

RF TEST REPORT

Applicant	iRay Technology Co., Ltd.	
FCC ID	2ACHK-01070189	
Product	Wireless Digital Flat Panel Detector	
Brand	iRayTechnology	
Model	Mars1717XF-GSI; Mars1717XF-CSI	
Report No.	R2311A1195-R1	
Issue Date	February 1, 2024	

TA Technology (Shanghai) Co., Ltd. tested the above equipment in accordance with the requirements in **FCC CFR47 Part 15C (2023)**. The test results show that the equipment tested is capable of demonstrating compliance with the requirements as documented in this report.

Prepared by: Zhu Chentao

Approved by: Xu Kai

TA Technology (Shanghai) Co., Ltd.

Building 3, No.145, Jintang Rd, Pudong Shanghai, P.R.China TEL: +86-021-50791141/2/3 FAX: +86-021-50791141/2/3-8000 RF Test Report

TABLE OF CONTENT

1. Test Laboratory	4
1.1. Notes of the Test Report	4
1.2. Test Facility	4
1.3. Testing Location	
2. General Description of Equipment Under Test	5
2.1. Applicant and Manufacturer Information	
2.2. General Information	5
3. Applied Standards	7
4. Test Configuration	8
5. Test Case Results	9
5.1. Unwanted Emission	9
5.2. Conducted Emission	19
6. Main Test Instruments	22
ANNEX A: The EUT Appearance	23
ANNEX B: Test Setup Photos	24
ANNEX C: Product Change Description	25

Number	Test Case	Clause in FCC rules	Verdict	
1	Maximum output power	15.247(b)(3)	Not Test ¹	
2	99% Bandwidth and 6dB Bandwidth	15.247(a)(2) C63.10 6.9	Not Test ¹	
3	Power spectral density	15.247(e)	Not Test ¹	
4	Band Edge	15.247(d)	Not Test ¹	
5	Spurious RF Conducted Emissions	15.247(d)	Not Test ¹	
6	Unwanted Emissions	15.247(d), 15.205, 15.209	PASS	
7	Conducted Emissions	15.207	PASS	
Date of Testing: January 10, 2024 ~ January 17, 2024				
Date of Sample Received: November 6, 2023				

Summary of Measurement Results

Note:

1. Not Test means after evaluation, test items are no need to test, the test results please refer to Original Report.

2. All indications of Pass/Fail in this report are opinions expressed by TA Technology (Shanghai) Co., Ltd. based on interpretations and/or observations of test results. Measurement Uncertainties were not taken into account and are published for informational purposes only.

Mars1717XF-GSI; Mars1717XF-CSI (Report No.: R2311A1195-R1) is a variant model of Mars1717XF-GSI; Mars1717XF-CSI (Report No.: C180723R01-RPW).

The detailed product change description please refers to following table:

Different	Original	Variant
Model	Mars1717XF-GSI; Mars1717XF-CSI	Mars1717XF-GSI; Mars1717XF-CSI
Bottom	BATTERY-X	BATTERY-X
Battery 3500mAh 7.6V		4700mAh 7.7V
Label	Different	Different

This report only tests Unwanted Emissions (802.11n HT20, CH1) and Conducted Emissions (802.11n HT20).

This report is used in conjunction with the original report (Report No.: C180723R01-RPW). The detailed product change description please refers to the *Difference Declaration Letter*.

1. Test Laboratory

1.1. Notes of the Test Report

This report shall not be reproduced in full or partial, without the written approval of **TA Technology (Shanghai) Co., Ltd.** The results documented in this report apply only to the tested sample, under the conditions and modes of operation as described herein. Measurement Uncertainties were not taken into account and are published for informational purposes only. This report is written to support regulatory compliance of the applicable standards stated above.

1.2. Test Facility

FCC (Designation number: CN1179, Test Firm Registration Number: 446626)

TA Technology (Shanghai) Co., Ltd. has been listed on the US Federal Communications Commission list of test facilities recognized to perform measurements.

A2LA (Certificate Number: 3857.01)

TA Technology (Shanghai) Co., Ltd. has been listed by American Association for Laboratory Accreditation to perform measurement.

