RF TEST REPORT For Waysion Technology (Xiamen) Co., Ltd Product Name: Rugged In-vehicle tablet Test Model(s).: V7S Report Reference No. : DACE240920014RL004 FCC ID : 2ACHT-V7S Applicant's Name : Waysion Technology (Xiamen) Co., Ltd Address Room 702, No.33, Xixishanwei Road, Jimei Dist., Xiamen Software Park III, Xiamen, China **Testing Laboratory** : Shenzhen DACE Testing Technology Co., Ltd. 102, Building H1, & 1/F., Building H, Hongfa Science & Technology Park, Address : Tangtou Connunity, Shiyan Subdistrict, Bao'an District, Shenzhen, Guangdong, China Test Specification Standard : 47 CFR Part 15E Date of Receipt : September 20, 2024 Date of Test : September 20, 2024 to September 29, 2024 Data of Issue : September 29, 2024 Result : Pass Note: This report shall not be reproduced except in full, without the written approval of Shenzhen DACE Testing Technology Co., Ltd. This document may be altered or revised by Shenzhen DACE Testing Technology Co., Ltd. personnel only, and shall be noted in the revision section of the document. The test results in the report only apply to the tested sample Web: http://www.dace-lab.com Tel: +86-755-23010613 E-mail: service@dace-lab.com Page 1 of 126 ### **Revision History Of Report** | Version | Description | REPORT No. | Issue Date | |---------|-------------|--------------------|--------------------| | V1.0 | Original | DACE240920014RL004 | September 29, 2024 | | | | | | | | - XC | 6 | | | 9 | OP | | 4 | | | | J. | | ### NOTE1: The manufacturer should ensure that all products in series production are in conformity with the product sample detailed in this report. If the product in this report is used in any configuration other than that detailed in the report, the manufacturer must ensure the new system complies with all relevant standards. Compiled by: Keren Huang Keren Huang / Test Engineer September 29, 2024 September 29, 2024 Supervised by: Machael Mo / Manager September 29, 2024 September 29, 2024 September 29, 2024 102, Building H1, & 1/F., Building H, Hongfa Science & Technology Park, Tangtou Connunity, Shiyan Subdistrict, Bao'an District, Shenzhen, Guangdong, China Web: http://www.dace-lab.com Tel: +86-755-23010613 E-mail: service@dace-lab.com Page 2 of 126 V1.0 ### **CONTENTS** | 1 TEST SUMMARY | 5 | |---|------------| | 1.1 Test Standards | | | 2 GENERAL INFORMATION | 6 | | 2.1 CLIENT INFORMATION | | | 2.2 DESCRIPTION OF DEVICE (EUT) | | | 2.3 DESCRIPTION OF TEST MODES | 8 | | 2.4 DESCRIPTION OF SUPPORT UNITS | | | 2.5 EQUIPMENTS USED DURING THE TEST | | | 2.7 IDENTIFICATION OF TESTING LABORATORY | | | 2.8 Announcement | 10 | | 3 EVALUATION RESULTS (EVALUATION) | . 11 | | 3.1 Antenna requirement | . 11 | | 3.1.1 Conclusion: | | | 4 RADIO SPECTRUM MATTER TEST RESULTS (RF) | | | 4.1 CONDUCTED EMISSION AT AC POWER LINE | | | 4.1.1 E.U.T. Operation: | | | 4.1.1 E.U.1. Operation | . IZ
12 | | 4.1.3 Test Data: | . IZ
13 | | 4.1 Duty Cycle | | | 4.2.1 E.U.T. Operation: | | | 4.2.1 E.U.1. Operation | . 15 | | 4.2.3 Test Data: | 15 | | 4.3 EMISSION BANDWIDTH AND OCCUPIED BANDWIDTH | | | 4.3.1 E.U.T. Operation: | | | 4.3.2 Test Setup Diagram: | .17 | | 4.3.3 Test Data: | | | 4.4 MAXIMUM CONDUCTED OUTPUT POWER | | | 4.4.1 E.U.T. Operation: | | | 4.4.2 Test Setup Diagram: | | | 4.4.3 Test Data: | | | 4.5 POWER SPECTRAL DENSITY | 19 | | 4.5.1 E.U.T. Operation: | .19 | | 4.5.2 Test Setup Diagram: | | | 4.5.3 Test Data: | | | 4.6 BAND EDGE EMISSIONS (RADIATED) | .20 | | 4.6.1 E.U.T. Operation: | .22 | | 4.6.2 Test Data: | | | 4.7 UNDESIRABLE EMISSION LIMITS (BELOW 1GHz) | 30 | | 4.7.1 E.U.T. Operation: | .31 | | 4.7.2 Test Data: | | | 4.8 Undesirable emission limits (above 1GHz) | .34 | | 4.8.1 E.U.T. Operation: | .36 | | 4.8.2 Test Data: | 36 | | | | DAG | 48 | |-----| | 48 | | 49 | | | | 50 | | 60 | | 65 | | 70 | | 75 | | 79 | | 84 | | 85 | | 86 | | 91 | | 101 | | 106 | | | | 116 | | 121 | | 126 | | | ME Web: http://www.dace-lab.com Tel: +86-755-23010613 E-mail: service@dace-lab.com Page 4 of 126 ### 1 TEST SUMMARY ### 1.1 Test Standards The tests were performed according to following standards: 47 CFR Part 15E: Unlicensed National Information Infrastructure Devices ### 1.2 Summary of Test Result | Item | Standard | Method | Requirement | Result | |---|-----------------|--|--|--------| | Conducted Emission at AC power line | 47 CFR Part 15E | ANSI C63.10-2020 section 6.2 | 47 CFR Part
15.207(a) | Pass | | Duty Cycle | 47 CFR Part 15E | ANSI C63.10-2020 section 12.2 (b) | 6 | Pass | | Emission bandwidth and occupied bandwidth | 47 CFR Part 15E | ANSI C63.10-2020,
section 6.9 & 12.5
KDB 789033 D02,
Clause C.2 | U-NII 1, U-NII 2A, U-NII 2C: No limits, only for report use. 47 CFR Part 15.407(e) | Pass | | Maximum conducted output power | 47 CFR Part 15E | ANSI C63.10-2020, section 12.4 | 47 CFR Part
15.407(a)(1)(iv)
47 CFR Part
15.407(a)(3)(i) | Pass | | Power spectral density | 47 CFR Part 15E | ANSI C63.10-2020, section 12.6 | 47 CFR Part
15.407(a)(1)(iv)
47 CFR Part
15.407(a)(3)(i) | Pass | | Band edge emissions
(Radiated) | 47 CFR Part 15E | ANSI C63.10-2020,
section 12.7.4, 12.7.6,
12.7.7 | 47 CFR Part
15.407(b)(1)
47 CFR Part
15.407(b)(4)
47 CFR Part
15.407(b)(10) | Pass | | Undesirable emission limits (below 1GHz) | 47 CFR Part 15E | ANSI C63.10-2020, section 12.7.4, 12.7.5 | 47 CFR Part
15.407(b)(9) | Pass | | Undesirable emission limits (above 1GHz) | 47 CFR Part 15E | ANSI C63.10-2020,
section 12.7.4, 12.7.6,
12.7.7 | 47 CFR Part
15.407(b)(1)
47 CFR Part
15.407(b)(4)
47 CFR Part
15.407(b)(10) | Pass | 102, Building H1, & 1/F., Building H, Hongfa Science & Technology Park, Tangtou Connunity, Shiyan Subdistrict, Bao'an District, Shenzhen, Guangdong, China Web: http://www.dace-lab.com Tel: +86-755-23010613 E-mail: service@dace-lab.com Page 5 of 126 ### **2 GENERAL INFORMATION** ### 2.1 Client Information **Applicant's Name**: Waysion Technology (Xiamen) Co., Ltd Address : Room 702, No.33, Xixishanwei Road, Jimei Dist., Xiamen Software Park III, Xiamen, China Manufacturer : Shenzhen Saintway Technology Co.,Ltd Address : RM 301, Zhixiang Building Industrial Zone, 71 Sec., Xingdong Community, Xin'an street, Bao'an Dis., Shenzhen ### 2.2 Description of Device (EUT) | Product Name: | Rugged In-vehicle tablet | |-----------------------|--| | Model/Type reference: | V7S | | Series Model: | N/A | | Trade Mark: | N/A | | Power Supply: | DC 12V/2A from adapter Battery:DC3.7V 2000mAh | | Operation Frequency: | 802.11a/n(HT20)/ac(HT20): U-NII Band 1: 5180MHz to 5240MHz; U-NII Band 3: 5745MHz to 5825MHz; 802.11n(HT40)/ac(HT40): U-NII Band 1: 5190MHz to 5230MHz; U-NII Band 3: 5755MHz to 5795MHz; 802.11ac(HT80): U-NII Band 1: 5210MHz; U-NII Band 3: 5775MHz | | Number of Channels: | 802.11a/n(HT20)/ac(HT20): U-NII Band 1: 4; U-NII Band 3: 5; 802.11n(HT40)/ac(HT40): U-NII Band 1: 2; U-NII Band 3: 2; 802.11ac(HT80): U-NII Band 1: 1; U-NII Band 3: 1 | | Modulation Type: | 802.11a: OFDM(BPSK, QPSK, 16QAM, 64QAM);
