

FCC Test Report

ResMed Ltd.

Model Number: 28326

Product Description: Continuous Positive Airway Pressure (CPAP) Device

FCC ID: 2ACHL-A10STACD

47 CFR Part 22, 24

TEST REPORT #: EMC_CONN-046-15001_FCC 22_24_WWAN_v1.2 DATE: 11/14/2015

FCC Recognized A2LA Accredited IC recognized # 3462E-1

CETECOM Inc.

6370 Nancy Ridge Drive Suite 101 • San Diego, CA 92121 • U.S.A.

Phone: +1 (858) 362 2400 • Fax: +1 (858) 587 4809 • E-mail: info@cetecomusa.com • http://www.cetecom.com

CETECOM Inc. is a Delaware Corporation with Corporation number: 2905571

V5.0 2015-10-27 © Copyright by CETECOM

Table of Contents

1	Assessr	nent	3
2	Admini	strative Data	4
	2.1 Ide	ntification of the Testing Laboratory Issuing the Test Report	4
	2.2 Ide	ntification of the Client	4
	2.3 Ide	ntification of the Manufacturer	4
3	Equipm	nent under Test (EUT)	5
		ecification of the Equipment under Test	
		ntification of the Equipment under Test (EUT)	
		ntification of Accessory equipment	
		vironmental conditions during Test:	
		tes of Testing:	
4	Subject	of Investigation	7
5	•	ry of Measurement Results	
6		ements	
_		Power Output	
	6.1.1	References	
	6.1.2	Measurement requirements:	
	6.1.3	Limits:	
	6.1.4	Conducted Output Power Measurement	
	6.2 Spt	urious Emissions Radiated	
	6.2.1	References	
	6.2.2	Measurement requirements:	
	6.2.3	Limits:	13
	6.2.4	Radiated out of band measurement procedure:	15
	6.2.5	Sample Calculations for Radiated Measurements	
	6.2.6	Measurement Survey:	16
	6.2.7	Test Conditions:	16
	6.2.8	Test Results for Radiated Spurious Emissions:	17
7	Test Eo	uipment and Ancillaries used for tests	
8		n History	45

1 Assessment

The following device was tested against the applicable criteria specified in FCC rules parts 2, 22 and 24 of Title 47 of the Code of Federal Regulations.

No deviations were ascertained during the course of the tests performed.

Company	Description	Model #
ResMed Ltd.	Continuous Positive Airway Pressure (CPAP) Device	28326

Responsible for Testing Laboratory:

11/14/2015	Compliance	Milton Ponce de Leon (Test Lab Manager)	
Date	Section	Name	Signature
Responsible for	the Report:		
	a	Anthony Planinac	
11/14/2015	Compliance	(EMC Engineer)	
Date	Section	Name	Signature

The test results of this test report relate exclusively to the test item specified in Section3. CETECOM Inc. USA does not assume responsibility for any conclusions and generalizations drawn from the test results with regard to other specimens or samples of the type of the equipment represented by the test item. The test report may only be reproduced or published in full. Reproduction or publication of extracts from the report requires the prior written approval of CETECOM Inc. USA.

Date of Report: 11/14/2015

2 Administrative Data

2.1 Identification of the Testing Laboratory Issuing the Test Report

Company Name:	CETECOM Inc.			
Department:	Compliance			
Address:	6370 Nancy Ridge Drive, Suite 101 San Diego, CA 92121 U.S.A.			
Telephone:	+1 (858) 362 2400			
Fax:	+1 (858) 587 4809			
Test Lab Manager:	Milton Ponce de Leon			
Responsible Project Leader	Anthony Planinac			

2.2 Identification of the Client

Applicant's Name:	ResMed Ltd.		
Street Address:	1 Elizabeth Macarthur Drive		
City/Zip Code	Bella Vista, NWS, 2153		
Country	Australia		
Contact Person:	Gerry O'Connor		
Phone No.	+612-8884-2165		
e-mail:	Gerrry.O'Connor@resmed.com.au		

2.3 Identification of the Manufacturer

Manufacturer's Name:	
Manufacturers Address:	Sama as aliant
City/Zip Code	Same as client.
Country	

Date of Report: 11/14/2015

3 Equipment under Test (EUT)

3.1 Specification of the Equipment under Test

Marketing Name / Description:	AirCurve 10 ST-A
Model Number:	28326
FCC-ID:	2ACHL-A10STACD
Product Description:	Continuous Positive Airway Pressure (CPAP) Device
Technology / Type(s) of Modulation:	CDMA 2000
Operating Frequency	850MHz
Ranges (MHz) / Channels:	1900MHz
Max. declared conducted power + tune up	24dBm +1/-0.5dBs
Antenna info:	Taoglas PA.25a, BC0 Gain =1.49dBi, BC1 Gain=2.3dBi
Rated Operating Voltage Range:	Vmin: 23V – Vmax: 25V
Rated Operating Temperature Range:	5°C to 35°C
Test Sample Status:	Prototype
Radios contained in the device:	Telit CE910-dual, FCC ID:R17CE910-Dual

Date of Report: 11/14/2015

3.2 Identification of the Equipment under Test (EUT)

EUT#	Serial Number	Model	SAMPLE	HW Version	SW Version
1	22151827466	28326	RADIATED	BOM 28326	SX558
2	22151827483	28326	CONDUCTED	BOM 28326	SX558

3.3 Identification of Accessory equipment

AE #	Туре	Manufacturer	Model	Part Number
1	AC Adapter	Resmed	370002	NA

3.4 Environmental conditions during Test:

The following environmental conditions were maintained during the course of testing:

Ambient Temperature: 20-25°C Relative humidity: 40-60%

3.5 Dates of Testing:

09/15/2015 - 09/18/2015

Date of Report: 11/14/2015

4 **Subject of Investigation**

The objective of the measurements applied by CETECOM Inc. Was to establish compliance of the EUT as described under Ch. 3 of this Test Report, with the applicable criteria specified in

- 47 CFR Part 2: Title 47 of the Code of Federal Regulations: Chapter I-Federal Communications Commission Frequency allocations and radio treaty matters; general rules and regulations.
- 47 CFR Part 22: Title 47 of the Code of Federal Regulations: Chapter I-Federal Communications Commission subchapter B- common carrier services; Part 22- Public mobile services
- 47 CFR Part 24: Title 47 of the Code of Federal Regulations: Chapter I-Federal Communications Commission subchapter B- common carrier services; Part 24- Personal communication services

This test report is to support a request for new equipment authorization under the FCC ID: **2ACHL-A10STACD**

All testing was performed on the product referred to in Section 3 as EUT.

This product integrates the precertified WWAN module: Telit CE910-dual.

Per guidelines from KDB 996369, conducted signal test results from module certification is reused for this certification as the output power has been verified to be within the specified production tolerances and measurement uncertainties.

The module test data can be obtained under the FCC Filing ID: R17CE910-Dual

FCC ID: 2ACHL-A10STACD **CETECOM**"

5 <u>Summary of Measurement Results</u>

BC0 850 MHz Band:

Specifications	Test Case	Temperature and Voltage Conditions	Mode	Pass	Fail	NA	NP	Result
\$2.1046 \$22.913 (b)	RF Output Power	Nominal	BC0					Complies
§2.1055 §22.355	Frequency Stability	Nominal	BC0				•	Complies
§2.1049 §22.917(b)	Occupied Bandwidth	Nominal	BC0					Complies
§2.1051 §22.917	Band Edge Compliance	Nominal	BC0				•	Complies
\$2.1051 \$22.917	Conducted Spurious Emissions	Nominal	BC0					Complies
§2.1053 §22.917	Radiated Spurious Emissions	Nominal	BC0					Complies

Note: NA= Not Applicable; NP= Not Performed (Leveraged from module certification).