1.3. Testing Location

Company:	TA Technology (Shanghai) Co., Ltd.
Address:	Building 3, No.145, Jintang Rd, Pudong Shanghai, P.R.China
City:	Shanghai
Post code:	201201
Country:	P. R. China
Contact:	Xu Kai
Telephone:	+86-021-50791141/2/3
Fax:	+86-021-50791141/2/3-8000
Website:	https://www.eurofins.com/electrical-and-electronics
E-mail:	Kain.Xu@cpt.eurofinscn.com

2. General Description of Equipment Under Test

2.1. Applicant and Manufacturer Information

Applicant	iRay Technology Co., Ltd.
Applicant address	RM 202, Building 7, No. 590, Ruiqing RD.,Pudong, Shanghai, China
Manufacturer	iRay Technology Co., Ltd.
Manufacturer address	RM 202, Building 7, No. 590, Ruiqing RD.,Pudong, Shanghai, China

2.2. General Information

EUT Description				
Model	Mars1717XF-GSI; Mars1717XF-CSI			
Lab internal SN	R2311A1195/S01			
Hardware Version	V1			
Software Version	V2			
Power Supply	Battery / AC adapter			
Antenna Type	Internal Antenna			
Antenna Connector	A permanently attached antenna (meet with the standard FCC Part 15.203 requirement)			
Antonno Opin	Antenna 1: 1.91 dBi			
Antenna Gain	Antenna 2: 1.79 dBi			
Additional Beamforming Gain	NA			
Direction Gain	4.86 dBi			
Operating Frequency Range(s)	802.11b/g/n(HT20): 2412 ~ 2462 MHz 802.11n(HT40): 2422 ~ 2452 MHz			
Modulation Type	802.11b: DSSS 802.11g/n: OFDM			
EUT Accessory				
Switching Power Supply	Model: LXCP120-0240500 Input: 100-240V~, 50/60Hz, 2.5A Max. Output: 24.0VDC, 5.0A			
Charger	Model: CHARGER-KX Input: 24VDC, 3.3A Output: 8.7VDC, 2A			
Rechargeable Lithium Polymer Battery	Model: BATTERY-X Limiting charge voltage: 8.8VDC Output: 7.7VDC, 4700mAh			
Cable	AC Cable 180mm for Adapter DC Cable 450mm for Adapter			

🛟 eurofins

RF Test Report

Note:

1. The EUT is sent from the applicant to TA and the information of the EUT is declared by the applicant.

2. The two models are the same in electrical characteristics only except the scintillator screen material which does not influence essential performance. Model Mars1717XF-GSI uses

Gadolinium Sulfoxylate scintillator screen and model Mars Mars1717XF-CSI uses Caesium lodide scintillator screen. The scintillator screen is a kind of material which does not generate any electric and power consumption when it works.

3. This report only tests Mars1717XF-GSI.

3. Applied Standards

According to the specifications of the manufacturer, it must comply with the requirements of the following standards:

Test standards:

FCC CFR47 Part 15C (2023) Radio Frequency Devices

ANSI C63.10-2013

Reference standard:

KDB 558074 D01 15.247 Meas Guidance v05r02

KDB 662911 D01 Multiple Transmitter Output v02r01

4. Test Configuration

Test Mode

The EUT has been associated with peripherals and configuration operated in a manner tended to maximize its emission characteristics in a typical application.

The radiated emission was measured in the following position: EUT stand-up position (Z axis), lie-down position (X, Y axis). The worst emission was found in lie-down position (X axis) and the loop antenna is vertical, the others are vertical and horizontal. and the worst case was recorded.

In order to find the worst case condition, Pre-tests are needed at the presence of different data rate. Preliminary tests have been done on all the configuration for confirming worst case. Data rate below means worst-case rate of each test item.

Toot Mode	Data Rate		
Test Mode	Antenna 1	Antenna 2	MIMO
802.11b	1 Mbps	1 Mbps	1
802.11g	6 Mbps	6 Mbps	/
802.11n HT20	MCS0	MCS0	MCS8
802.11n HT40	MCS0	MCS0	MCS8

Worst-case data rates are shown as following table.

The worst case Antenna mode for each of the following tests for Wi-Fi:

Test Cases	Antenna 1	Antenna 2	MIMO
Unwanted Emissions			802.11n HT20
Conducted Emission			802.11n HT20

5. Test Case Results

5.1. Unwanted Emission

Ambient Condition

Temperature	Relative humidity
15°C ~ 35°C	20% ~ 80%

Method of Measurement

The test set-up was made in accordance to the general provisions of ANSI C63.10. The Equipment Under Test (EUT) was set up on a non-conductive table in the semi-anechoic chamber. The test was performed at the distance of 3 m between the EUT and the receiving antenna.

