

SAR Reference Dipole Calibration Report

Ref: ACR.262.2.23.BES.A

DEKRA TESTING AND CERTIFICATION,S.A.U. PARQUE TECNOLÓGICO DE ANDALUCÍA C/ SEVERO OCHOA

2 29590 CAMPANILLAS (MÁLAGA), SPAIN SAR REFERENCE DIPOLE

> FREQUENCY: 750 MHZ SERIAL NO.: 1036

Calibrated at MVG

Z.I. de la pointe du diable Technopôle Brest Iroise – 295 avenue Alexis de Rochon 29280 PLOUZANE - FRANCE

Calibration date: 09/18/2023

Accreditations #2-6789 and #2-6814 Scope available on www.cofrac.fr

The use of the Cofrac brand and the accreditation references is prohibited from any reproduction.

Summary:

This document presents the method and results from an accredited SAR reference dipole calibration performed in MVG using the COMOSAR test bench. All calibration results are traceable to national metrology institutions.

Page: 1/8

Parque Tecnológico de Andalucía, c/ Severo Ochoa nº 2 · 29590 Campanillas · Málaga · España C.I.F. A29 507 456

SAR REFERENCE DIPOLE CALIBRATION REPORT

Ref: ACR.262.2,23,BES.A.

	Name	Function	Date	Signature
Prepared by :	Cyrille ONNEE	Measurement Responsible	9/18/2023	C23
Checked & approved by:	Jérôme Luc	Technical Manager	9/18/2023	JES
Authorized by:	Yann Toutain	Laboratory Director	9/19/2023	Yann TOUTANN

Signature numérique de Yann Toutain ID Yann Toutain ID Date: 2023,09.19

	Customer Name
Distribution:	DEKRA Testing and Certification,S.A.U.

Issue	Name	Date	Modifications
A	Cyrille ONNEE	9/18/2023	Initial release
	0 1:30-		

Page: 2/8

Translate ACR DDD: N. FF. AIVGR, DNUF, SAR Reference Dipole v1.

This document shall not be reproduced, except in full or in part, without the written approval of MVG. The information contained kerein is to be used only for the purpose for which it is submitted and is not to be released in whole or part without written approval of MVG.

Ref: ACR.262.2.23.BES.A

TABLE OF CONTENTS

1	Int	roduction4	
2	De	vice Under Test4	
3	Pro	duct Description4	
	3.1	General Information	4
4	Me	asurement Method5	
	4.1	Mechanical Requirements	5
	4.2	S11 parameter Requirements	5
	4.3	SAR Requirements	
5	Me	asurement Uncertainty5	
	5.1	Mechanical dimensions	5
	5.2	S11 Parameter_	5
	5.3	SAR	5
6	Cal	ibration Results6	
	6.1	Mechanical Dimensions	6
	6.2	S11 parameter	6
	6.3	SAR	6
7	Lis	t of Equipment 8	

Page: 3/8

Ref: ACR.262.2.23.BES.A

1 INTRODUCTION

This document contains a summary of the requirements set forth by the IEC/IEEE 62209-1528 and FCC KDB865664 D01 standards for reference dipoles used for SAR measurement system validations and the measurements that were performed to verify that the product complies with the fore mentioned standards.

2 DEVICE UNDER TEST

Device Under Test				
Device Type	SAR 750 MHz REFERENCE DIPOLE			
Manufacturer	SPEAG			
Model	750			
Serial Number	1036			
Product Condition (new / used)	Used			

3 PRODUCT DESCRIPTION

3.1 GENERAL INFORMATION

SAR Validation Dipoles are built in accordance to the IEC/IEEE 62209-1528 and FCC KDB865664 D01 standards.

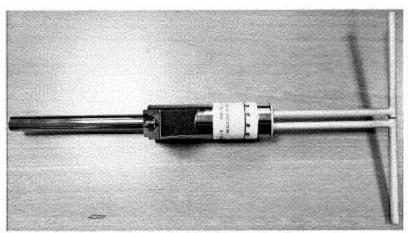


Figure 1 - SAR Validation Dipole

Page: 4/8

Template_ACR.DDD:N.VV.AIVGE.ISSUE_SAR Reference Dipole et.

Ref: ACR 262 2 23 BES A

4 MEASUREMENT METHOD

4.1 MECHANICAL REQUIREMENTS

The IEC/IEEE 62209-1528 and FCC KDB865664 D01 standards specify the mechanical components and dimensions of the validation dipoles, with the dimension's frequency and phantom shell thickness dependent. The COMOSAR test bench employs a 2 mm phantom shell thickness therefore the dipoles sold for use with the COMOSAR test bench comply with the requirements set forth for a 2 mm phantom shell thickness. A direct method is used with a ISO17025 calibrated caliper.

4.2 S11 PARAMETER REQUIREMENTS

The dipole used for SAR system validation measurements and checks must have a S11 of -20 dB or better. The S11 measurement shall be performed against a liquid filled flat phantom, with the phantom constructed as outlined in the fore mentioned standards. A direct method is used with a network analyser and its calibration kit, both with a valid ISO17025 calibration.

4.3 SAR REQUIREMENTS

The IEC/IEEE 62209-1528 and FCC KDB865664 D01 standards provide requirements for reference dipoles used for system validation measurements. The following measurements were performed to verify that the product complies with the fore-mentioned standards.

5 MEASUREMENT UNCERTAINTY

5.1 MECHANICAL DIMENSIONS

For the measurement in the range 0-300mm, the estimated expanded uncertainty (k=2) in calibration for the dimension measurement in mm is +/-0.20 mm with respect to measurement conditions.

For the measurement in the range 300-450mm, the estimated expanded uncertainty (k=2) in calibration for the dimension measurement in mm is +/-0.44 mm with respect to measurement conditions.