802.11n: OFDM (BPSK, QPSK, 16QAM, 64QAM);
802.11ac: OFDM (BPSK, QPSK, 16QAM, 64QAM, 256QAM); | | Antenna Type: | Internal Antenna | | Antenna Gain: | 0dBi | | Hardware Version: | V1.0 | | Software Version: | V1.0 | Remark:The Antenna Gain is supplied by the customer.DACE is not responsible for this data and the related calculations associated with it 102, Building H1, & 1/F., Building H, Hongfa Science & Technology Park, Tangtou Connunity, Shiyan Subdistrict, Bao'an District, Shenzhen, Guangdong, China Web: http://www.dace-lab.com Tel: +86-755-23010613 E-mail: service@dace-lab.com Page 6 of 126 V1.0 | Operation Frequency each of channel | | | |-------------------------------------|--------------------------|--------------| | | 802.11a/n(HT20)/ac(HT20) | 276 | | | U-NII Band 1 | U-NII Band 3 | | Channel | Frequency | Frequency | | 1 | 5180 MHz | 5745 MHz | | 2 | 5200 MHz | 5765 MHz | | 3 | 5220 MHz | 5785 MHz | | 4 | 5240 MHz | 5805 MHz | | 5 | / | 5825 MHz | ### 802.11n(HT40)/ac(HT40) | | U-NII Band 1 | U-NII Band 3 | |---------|--------------|--------------| | Channel | Frequency | Frequency | | 1 | 5190 MHz | 5755 MHz | | 2 | 5230 MHz | 5795 MHz | ### 802.11ac(HT80) | | U-NII Band 1 | U-NII Band 3 | |---------|--------------|--------------| | Channel | Frequency | Frequency | | 1 | 5210 MHz | 5775 MHz | ### Note: In section 15.31(m), regards to the operating frequency range over 10 MHz, the Lowest frequency, the middle frequency, and the highest frequency of channel were selected to perform the test, and the selected channel see below: | 802.11a/n(HT20)/ac(HT20) | | | |--------------------------|-----------------|-----------------| | | U-NII Band 1 | U-NII Band 3 | | Test channel | Frequency (MHz) | Frequency (MHz) | | Lowest channel | 5180 MHz | 5745 MHz | | Middle channel | 5200 MHz | 5785 MHz | | Highest channel | 5240 MHz | 5825 MHz | | 802.11n(HT40)/ac(HT40) | | | |---------------------------|-----------------|-----------------| | U-NII Band 1 U-NII Band 3 | | | | Test channel | Frequency (MHz) | Frequency (MHz) | | Lowest channel | 5190 MHz | 5755 MHz | | Highest channel | 5230 MHz | 5795 MHz | | 802.11ac(HT80) | | | | |----------------|---------------------------|-----------------|--| | | U-NII Band 1 U-NII Band 3 | | | | Test channel | Frequency (MHz) | Frequency (MHz) | | | Middle channel | 5210 MHz | 5775 MHz | | 102, Building H1, & 1/F., Building H, Hongfa Science & Technology Park, Tangtou
Connunity, Shiyan Subdistrict, Bao'an District, Shenzhen, Guangdong, China Web: http://www.dace-lab.com Tel: +86-755-23010613 E-mail: service@dace-lab.com Page 7 of 126 ### 2.3 Description of Test Modes | No | Title | Description | |-----|---------------|---| | TM1 | 802.11a mode | Keep the EUT in continuously transmitting mode with 802.11a modulation type. All data rates has been tested and found the data rate @ 6Mbps is the worst case. Only the data of worst case is recorded in the report. | | TM2 | 802.11n mode | Keep the EUT in continuously transmitting mode with 802.11n modulation type. All bandwidth and data rates has been tested and found the data rate @ MCS0 is the worst case. Only the data of worst case is recorded in the report. | | TM3 | 802.11ac mode | Keep the EUT in continuously transmitting mode with 802.11ac modulation type. All bandwidth and data rates has been tested and found the data rate @ MCS0 is the worst case. Only the data of worst case is recorded in the report. | ### 2.4 Description of Support Units The EUT was tested as an independent device. ### 2.5 Equipments Used During The Test | Conducted Emiss | Conducted Emission at AC power line | | | | | | | | | | | |-----------------------|-------------------------------------|--|-----------------------------------|------------|------------|--|--|--|--|--|--| | Equipment | Manufacturer | Cal Date | Cal Due Date | | | | | | | | | | Power absorbing clamp | SCHWARZ
BECK | MESS-
ELEKTRONIK | 1 | 2024-03-25 | 2025-03-24 | | | | | | | | Electric Network | SCHWARZ
BECK | CAT5 8158 | CAT5
8158#207 | 1 | E' | | | | | | | | Cable | SCHWARZ
BECK | 77 | 1 | 2024-03-20 | 2025-03-19 | | | | | | | | Pulse Limiter | SCHWARZ
BECK | VTSD 9561-F
Pulse limiter 10dB
Attenuation | 561-G071 | 2023-12-12 | 2024-12-11 | | | | | | | | 50ΩCoaxial
Switch | Anritsu | MP59B M20531 | | 1 | 726 | | | | | | | | Test Receiver | Rohde &
Schwarz | ESPI TEST
RECEIVER | ID:1164.6607K
03-102109-
MH | 2024-06-12 | 2025-06-11 | | | | | | | | L.I.S.N | R&S | ESH3-Z5 | 831.5518.52 | 2023-12-12 | 2024-12-11 | | | | | | | | L.I.S.N | SCHWARZ
BECK | NSLK 8126 | 05055 | 2024-06-14 | 2025-06-13 | | | | | | | | Pulse Limiter | CYBERTEK | EM5010A | / | 2024-09-27 | 2025-09-26 | | | | | | | | EMI test software | EMI test E7 -EMC | | V1.1.42 | 1 | 1 | | | | | | | Web: http://www.dace-lab.com Tel: +86-755-23010613 E-mail: service@dace-lab.com Page 8 of 126 ### **Duty Cycle** Emission bandwidth and occupied bandwidth Maximum conducted output power Power spectral density | . onor opostrar asnor | , | | | | | |-------------------------------------|--|----------|--------------|------------|--------------| | Equipment | Manufacturer Model No | | Inventory No | Cal Date | Cal Due Date | | RF Test Software | TACHOY | RTS-01 | V1.0.0 | 1 | 1 | | Power divider | MIDEWEST | PWD-2533 | SMA-79 | 2023-05-11 | 2026-05-10 | | RF Sensor Unit | Tachoy
Information
Technology(she
nzhen) Co.,Ltd. | TR1029-2 | 000001 | / | DVG | | Wideband radio communication tester | R&S | CMW500 | 113410 | 2024-06-12 | 2025-06-11 | | Signal Generator | Keysight | N5181A | MY48180415 | 2023-11-09 | 2024-11-08 | | Signal Generator | Keysight | N5182A | MY50143455 | 2023-11-09 | 2024-11-08 | | Spectrum Analyzer | Keysight | N9020A | MY53420323 | 2023-12-12 | 2024-12-11 | ## Band edge emissions (Radiated) Undesirable emission limits (below 1GHz) Undesirable emission limits (above 1GHz) | Equipment | Manufacturer | Model No | Inventory No | Cal Date | Cal Due Date | |-------------------------------------|-----------------------|------------------|----------------------------|------------|---------------------------------------| | EMI Test software | Farad | EZ -EMC | V1.1.42 | 1 | 1 | | Positioning