The turntable shall be rotated from 0 to 360 degrees for detecting the maximum of radiated spurious signal level. The measurements shall be repeated with orthogonal polarization of the test antenna. The data of cable loss and antenna factor has been calibrated in full testing frequency range before the testing. Sweep the Restricted Band and the emissions less than 20 dB below the permissible value are reported.

The radiated emissions measurements were made in a typical installation configuration.

Sweep the whole frequency band through the range from 9 kHz to the 10th harmonic of the carrier, and the emissions less than 20 dB below the permissible value are reported.

This method refer to ANSI C63.10. The procedure for peak unwanted emissions measurements above 1000 MHz is as follows: Set the spectrum analyzer in the following: 9kHz~150 kHz RBW=200Hz, VBW=1kHz/ Sweep=AUTO 150 kHz~30MHz RBW=9KHz, VBW=30KHz,/ Sweep=AUTO Below 1GHz RBW=100kHz / VBW=300kHz / Sweep=AUTO a) Peak emission levels are measured by setting the instrument as follows: Above 1GHz PEAK: RBW=1MHz VBW=3MHz/ Sweep=AUTO b) Average emission levels are measured by setting the instrument as follows: Above 1GHz AVERAGE: RBW=1MHz / VBW=3MHz / Sweep=AUTO c) Detector: The measurements employing a CISPR quasi-peak detector except for the frequency bands 9-90 kHz, 110-490 kHz and above 1000 MHz. Radiated emission limits in these three bands

are based on measurements employing an average detector.

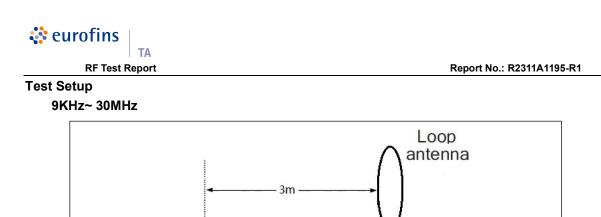
d) Averaging type = power (i.e., rms) (As an alternative, the detector and averaging type may be set for linear voltage averaging. Some instruments require linear display mode to use linear voltage

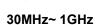
ТΔ

averaging. Log or dB averaging shall not be used.)

e) Sweep time = auto.

f) Perform a trace average of at least 100 traces if the transmission is continuous. If the transmission is not continuous, then the number of traces shall be increased by a factor of 1 / D, where D is the duty cycle. For example, with 50% duty cycle, at least 200 traces shall be averaged. (If a specific emission is demonstrated to be continuous—i.e., 100% duty cycle—then rather than turning ON and OFF with the transmit cycle, at least 100 traces shall be averaged.)

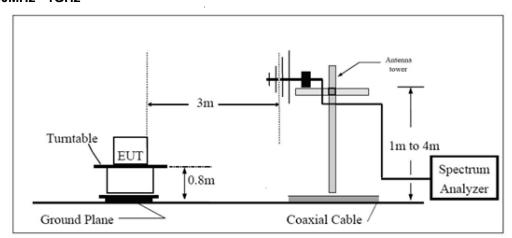

g) If tests are performed with the EUT transmitting at a duty cycle less than 98%, then a correction factor shall be added to the measurement results prior to comparing with the emission limit, to compute the emission level that would have been measured had the test been performed at 100% duty cycle. The correction factor is computed as follows:


1) If power averaging (rms) mode was used in the preceding step e), then the correction factor is [10 $\log (1 / D)$], where D is the duty cycle. For example, if the transmit duty cycle was 50%, then 3 dB shall be added to the measured emission levels.

2) If linear voltage averaging mode was used in the preceding step e), then the correction factor is [20 log (1 / D)], where D is the duty cycle. For example, if the transmit duty cycle was 50%, then 6 dB shall be added to the measured emission levels.

3) If a specific emission is demonstrated to be continuous (100% duty cycle) rather than turning ON and OFF with the transmit cycle, then no duty cycle correction is required for that emission.

The test is in transmitting mode.