5.2 SII PARAMETER

The estimated expanded uncertainty (k=2) in calibration for the S11 parameter in linear is +/-0.08 with respect to measurement conditions.

5.3 SAR

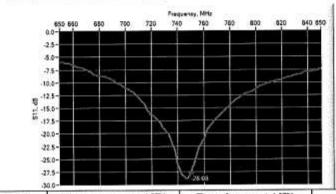
The guidelines outlined in the IEC/IEEE 62209-1528 and FCC KDB865664 D01 standards were followed to generate the measurement uncertainty for validation measurements.

The estimated expanded uncertainty (k=2) in calibration for the 1g and 10g SAR measurement in W/kg is +/-19% with respect to measurement conditions,

Page: 5/8

Template ACR, DDD, N. YY, MYGB, ISSUE SAR Reference Dipole vL

Ref: ACR.262.2.23.BES.A


6 CALIBRATION RESULTS

6.1 MECHANICAL DIMENSIONS

L	L mm h mm		d mm		
Measured	Required	Measured	Required	Measured	Required
121	176.00 +/- 2%	-	100.00 +/- 2%	-	6.35 +/- 2%

6.2 S11 PARAMETER

6.2.1 S11 parameter in Head Liquid

1	Frequency (MHz)	S11 parameter (dB)	Requirement (dB)	Impedance
	750	-28.08	-20	46.2Ω - 0.0jΩ

6.3 SAR

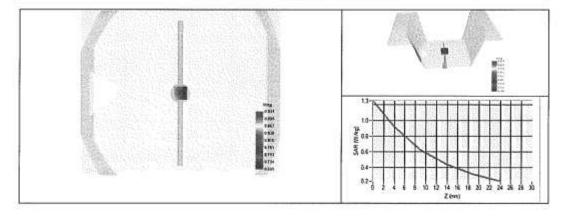
The IEC/IEEE 62209-1528 and FCC KDB865664 D01 standards state that the system validation measurements must be performed using a reference dipole meeting the fore mentioned return loss and mechanical dimension requirements. The validation measurement must be performed against a liquid filled flat phantom, with the phantom constructed as outlined in the fore mentioned standards. Per the standards, the dipole shall be positioned below the bottom of the phantom, with the dipole length centered and parallel to the longest dimension of the flat phantom, with the top surface of the dipole at the described distance from the bottom surface of the phantom.

6.3.1 SAR with Head Liquid

The IEC/IEEE 62209-1528 and FCC KDB865664 D01 standards state that the system validation measurements should produce the SAR values shown below (for phantom thickness of 2 mm), within the uncertainty for the system validation. All SAR values are normalized to 1 W forward power. In bracket, the measured SAR is given with the used input power.

Page: 6/8

Template_ACR.DDD.N.YY.MITGH.ISSUE_SAR Reference Dipole of



Ref: ACR.262.2.23.BES.A

Software	OPENSAR V5
Phantom	SN 13/09 SAM68
Probe	SN 41/18 EPGO333
Liquid	Head Liquid Values: eps'; 43.4 sigma; 0.92
Distance between dipole center and liquid	15.0 mm
Area scan resolution	dx=8mm/dy=8mm
Zoon Scan Resolution	dx=8mm/dy=8mm/dz=5mm
Frequency	750 MHz
Input power	20 dBm
Liquid Temperature	20 +/- 1 °C
Lab Temperature	20 +/- 1 °C
Lab Humidity	30-70 %

Frequency 1g SAR (W/kg)		kg) 10g SAR (W/kg)				
	Measured	Measured normalized to 1W	Target normalized to 1W	Measured	Measured normalized to 1W	Target normalized to 1W
750 MHz	0.88	8.85	8.49	0.58	5.81	5.55

Page: 7/8

Ref: ACR.262.2.23.BES.A

7 LIST OF EQUIPMENT

	Equi	pment Summary S	Sheet		
Equipment Description	Manufacturer / Model	Identification No.	Current Calibration Date	Next Calibration Date	
SAM Phantom	MVG	SN 13/09 SAM68	Validated. No cal required.	Validated. No ca required.	
COMOSAR Test Bench	Version 3	NA	Validated. No cal required.	Validated. No ca required.	
Network Analyzer	Rohde & Schwarz ZVM	100203	08/2021	08/2024	
Network Analyzer	Agilent 8753ES	MY40003210	10/2019	10/2023	
Network Analyzer – Calibration kit	Rohde & Schwarz ZV-Z235	101223	07/2022	07/2025	
Network Analyzer – Calibration kit	HP 85033D	3423A08186	06/2021	06/2027	
Calipers	Mitutoyo	SN 0009732	11/2022	11/2025	
Reference Probe	MVG	SN 41/18 EPGO333	01/2023	01/2024	
Multimeter	Keithley 2000	4013982	02/2023	02/2026	
Signal Generator	Rohde & Schwarz SMB	106589	03/2022	03/2025	
Amplifier	MVG	MODU-023-C-0002	Characterized prior to test. No cal required.	Characterized prior to test. No cal required.	
Power Meter	NI-USB 5680	170100013	06/2021	06/2024	
Power Meter	Keysight U2000A	SN: MY62340002	10/2022	10/2025	
Directional Coupler	Krytar 158020	131467	Characterized prior to test. No cal required.	Characterized prior to test. No cal required.	
Temperature / Humidity Sensor	Testo 184 H1	44225320	06/2021	06/2024	

Page: 8/8

2024-02-21

SAR Reference Dipole Calibration Report

Ref: ACR.262.3.23.BES.A

DEKRA TESTING AND CERTIFICATION,S.A.U. PARQUE TECNOLÓGICO DE ANDALUCÍA C/ SEVERO OCHOA

2 29590 CAMPANILLAS (MÁLAGA), SPAIN SAR REFERENCE DIPOLE

> FREQUENCY: 900 MHZ SERIAL NO.: 1D007

Calibrated at MVG

Z.I. de la pointe du diable Technopôle Brest Iroise – 295 avenue Alexis de Rochon 29280 PLOUZANE - FRANCE

Calibration date: 09/18/2023

Accreditations #2-6789 and #2-6814 Scope available on www.cofrac.fr

The say of the Cofrac brand and the accreditation references is probibited from any reproduction

Summary:

This document presents the method and results from an accredited SAR reference dipole calibration performed in MVG using the COMOSAR test bench. All calibration results are traceable to national metrology institutions.