Date of Report: 11/14/2015

BC1 1900 MHz Band:

Specifications	Test Case	Temperature and Voltage Conditions	Mode	Pass	Fail	NA	NP	Result
\$2.1046 \$24.232 (c)(d)	RF Output Power	Nominal	BC1	•				Complies
§24.232 (d)	Frequency Stability	Nominal	BC1				•	Complies
\$2.1049 \$22.917(b) RSS132 5.2	Occupied Bandwidth	Nominal	BC1					Complies
§2.1051 §24.238	Band Edge Compliance	Nominal	BC1				•	Complies
§2.1051 §22.917	Conducted Spurious Emissions	Nominal	BC1					Complies
§2.1053 §24.238	Radiated Spurious Emissions	Nominal	BC1					Complies

Note: NA= Not Applicable; NP= Not Performed (Leveraged from module certification).

Date of Report: 11/14/2015

FCC ID: 2ACHL-A10STACD **CETECOM**

6 Measurements

6.1 RF Power Output

6.1.1 **References**

FCC: CFR Part 2.1046, CFR Part 22.913, CFR Part 24.232, CFR Part 27.50

6.1.2 Measurement requirements:

6.1.2.1 FCC 2.1046: RF power output.

Power output shall be measured at the RF output terminals when the transmitter is adjusted in accordance with the tune-up procedure to give the values of current and voltage on circuit elements as specified. The electrical characteristics of the radio frequency load attached to the output terminals when this test is made shall be stated. RSS-Gen 4.8: RF power output.

6.1.3 **Limits:**

ERP (BC0 Band)

FCC Part 22.913 (a)

FCC: Peak ERP < 38.45 dBm (7W)

The effective radiated power (ERP) of mobile transmitters must not exceed 7 Watts.

EIRP (1900 MHz Band)

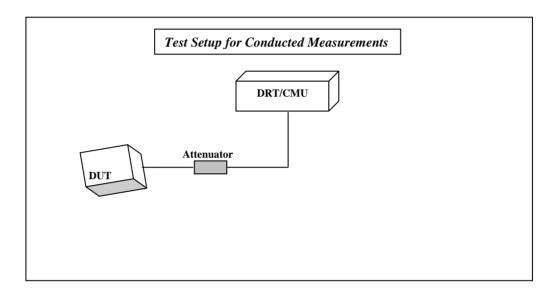
FCC Part 24.232 I I

FCC: Peak EIRP < 33 dBm (2W)

(b) Mobile/portable stations are limited to 2 Watts effective isotropic radiated power (EIRP). I Peak transmit power must be measured over any interval of continuous transmission using instrumentation calibrated in terms of an rms equivalent voltage. The measurement results shall be properly adjusted for any limitations, such as detector response times, limited resolution bandwidth capability when compared to the emission bandwidth, sensitivity, etc., so as to obtain a true peak measurement over the full bandwidth of the channel.

Date of Report: 11/14/2015

FCC ID: 2ACHL-A10STACD **CETECOM**


6.1.4 <u>Conducted Output Power Measurement</u>

6.1.4.1 Measurement Procedure:

Measurement according to KDB 971168 D01v02r02 (Measurement guidance for certification of Licensed Digital Transmitters)

Section 5.1.1 for peak power

Section 5.2.2 for average power

- 1. Connect the equipment as shown in the above diagram. A Digital Radio Communication Tester (DRT: R&S CMU200 here) is used to enable the EUT to transmit and to measure the output power.
- 2. Adjust the settings of the CMU200 to set the EUT to its maximum power at the required channel.
- 3. Record the Peak and Average Output power level measured by the CMU200.
- 4. Correct the measured level for all losses in the RF path.
- 5. Measurements are to be performed with the EUT set to the low, middle and high channel of each frequency band and for all types of modulation schemes.

6.1.4.2 Measurement Uncertainty

+/-0.5 dB

6.1.4.3 Test Conditions:

Tnom: 20°C; Vnom: 24 V

Date of Report: 11/14/2015

Measurement Results (Conducted Power Verification):

ERP BC0

BC0: CDMA Mode Antenna Gain = 1.50 dBi

FCC: Peak ERP < 38.45 dBm (7W)

Frequency PEAK Conducted Output Power (MHz) (dBm)		Average Conducted Output Power	Calculated Peak EIRP EIRP = Conducted + gain EIRP = Conducted + gain (ERP = EIRP - 2.15 dB)		Calculated Average EIRP Avg EIRP = Conducted + gain	
		(dBm)	(dBm)	(dBm)	(dBm)	
824.7(1013)	27.9	23.4	29.4	27.25	25.55	
836.52(384)	27.9	23.2	29.4	27.25	25.35	
848.31(777)	27.7	23.2	29.2	27.05	25.35	

EIRP BC1

BC1: CDMA Mode Antenna Gain = 2.2 dBi

FCC: Peak EIRP < 33 dBm (2W)

Frequency	PEAK Conducted Output Power	Average Conducted Output Power	Calculated Peak EIRP EIRP = Conducted + gain	Calculated Peak ERP (ERP = EIRP - 2.15 dB)	Calculated Average EIRP Avg EIRP = Conducted + gain
(MHz)	(dBm)	(dBm)	(dBm)	(dBm)	(dBm)
1851.25(25)	27.5	23.1	29.7	27.55	25.3
1880 (600)	27.5	23.0	29.7	27.55	25.1
1908.75 (1175)	27.0	22.4	29.2	27.05	24.6

6.1.4.4 Verification Result

the measured conducted average powers are 0.1 to 1.1 dB lower than the declared module powers minus declared variation. This may be expected due to ohmic and mismatch losses by integrating the module. This verification supports leveraging of conducted results from module report for certification.

6.1.4.4.1 Test Verdict

Pass.

Date of Report: 11/14/2015

6.2 Spurious Emissions Radiated

6.2.1 **References**

FCC: CFR Part 2.1053, CFR Part 22.917, CFR Part 24.238, CFR Part 27.53

6.2.2 Measurement requirements:

FCC 2.1053: Field strength of spurious radiation.

Measurements shall be made to detect spurious emissions that may be radiated directly from the cabinet, control circuits, power leads or intermediate circuit elements under normal conditions of installation and operation. Curves or equivalent data shall be supplied showing the magnitude of each harmonic and other spurious emission.

6.2.3 **Limits:**

(1) Out of band emissions. The power of any emission outside of the authorized operating frequency ranges must be attenuated below the transmitting power (P) by a factor of at least $43 + 10 \log(P) dB$.

For all power levels +30dBm to 0dBm, this becomes a constant specification of -13dBm.

FCC 22.917 Emission limitations for cellular equipment.

The rules in this section govern the spectral characteristics of emissions in the Cellular Radiotelephone Service.