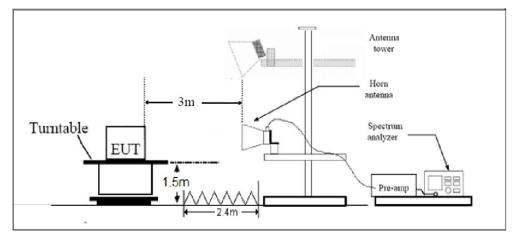


Turntable

Ground Plane

EUT

0.8m


1m

Coaxial Cable

Spectrum

Analyzer

Above 1GHz

Note: Area side:2.4mX3.6m

🔅 eurofins

RF Test Report

TA

Limits

Rule Part 15.247(d) specifies that "In addition, radiated emissions which fall in the restricted bands, as defined in § 15.205(a), must also comply with the radiated emission limits specified in § 15.209(a) (see § 15.205(c))."

Limit in restricted band

Frequency of emission (MHz)	Field strength(µV/m)	Field strength(dBµV/m)
0.009–0.490	2400/F(kHz)	1
0.490–1.705	24000/F(kHz)	1
1.705–30.0	30	1
30-88	100	40
88-216	150	43.5
216-960	200	46
Above960	500	54

§15.35(b)

There is also a limit on the radio frequency emissions, as measured using instrumentation with a peak detector function, corresponding to 20 dB above the maximum permitted average limit. Peak Limit=74 dB μ V/m

Average Limit=54 dBµV/m

🛟 eurofins

RF Test Report

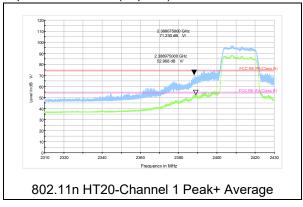
Report No.: R2311A1195-R1

Spurious Radiated Emissions are permitted in any of the frequency bands listed below:

MHz	MHz	MHz	GHz
0.090-0.110	16.42-16.423	399.9-410	4.5-5.15
¹ 0.495-0.505	16.69475-16.69525	608-614	5.35-5.46
2.1735-2.1905	16.80425-16.80475	960-1240	7.25-7.75
4.125-4.128	25.5-25.67	1300-1427	8.025-8.5
4.17725-4.17775	37.5-38.25	1435-1626.5	9.0-9.2
4.20725-4.20775	73-74.6	1645.5-1646.5	9.3-9.5
6.215-6.218	74.8-75.2	1660-1710	10.6-12.7
6.26775-6.26825	108-121.94	1718.8-1722.2	13.25-13.4
6.31175-6.31225	123-138	2200-2300	14.47-14.5
8.291-8.294	149.9-150.05	2310-2390	15.35-16.2
8.362-8.366	156.52475-156.52525	2483.5-2500	17.7-21.4
8.37625-8.38675	156.7-156.9	2690-2900	22.01-23.12
8.41425-8.41475	162.0125-167.17	3260-3267	23.6-24.0
12.29-12.293	167.72-173.2	3332-3339	31.2-31.8
12.51975-12.52025	240-285	3345.8-3358	36.43-36.5
12.57675-12.57725	322-335.4	3600-4400	(2)
13.36-13.41			

Measurement Uncertainty

The assessed measurement uncertainty to ensure 95% confidence level for the normal distribution is with the coverage factor k = 1.96.


Frequency	Uncertainty				
9KHz-30MHz	3.55 dB				
30MHz-200MHz	4.17 dB				
200MHz-1GHz	4.84 dB				
1-18GHz	4.35 dB				
18-26.5GHz	5.90 dB				
26.5GHz~40GHz	5.92 dB				

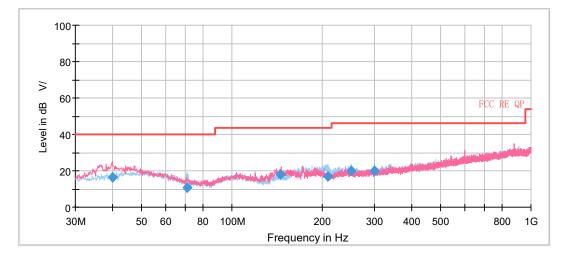
Report No.: R2311A1195-R1

Test Results:

A symbol (dB V/) in the test plot below means ($^{dB}\mu$ V/m)