Page: 1/8

Parque Tecnológico de Andalucía, c/ Severo Ochoa nº 2 · 29590 Campanillas · Málaga · España C.I.F. A29 507 456

SAR REFERENCE DIPOLE CALIBRATION REPORT

Ref: ACR.262.3.23.BES.A

	Name	Function	Date	Signature
Prepared by :	Cyrille ONNEE	Measurement Responsible	9/18/2023	(25)
Checked & approved by:	Jérôme Luc	Technical Manager	9/18/2023	75
Authorized by:	Yann Toutain	Laboratory Director	9/19/2023	Yann TOUTANN

Signature numérique de Yann Toutain ID Yann Toutain ID Date: 2023,09.19 09:50:28 +02'00'

Customer Name **DEKRA** Testing Distribution: and Certification, S.A.U.

Issue	Name	Date	Modifications
Α	Cyrille ONNEE	9/18/2023	Initial release

Page: 2/8

Template ACR, DDD, N, YY, AIVGB, ISSUE, SAR Referency Dipale vt.

This document shall not be reproduced, except in full or in part, without the written approval of MVG. The information contained herein is to be used only for the purpose for which it is submitted and is not to be released in whole or part without written approval of MVG.

4

SAR REFERENCE DIPOLE CALIBRATION REPORT

Ref: ACR.262,3.23.BES.A

TABLE OF CONTENTS

1	Int	roduction4	
2	De	vice Under Test4	
3	Pro	duct Description4	
	3.1	General Information	4
4	Me	asurement Method5	
	4.1	Mechanical Requirements	5
	4.2	S11 parameter Requirements	5
	4.3	SAR Requirements	5
5	Me	asurement Uncertainty5	
	5.1	Mechanical dimensions	5
	5.2	S11 Parameter	5
	5.3	SAR	5
6	Cal	ibration Results6	
	6.1	Mechanical Dimensions	6
	6.2	S11 parameter	6
	6.3	SAR	6
7	Lis	t of Equipment8	

Page: 3/8

Ref: ACR.262.3.23.BES.A

1 INTRODUCTION

This document contains a summary of the requirements set forth by the IEC/IEEE 62209-1528 and FCC KDB865664 D01 standards for reference dipoles used for SAR measurement system validations and the measurements that were performed to verify that the product complies with the fore mentioned standards.

2 DEVICE UNDER TEST

De	Device Under Test		
Device Type	SAR 900 MHz REFERENCE DIPOLE		
Manufacturer	SPEAG		
Model	900		
Serial Number	1D007		
Product Condition (new / used)	Used		

3 PRODUCT DESCRIPTION

3.1 GENERAL INFORMATION

SAR Validation Dipoles are built in accordance to the IEC/IEEE 62209-1528 and FCC KDB865664 D01 standards.

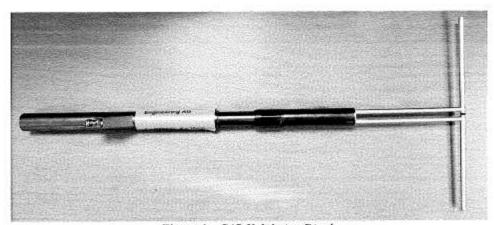


Figure 1 - SAR Validation Dipole

Page: 4/8

Template ACR, DDD, N. VV, MYGB, ISSUE SAR Reference Dipole et.

Parque Tecnológico de Andalucía, c/ Severo Ochoa nº 2 · 29590 Campanillas · Málaga · España C.I.F. A29 507 456

SAR REFERENCE DIPOLE CALIBRATION REPORT

Ref: ACR.262.3.23.BES.A

4 MEASUREMENT METHOD

4.1 MECHANICAL REQUIREMENTS

The IEC/IEEE 62209-1528 and FCC KDB865664 D01 standards specify the mechanical components and dimensions of the validation dipoles, with the dimension's frequency and phantom shell thickness dependent. The COMOSAR test bench employs a 2 mm phantom shell thickness therefore the dipoles sold for use with the COMOSAR test bench comply with the requirements set forth for a 2 mm phantom shell thickness. A direct method is used with a ISO17025 calibrated caliper.

4.2 S11 PARAMETER REQUIREMENTS

The dipole used for SAR system validation measurements and checks must have a S11 of -20 dB or better. The S11 measurement shall be performed against a liquid filled flat phantom, with the phantom constructed as outlined in the fore mentioned standards. A direct method is used with a network analyser and its calibration kit, both with a valid ISO17025 calibration.

4.3 SAR REQUIREMENTS

The IEC/IEEE 62209-1528 and FCC KDB865664 D01 standards provide requirements for reference dipoles used for system validation measurements. The following measurements were performed to verify that the product complies with the fore-mentioned standards.

5 MEASUREMENT UNCERTAINTY

5.1 MECHANICAL DIMENSIONS

For the measurement in the range 0-300mm, the estimated expanded uncertainty (k=2) in calibration for the dimension measurement in mm is +/-0.20 mm with respect to measurement conditions.