Controller | / | MF-7802 | / | 1 | E1 | | Amplifier(18-40G) | COM-POWER | AH-1840 | 10100008-1 | 2022-04-05 | 2025-04-04 | | Horn antenna | COM-POWER | AH-1840 (18-40G) | 10100008 | 2023-04-05 | 2025-04-04 | | Loop antenna | ZHINAN | ZN30900C | ZN30900C | 2024-06-14 | 2026-06-13 | | Cable(LF)#2 | Schwarzbeck | 1 | C 1 | 2024-02-19 | 2025-02-18 | | Cable(LF)#1 | Schwarzbeck | 1 3 | 1 | 2024-02-19 | 2025-02-18 | | Cable(HF)#2 | Schwarzbeck | AK9515E | 96250 | 2024-03-20 | 2025-03-19 | | Cable(HF)#1 | Schwarzbeck | SYV-50-3-1 | / | 2024-03-20 | 2025-03-19 | | Power amplifier(LF) | Schwarzbeck | BBV9743 | 9743-151 | 2024-06-12 | 2025-06-11 | | Power amplifier(HF) | Schwarzbeck | BBV9718 | 9718-282 | 2024-06-12 | 2025-06-11 | | Wideband radio communication tester | R&S | CMW500 | 113410 | 2024-06-12 | 2025-06-11 | | Spectrum Analyzer | Spectrum Analyzer R&S | | 1321.3008K40
-101729-jR | 2024-06-12 | 2025-06-11 | | Test Receiver | R&S | ESCI 3 | 1166.5950K03
-101431-Jq | 2024-06-13 | 2025-06-12 | | Horn Antenna | Sunol Sciences | DRH-118 | A091114 | 2023-05-13 | 2025-05-12 | | Broadband Antenna | Sunol Sciences | JB6 Antenna | A090414 | 2023-05-21 | 2025-05-20 | | | | | | | · · · · · · · · · · · · · · · · · · · | Web: http://www.dace-lab.com Tel: +86-755-23010613 E-mail: service@dace-lab.com Page 9 of 126 ### 2.6 Statement Of The Measurement Uncertainty V1.0 | Test Item | Measurement Uncertainty | |------------------------------------|-------------------------| | Conducted Disturbance (0.15~30MHz) | ±3.41dB | | Duty cycle | ±3.1% | | Occupied Bandwidth | ±3.63% | | RF conducted power | ±0.733dB | | RF power density | ±0.234% | | Radiated Emission (Above 1GHz) | ±5.46dB | | Radiated Emission (Below 1GHz) | ±5.79dB | Note: (1) This uncertainty represents an expanded uncertainty expressed at approximately the 95% confidence level using a coverage factor of k=2. ### Identification of Testing Laboratory | Company Name: | Shenzhen DACE Testing Technology Co., Ltd. | |---------------|--| | Address: | 102, Building H1, & 1/F., Building H, Hongfa Science & Technology Park, Tangtou Connunity, Shiyan Subdistrict, Bao'an District, Shenzhen, Guangdong, China | | Phone Number: | +86-13267178997 | | Fax Number: | 86-755-29113252 | Identification of the Responsible Testing Location | Company Name: | Shenzhen DACE Testing Technology Co., Ltd. | | | | | | | |--------------------------------|--|--|--|--|--|--|--| | Address: | 102, Building H1, & 1/F., Building H, Hongfa Science & Technology Park, Tangtou Connunity, Shiyan Subdistrict, Bao'an District, Shenzhen, Guangdong, China | | | | | | | | Phone Number: | +86-13267178997 | | | | | | | | Fax Number: | 86-755-29113252 | | | | | | | | FCC Registration Number: | 0032847402 | | | | | | | | Designation Number: | CN1342 | | | | | | | | Test Firm Registration Number: | 778666 | | | | | | | | A2LA Certificate Number: | 6270.01 | | | | | | | ### 2.8 Announcement - (1) The test report reference to the report template version v0. - (2) The test report is invalid if not marked with the signatures of the persons responsible for preparing, reviewing and approving the test report. - (3) The test report is invalid if there is any evidence and/or falsification. - (4) This document may not be altered or revised in any way unless done so by DACE and all revisions are duly noted in the revisions section. - (5) Content of the test report, in part or in full, cannot be used for publicity and/or promotional purposes without prior written approval from the laboratory. - (6) The laboratory is only responsible for the data released by the laboratory, except for the part provided by the applicant. 102, Building H1, & 1/F., Building H, Hongfa Science & Technology Park, Tangtou Connunity, Shiyan Subdistrict, Bao'an District, Shenzhen, Guangdong, China Web: http://www.dace-lab.com Tel: +86-755-23010613 E-mail: service@dace-lab.com Page 10 of 126 ### 3 Evaluation Results (Evaluation) ### 3.1 Antenna requirement Test Requirement: Refer to 47 CFR Part 15.203, an intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator shall be considered sufficient to comply with the provisions of this section. ### 3.1.1 Conclusion: 102, Building H1, & 1/F., Building H, Hongfa Science & Technology Park, Tangtou Connunity, Shiyan Subdistrict, Bao'an District, Shenzhen, Guangdong, China Web: http://www.dace-lab.com Tel: +86-755-23010613 E-mail: service@dace-lab.com Page 11 of 126 ### Radio Spectrum Matter Test Results (RF) ### 4.1 Conducted Emission at AC power line | Test Requirement: | 47 CFR Part 15.207(a) | | | | | | | | |-------------------|---|------------------------|-----------|---|--|--|--|--| | Test Limit: | Frequency of emission (MHz) | Conducted limit (dBµV) | | | | | | | | . 6 | | Quasi-peak | Average | | | | | | | | 0.15-0.5 | 66 to 56* | 56 to 46* | | | | | | | | 0.5-5 | 56 | 46 | G | | | | | | | 5-30 | 60 | 50 | 7 | | | | | | | *Decreases with the logarithm of the frequency. | | | | | | | | | Test Method: | ANSI C63.10-2020 section 6.2 | | | | | | | | ### 4.1.1 E.U.T. Operation: | Operating Envir | onment: | 7 | | | - 76 | | |----------------------|-------------|----------|-----------|------|-----------------------|---------| | Temperature: | ture: 22 °C | | Humidity: | 51 % | Atmospheric Pressure: | 101 kPa |
| Pretest mode: | TM1, | TM2, TM3 | | | | | | Final test mode: TM1 | | | | | | | ### 4.1.2 Test Setup Diagram: 102, Building H1, & 1/F., Building H, Hongfa Science & Technology Park, Tangtou Connunity, Shiyan Subdistrict, Bao'an District, Shenzhen, Guangdong, China Tel: +86-755-23010613 Page 12 of 126 Web: http://www.dace-lab.com E-mail: service@dace-lab.com ### 4.1.3 Test Data: TM1 / Line: Line / Band: 5150-5250 MHz / BW: 20 / CH: L Power:AC120V60Hz | No. | Mk. | Freq. | Reading
Level | Correct
Factor | Measure-