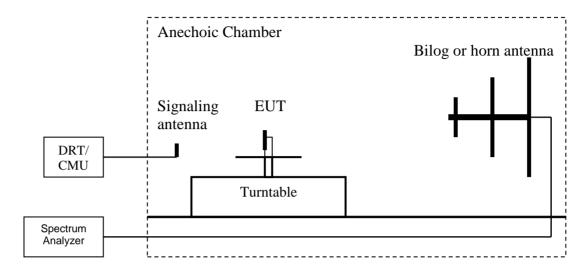
(b) *Measurement procedure*. Compliance with these provisions is based on the use of measurement instrumentation employing a resolution bandwidth of 100 kHz or greater. In the 1 MHz bands immediately outside and adjacent to the frequency block a resolution bandwidth of at least one percent of the emission bandwidth of the fundamental emission of the transmitter may be employed. A narrower resolution bandwidth is permitted in all cases to improve measurement accuracy provided the measured power is integrated over the full required measurement bandwidth (*i.e.* 100 kHz of 1 percent of emission bandwidth, as specified). The emission bandwidth is defined as the width of the signal between two points, one below the carrier center frequency and one above the carrier center frequency, outside of which all emissions are attenuated at least 26 dB below the transmitter power.

6.2.3.1 FCC 24.238 Emission limitations for Broadband PCS equipment.

The rules in this section govern the spectral characteristics of emissions in the Broadband Personal Communications Service.

(b) Measurement procedure. Compliance with these provisions is based on the use of measurement instrumentation employing a resolution bandwidth of 1 MHz or greater. However, in the 1 MHz bands immediately outside and adjacent to the frequency block a resolution bandwidth of at least one percent of the emission bandwidth of the fundamental emission of the transmitter may be employed. A narrower resolution bandwidth is permitted in all cases to improve measurement accuracy provided the measured power is integrated over the full required

Date of Report: 11/14/2015


measurement bandwidth (*i.e.* 100 kHz of 1 percent of emission bandwidth, as specified). The emission bandwidth is defined as the width of the signal between two points, one below the carrier center frequency and one above the carrier center frequency, outside of which all emissions are attenuated at least 26 dB below the transmitter power.

Date of Report:

FCC ID: 2ACHL-A10STACD CETECO Test Report #: 11/14/2015

6.2.4 Radiated out of band measurement procedure:

Ref: TIA-603C 2004- 2.2.12 Unwanted emissions: Radiated Spurious

- 1. Connect the equipment as shown in the above diagram with the EUT's antenna in a horizontal orientation.
- 2. Adjust the settings of the Digital Radio Communication Tester (DRT) to set the EUT to its maximum power at the required channel.
- 3. Set the spectrum analyzer to measure peak hold with the required settings.
- 4. Place the measurement antenna in a horizontal orientation. Rotate the EUT 360°. Raise the measurement antenna up to 4 meters in 0.5 meters increments and rotate the EUT 360° at each height to maximize all emissions. Measure and record all spurious emissions (LVL) up to the tenth harmonic of the carrier frequency.
- 5. Replace the EUT with a horizontally polarized half wave dipole or known gain antenna. The center of the antenna should be at the same location as the center of the EUT's antenna.
- 6. Connect the antenna to a signal generator with known output power and record the path loss in dB (**LOSS**). **LOSS** = Generator Output Power (dBm) – Analyzer reading (dBm).
- 7. Determine the level of spurious emissions using the following equation: **Spurious** (dBm) = LVL (dBm) + LOSS (dB):
- 8. Repeat steps 4, 5 and 6 with all antennas vertically polarized.
- 9. Determine the level of spurious emissions using the following equation: **Spurious** (dBm) = LVL (dBm) + LOSS (dB):
- 10. Measurements are to be performed with the EUT set to the low, middle and high channel of each frequency band.
 - (Note: Steps 5 and 6 above are performed prior to testing and LOSS is recorded by test software. Steps 3, 4 and 7 above are performed with test software.)

6.2.5 Sample Calculations for Radiated Measurements

6.2.5.1 Power Measurements using Substitution Procedure:

The measurement on the Spectrum Analyzer is used as a basis for the Substitution procedure. The EUT is replaced with a Signal Generator and an antenna. The setting on the Signal Generator is varied until the Spectrum Analyzer displays the original reading. EIRP is calculated as-

EIRP (dBm)= Signal Generator setting (dBm)- Cable Loss (dB)+ Antenna Gain (dBi)

Example:

Frequence (MHz)	Measured SA (dBμV)	Signal Generator setting (dBm)	Antenna Gain (dBi)	Dipole Gain (dBd)	Cable Loss (dB)	EIRP (dBm)
1000	95.5	24.5	6.5	0	3.5	27.5

6.2.6 **Measurement Survey:**

The site is constructed in accordance with ANSI C63.4 requirements and is recognized by the FCC to be in compliance for a 3m site. The spectrum is scanned from 30MHz to the 10th harmonic of the highest frequency generated by the EUT.

Radiated emissions measurements were made only at the upper, middle, and lower carrier frequencies of the 850 MHz and 1900 MHz bands of operation.

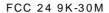
It was decided that measurements at these three carrier frequencies would be sufficient to demonstrate compliance with emissions limits because it was seen that all the significant spurs occur well outside the band and no radiation was seen from a carrier in one block of the BC0-850 MHz and the BC1-1900 MHz band into any of the other blocks respectively. The equipment must still, however, meet emissions requirements with the carrier at all frequencies over which it is capable of operating and it is the manufacturer's responsibility to verify this.

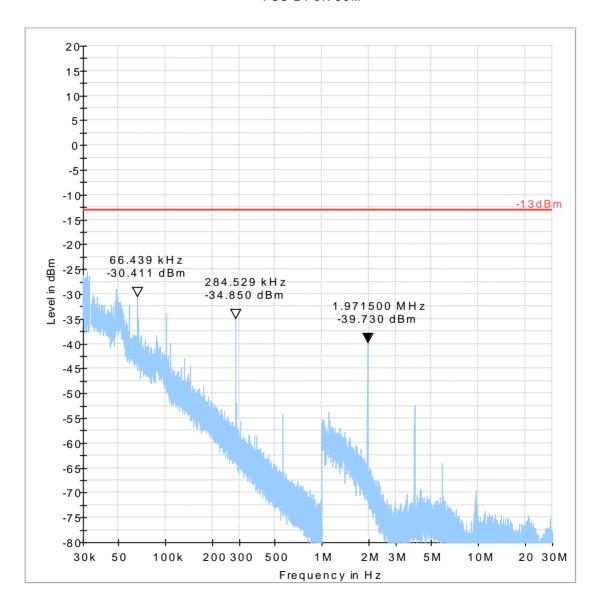
Radiated emission measurements were made in CDMA mode.

Additional spot checks in mid channel of operation for all modes were performed with the slimmer battery option of the device.

For radiated measurements, all data in this report shows the worst case emissions data between H/V antenna polarizations and for all 3 orthogonal orientations of the EUT.

Unless mentioned otherwise, the emission signals above the limit line in the plots are from the carrier