For the measurement in the range 300-450mm, the estimated expanded uncertainty (k=2) in calibration for the dimension measurement in mm is +/-0.44 mm with respect to measurement conditions.

5.2 S11 PARAMETER

The estimated expanded uncertainty (k=2) in calibration for the S11 parameter in linear is +/-0.08 with respect to measurement conditions.

5.3 SAR

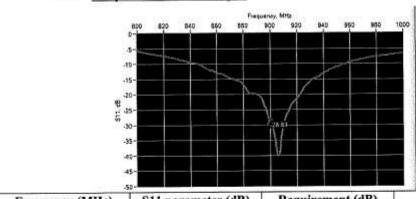
The guidelines outlined in the IEC/IEEE 62209-1528 and FCC KDB865664 D01 standards were followed to generate the measurement uncertainty for validation measurements.

The estimated expanded uncertainty (k=2) in calibration for the 1g and 10g SAR measurement in W/kg is +/-19% with respect to measurement conditions.

Page: 5/8

Template_ACR.DDD.N.YY.MVGB.ISSUE_SAR Reference Dipule vL.

Ref: ACR.262.3.23.BES.A


CALIBRATION RESULTS

6.1 MECHANICAL DIMENSIONS

L mm		h	mm	d ı	nm
Measured	Required	Measured	Required	Measured	Required
-	149.00 +/- 2%	-	83.30 +/- 2%	· ·	3.60 +/- 2%

6.2 S11 PARAMETER

6.2.1 S11 parameter in Head Liquid

Frequency (MHz)	S11 parameter (dB)	Requirement (dB)	Impedance
900	-28.83	-20	$50.4\Omega + 3.6j\Omega$

6.3 SAR

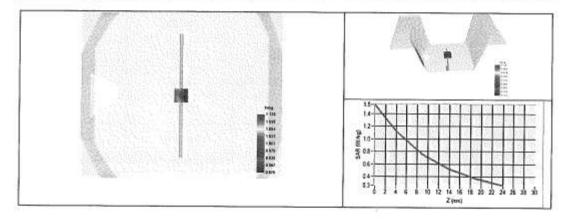
The IEC/IEEE 62209-1528 and FCC KDB865664 D01 standards state that the system validation measurements must be performed using a reference dipole meeting the fore mentioned return loss and mechanical dimension requirements. The validation measurement must be performed against a liquid filled flat phantom, with the phantom constructed as outlined in the fore mentioned standards. Per the standards, the dipole shall be positioned below the bottom of the phantom, with the dipole length centered and parallel to the longest dimension of the flat phantom, with the top surface of the dipole at the described distance from the bottom surface of the phantom.

6.3.1 SAR with Head Liquid

The IEC/IEEE 62209-1528 and FCC KDB865664 D01 standards state that the system validation measurements should produce the SAR values shown below (for phantom thickness of 2 mm), within the uncertainty for the system validation. All SAR values are normalized to 1 W forward power. In bracket, the measured SAR is given with the used input power.

Page: 6/8

Template_ACR.DDD.N.YY.MVGB.ISSUE_SAR Reference Dipole vl.



Ref: ACR.262.3.23.BES.A

Software	OPENSAR V5
Phantom	SN 13/09 SAM68
Probe	SN 41/18 EPGO333
Liquid	Head Liquid Values: eps': 43.4 sigma: 0.98
Distance between dipole center and liquid	15.0 mm
Area scan resolution	dx=8mm/dy=8mm
Zoon Scan Resolution	dx=8mm/dy=8mm/dz=5mm
Frequency	900 MHz
Input power	20 dBm
Liquid Temperature	20 +/- 1 °C
Lab Temperature	20 +/- 1 °C
Lab Humidity	30-70 %

Frequency		1g SAR (W/kg)	10g SAR (W/kg)		
	Measured	Measured normalized to 1W	Target normalized to 1W	Measured	Measured normalized to 1W	Target normalized to 1W
900 MHz	1.06	10.58	10.90	0.68	6.81	6.99

Page: 7/8

Ref: ACR.262.3.23.BES.A

7 LIST OF EQUIPMENT

	Equi	pment Summary S	iheet	
Equipment Description	Manufacturer / Model	Identification No.	Current Calibration Date	Next Calibration Date
SAM Phantom	MVG	SN 13/09 SAM68	Validated. No cal required.	Validated. No cal required.
COMOSAR Test Bench	Version 3	NA	Validated. No cal required.	Validated. No cal required,
Network Analyzer	Rohde & Schwarz ZVM	100203	08/2021	08/2024
Network Analyzer	Agilent 8753ES	MY40003210	10/2019	10/2023
Network Analyzer – Calibration kit	Rohde & Schwarz ZV-Z235	101223	07/2022	07/2025
Network Analyzer – Calibration kit	HP 85033D	3423A08186	06/2021	06/2027
Calipers	Mitutoyo	SN 0009732	11/2022	11/2025
Reference Probe	MVG	SN 41/18 EPGO333	01/2023	01/2024
Multimeter	Keithley 2000	4013982	02/2023	02/2026
Signal Generator	Rohde & Schwarz SMB	106589	03/2022	03/2025
Amplifier	MVG	MODU-023-C-0002	Characterized prior to test. No cal required.	Characterized prior to test. No cal required.
Power Meter	NI-USB 5680	170100013	06/2021	06/2024
Power Meter	Keysight U2000A	SN: MY62340002	10/2022	10/2025
Directional Coupler	Krytar 158020	131467	Characterized prior to test. No cal required.	
Temperature / Humidity Sensor	Testo 184 H1	44225320	06/2021	06/2024

