: Margin:	-	
40		3X				5x	6X	
0.0 30.000 127.00	224.00 3	21.00 418.00	515.00	612.00 70	9.00 806.	.00 10	000.00 MHz	
Frequency (MHz)	Reading (dBuV)	Correct Factor (dB/m)	Result (dBuV/m		Limit BuV/m)	Margin (dB)	Remark	
37.7600	43.62	-13.68	29.94	2	40.00	-10.06	peak	
37.7600 148.3400	43.62 38.86	-13.68 -16.02	29.94 22.84		40.00 43.50	-10.06 -20.66	peak peak	
148.3400	38.86	-16.02	22.84	2	13.50	-20.66	peak	
148.3400 333.6100	38.86 30.20	-16.02 -13.33	22.84 16.87		13.50 16.00	-20.66 -29.13	peak peak	

Test Mode:		BT Mode			emp/H		27(℃)		
Test Item		30MHz-1GH		Test Date			Nov 15, 2016		
Polarize		Horizonta		Test Engineer Test Voltage:			Ed Chiang		
Detector	Pea	ak and Qusi	-peak	les	st Volt	age:	120Va	ac / 60Hz	
80.0 dBuV/m							Limit1: Margin:		
40 					4 X	5%		6x	
0.0 30.000 127.00	224.00 3	321.00 418.00	515.00	612.00	709.	00 806.0	00 1	1000.00 MHz	
	224.00 3 Reading (dBuV)	321.00 418.00 Correct Factor (dB/m)	515.00 Resu (dBuV/	lt	Li	00 806.1 mit JV/m)	Margin (dB)		
30.000 127.00	Reading	Correct Factor	Resu	lt /m)	Li (dBu	mit	Margin	Remark	
30.000 127.00 Frequency (MHz)	Reading (dBuV)	Correct Factor (dB/m)	Resu (dBuV/	lt /m) 4	Li (dBu 40	mit ıV/m)	Margin (dB)	Remark	
30.000 127.00 Frequency (MHz) 30.9700	Reading (dBuV) 27.37	Correct Factor (dB/m) -8.63	Resu (dBuV/ 18.7	lt /m) 4 2	Li (dBu 40 43	mit JV/m)	Margin (dB) -21.26	Remark	
30.000 127.00 Frequency (MHz) 30.9700 122.1500	Reading (dBuV) 27.37 30.35	Correct Factor (dB/m) -8.63 -15.53	Resu (dBuV/ 18.7 14.8	lt /m) 4 2 5	Li (dBu 40 43 46	mit JV/m) 0.00 0.50	Margin (dB) -21.26 -28.68	Remark peak peak	
30.000 127.00 Frequency (MHz) 30.9700 122.1500 487.8400	Reading (dBuV) 27.37 30.35 27.02	Correct Factor (dB/m) -8.63 -15.53 -9.47	Resu (dBuV/ 18.7 14.8 17.5	lt /m) 4 2 5 8	Li (dBu 40 43 46 46	mit JV/m) 0.00 0.50 0.00	Margin (dB) -21.26 -28.68 -28.45	Remark peak peak peak	

Above 1G Test Data

Test Mode	:	E	BLE Low C			emp/Hu		27(°C)/ 53%R⊦		
Test Item			Harmonic			est Dat		Nov 15, 2016		
Polarize			Vertical		Test Engineer			Ed Chiang		
Detector		Pea	ak and Ave	rage	Tes	st Volta	ge:	120Va	ac / 60Hz	
110.0 dBuV/m										
								Limit1: Limit2:	_	
70										
	1 X	3 X	4							
30.0	2 X).00 610	00.00 81	650.00 11200.0	00 13750.00	16300.	00 18850	1.00 2140	00.00 2	6500.00 MHz	
			Correct							
Frequency (MHz)		ading BuV)	Factor (dB/m)	Resu (dBuV		Lir (dBu		Margin (dB)	Remark	
	1).57	5.04	45.6	61	74.	00	-28.39	peak	
4804.000	40	1.57								
4804.000 4804.000).19	5.04	35.2	23	54.	00	-18.77	AVG	
	30			35.2 47.1		54. 74.		-18.77 -26.88	AVG peak	