ment | Limit | Over | | | | |-----|-----|---------|------------------|-------------------|------------------|-------|--------|----------|---------|--| | | | MHz | dBuV | dB | dBuV | dBuV | dB | Detector | Comment | | | 1 | | 0.1500 | 31.10 | 10.10 | 41.20 | 65.99 | -24.79 | QP | | | | 2 | | 0.1500 | 18.28 | 10.10 | 28.38 | 55.99 | -27.61 | AVG | | | | 3 | * | 0.4380 | 31.62 | 10.07 | 41.69 | 57.10 | -15.41 | QP | | | | 4 | | 0.4380 | 16.97 | 10.07 | 27.04 | 47.10 | -20.06 | AVG | | | | 5 | | 0.9140 | 25.37 | 10.08 | 35.45 | 56.00 | -20.55 | QP | | | | 6 | | 1.0859 | 6.35 | 10.07 | 16.42 | 46.00 | -29.58 | AVG | | | | 7 | | 3.2980 | 4.25 | 10.10 | 14.35 | 46.00 | -31.65 | AVG | | | | 8 | | 3.3820 | 25.06 | 10.11 | 35.17 | 56.00 | -20.83 | QP | | | | 9 | | 7.7060 | 27.28 | 10.26 | 37.54 | 60.00 | -22.46 | QP | | | | 10 | | 7.7060 | 14.58 | 10.26 | 24.84 | 50.00 | -25.16 | AVG | | | | 11 | | 19.8779 | 14.55 | 10.59 | 25.14 | 50.00 | -24.86 | AVG | | | | 12 | | 20.0419 | 28.68 | 10.59 | 39.27 | 60.00 | -20.73 | QP | | | | | | | | 71- | | | | | | | 102, Building H1, & 1/F., Building H, Hongfa Science & Technology Park, Tangtou Connunity, Shiyan Subdistrict, Bao'an District, Shenzhen, Guangdong, China Web: http://www.dace-lab.com Tel: +86-755-23010613 E-mail: service@dace-lab.com Page 13 of 126 TM1 / Line: Neutral / Band: 5150-5250 MHz / BW: 20 / CH: L Power:AC120V60Hz | No. | Mk. | Freq. | Reading
Level | Correct
Factor | Measure-
ment | Limit | Over | | | |-----|-----|---------|------------------|-------------------|------------------|-------|--------|----------|---------| | | | MHz | dBuV | dB | dBuV | dBuV | dB | Detector | Comment | | 1 | | 0.1500 | 31.68 | 10.10 | 41.78 | 65.99 | -24.21 | QP | | | 2 | | 0.1500 | 18.78 | 10.10 | 28.88 | 55.99 | -27.11 | AVG | | | 3 | * | 0.4420 | 30.84 | 10.07 | 40.91 | 57.02 | -16.11 | QP | | | 4 | | 0.4500 | 15.63 | 10.08 | 25.71 | 46.87 | -21.16 | AVG | | | 5 | | 0.6900 | 24.55 | 10.08 | 34.63 | 56.00 | -21.37 | QP | | | 6 | | 0.6900 | 7.91 | 10.08 | 17.99 | 46.00 | -28.01 | AVG | | | 7 | | 1.4460 | 24.56 | 10.05 | 34.61 | 56.00 | -21.39 | QP | | | 8 | | 1.4460 | 7.73 | 10.05 | 17.78 | 46.00 | -28.22 | AVG | | | 9 | | 7.8020 | 28.73 | 10.27 | 39.00 | 60.00 | -21.00 | QP | | | 10 | | 7.9780 | 14.57 | 10.27 | 24.84 | 50.00 | -25.16 | AVG | | | 11 | | 20.2700 | 28.99 | 10.60 | 39.59 | 60.00 | -20.41 | QP | | | 12 | | 21.2460 | 14.70 | 10.64 | 25.34 | 50.00 | -24.66 | AVG | | | | | | | . [4 | | | | | | Tel: +86-755-23010613 Page 14 of 126 Web: http://www.dace-lab.com E-mail: service@dace-lab.com ### 4.2 Duty Cycle V1.0 | Test Requirement: | All measurements are to be performed with the EUT transmitting at 100% duty cycle at its maximum power control level; however, if 100% duty cycle cannot be achieved, measurements of duty cycle, x, and maximum-power transmission duration, T, are required for each tested mode of operation. | |-------------------|--| | Test Limit: | No limits, only for report use. | | Test Method: | ANSI C63.10-2020 section 12.2 (b) | | Procedure: | i) Set the center frequency of the instrument to the center frequency of the transmission. ii) Set RBW >= EBW if possible; otherwise, set RBW to the largest available value. iii) Set VBW >= RBW. iv) Set detector = peak. v) The zero-span measurement method shall not be used unless both RBW and VBW are > 50/T, where T is defined in item a1) of 12.2, and the number of sweep points across duration T exceeds 100. | ### 4.2.1 E.U.T. Operation: | Operating Environment: | | | | | | | | | |------------------------|-------|------|-----------|------|-----------------------|---------|--|--| | Temperature: | 22 °C | | Humidity: | 51 % | Atmospheric Pressure: | 101 kPa | | | | Pretest mode: | | TM1, | TM2, TM3 | | | | | | | Final test mode: | | TM1, | TM2, TM3 | C | | | | | ### 4.2.2 Test Setup Diagram: ### 4.2.3 Test Data: Please Refer to Appendix for Details. 102, Building H1, & 1/F., Building H, Hongfa Science & Technology Park, Tangtou Connunity, Shiyan Subdistrict, Bao'an District, Shenzhen, Guangdong, China Web: http://www.dace-lab.com Tel: +86-755-23010613 E-mail: service@dace-lab.com Page 15 of 126 4.3 Emission bandwidth and occupied bandwidth | 4.3 Emission band | width and occupied bandwidth | |-------------------|--| | Test Requirement: | U-NII 1, U-NII 2A, U-NII 2C: No limits, only for report use. U-NII 3, U-NII 4: 47 CFR Part 15.407(e) | | Test Limit: | U-NII 1, U-NII 2A, U-NII 2C: No limits, only for report use. U-NII 3, U-NII 4: Within the 5.725-5.850 GHz and 5.850-5.895 GHz bands, the minimum 6 dB bandwidth of U-NII devices shall be at least 500 kHz. | | Test Method: | ANSI C63.10-2020, section 6.9 & 12.5
KDB 789033 D02, Clause C.2 | | Procedure: | Emission bandwidth: a) Set RBW = approximately 1% of the emission bandwidth. b) Set the VBW > RBW. c) Detector = peak. d) Trace mode = max hold. e) Measure the maximum width of the emission that is 26 dB down from the peak of the emission. Compare this with the RBW setting of the instrument. Readjust RBW and repeat measurement as needed until the RBW/EBW ratio is approximately 1%. | | Ve - | Occupied bandwidth: a) The instrument center frequency is set to the nominal EUT channel center frequency. The frequency span for the spectrum analyzer shall be between 1.5 times and 5.0 times the OBW. b) The nominal IF filter bandwidth (3 dB RBW) shall be in the range of 1% to 5% of the OBW, and VBW shall be approximately three times the RBW, unless otherwise specified | | DIE | by the applicable requirement. c) Set the reference level of the instrument as required, keeping the signal from exceeding the maximum input mixer level for linear operation. In general, the peak of the spectral envelope shall be more than [10 log (OBW/RBW)] below the reference level. Specific guidance is given | | DD | in 4.1.5.2. d) Step a) through step c) might require iteration to adjust within the specified range. e) Video averaging is not permitted. Where practical, a sample detection and single sweep mode shall be used. Otherwise, peak detection and max hold mode (until the trace stabilizes) shall be used. f) Use the 99% power bandwidth function of the instrument (if available) and report | | | the measured bandwidth. g) If the instrument does not have a 99% power bandwidth function, then the trace data points are recovered and directly summed in linear power terms. The recovered amplitude data points, beginning at the lowest frequency, are placed in a running sum until 0.5% of the total is reached; that frequency is recorded as the lower frequency. The process is repeated until 99.5% of the total is reached; that frequency is recorded as the upper frequency. The 99% power bandwidth is the difference between these two frequencies. | | DAG | h) The occupied bandwidth shall be reported by providing plot(s) of the measuring instrument display; the plot