Page: 8/8

SAR Reference Dipole Calibration Report

Ref: ACR.262.5.23.BES.A

DEKRA TESTING AND CERTIFICATION,S.A.U. PARQUE TECNOLÓGICO DE ANDALUCÍA C/ SEVERO OCHOA

2 29590 CAMPANILLAS (MÁLAGA), SPAIN SAR REFERENCE DIPOLE

> FREQUENCY: 1800 MHZ SERIAL NO.: 2D099

Calibrated at MVG

Z.I. de la pointe du diable Technopôle Brest Iroise – 295 avenue Alexis de Rochon 29280 PLOUZANE - FRANCE

Calibration date: 09/18/2023

Accreditations #2-6789 and #2-6814 Scope available on www.cofrec.tr

The use of the Cofrac brand and the accreditation references is prohibited from any reproduction

Summary:

This document presents the method and results from an accredited SAR reference dipole calibration performed in MVG using the COMOSAR test bench. All calibration results are traceable to national metrology institutions.

Page: 1/8

Parque Tecnológico de Andalucía, c/ Severo Ochoa nº 2 · 29590 Campanillas · Málaga · España C.I.F. A29 507 456

SAR REFERENCE DIPOLE CALIBRATION REPORT

Ref: ACR.262.5.23.BES.A

	Name	Function	Date	Signature
Prepared by :	Cyrille ONNEE	Measurement Responsible	9/18/2023	(25)
Checked & approved by:	Jérôme Luc	Technical Manager	9/18/2023	75
Authorized by:	Yann Toutain	Laboratory Director	9/19/2023	Yan TOUTANN

Yann Signature numérique de Yann Toutain ID Date : 2023.09.19 0959:11 +02'00'

	Customer Name
Distribution:	DEKRA Testing and
Distribution .	Certification, S.A.U.

Issue	Name	Date	Modifications
A	Cyrille ONNEE	9/18/2023	Initial release

Page: 2/8

Ref: ACR,262.5.23.BES.A

TABLE OF CONTENTS

1	Inti	oduction4		
2	De	vice Under Test4		
3	Pro	duct Description4		
	3.1	General Information	4	
4	Me	asurement Method5		
	4.1	Mechanical Requirements		
	4.2	S11 parameter Requirements	:	
	4.3	SAR Requirements	5	
5	Measurement Uncertainty5			
	5.1	Mechanical dimensions		
	5.2	S11 Parameter	:	
	5.3	SAR		
6	Cal	ibration Results6		
	6.1	Mechanical Dimensions		
	6.2	S11 parameter	(
	6.3	SAR	(
7	Lis	t of Equipment8		

Page: 3/8

Ref: ACR.262.5.23.BES.A

INTRODUCTION

This document contains a summary of the requirements set forth by the IEC/IEEE 62209-1528 and FCC KDB865664 D01 standards for reference dipoles used for SAR measurement system validations and the measurements that were performed to verify that the product complies with the fore mentioned standards.

DEVICE UNDER TEST

D	Device Under Test		
Device Type	SAR 1800 MHz REFERENCE DIPOLE		
Manufacturer	SPEAG		
Model	1800		
Serial Number	2D099		
Product Condition (new / used)	Used		

3 PRODUCT DESCRIPTION

3.1 GENERAL INFORMATION

SAR Validation Dipoles are built in accordance to the IEC/IEEE 62209-1528 and FCC KDB865664 D01 standards.

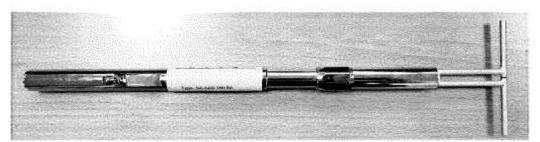


Figure 1 - SAR Validation Dipole

Page: 4/8

Template_ACR.DDD.R.VY.MVGB.ISSUE_SAR Reference Dipole v1.

Parque Tecnológico de Andalucía, c/ Severo Ochoa nº 2 · 29590 Campanillas · Málaga · España C.I.F. A29 507 456

SAR REFERENCE DIPOLE CALIBRATION REPORT

Ref: ACR.262.5.23.BES.A

4 MEASUREMENT METHOD

4.1 MECHANICAL REQUIREMENTS

The IEC/IEEE 62209-1528 and FCC KDB865664 D01 standards specify the mechanical components and dimensions of the validation dipoles, with the dimension's frequency and phantom shell thickness dependent. The COMOSAR test bench employs a 2 mm phantom shell thickness therefore the dipoles sold for use with the COMOSAR test bench comply with the requirements set forth for a 2 mm phantom shell thickness. A direct method is used with a ISO17025 calibrated caliper.

4.2 S11 PARAMETER REQUIREMENTS

The dipole used for SAR system validation measurements and checks must have a S11 of -20 dB or better. The S11 measurement shall be performed against a liquid filled flat phantom, with the phantom constructed as outlined in the fore mentioned standards. A direct method is used with a network analyser and its calibration kit, both with a valid ISO17025 calibration.

4.3 SAR REQUIREMENTS

The IEC/IEEE 62209-1528 and FCC KDB865664 D01 standards provide requirements for reference dipoles used for system validation measurements. The following measurements were performed to verify that the product complies with the fore-mentioned standards.

5 MEASUREMENT UNCERTAINTY

5.1 MECHANICAL DIMENSIONS

For the measurement in the range 0-300mm, the estimated expanded uncertainty (k=2) in calibration for the dimension measurement in mm is +/-0.20 mm with respect to measurement conditions.

For the measurement in the range 300-450mm, the estimated expanded uncertainty (k=2) in calibration for the dimension measurement in mm is +/-0.44 mm with respect to measurement conditions.

5.2 S11 PARAMETER

The estimated expanded uncertainty (k=2) in calibration for the S11 parameter in linear is +/-0.08 with respect to measurement conditions.