- 1. Measuring frequencies from 1 GHz to the 10th harmonic of highest fundamental frequency.
- 2. For above 1GHz, the EUT peak value was under average limit, therefore the Average value compliance with the average limit

Test Mod			BLE Low CH					Temp/Hum			27(°C)/ 53%R⊦		
Test Iter				armon				Test Da	1				
Polarize				rizon				st Engi		Ed Chiang			
Detecto	r	Pe	eak a	nd Av	/erage		Te	st Volt	age:	120)Vac/6	50Hz	
110.0 dBuV/i	n												
	-									Limi	it1: —	1	
										Limi	it2: —		
												1	
												-	
												-	
70												-	
		3		4 X									
	1	Ň		T									
30.0	*												
1000.000 3	550.00 6	100.00	8650.00	112	00.00 13	750.00	1630	D.00 188	50.00 214	00.00	26500.0	MHz	
				Correct									
Frequency		ading		Factor		Resu			imit	Margi		emark	
(MHz)	(0	BuV)	((dB/m)		dBuV	m)	(GP	uV/m)	(dB)			
4804.000	3	7.72		5.04		42.7	6	74	4.00	-31.2	4	peak	
4804.000	2	7.41		5.04		32.4	5	54	4.00	-21.5	5	AVG	
7206.000	3	4.97		12.62		47.5	9	74	4.00	-26.4	1	peak	
9608.000	3	2.05		17.60		49.6	5	74	4.00	-24.3	5	peak	
								1		1	1		

Remark:

- 1. Measuring frequencies from 1 GHz to the 10th harmonic of highest fundamental frequency.
- 2. For above 1GHz, the EUT peak value was under average limit, therefore the Average value compliance with the average limit

	t Mode:			LE Mid (Temp/Hum			27(°C)/ 53%RH		
	st Item			Harmoni			est Da		Nov 15, 2016		
	olarize etector		Doo	Vertical k and Av		Test Engineer Test Voltage:			Ed Chiang 120Vac / 60Hz		
110.0) dBu∀/m								Limit1: Limit2:		
30.0 10	00.000 3550.	1 2 2 2 2 2 2 2 2 1 00 6100	3 X X X 0.00 86!	5.00 1120	0.00 13750.00	16300.	00 188	50.00 214	00.00	26500.00 MHz	
	uency IHz)	Read (dB		Correct Factor (dB/m)	Resu (dBuV			imit uV/m)	Margin (dB)	Remar	
(M			uV)	Factor		//m)	(dB			Remar	
(M 4880	IHz)	(dB	u V) 87	Factor (dB/m)	(dBuV	//m) 2	(dB 74	uV/m)	(dB)		
(M 4880 4880	IHz)	(dB) 38.	u V) 87 89	Factor (dB/m) 5.25	(dBuV 44.1	//m) 2 4	(dB 74 54	u V/m) 1.00	(dB) -29.88	peak AVG	
(M 4880 4880 7320	IHz) 0.000 0.000	(dB) 38. 30.	u V) 87 89 26	Factor (dB/m) 5.25 5.25	(dBuV 44.1 36.1	//m) 2 4 23	(dB 74 54 74	uV/m) 4.00 4.00	(dB) -29.88 -17.86	peak	

- 1. Measuring frequencies from 1 GHz to the 10th harmonic of highest fundamental frequency.
- 2. For above 1GHz, the EUT peak value was under average limit, therefore the Average value compliance with the average limit