axes and the scale units per division shall be clearly labeled. Tabular data may be reported in addition to the plot(s). | | | 6 dB emission bandwidth: a) Set RBW = 100 kHz. b) Set the video bandwidth (VBW) ≥ 3 >= RBW. c) Detector = Peak. d) Trace mode = max hold. e) Sweep = auto couple. | | | para Spiance & Technology Park, Tengton Connunity, Shiyan Subdictrict, Pacian Dictrict, Shonzhon, Cuangdang, China | Report No.: DACE240920014RL004 102, Building H1, & 1/F., Building H, Hongfa Science & Technology Park, Tangtou Connunity, Shiyan Subdistrict, Bao'an District, Shenzhen, Guangdong, China Web: http://www.dace-lab.com Tel: +86-755-23010613 E-mail: service@dace-lab.com Page 16 of 126 f) Allow the trace to stabilize. V1.0 g) Measure the maximum width of the emission that is constrained by the frequencies associated with the two outermost amplitude points (upper and lower frequencies) that are attenuated by 6 dB relative to the maximum level measured in the fundamental emission. ### 4.3.1 E.U.T. Operation: | Operating Environment: | 5 | | 6 | | | |------------------------|-----------|------------|-----------------------|---------|------| | Temperature: 22 °C | Humi | dity: 51 % | Atmospheric Pressure: | 101 kPa | | | Pretest mode: | TM1, TM2, | TM3 | DI | | - 70 | | Final test mode: | TM1, TM2, | TM3 | | | 201 | ### 4.3.2 Test Setup Diagram: ### 4.3.3 Test Data: Please Refer to Appendix for Details. Web:
http://www.dace-lab.com Tel: +86-755-23010613 E-mail: service@dace-lab.com Page 17 of 126 ### 4.4 Maximum conducted output power V1.0 | Test Requirement: | 47 CFR Part 15.407(a)(1)(iv)
47 CFR Part 15.407(a)(3)(i) | |-------------------|--| | Test Limit: | For client devices in the 5.15-5.25 GHz band, the maximum conducted output power over the frequency band of operation shall not exceed 250 mW provided the maximum antenna gain does not exceed 6 dBi. If transmitting antennas of directional gain greater than 6 dBi are used, the maximum conducted output power shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi. | | N.C. | For the band 5.725-5.850 GHz, the maximum conducted output power over the frequency band of operation shall not exceed 1 W. If transmitting antennas of directional gain greater than 6 dBi are used, the maximum conducted output power shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi. However, fixed point-to-point U-NII devices operating in this band may employ transmitting antennas with directional gain greater than 6 dBi without any corresponding reduction in transmitter conducted power. Fixed, point-to-point operations exclude the use of point-to-multipoint systems, omnidirectional applications, and multiple collocated transmitters transmitting the same information. The operator of the U-NII device, or if the equipment is professionally installed, the installer, is responsible for ensuring that systems employing high gain directional antennas are used exclusively for fixed, point-to-point operations. | | Test Method: | ANSI C63.10-2020, section 12.4 | | Procedure: | Refer to ANSI C63.10-2020 section 12.4 | ### 4.4.1 E.U.T. Operation: | Operating Envir | onment: | | | | | | |-----------------|---------|------|-----------|------|-----------------------|---------| | Temperature: | 22 °C | | Humidity: | 51 % | Atmospheric Pressure: | 101 kPa | | Pretest mode: | • | TM1, | TM2, TM3 | 200 | | 7/6 | | Final test mode | • | TM1, | TM2, TM3 | | | 7) | ### 4.4.2 Test Setup Diagram: ### 4.4.3 Test Data: Please Refer to Appendix for Details. 102, Building H1, & 1/F., Building H, Hongfa Science & Technology Park, Tangtou Connunity, Shiyan Subdistrict, Bao'an District, Shenzhen, Guangdong, China Web: http://www.dace-lab.com Tel: +86-755-23010613 E-mail: service@dace-lab.com Page 18 of 126 ### 4.5 Power spectral density V1.0 | Test Requirement: | 47 CFR Part 15.407(a)(1)(iv)
47 CFR Part 15.407(a)(3)(i) | |-------------------|---| | Test Limit: | For client devices in the 5.15-5.25 GHz band, the maximum power spectral density shall not exceed 11 dBm in any 1 megahertz band. If transmitting antennas of directional gain greater than 6 dBi are used, the maximum power spectral density shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi. | | J.C | For the band 5.725-5.850 GHz, the maximum power spectral density shall not exceed 30 dBm in any 500-kHz band. If transmitting antennas of directional gain greater than 6 dBi are used, the maximum power spectral density shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi. However, fixed point-to-point U-NII devices operating in this band may employ transmitting antennas with directional gain greater than 6 dBi without any corresponding reduction in transmitter conducted power. Fixed, point-to-point operations exclude the use of point-to-multipoint systems, omnidirectional applications, and multiple collocated transmitters transmitting the same information. The operator of the U-NII device, or if the equipment is professionally installed, the installer, is responsible for ensuring that systems employing high gain directional antennas are used exclusively for fixed, point-to-point operations. | | Test Method: | ANSI C63.10-2020, section 12.6 | | Procedure: | Refer to ANSI C63.10-2020, section 12.6 | | | | ### 4.5.1 E.U.T. Operation: | Operating Envir | onment: | | | | | | |-----------------|---------|------|-----------|------|-----------------------|---------| | Temperature: | 22 °C | | Humidity: | 51 % | Atmospheric Pressure: | 101 kPa | | Pretest mode: | • | TM1, | TM2, TM3 | 200 | | 7/6 | | Final test mode | • | TM1, | TM2, TM3 | | | 7) | ### 4.5.2 Test Setup Diagram: ### 4.5.3 Test Data: Please Refer to Appendix for Details. 102, Building H1, & 1/F., Building H, Hongfa Science & Technology Park, Tangtou Connunity, Shiyan Subdistrict, Bao'an District, Shenzhen, Guangdong, China Web: http://www.dace-lab.com Tel: +86-755-23010613 E-mail: service@dace-lab.com Page 19 of 126 ### 4.6 Band edge emissions (Radiated) V1.0 | Test Requirement: | 47 CFR Part 15.407(b)(1)
47 CFR Part 15.407(b)(4)
47 CFR Part 15.407(b)(10) | DAG | |-------------------|--|---| | Test Limit: | For transmitters operating in the 5.15-5.25 GHz ban 5.15-5.35 GHz band shall not exceed an e.i.r.p. of For transmitters operating solely in the 5.725-5.850 All emissions shall be limited to a level of -27 dBm/l or below the band edge increasing linearly to 10 dBr below the band edge, and from 25 MHz above or be | 27 dBm/MHz.