5.3 SAR

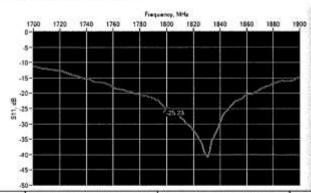
The guidelines outlined in the IEC/IEEE 62209-1528 and FCC KDB865664 D01 standards were followed to generate the measurement uncertainty for validation measurements.

The estimated expanded uncertainty (k=2) in calibration for the 1g and 10g SAR measurement in W/kg is +/-19% with respect to measurement conditions.

Page: 5/8

Template_ACR.DDD.N.YY.MVGB.ISSUE_SAR Reference Dipole vL

Ref: ACR,262.5.23.BES.A


6 CALIBRATION RESULTS

6.1 MECHANICAL DIMENSIONS

L mm		h	h mm		mm
Measured	Required	Measured	Required	Measured	Required
5 * 3	72.00 +/- 2%		41.70 +/- 2%		3.60 +/- 2%

6.2 S11 PARAMETER

6.2.1 S11 parameter in Head Liquid

 Frequency (MHz)
 S11 parameter (dB)
 Requirement (dB)
 Impedance

 1800
 -25.23
 -20
 45.3Ω + 2.2jΩ

6.3 SAR

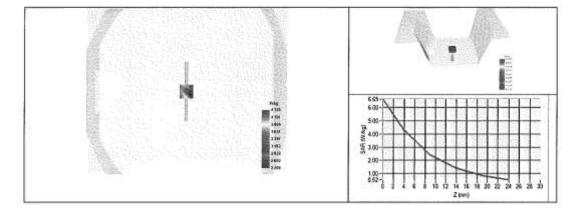
The IEC/IEEE 62209-1528 and FCC KDB865664 D01 standards state that the system validation measurements must be performed using a reference dipole meeting the fore mentioned return loss and mechanical dimension requirements. The validation measurement must be performed against a liquid filled flat phantom, with the phantom constructed as outlined in the fore mentioned standards. Per the standards, the dipole shall be positioned below the bottom of the phantom, with the dipole length centered and parallel to the longest dimension of the flat phantom, with the top surface of the dipole at the described distance from the bottom surface of the phantom.

6.3.1 SAR with Head Liquid

The IEC/IEEE 62209-1528 and FCC KDB865664 D01 standards state that the system validation measurements should produce the SAR values shown below (for phantom thickness of 2 mm), within the uncertainty for the system validation. All SAR values are normalized to 1 W forward power. In bracket, the measured SAR is given with the used input power.

Page: 6/8

Tempdate_ACR.DDD.N.YY.81VGB.ISSUE_SAR Reference Dipole vl.


3

SAR REFERENCE DIPOLE CALIBRATION REPORT

Ref: ACR.262.5.23.BES.A

Software	OPENSAR V5
Phantom	SN 13/09 SAM68
Probe	SN 41/18 EPGO333
Liquid	Head Liquid Values: eps' : 41.7 sigma : 1.47
Distance between dipole center and liquid	10.0 mm
Area scan resolution	dx=8mm/dy=8mm
Zoon Scan Resolution	dx=8mm/dy=8mm/dz=5mm
Frequency	1800 MHz
Input power	20 dBm
Liquid Temperature	20 +/- 1 °C
Lab Temperature	20 +/- 1 °C
Lab Humidity	30-70 %

Frequency	1g SAR (W/kg)			1	0g SAR (W/kg	g)
	Measured	Measured normalized to 1W	Target normalized to 1W	Measured	Measured normalized to 1W	Target normalized to 1W
1800 MHz	3.97	39.74	38.40	2.09	20.86	20.10

Page: 7/8

Template -(CR.ODD.N.YY.AIVGB.ISSUE_SAR Reference Dipule vl.

This document shall not be reproduced, except in full or in part, without the written approval of MYG. The information contained herein is so be used only for the purpose for which it is submitted and is not to be released in whole or part without written approval of MYG.

Ref: ACR.262.5.23.BES.A

7 LIST OF EQUIPMENT

	Equipment Summary Sheet						
Equipment Description	Manufacturer / Model	Identification No.	Current Calibration Date	Next Calibration Date			
SAM Phantom	MVG	SN 13/09 SAM68	Validated. No cal required.	Validated. No ca required.			
COMOSAR Test Bench	Version 3	NA	Validated. No cal required.	Validated. No ca required.			
Network Analyzer	Rohde & Schwarz ZVM	100203	08/2021	08/2024			
Network Analyzer	Agilent 8753ES	MY40003210	10/2019	10/2023			
Network Analyzer – Calibration kit	Rohde & Schwarz ZV-Z235	101223	07/2022	07/2025			
Network Analyzer – Calibration kit	HP 85033D	3423A08186	06/2021	06/2027			
Calipers	Mitutoyo	SN 0009732	11/2022	11/2025			
Reference Probe	MVG	SN 41/18 EPGO333	01/2023	01/2024			
Multimeter	Keithley 2000	4013982	02/2023	02/2026			
Signal Generator	Rohde & Schwarz SMB	106589	03/2022	03/2025			
Amplifier	MVG	MODU-023-C-0002	Characterized prior to test. No cal required.	Characterized prior to test. No cal required.			
Power Meter	NI-USB 5680	170100013	06/2021	06/2024			
Power Meter	Keysight U2000A	SN: MY62340002	10/2022	10/2025			
Directional Coupler	Krytar 158020	131467	Characterized prior to test. No cal required.	Characterized prior to test. No cal required.			
Temperature / Humidity Sensor	Testo 184 H1	44225320	06/2021	06/2024			

Page: 8/8

Template ACR.DDD,N.YYANYGB,ISSOF SAR Reference Dipole of.