Test Mode:		BLE Mid C			np/Hum	27(°C)/ 53%RH		
Test Item		Harmonic			st Date	Nov 15, 2016		
Polarize	П	Horizontal				Ed Chiang 120Vac / 60Hz		
Detector	P	eak and Ave	age	Test	Voltage:	120va	C / 60HZ	
110.0 dBuV/m								
						Limit1: Limit2:	-	
						Limitz.		
70								
		5						
	3 X	Ň						
	1 X							
30.0	¥							
1000.000 3550.0	00 6100.00	8650.00 11200.0	00 13750.00	16300.00	18850.00 214	00.00 26	500.00 MHz	
-		Correct			11.1			
Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Result (dBuV/r		Limit (dBuV/m)	Margin (dB)	Remarl	
4880.000	36.53	5.25	41.78		74.00	-32.22	peak	
4880.000	27.93	5.25	33.18		54.00	-20.82	AVG	
7320.000	34.13	12.97	47.10		74.00	-26.90	peak	
	24.19	12.97	37.16	i	54.00	-16.84	AVG	
7320.000			40.00		74.00	-24.17	peak	
7320.000 9760.000	32.23	17.60	49.83		74.00	-24.17	реак	

- 1. Measuring frequencies from 1 GHz to the 10th harmonic of highest fundamental frequency.
- 2. For above 1GHz, the EUT peak value was under average limit, therefore the Average value compliance with the average limit

Test Mode:		BLE High CH	1	Temp/Hum	27(℃)/ 53%RH		
Test Item		Harmonic	,	Test Date		5, 2016	
Polarize	D	Vertical		Test Engineer	Ed Chiang 120Vac / 60Hz		
Detector		eak and Avera	age	Test Voltage:	120va	C / 60HZ	
100.0 dBu¥/m							
					Limit1: Limit2:		
60							
	3 X	5 X					
	1 X						
	4						
	2						
	×						
20.0							
1000.000 3550.00) 6100.00	8650.00 11200.00	13750.00 1	6300.00 18850.00 21	400.00 26	500.00 MHz	
		Correct					
Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Result (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Remarl	
4960.000	37.29	5.46	42.75	74.00	-31.25	peak	
4960.000	24.84	5.46	30.30	54.00	-23.70	AVG	
7440.000	35.05	13.33	48.38	74.00	-25.62	peak	
7440.000	23.74	13.33	37.07	54.00	-16.93	AVG	
	31.99	17.60	49.59	74.00	-24.41	peak	
9920.000							
9920.000					•		

- 1. Measuring frequencies from 1 GHz to the 10th harmonic of highest fundamental frequency.
- 2. For above 1GHz,the EUT peak value was under average limit, therefore the Average value compliance with the average limit

Test Mode: Test Item		BLE High CH Harmonic					emp/⊢ Test Da		27(℃)/ 53%RH Nov 15, 2016		
Polarize			Horizo				st Eng		Ed Chiang		
Detector		Pea	k and		age		st Volt			ac / 60Hz	
100.0 dBuV/m									17-24		
									Limit1: Limit2:	_	
60											
		3 X	5 X								
	1 X	4									
	ž										
20.0											
1000.000 3550.0	00 6100	0.00 86	50.00	11200.00	13750.0	0 16300).00 188	50.00 2140	00.00	26500.00 MHz	
Frequency (MHz)	Read (dB		Corre Fact (dB/I	or	Res (dBu)			imit suV/m)	Margin (dB)	Remar	
4960.000	37.	82	5.4	6	43.	28	7	4.00	-30.72	peak	
4960.000	25.	07	5.4	6	30.	53	5	4.00	-23.47	AVG	
7440.000	34.	88	13.3	3	48.	21	7	4.00	-25.79	peak	
7440.000	23.	34	13.3	33	36.	67	5	4.00	-17.33	AVG	
9920.000	32.	17	17.6	50	49.	77	7	4.00	-24.23	peak	

- fundamental frequency.2. For above 1GHz, the EUT peak value was under average limit, therefore the
 - Average value compliance with the average limit