GHz band:
MHz at 75 MHz or more above
n/MHz at 25 MHz above or
low the band edge increasing | linearly to a level of 15.6 dBm/MHz at 5 MHz above or below the band edge, and from 5 MHz above or below the band edge increasing linearly to a level of 27 dBm/MHz at the band edge. | abilition in a di tilo balla ou | J - · | | | |---------------------------------|-------------------------|---------------|-------------| | MHz | MHz | MHz | GHz | | 0.090-0.110 | 16.42-16.423 | 399.9-410 | 4.5-5.15 | | 10.495-0.505 | 16.69475-16.69525 | 608-614 | 5.35-5.46 | | 2.1735-2.1905 | 16.80425-16.80475 | 960-1240 | 7.25-7.75 | | 4.125-4.128 | 25.5-25.67 | 1300-1427 | 8.025-8.5 | | 4.17725-4.17775 | 37.5-38.25 | 1435-1626.5 | 9.0-9.2 | | 4.20725-4.20775 | 73-74.6 | 1645.5-1646.5 | 9.3-9.5 | | 6.215-6.218 | 74.8-75.2 | 1660-1710 | 10.6-12.7 | | 6.26775-6.26825 | 108-121.94 | 1718.8-1722.2 | 13.25-13.4 | | 6.31175-6.31225 | 123-138 | 2200-2300 | 14.47-14.5 | | 8.291-8.294 | 149.9-150.05 | 2310-2390 | 15.35-16.2 | | 8.362-8.366 | 156.52475-
156.52525 | 2483.5-2500 | 17.7-21.4 | | 8.37625-8.38675 | 156.7-156.9 | 2690-2900 | 22.01-23.12 | | 8.41425-8.41475 | 162.0125-167.17 | 3260-3267 | 23.6-24.0 | | 12.29-12.293 | 167.72-173.2 | 3332-3339 | 31.2-31.8 | | 12.51975-12.52025 | 240-285 | 3345.8-3358 | 36.43-36.5 | | 12.57675-12.57725 | 322-335.4 | 3600-4400 | (2) | | 13.36-13.41 | OF | | | ¹ Until February 1, 1999, this restricted band shall be 0.490-0.510 MHz. The field strength of emissions appearing within these frequency bands shall not exceed the limits shown in § 15.209. At frequencies equal to or less than 1000 MHz, compliance with the limits in § 15.209shall be demonstrated using measurement instrumentation employing a CISPR quasi-peak detector. Above 1000 MHz, compliance with the emission limits in § 15.209shall be demonstrated based on the average value of the measured emissions. The provisions in § 15.35apply to these measurements. Except as provided elsewhere in this subpart, the emissions from an intentional radiator shall not exceed the field strength levels specified in the following table: | Frequency (MHz) | Field strength (microvolts/meter) | Measurement | |-----------------|-----------------------------------|-------------| | | | distance | | | | (meters) | Web: http://www.dace-lab.com Tel: +86-755-23010613 E-mail: service@dace-lab.com Page 20 of 126 ² Above 38.6 | | 0.009-0.490 | 2400/F(kHz) | 300 | |---|-------------
--------------|-----| | | 0.490-1.705 | 24000/F(kHz) | 30 | | | 1.705-30.0 | 30 | 30 | | | 30-88 | 100 ** | 3 | | | 88-216 | 150 ** | 3 | | ŀ | 216-960 | 200 ** | 3 | | | Above 960 | 500 | 3 | ** Except as provided in paragraph (g), fundamental emissions from intentional radiators operating under this section shall not be located in the frequency bands 54-72 MHz, 76-88 MHz, 174-216 MHz or 470-806 MHz. However, operation within these frequency bands is permitted under other sections of this part, e.g., §§ 15.231 and 15.241. In the emission table above, the tighter limit applies at the band edges. The emission limits shown in the above table are based on measurements employing a CISPR quasi-peak detector except for the frequency bands 9–90 kHz, 110–490 kHz and above 1000 MHz. Radiated emission limits in these three bands are based on measurements employing an average detector. #### Test Method: ANSI C63.10-2020, section 12.7.4, 12.7.6, 12.7.7 ### Procedure: #### Above 1GHz - a. For above 1GHz, the EUT was placed on the top of a rotating table 1.5 meters above the ground at a 3 meter fully-anechoic chamber. The table was rotated 360 degrees to determine the position of the highest radiation. - b. The EUT was set 3 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower. - c. The antenna height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement. - d. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters (for the test frequency of below 30MHz, the antenna was tuned to heights 1 meter) and the rotatable table was turned from 0 degrees to 360 degrees to find the maximum reading. - e. The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode. - f. If the emission level of the EUT in peak mode was 10dB lower than the limit specified, then testing could be stopped and the peak values of the EUT would be reported. Otherwise the emissions that did not have 10dB margin would be retested one by one using peak or average method as specified and then reported in a data sheet. - g. Test the EUT in the lowest channel, the middle channel, the Highest channel. - h. The radiation measurements are performed in X, Y, Z axis positioning for Transmitting mode, and found the X axis positioning which it is the worst case. - i. Repeat above procedures until all frequencies measured was complete. Remark: - 1. Level= Read Level+ Cable Loss+ Antenna Factor- Preamp Factor - 2. Scan from 18GHz to 40GHz, the disturbance above 18GHz was very low. The points marked on above plots are the highest emissions could be found when testing, so only above points had been displayed. The amplitude of spurious emissions from the radiator which are attenuated more than 20dB below the limit need not be reported. - 3. As shown in this section, for frequencies above 1GHz, the field strength limits are based on average limits. However, the peak field strength of any emission shall not exceed the maximum permitted average limits specified above by more than 20 dB under any condition of modulation. For the emissions whose peak level is lower than the average limit, only the peak measurement is shown in the report. - 4. The disturbance above 18GHz were very low and the harmonics were the highest point could be found when testing, so only the above harmonics had been 102, Building H1, & 1/F., Building H, Hongfa Science & Technology Park, Tangtou Connunity, Shiyan Subdistrict, Bao'an District, Shenzhen, Guangdong, China Web: http://www.dace-lab.com Tel: +86-755-23010613 E-mail: service@dace-lab.com Page 21 of 126 displayed. ### 4.6.1 E.U.T. Operation: | Operating Environment | onment: | | | V | | 3 | |-----------------------|---------|------|-----------|------|------------------|---------------| | Temperature: | 22 °C | | Humidity: | 51 % | Atmospheric Pres | sure: 101 kPa | | Pretest mode: | | TM1, | TM2, TM3 | | | | | Final test mode: | | TM1 | | | G | | ### 4.6.2 Test Data: TM1 is worse case and only reported TM1 / Polarization: Horizontal / Band: 5150-5250 MHz / BW: 20 / CH: L Web: http://www.dace-lab.com Tel: +86-755-23010613 E-mail: service@dace-lab.com Page 22 of 126 DAG DAG ### TM1 / Polarization: Vertical / Band: 5150-5250 MHz / BW: 20 / CH: L DAG Report No.: DACE240920014RL004 ### TM1 / Polarization: Horizontal / Band: 5150-5250 MHz / BW: 20 / CH: H Web: http://www.dace-lab.com Tel: +86-755-23010613 E-mail: service@dace-lab.com Page 24 of 126 DAG Report No.: DACE240920014RL004 ### TM1 / Polarization: Vertical / Band: 5150-5250 MHz / BW: 20 / CH: H 102, Building H1, & 1/F., Building H, Hongfa Science & Technology Park, Tangtou Connunity, Shiyan Subdistrict, Bao'an District, Shenzhen, Guangdong, China Web: http://www.dace-lab.com Tel: +86-755-23010613 E-mail: service@dace-lab.com Page 25 of 126 ### TM1 / Polarization: Horizontal / Band: 5725-5850 MHz / BW: 20 / CH: L Web: http://www.dace-lab.com Tel: +86-755-23010613 E-mail: service@dace-lab.com Page 26 of 126 # TM1 / Polarization: Vertical / Band: 5725-5850 MHz / BW: 20 / CH: L 110.0 dBuV/m FCC Part 15E (Peak) | No. | Frequency
(MHz) | Reading
(dBuV) | Factor
(dB/m) | Level
(dBuV/m) | Limit
(dBuV/m) | Margin