This document shall not be reproduced, except in full or in part, without the written approval of MYG. The information contained herein is to be used only for the purpose for which it is submitted and is not to be released in whole or part without written approval of MYG.

SAR Reference Dipole Calibration Report

Ref: ACR.262.9.23.BES.A

DEKRA TESTING AND CERTIFICATION,S.A.U. PARQUE TECNOLÓGICO DE ANDALUCÍA C/ SEVERO OCHOA

2 29590 CAMPANILLAS (MÁLAGA), SPAIN SAR REFERENCE DIPOLE

> FREQUENCY: 2600 MHZ SERIAL NO.: 1023

Calibrated at MVG

Z.I. de la pointe du diable

Technopôle Brest Iroise – 295 avenue Alexis de Rochon

29280 PLOUZANE - FRANCE

Calibration date: 09/18/2023

Accreditations #2-6789 and #2-6814 Scope available on www.coffuc.fr

The use of the Cofrac brand and the accreditation references is prohibited from any reproduction

Summary:

This document presents the method and results from an accredited SAR reference dipole calibration performed in MVG using the COMOSAR test bench. All calibration results are traceable to national metrology institutions.

Page: 1/8

Parque Tecnológico de Andalucía, c/ Severo Ochoa nº 2 · 29590 Campanillas · Málaga · España C.I.F. A29 507 456

SAR REFERENCE DIPOLE CALIBRATION REPORT

Ref: ACR.262.9.23.BES.A

	Name	Function	Date	Signature
Prepared by :	Cyrille ONNEE	Measurement Responsible	9/18/2023	C25
Checked & approved by:	Jérôme Luc	Technical Manager	9/18/2023	75
Authorized by:	Yann Toutain	Laboratory Director	9/19/2023	Yana TOUTANN

Yann Toutain ID Date: 2023.09.19

Signature numérique de Yann Toutain ID 10:02:17 +02'00"

_	Customer Name
Distribution:	DEKRA Testing and
	Certification, S.A.U.

Issue	Name	Date	Modifications
Α	Cyrille ONNEE	9/18/2023	Initial release

Ref: ACR,262.9.23.BES.A

TABLE OF CONTENTS

1	Inti	oduction4	
2	De	rice Under Test4	
3	Pro	duct Description4	
	3.1	General Information	
4	Me	asurement Method5	
	4.1	Mechanical Requirements	
	4.2	S11 parameter Requirements	
	4.3	SAR Requirements	5
5	Me	asurement Uncertainty5	
	5.1	Mechanical dimensions	5
	5.2	S11 Parameter	
	5.3	SAR	
6	Cal	ibration Results6	
	6.1	Mechanical Dimensions	
	6.2	S11 parameter	(
	6.3	SAR	(
7	Lis	of Equipment8	

Page: 3/8

Ref: ACR.262.9.23.BES.A

INTRODUCTION

This document contains a summary of the requirements set forth by the IEC/IEEE 62209-1528 and FCC KDB865664 D01 standards for reference dipoles used for SAR measurement system validations and the measurements that were performed to verify that the product complies with the fore mentioned standards.

DEVICE UNDER TEST

Device Under Test				
Device Type	SAR 2600 MHz REFERENCE DIPOLE			
Manufacturer	SPEAG			
Model	2600			
Serial Number	1023			
Product Condition (new / used)	Used			

PRODUCT DESCRIPTION

3.1 GENERAL INFORMATION

SAR Validation Dipoles are built in accordance to the IEC/IEEE 62209-1528 and FCC KDB865664 D01 standards.

Figure 1 - SAR Validation Dipole

Page: 4/8

Parque Tecnológico de Andalucía, c/ Severo Ochoa nº 2 · 29590 Campanillas · Málaga · España C.I.F. A29 507 456

SAR REFERENCE DIPOLE CALIBRATION REPORT

Ref: ACR.262.9.23.BES.A

4 MEASUREMENT METHOD

4.1 MECHANICAL REQUIREMENTS

The IEC/IEEE 62209-1528 and FCC KDB865664 D01 standards specify the mechanical components and dimensions of the validation dipoles, with the dimension's frequency and phantom shell thickness dependent. The COMOSAR test bench employs a 2 mm phantom shell thickness therefore the dipoles sold for use with the COMOSAR test bench comply with the requirements set forth for a 2 mm phantom shell thickness. A direct method is used with a ISO17025 calibrated caliper.

4.2 S11 PARAMETER REQUIREMENTS

The dipole used for SAR system validation measurements and checks must have a S11 of -20 dB or better. The S11 measurement shall be performed against a liquid filled flat phantom, with the phantom constructed as outlined in the fore mentioned standards. A direct method is used with a network analyser and its calibration kit, both with a valid ISO17025 calibration.

4.3 SAR REQUIREMENTS

The IEC/IEEE 62209-1528 and FCC KDB865664 D01 standards provide requirements for reference dipoles used for system validation measurements. The following measurements were performed to verify that the product complies with the fore-mentioned standards.

5 MEASUREMENT UNCERTAINTY

5.1 MECHANICAL DIMENSIONS

For the measurement in the range 0-300mm, the estimated expanded uncertainty (k=2) in calibration for the dimension measurement in mm is +/-0.20 mm with respect to measurement conditions.

For the measurement in the range 300-450mm, the estimated expanded uncertainty (k=2) in calibration for the dimension measurement in mm is +/-0.44 mm with respect to measurement conditions.

5.2 S11 PARAMETER

The estimated expanded uncertainty (k=2) in calibration for the S11 parameter in linear is +/-0.08 with respect to measurement conditions.