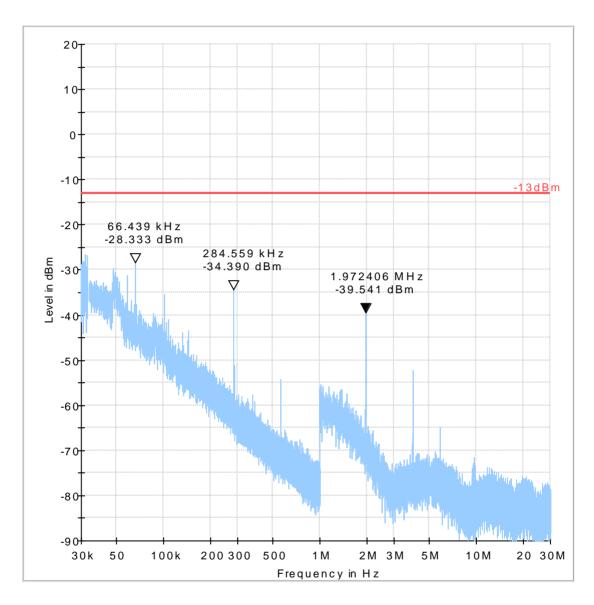

6.2.7 **Test Conditions:**


Tnom: 20°C: Vnom: 24 V

Test Results for Radiated Spurious Emissions: 6.2.8

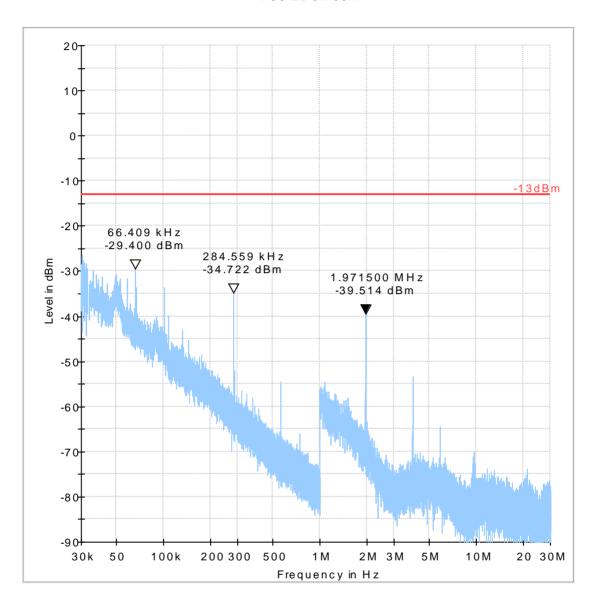
Radiated Spurious Emissions (BC0-850) Tx:

Test results: 30 kHz- 30 MHz – Low Channel (BC0-850)



-13dBm Preview Result 1-RMS Test Report #:

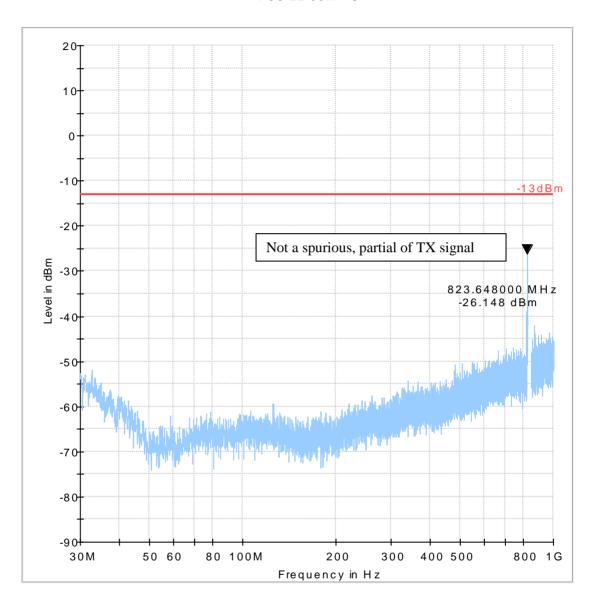
Test results: 30 kHz- 30 MHz – Mid Channel (BC0-850)


FCC 22 9K-30M

FCC ID: 2ACHL-A10STACD **CETECOM**™

Test results: 30 kHz- 30 MHz – High Channel (BC0-850)

FCC 22 9K-30M

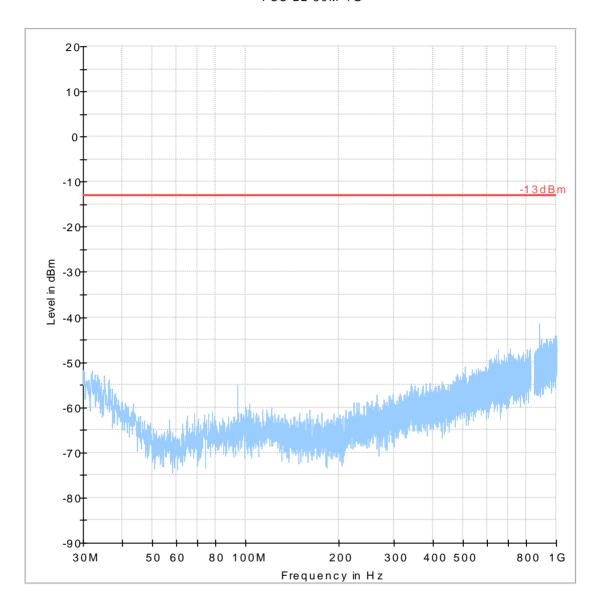


Test Report #:

FCC ID: 2ACHL-A10STACD **CETECOM**™

Test results - 30 MHz - 1GHz -Low Channel (BC0-850).

FCC 22 30M-1G

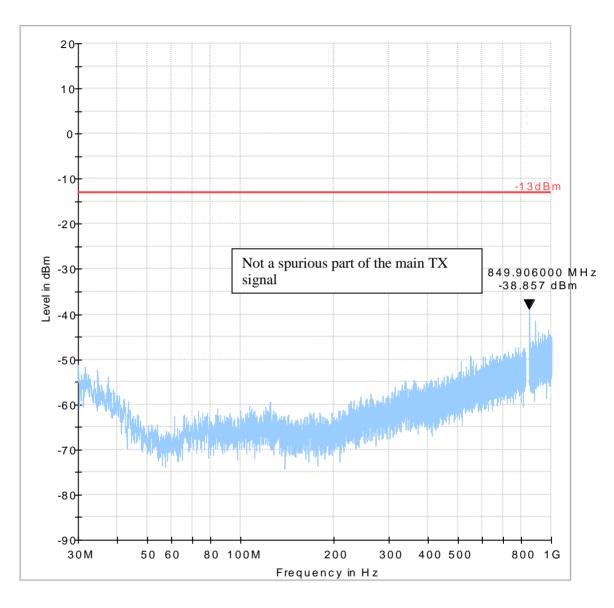


Test Report #:

FCC ID: 2ACHL-A10STACD **CETECOM**™

Test results - 30 MHz - 1GHz - Mid Channel (BC0-850).

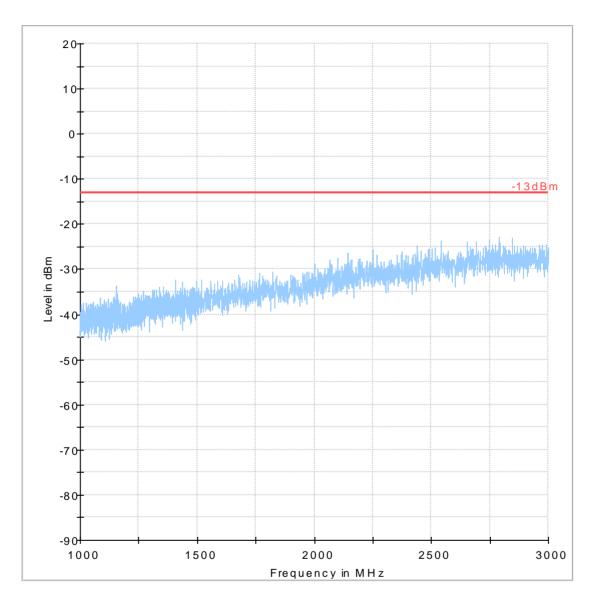
FCC 22 30M-1G



Test Report #:

FCC ID: 2ACHL-A10STACD **CETECOM**™

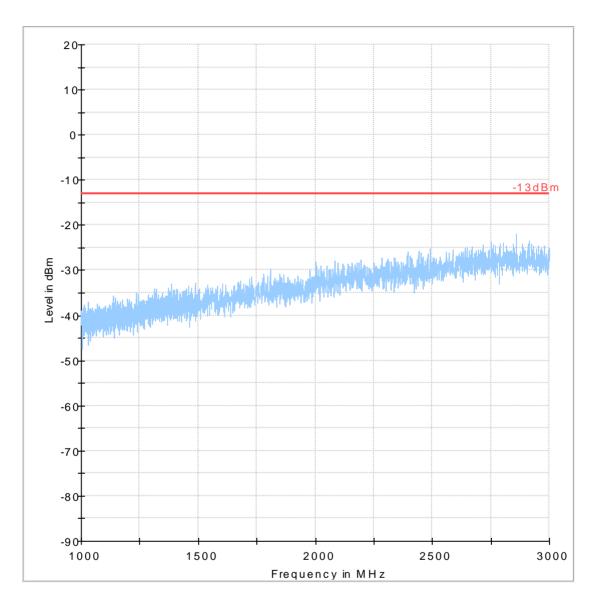
Test results - 30 MHz - 1GHz - High Channel (BC0-850).