(dB) | Detector | Height (cm) | Azimuth (deg.) | P/F | Remark | |-----|--------------------|-------------------|------------------|-------------------|-------------------|----------------|----------|-------------|----------------|-----|--------| | 1 | 5650.000 | 43.61 | 1.09 | 44.70 | 68.20 | -23.50 | peak | 149 | | Р | , | | 2 * | 5650.000 | 34.73 | 1.09 | 35.82 | 48.20 | -12.38 | AVG | 149 | | Р | | | 3 | 5700.000 | 47.63 | 1.15 | 48.78 | 105.20 | -56.42 | peak | 149 | | Р | | | 4 | 5700.000 | 37.43 | 1.15 | 38.58 | 85.20 | -46.62 | AVG | 149 | | Р | | | 5 | 5720.000 | 74.06 | 1.17 | 75.23 | 110.80 | -35.57 | peak | 149 | | Р | | | 6 | 5720.000 | 62.28 | 1.17 | 63.45 | 90.80 | -27.35 | AVG | 149 | | Р | | Web: http://www.dace-lab.com Tel: +86-755-23010613 E-mail: service@dace-lab.com Page 27 of 126 ### TM1 / Polarization: Horizontal / Band: 5725-5850 MHz / BW: 20 / CH: H Web: http://www.dace-lab.com Tel: +86-755-23010613 E-mail: service@dace-lab.com Page 28 of 126 DAG Report No.: DACE240920014RL004 Note: The test software only records the worst height and cannot record the worst angle. Only the worst situation is displayed in the test report. 102, Building H1, & 1/F., Building H, Hongfa Science & Technology Park, Tangtou Connunity, Shiyan Subdistrict, Bao'an District, Shenzhen, Guangdong, China E-mail: service@dace-lab.com Page 29 of 126 DAG Web: http://www.dace-lab.com Tel: +86-755-23010613 ### 4.7 Undesirable emission limits (below 1GHz) | Test Requirement: | 47 CFR Part 15.407(b)(9) | 3112) | 7G | | | |-------------------|---|-----------------------------------|-------------------------------|--|--| | Test Limit: | Unwanted emissions below 1 GHz must comply with the general field strength limits set forth in § 15.209. Except as provided elsewhere in this subpart, the emissions from an intentional radiator shall not exceed the field strength levels specified in the following table: | | | | | | \C | | | | | | | DIA | Frequency (MHz) | Field strength (microvolts/meter) | Measurement distance (meters) | | | | | 0.009-0.490 | 2400/F(kHz) | 300 | | | | | 0.490-1.705 | 24000/F(kHz) | 30 | | | | | 1.705-30.0 | 30 | 30 | | | | | 30-88 | 100 ** | 3 | | | | | 88-216 | 150 ** | 3 | | | | | 216-960 | 200 ** | 3 | | | | | Above 960 | 500 | 3 | | | | DIE | 54-72 MHz, 76-88 MHz, 174-216 MHz or 470-806 MHz. However, operation within these frequency bands is permitted under other sections of this part, e.g., §§ 15.231 and 15.241. In the emission table above, the tighter limit applies at the band edges. The emission limits shown in the above table are based on measurements employing a CISPR quasi-peak detector except for the frequency bands 9–90 kHz, 110–490 kHz and above 1000 MHz. Radiated emission limits in these three bands are based on measurements employing an average detector. | | | | | | Test Method: | ANSI C63.10-2020, section | 12.7.4, 12.7.5 | | | | | Procedure: | Below 1GHz: a. For below 1GHz, the EUT was placed on the top of a rotating table 0.8 meters above the ground at a 3 meter semi-anechoic chamber. The table was rotated 360 degrees to determine the position of the highest radiation. b. The EUT was set 3 or 10 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower. c. The antenna height is varied from one meter to four meters
above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement. d. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters (for the test frequency of below 30MHz, the antenna was tuned to heights 1 meter) and the rotatable table was turned from 0 degrees to 360 degrees to find the maximum reading. e. The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode. f. If the emission level of the EUT in peak mode was 10dB lower than the limit specified, then testing could be stopped and the peak values of the EUT would be | | | | | | DIG. | reported. Otherwise the emissions that did not have 10dB margin would be retested one by one using quasi-peak method as specified and then reported in a data sheet. g. Test the EUT in the lowest channel, the middle channel, the Highest channel. h. The radiation measurements are performed in X, Y, Z axis positioning for Transmitting mode, and found the X axis positioning which it is the worst case. i. Repeat above procedures until all frequencies measured was complete. Remark: 1. Level= Read Level+ Cable Loss+ Antenna Factor- Preamp Factor | | | | | Report No.: DACE240920014RL004 102, Building H1, & 1/F., Building H, Hongfa Science & Technology Park, Tangtou Connunity, Shiyan Subdistrict, Bao'an District, Shenzhen, Guangdong, China Web: http://www.dace-lab.com Tel: +86-755-23010613 E-mail: service@dace-lab.com Page 30 of 126 - 2. Scan from 9kHz to 30MHz, the disturbance below 30MHz was very low. The points marked on above plots are the highest emissions could be found when testing, so only above points had been displayed. The amplitude of spurious emissions from the radiator which are attenuated more than 20dB below the limit need not be reported. - 3. The disturbance below 1GHz was very low and the harmonics were the highest point could be found when testing, so only the above harmonics had been displayed. #### Above 1GHz: - a. For above 1GHz, the EUT was placed on the top of a rotating table 1.5 meters above the ground at a 3 meter fully-anechoic chamber. The table was rotated 360 degrees to determine the position of the highest radiation. - b. The EUT was set 3 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower. - c. The antenna height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement. - d. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters (for the test frequency of below 30MHz, the antenna was tuned to heights 1 meter) and the rotatable table was turned from 0 degrees to 360 degrees to find the maximum reading. - e. The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode. - f. If the emission level of the EUT in peak mode was 10dB lower than the limit specified, then testing could be stopped and the peak values of the EUT would be reported. Otherwise the emissions that did not have 10dB margin would be retested one by one using peak or average method as specified and then reported in a data sheet. - g. Test the EUT in the lowest channel, the middle channel, the Highest channel. - h. The radiation measurements are performed in X, Y, Z axis positioning for Transmitting mode, and found the X axis positioning which it is the worst case. - i. Repeat above procedures until all frequencies measured was complete. Remark: - 1. Level= Read Level+ Cable Loss+ Antenna Factor- Preamp Factor - 2. Scan from 18GHz to 40GHz, the disturbance above 18GHz was very low. The points marked on above plots are the highest emissions could be found when testing, so only above points had been displayed. The amplitude of spurious emissions from the radiator which are attenuated more than 20dB below the limit need not be reported. - 3. As shown in this section, for frequencies above 1GHz, the field strength limits are based on average limits. However, the peak field strength of any emission shall not exceed the maximum permitted average limits specified above by more than 20 dB under any condition of modulation. For the emissions whose peak level is lower than the average limit, only the peak measurement is shown in the report. - 4. The disturbance above 18GHz were very low and the harmonics were the highest point could be found when testing, so only the above harmonics had been displayed. ### 4.7.1 E.U.T. Operation: | Operating Environment: | | | | | | | | |------------------------|-------|------|-----------|----------|---|-----------------------|---------| | Temperature: | 22 °C | | Humidity: | 51 9 | % | Atmospheric Pressure: | 101 kPa | | Pretest mode: TM1 | | TM1, | TM2, TM3 | D | | | | | Final test mode: TM1 | | TM1 | | | | | | Web: http://www.dace-lab.com Tel: +86-755-23010613 E-mail: service@dace-lab.com Page 31 of 126 ### 4.7.2 Test Data: 6 890.7277 4.92 32.94 37.86 46.00 QP -8.14 P Web: http://www.dace-lab.com Tel: +86-755-23010613 E-mail: service@dace-lab.com Page 32 of 126 #### TM1 / Polarization: Vertical / Band: 5150-5250 MHz / BW: 20 / CH: L dBuV/m 80.0 70 60 FCC Part 15B Class B RE 3m 50 40 30 20 10 0.0 30.000 (MHz) 1000.000 60.00 300.00 Frequency Reading Factor Level Limit Margin Height Azimuth Detector P/F No. Remark (MHz) (dBuV) (dB/m) (dBuV/m) (dBuV/m) (dB) (cm) (deg.) 1 * 30.8534 36.00 0.26 36.26 40.00 -3.74QP P 2 ! 3! 4 5 6 57.7962 103.0800 140.3420 300.3672 519.0650 47.62 45.26 43.04 40.28 37.73 -13.00 -7.29 -6.08 -5.73 -1.23 34.62 37.97 36.96 34.55 36.50 40.00 43.50 43.50 46.00 46.00 -5.38 -5.53 -6.54 -11.45 -9.50 QP QP QP QP P P P P P Web: http://www.dace-lab.com Tel: +86-755-23010613 E-mail: service@dace-lab.com Page 33 of 126 4.8 Undesirable emission limits (above 1GHz) | Test Requirement: | 47 CFR Part 15.407(b)(1)
47 CFR Part 15.407(b)(4)