5.3 SAR

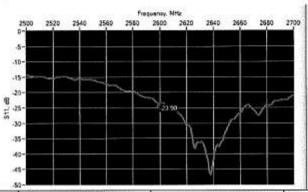
The guidelines outlined in the IEC/IEEE 62209-1528 and FCC KDB865664 D01 standards were followed to generate the measurement uncertainty for validation measurements.

The estimated expanded uncertainty (k=2) in calibration for the 1g and 10g SAR measurement in W/kg is +/-19% with respect to measurement conditions.

Page: 5/8

Template_ACR,DDD,N,YY,MFGB,ISSUE_SAR Reference Dipole vt.

Ref: ACR.262.9.23.BES.A


6 CALIBRATION RESULTS

6.1 MECHANICAL DIMENSIONS

L mm		h mm		d i	mm
Measured	Required	Measured	Required	Measured	Required
(e))	48.50 +/- 2%	2+3	28.80 +/- 2%	0.50	3.60 +/- 2%

6.2 S11 PARAMETER

6.2.1 S11 parameter in Head Liquid

Frequency (MHz)	S11 parameter (dB)	Requirement (dB)	Impedance
2600	-23.90	-20	50.8Ω - 6.4iΩ

6.3 SAR

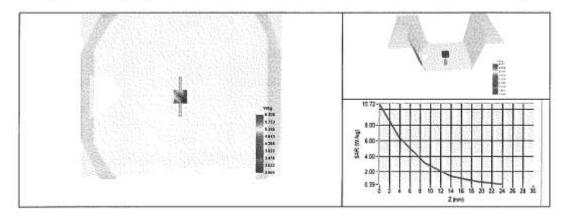
The IEC/IEEE 62209-1528 and FCC KDB865664 D01 standards state that the system validation measurements must be performed using a reference dipole meeting the fore mentioned return loss and mechanical dimension requirements. The validation measurement must be performed against a liquid filled flat phantom, with the phantom constructed as outlined in the fore mentioned standards. Per the standards, the dipole shall be positioned below the bottom of the phantom, with the dipole length centered and parallel to the longest dimension of the flat phantom, with the top surface of the dipole at the described distance from the bottom surface of the phantom.

6.3.1 SAR with Head Liquid

The IEC/IEEE 62209-1528 and FCC KDB865664 D01 standards state that the system validation measurements should produce the SAR values shown below (for phantom thickness of 2 mm), within the uncertainty for the system validation. All SAR values are normalized to 1 W forward power. In bracket, the measured SAR is given with the used input power.

Page: 6/8

Template_ACR.DDD.N.YY.MVGBJSSUE_SAR Reference Dipole vl.



Ref: ACR.262.9.23.BES.A

Software	OPENSAR V5
Phantom	SN 13/09 SAM68
Probe	SN 41/18 EPGO333
Liquid	Head Liquid Values: eps': 40.4 sigma: 2.05
Distance between dipole center and liquid	10.0 mm
Area scan resolution	dx=8mm/dy=8mm
Zoon Scan Resolution	dx=5mm/dy=5mm/dz=5mm
Frequency	2600 MHz
Input power	20 dBm
Liquid Temperature	20 +/- 1 °C
Lab Temperature	20 +/- 1 °C
Lab Humidity	30-70 %

Frequency	1g SAR (W/kg)			10g SAR (W/kg)		
	Measured	Measured normalized to 1W	Target normalized to 1W	Measured	Measured normalized to 1W	Target normalized to 1W
2600 MHz	5.70	57.02	55.30	2.56	25.64	24.60

Page: 7/8

Template ACR.DDD.N.YY.AUGB.ISSUE SAR Reference Dipule vt.

This document shall not be reproduced, except in full or in part, without the written approval of MYG. The information contained herein is to be used only for the purpose for which it is submitted and is not to be released in whole or part without written approval of MYG.

Ref: ACR.262.9.23.BES.A

7 LIST OF EQUIPMENT

Equipment Summary Sheet								
Equipment Description	Manufacturer / Model	Identification No.	Current Calibration Date	Next Calibration Date				
SAM Phantom	MVG	SN 13/09 SAM68	Validated. No cal required.	Validated. No ca required.				
COMOSAR Test Bench	Version 3	NA	Validated. No cal required.	Validated. No ca required.				
Network Analyzer	Rohde & Schwarz ZVM	100203	08/2021	08/2024				
Network Analyzer	Agilent 8753ES	MY40003210	10/2019	10/2023				
Network Analyzer – Calibration kit	Rohde & Schwarz ZV-Z235	101223	07/2022	07/2025				
Network Analyzer – Calibration kit	HP 85033D	3423A08186	06/2021	06/2027				
Calipers	Mitutoyo	SN 0009732	11/2022	11/2025				
Reference Probe	MVG	SN 41/18 EPGO333	01/2023	01/2024				
Multimeter	Keithley 2000	4013982	02/2023	02/2026				
Signal Generator	Rohde & Schwarz SMB	106589	03/2022	03/2025				
Amplifier	MVG	MODU-023-C-0002	Characterized prior to test. No cal required.					
Power Meter	NI-USB 5680	170100013	06/2021	06/2024				
Power Meter	Keysight U2000A	SN: MY62340002	10/2022	10/2025				
Directional Coupler	Krytar 158020	131467	Characterized prior to test. No cal required.	Characterized prior to test. No cal required.				
Temperature / Humidity Sensor	Testo 184 H1	44225320	06/2021	06/2024				

Page: 8/8

Template ACR, DIMES, VY, AVGR, INSUF SAR Reference Dipule vt.

This document shall not be reproduced, except in full or in part, without the written approval of MYG. The information contained herein is to be used only for the purpose for which it is submitted and is not to be released in whole or part without written approval of MYG.