FCC 22 30M-1G

FCC ID: 2ACHL-A10STACD **CETECOM**™

Test results – 1GHz – 3GHz –Low Channel (BC0-850)

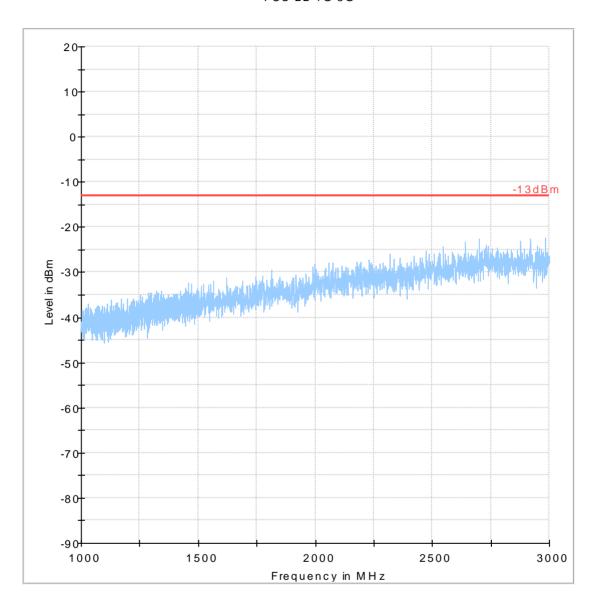
FCC 22 1G-3G


Date of Report:

11/14/2015

Test results – 1GHz – 3GHz – Mid Channel (BC0-850)

FCC 22 1G-3G

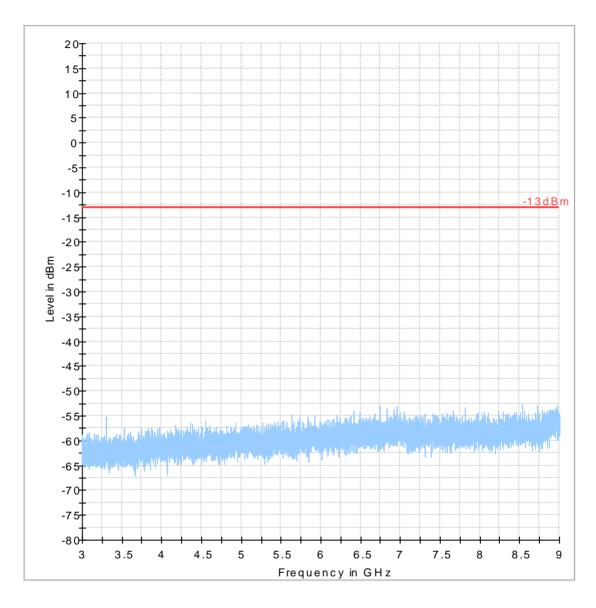

Preview Result 1-RMS -13dBm

Test Report #:

FCC ID: 2ACHL-A10STACD **CETECOM**™

Test results – 1GHz – 3GHz – High Channel (BC0-850)

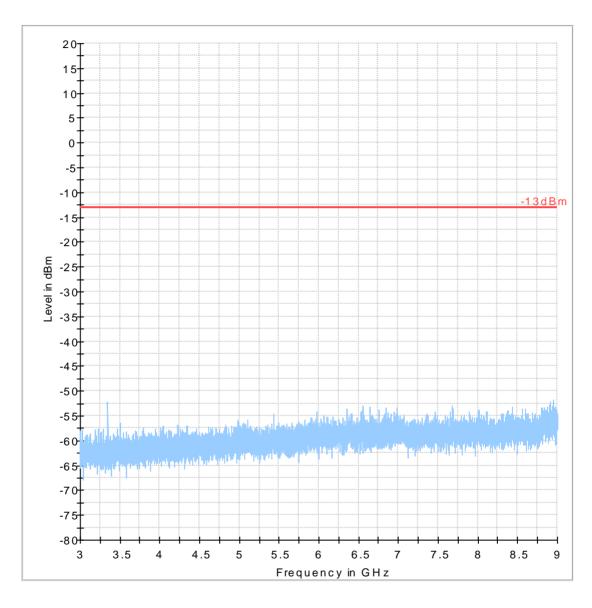
FCC 22 1G-3G



11/14/2015

FCC ID: 2ACHL-A10STACD **CETECOM™**

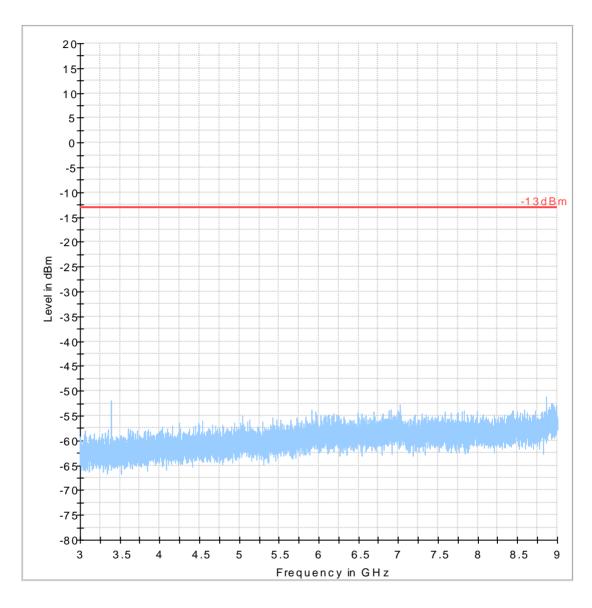
Test results – 3GHz – 9GHz – Low Channel (BC0-850)


FCC 22 3G-9G

FCC ID: 2ACHL-A10STACD **CETECOM**™

Test results – 3GHz – 9GHz – Mid Channel (BC0-850)

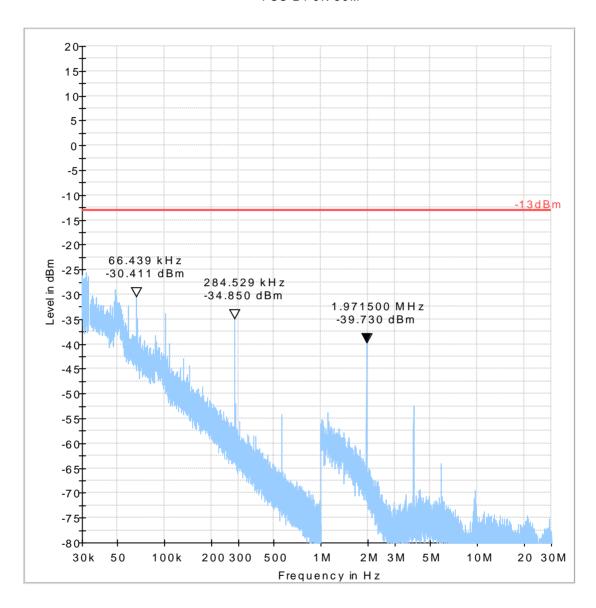
FCC 22 3G-9G



1/14/2015

Test results – 3GHz – 9GHz – High Channel (BC0-850)