RF Test Report

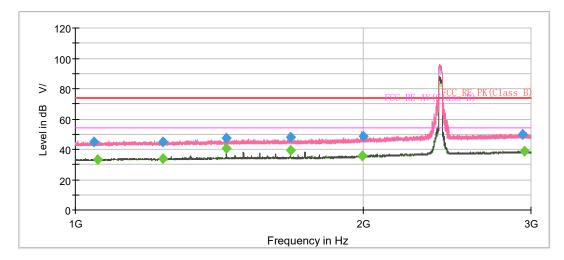
Result of RE


Test result

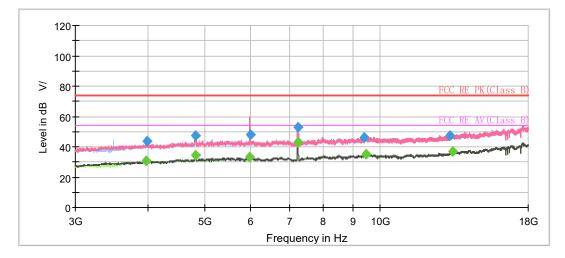
Sweep the whole frequency band through the range from 9kHz to the 10th harmonic of the carrier, the Emissions in the frequency band 9kHz-30MHz are more than 20dB below the limit are not reported.

The following graphs display the maximum values of horizontal and vertical by software. For above 1GHz, Blue trace uses the peak detection, Green trace uses the average detection.

Continuous TX mode:


A symbol (dB $^{V\prime})$ in the test plot below means (dBµV/m) 802.11n (HT20) CH1

Frequency (MHz)	Quasi-Peak (dBµV/m)	Limit (dBµV/m)	Margin (dB)	Height (cm)	Polarization	Azimuth (deg)	Correct Factor (dB)
39.942500	16.37	40.00	23.63	100.0	V	68.0	19.8
71.061250	10.52	40.00	29.48	100.0	Н	188.0	16.1
145.55750	17.78	43.50	25.72	111.0	V	135.0	15.4
209.97625	16.91	43.50	26.59	175.0	Н	121.0	18.3
249.98750	20.19	46.00	25.81	100.0	Н	268.0	20.5
299.98375	20.22	46.00	25.78	125.0	Н	154.0	20.9


Remark: 1. Correction Factor = Antenna factor + Insertion loss (cable loss + amplifier gain) 2. Margin = Limit – Quasi-Peak

Note: The signal beyond the limit is carrier. Radiates Emission from 1GHz to 3GHz

Frequency (MHz)	MaxPeak (dBµV/m)	Average (dBµV/m)	Limit (dBµV/m)	Margin (dB)	Meas. Time (ms)	Height (cm)	Pol	Azimuth (deg)	Corr. (dB/m)
1045.958620	44.82		74.00	29.18	500.0	100.0	V	283.0	1.9
1054.315500		33.37	54.00	20.63	500.0	200.0	Н	43.0	1.9
1234.536800	44.79		74.00	29.21	500.0	200.0	Н	270.0	3.0
1235.402061		33.71	54.00	20.29	500.0	200.0	V	177.0	3.0
1440.034200		40.54	54.00	13.46	500.0	200.0	Н	237.0	4.2
1440.322200	47.41		74.00	26.59	500.0	200.0	Н	237.0	4.2
1679.834100	47.99		74.00	26.01	500.0	100.0	н	255.0	5.3
1679.932800		39.39	54.00	14.61	500.0	100.0	Н	255.0	5.3
1997.583900		35.74	54.00	18.26	500.0	100.0	V	74.0	6.5
2002.256049	48.40		74.00	25.60	500.0	200.0	V	270.0	6.5
2938.198856	49.69		74.00	24.31	500.0	200.0	V	0.0	9.3
2953.359360		38.54	54.00	15.46	500.0	200.0	V	288.0	9.3

🔅 eurofins

TA

RF Test Report

Radiates Emission from 3GHz to 18GHz

Frequency (MHz)	MaxPeak (dBµV/m)	Average (dBµV/m)	Limit (dBµV/m)	Margin (dB)	Meas. Time (ms)	Height (cm)	Pol	Azimuth (deg)	Corr. (dB/m)
3976.875000		30.59	54.00	23.41	500.0	100.0	V	198.0	-7.2
3988.125000	43.82		74.00	30.18	500.0	100.0	V	1.0	-7.1
4818.750000	47.08		74.00	26.92	500.0	100.0	Н	272.0	-5.6
4820.625000		34.75	54.00	19.25	500.0	100.0	V	152.0	-5.6
5971.875000		33.31	54.00	20.69	500.0	200.0	V	0.0	-4.0
5992.500000	47.72		74.00	26.28	500.0	200.0	V	324.0	-3.9
7231.875000		43.01	54.00	10.99	500.0	100.0	V	94.0	-3.2
7243.125000	52.97		74.00	21.03	500.0	100.0	V	68.0	-3.1
9423.750000	46.17		74.00	27.83	500.0	100.0	н	76.0	-0.6
9465.000000		35.28	54.00	18.72	500.0	100.0	V	166.0	-0.3
13198.12500	47.61		74.00	26.39	500.0	100.0	V	87.0	2.8
13340.62500		36.89	54.00	17.11	500.0	100.0	V	68.0	3.3