47 CFR Part 15.407(b)(10) | |-------------------|---| | l _ | | Test Limit: For transmitters operating in the 5.15-5.25 GHz band: All emissions outside of the 5.15-5.35 GHz band shall not exceed an e.i.r.p. of −27 dBm/MHz. Report No.: DACE240920014RL004 For transmitters operating solely in the 5.725-5.850 GHz band: All emissions shall be limited to a level of -27 dBm/MHz at 75 MHz or more above or below the band edge increasing linearly to 10 dBm/MHz at 25 MHz above or below the band edge, and from 25 MHz above or below the band edge increasing linearly to a level of 15.6 dBm/MHz at 5 MHz above or below the band edge, and from 5 MHz above or below the band edge increasing linearly to a level of 27 dBm/MHz at the band edge. | ability will ball deage. | | | | | | | | |--------------------------|-------------------------|-------------------|-------------|--|--|--|--| | MHz | MHz MHz | | GHz | | | | | | 0.090-0.110 | 16.42-16.423 | 399.9-410 | 4.5-5.15 | | | | | | 10.495-0.505 | 16.69475-16.69525 | 608-614 | 5.35-5.46 | | | | | | 2.1735-2.1905 | 16.80425-16.80475 | 960-1240 | 7.25-7.75 | | | | | | 4.125-4.128 | 25.5-25.67 | 1300-1427 | 8.025-8.5 | | | | | | 4.17725-4.17775 | 37.5-38.25 | 1435-1626.5 | 9.0-9.2 | | | | | | 4.20725-4.20775 | 73-74.6 | 1645.5-
1646.5 | 9.3-9.5 | | | | | | 6.215-6.218 | 74.8-75.2 | 1660-1710 | 10.6-12.7 | | | | | | 6.26775-6.26825 | 108-121.94 | 1718.8-
1722.2 | 13.25-13.4 | | | | | | 6.31175-6.31225 | 123-138 | 2200-2300 | 14.47-14.5 | | | | | | 8.291-8.294 | 149.9-150.05 | 2310-2390 | 15.35-16.2 | | | | | | 8.362-8.366 | 156.52475-
156.52525 | 2483.5-2500 | 17.7-21.4 | | | | | | 8.37625-8.38675 | 156.7-156.9 | 2690-2900 | 22.01-23.12 | | | | | | 8.41425-8.41475 | 162.0125-167.17 | 3260-3267 | 23.6-24.0 | | | | | | 12.29-12.293 | 167.72-173.2 | 3332-3339 | 31.2-31.8 | | | | | | 12.51975-12.52025 | 240-285 | 3345.8-3358 | 36.43-36.5 | | | | | | 12.57675-12.57725 | 322-335.4 | 3600-4400 | (2) | | | | | | 13.36-13.41 | | | | | | | | ¹ Until February 1, 1999, this restricted band shall be 0.490-0.510 MHz. The field strength of emissions appearing within these frequency bands shall not exceed the limits shown in § 15.209. At frequencies equal to or less than 1000 MHz, compliance with the limits in § 15.209shall be demonstrated using measurement instrumentation employing a CISPR quasi-peak detector. Above 1000 MHz, compliance with the emission limits in § 15.209shall be demonstrated based on the average value of the measured emissions. The provisions in § 15.35apply to these measurements. Except as provided elsewhere in this subpart, the emissions from an intentional radiator shall not exceed the field strength levels specified in the following table: Page 34 of 126 Web: http://www.dace-lab.com Tel: +86-755-23010613 E-mail: service@dace-lab.com ² Above 38.6 | | Frequency (MHz) | Field strength (microvolts/meter) | Measurement distance (meters) | |----|-----------------|-----------------------------------|-------------------------------| | | 0.009-0.490 | 2400/F(kHz) | 300 | | | 0.490-1.705 | 24000/F(kHz) | 30 | | j. | 1.705-30.0 | 30 | 30 | | • | 30-88 | 100 ** | 3 | | | 88-216 | 150 ** | 3 | | | 216-960 | 200 ** | 3 | | | Above 960 | 500 | 3 | ** Except as provided in paragraph (g), fundamental emissions from intentional radiators operating under this section shall not be located in the frequency bands 54-72 MHz, 76-88 MHz, 174-216 MHz or 470-806 MHz. However, operation within these frequency bands is permitted under other sections of this part, e.g., §§ 15.231 and 15.241. In the emission table above, the tighter limit applies at the band edges. The emission limits shown in the above table are based on measurements employing a CISPR quasi-peak detector
except for the frequency bands 9-90 kHz, 110-490 kHz and above 1000 MHz. Radiated emission limits in these three bands are based on measurements employing an average detector. #### Test Method: ANSI C63.10-2020, section 12.7.4, 12.7.6, 12.7.7 #### Procedure: #### Above 1GHz: - a. For above 1GHz, the EUT was placed on the top of a rotating table 1.5 meters above the ground at a 3 meter fully-anechoic chamber. The table was rotated 360 degrees to determine the position of the highest radiation. - b. The EUT was set 3 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower. - c. The antenna height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement. - d. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters (for the test frequency of below 30MHz, the antenna was tuned to heights 1 meter) and the rotatable table was turned from 0 degrees to 360 degrees to find the maximum reading. - e. The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode. - f. If the emission level of the EUT in peak mode was 10dB lower than the limit specified, then testing could be stopped and the peak values of the EUT would be reported. Otherwise the emissions that did not have 10dB margin would be retested one by one using peak or average method as specified and then reported in a data sheet. - a. Test the EUT in the lowest channel, the middle channel, the Highest channel, - h. The radiation measurements are performed in X, Y, Z axis positioning for Transmitting mode, and found the X axis positioning which it is the worst case. - i. Repeat above procedures until all frequencies measured was complete. Remark: - 1. Level= Read Level+ Cable Loss+ Antenna Factor- Preamp Factor - 2. Scan from 18GHz to 40GHz, the disturbance above 18GHz was very low. The points marked on above plots are the highest emissions could be found when testing, so only above points had been displayed. The amplitude of spurious emissions from the radiator which are attenuated more than 20dB below the limit need not be reported. - 3. As shown in this section, for frequencies above 1GHz, the field strength limits are based on average limits. However, the peak field strength of any emission shall not exceed the maximum permitted average limits specified above by more than 20 dB Page 35 of 126 Web: http://www.dace-lab.com Tel: +86-755-23010613 E-mail: service@dace-lab.com under any condition of modulation. For the emissions whose peak level is lower than the average limit, only the peak measurement is shown in the report. 4. The disturbance above 18GHz were very low and the harmonics were the highest point could be found when testing, so only the above harmonics had been displayed. ### 4.8.1 E.U.T. Operation: | Operating Environment: | | | | | | | |------------------------|---------------|------|-----------------------|---------|------|--| | Temperature: 22 °C | Humidity: | 51 % | Atmospheric Pressure: | 101 kPa | | | | Pretest mode: | TM1, TM2, TM3 | |) - | | - 76 | | | Final test mode: TM1 | | | | | 201 | | ### 4.8.2 Test Data: TM1 is worse case and only reported Web: http://www.dace-lab.com Tel: +86-755-23010613 E-mail: service@dace-lab.com Page 36 of 126 Report No.: DACE240920014RL004 Web: http://www.dace-lab.com Tel: +86-755-23010613 E-mail: service@dace-lab.com Page 37 of 126 Report No.: DACE240920014RL004 Web: http://www.dace-lab.com Tel: +86-755-23010613 E-mail: service@dace-lab.com Page 38 of 126 Report No.: DACE240920014RL004 Web: http://www.dace-lab.com Tel: +86-755-23010613 E-mail: service@dace-lab.com Page 39 of 126 Report No.: DACE240920014RL004 Web: http://www.dace-lab.com Tel: +86-755-23010613 E-mail: service@dace-lab.com Page 40 of 126 Report No.: DACE240920014RL004 Web: http://www.dace-lab.com Tel: +86-755-23010613 E-mail: service@dace-lab.com Page 41 of 126 Report No.: DACE240920014RL004 DAG Web: http://www.dace-lab.com Tel: +86-755-23010613 E-mail: service@dace-lab.com Page 42 of 126 Report No.: DACE240920014RL004 Web: http://www.dace-lab.com Tel: +86-755-23010613 E-mail: service@dace-lab.com Page 43 of 126 DAG Report No.: DACE240920014RL004 Web: http://www.dace-lab.com Tel: +86-755-23010613 E-mail: service@dace-lab.com Page 44 of 126 Report No.: DACE240920014RL004 Web: http://www.dace-lab.com Tel: +86-755-23010613 E-mail: service@dace-lab.com Page 45 of 126 Report No.: DACE240920014RL004 Web: http://www.dace-lab.com Tel: +86-755-23010613 E-mail: service@dace-lab.com Page 46 of 126 Report No.: DACE240920014RL004 Web: http://www.dace-lab.com Tel: +86-755-23010613 E-mail: service@dace-lab.com Page 47 of 126 Report No.: DACE240920014RL004 ## 5 TEST SETUP PHOTOS Reference to the Test setup file for details. ## 6 PHOTOS OF THE EUT DAG Reference to the external photos file and internal photos file for details. 102, Building H1, & 1/F., Building H, Hongfa Science & Technology Park, Tangtou Connunity, Shiyan Subdistrict, Bao'an District, Shenzhen, Guangdong, China Web: http://www.dace-lab.com Tel: +86-755-23010613 E-mail: service@dace-lab.com Page 48 of 126