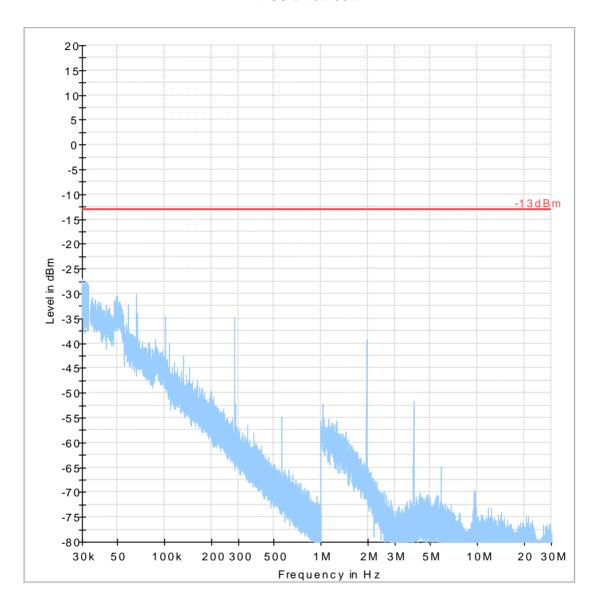
FCC 22 3G-9G


Test Report #:

t: 11/14/2015

Radiated Spurious Emissions (BC1-1900) Tx:

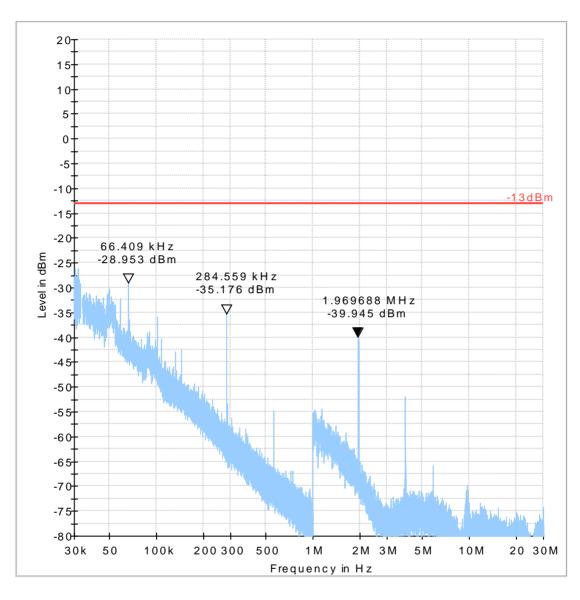
Test results 30 kHz- 30 MHz – Low Channel (BC1-1900)


FCC 24 9K-30M

EMC_CONN-046-15001_FCC 22_24_WWAN_v1.2 FCC ID: 2ACHL-A10STACD **CETECOM**™

Test results 30 kHz- 30 MHz - Mid Channel (BC1-1900)

FCC 24 9K-30M

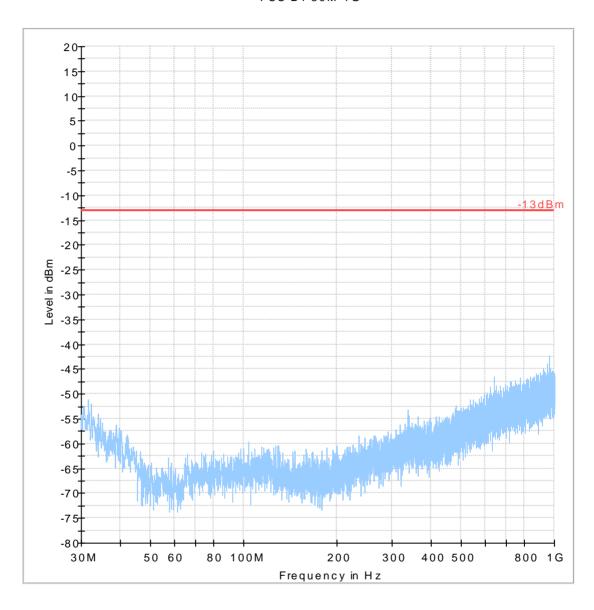


Preview Result 1-RMS -13dBm

FCC ID: 2ACHL-A10STACD **CETECOM**™

Test results 30 kHz- 30 MHz – High Channel (BC1-1900)

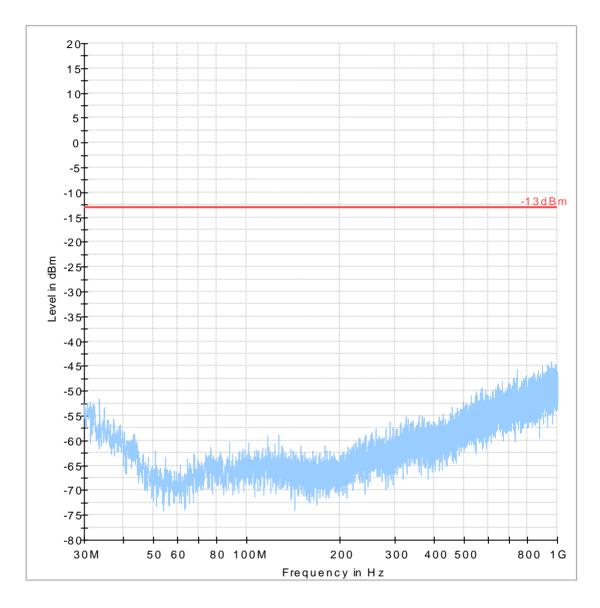
FCC 24 9K-30M



Test Report #:

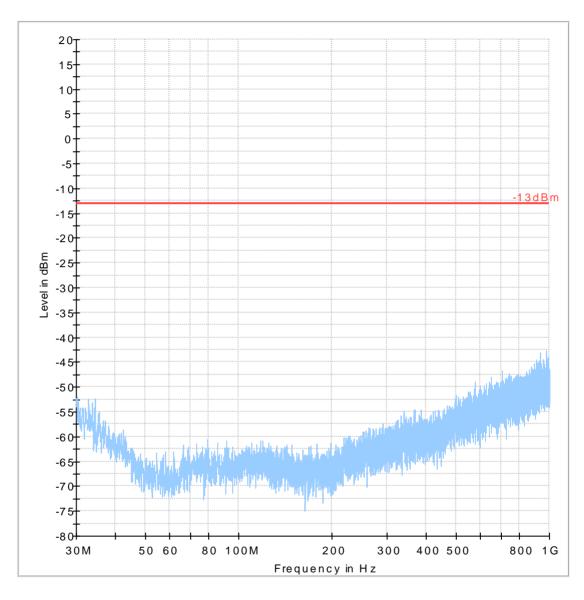
FCC ID: 2ACHL-A10STACD **CETECOM**™

Test results – 30 MHz – 1GHz –Low Channel (BC1- 1900)


FCC 24 30M-1G

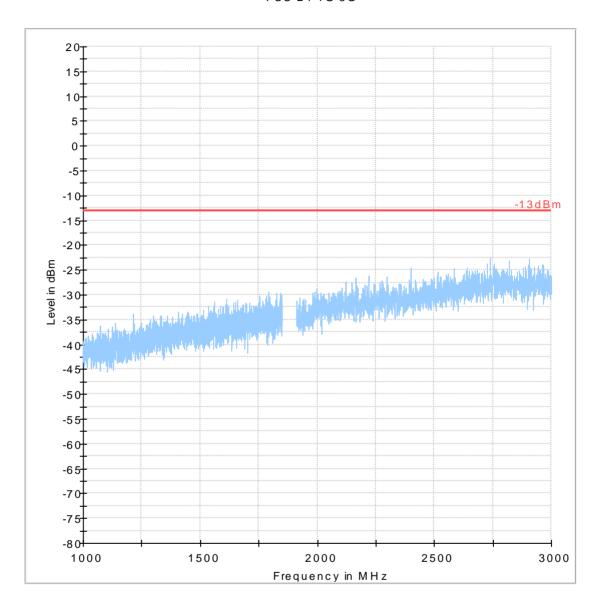
FCC ID: 2ACHL-A10STACD **CETECOM**™

Test results – 30 MHz – 1GHz – Mid Channel (BC1-1900)


FCC 24 30M-1G

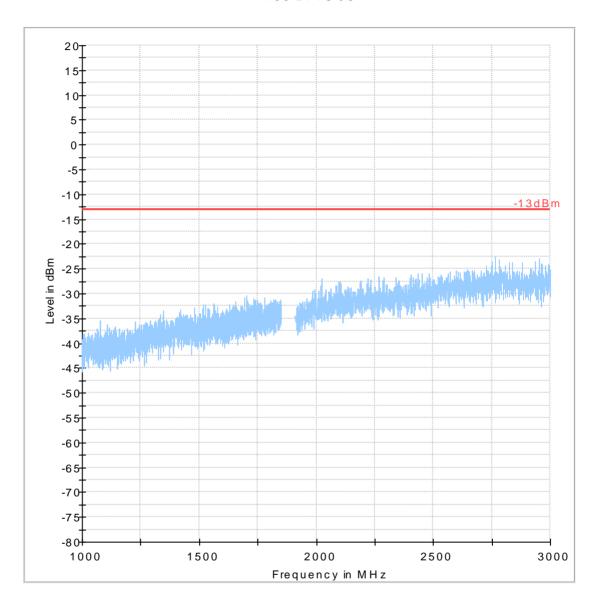
FCC ID: 2ACHL-A10STACD **CETECOM**™

Test results – 30 MHz – 1GHz – High Channel (BC1-1900)

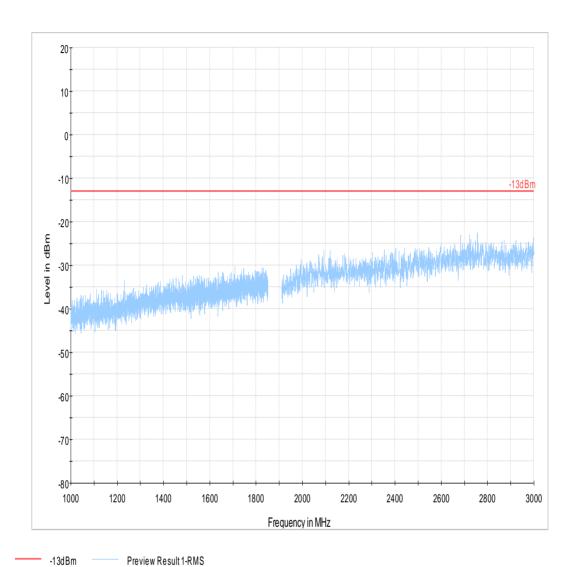

FCC 24 30M-1G

FCC ID: 2ACHL-A10STACD **CETECOM**™

Test results – 1GHz – 3GHz –Low Channel (BC1-1900)


FCC 24 1G-3G

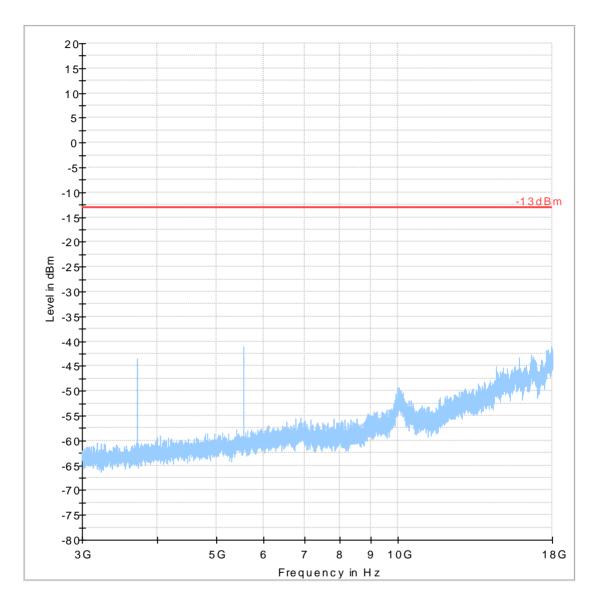
FCC ID: 2ACHL-A10STACD **CETECOM**™


Test results – 1GHz – 3GHz – Mid Channel (BC1-1900)

FCC 24 1G-3G

FCC ID: 2ACHL-A10STACD **CETECOM**™

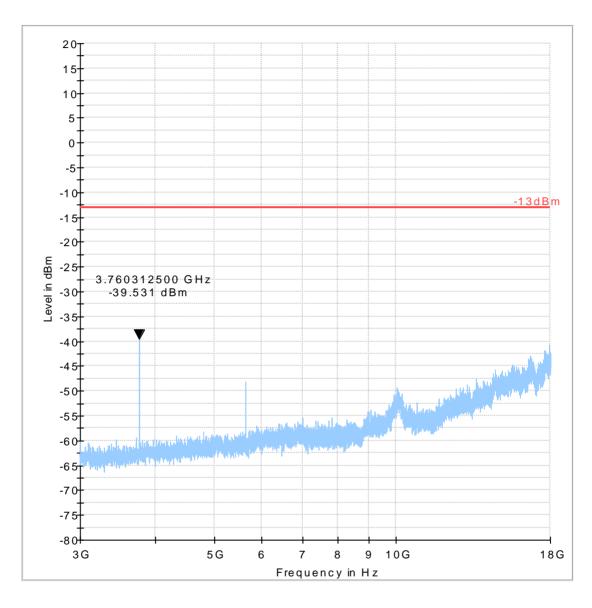
Test results – 1GHz – 3GHz – High Channel (BC1-1900)



EMC_CONN-046-15001_FCC 22_24_WWAN_v1.2

Test results – 3GHz – 18GHz – Low Channel (BC1-1900)

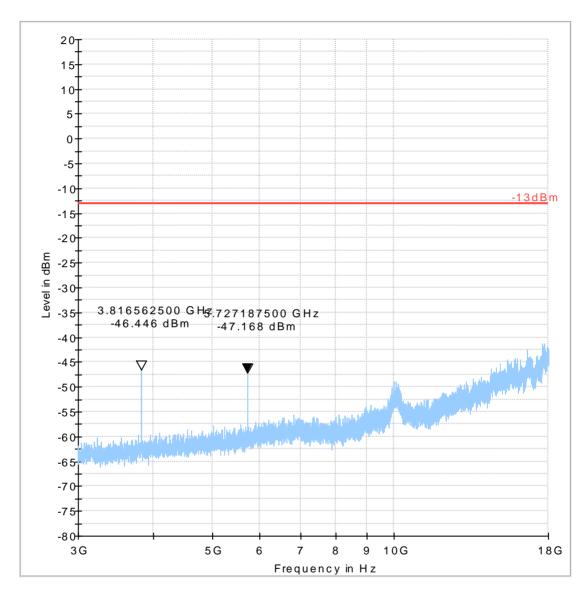
FCC 24 3G-18G



Preview Result 1-RMS -13dBm

FCC ID: 2ACHL-A10STACD **CETECOM**™

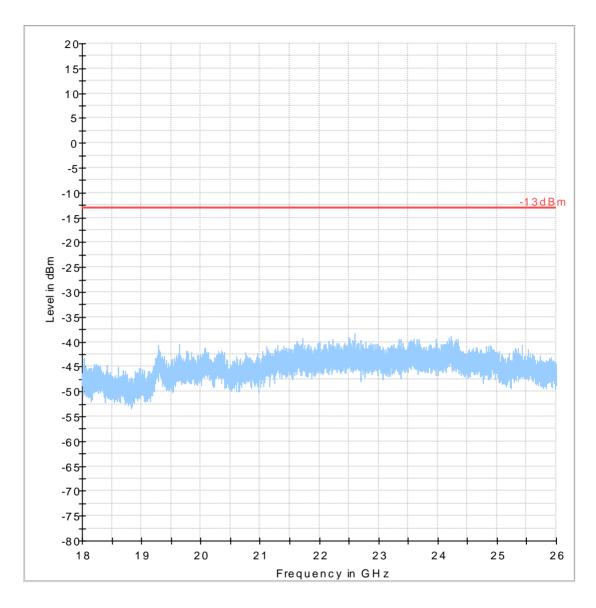
Test results – 3GHz – 18GHz – Mid Channel (BC1-1900)


FCC 24 3G-18G

FCC ID: 2ACHL-A10STACD **CETECOM**™

Test results – 3GHz – 18GHz – High Channel (BC1-1900)

FCC 24 3G-18G

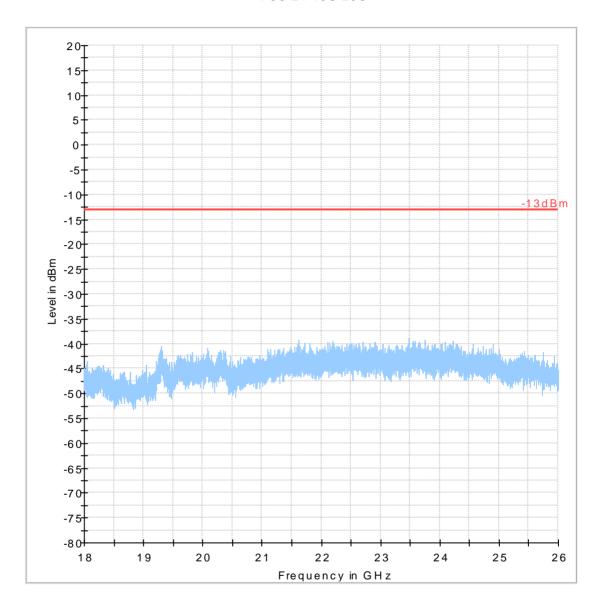


11/14/2015

Test results – 18GHz – 26GHz – Low Channel (BC1-1900)

FCC 24 18G-26G

Date of Report:


Test Report #:

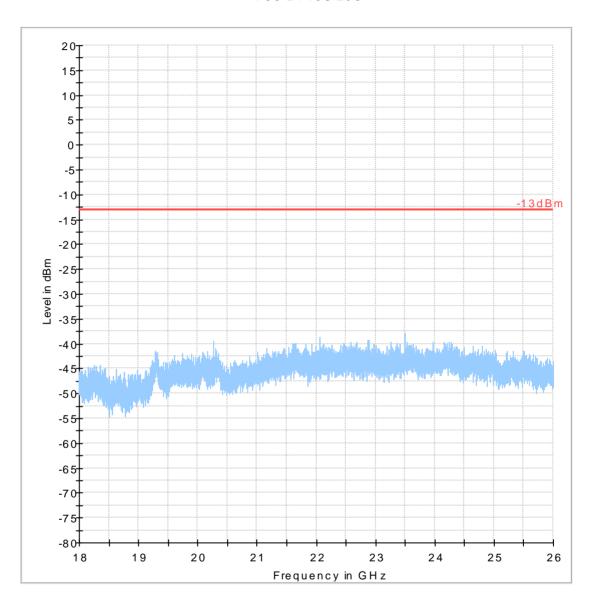
11/14/2015

FCC ID: 2ACHL-A10STACD **CETECOM**™

Test results – 18GHz – 26GHz – Mid Channel (BC1-1900)

FCC 24 18G-26G

-13dBm Preview Result 1-RMS Date of Report:


Test Report #:

11/14/2015

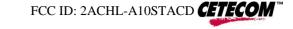
FCC ID: 2ACHL-A10STACD **CETECOM™**

Test results – 18GHz – 26GHz – High Channel (BC1-1900)

FCC 24 18G-26G

-13dBm Preview Result 1-RMS EMC_CONN-046-15001_FCC 22_24_WWAN_v1.2

Date of Report: 11/14/2015


Test Report #:

7 <u>Test Equipment and Ancillaries used for tests</u>

Equipment Name	Manufacturer	Type/Model	Serial No.	Cal Date	Cal Interval	Next cal date
3m Semi- Anechoic Chamber and Ground Plane:						
Spectrum Analyzer	Rohde und Schwarz	FSV 40	101022	7/2014	3 years	7/2017
Receiver	Rohde und Schwarz	ESR3	101663	7/2015	3 years	7/2018
LISN	Rohde und Schwarz	ESV 216	101129	7/2015	3 years	7/2018
Radio Communications Tester	Rohde and Schwarz	CMU 200	121672	7/2015	3 years	7/2018
Log Periodic Antenna	Rohde and Schwarz	HL 050	100515	4/2013	3 year	4/2016
Ultralog Antenna	Rohde and Schwarz	HL 562	100495	5/2015	3 year	5/2018
Double-ridge Horn Antenna (1G-18G)	ETS-Lindgren	3117-PA	00167061	7/2014	3 year	7/2017
Double-ridge Horn Antenna (18G-40G)	ETS-Lindgren	3116C-PA	00166821	7/2014	3 year	7/2017
Loop Antenna	ETS-Lindgren	6512	00164698	7/2014	3 year	7/2017
Open Switch Control Unit	Rohde and Schwarz	OPS 130	10085	n/a		
Extention Unit Open Switch Control Unit	Rohde and Schwarz	OSP 150	10086	n/a		
Turn Table TT	Maturo	1.5 SI	TT 1.5SI/204/6070 910	n/a		
Compact antenna Mast	Maturo	BAM 4.0-P	078/16550515	n/a		
Multiple Control Unit	Maturo	MCU	214/0000915	n/a		
Multiple Control Unit	Maturo	NCD	169/16550515			
Pre-Amplifier	Rohde and Schwarz	TS-PR 18	100072	Part of the system calibration		

Date of Report: 11/14/2015

8 Revision History

Date	Report Name	Changes to report	Report prepared by
10/13/2015	EMC_CONN-046-15001_FCC_22_24_WWAN_v1.0	First Revision	MPDL
11/05/2015	EMC_CONN-046-15001_FCC_22_24_WWAN_v1.1	Add max. Declared power and notes	MPDL
11/11/2015	EMC_CONN-046-15001_FCC_22_24_WWAN_v1.2	Updated comducted setup	MPDL