Remark: 1. Correction Factor = Antenna factor + Insertion loss (cable loss + amplifier gain) 2. Margin = Limit –MAX Peak/ Average

Radiates Emission from 18GHz to 26.5GHz

Frequency (MHz)	MaxPeak (dBµV/m)	Average (dBµV/m)	Limit (dBµV/m)	Margin (dB)	Meas. Time Heigh (ms) (cm)		Pol	Azimuth (deg)	Corr. (dB/m)
19013.432500		37.72	54.00	16.28	500.0	100.0	Н	101.0	-3.0
19046.966250	49.55		74.00	24.45	500.0	100.0	V	288.0	-3.0
20526.297500	47.55		74.00	26.45	500.0	100.0	Н	58.0	-2.8
20533.173750		35.97	54.00	18.03	500.0	100.0	Н	132.0	-2.8
21992.658750	48.77		74.00	25.23	500.0	100.0	Н	0.0	-1.7
22024.341250		36.32	54.00	17.68	500.0	100.0	V	129.0	-1.7
23457.887500	48.65		74.00	25.35	500.0	100.0	V	318.0	-1.5
23487.672500		36.27	54.00	17.73	500.0	100.0	V	352.0	-1.5
24786.348750	47.47		74.00	26.53	500.0	100.0	Н	157.0	-0.6
24833.460000		37.18	54.00	16.82	500.0	100.0	Н	58.0	-0.7
25978.456250	46.98		74.00	27.02	500.0	100.0	V	135.0	-0.2
26003.528750		36.78	54.00	17.22	500.0	100.0	Н	245.0	-0.1

Remark: 1. Correction Factor = Antenna factor + Insertion loss (cable loss + amplifier gain)

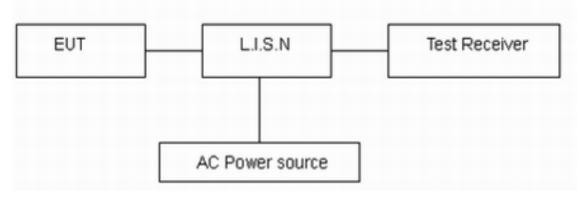
2. Margin = Limit –MAX Peak/ Average

🔅 eurofins

TA

RF Test Report

5.2. Conducted Emission


Ambient Condition

Temperature	Relative humidity
15°C ~ 35°C	20% ~ 80%

Methods of Measurement

The EUT is placed on a non-metallic table of 80cm height above the horizontal metal reference ground plane. During the test, the EUT was operating in its typical mode. The test method is according to ANSI C63.10. Connect the AC power line of the EUT to the L.I.S.N. Use EMI receiver to detect the average and Quasi-peak value. RBW is set to 9 kHz, VBW is set to 30kHz. The measurement result should include both L line and N line. The test is in transmitting mode.

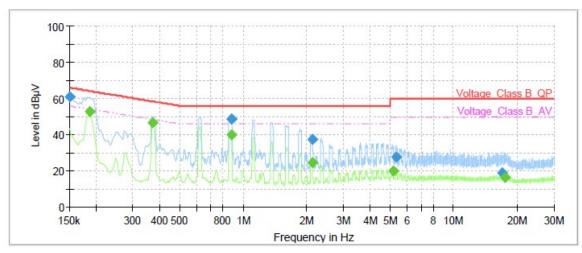
Test Setup

Note: AC Power source is used to change the voltage 120V/60Hz.

	im	its
_		

Frequency	Conducted Limits(dBµV)							
(MHz)	Quasi-peak	Average						
0.15 - 0.5	66 to 56 *	56 to 46*						
0.5 - 5	.5 - 5 56 46							
5 - 30	60	50						
*: Decreases wit	* Decreases with the logarithm of the frequency.							

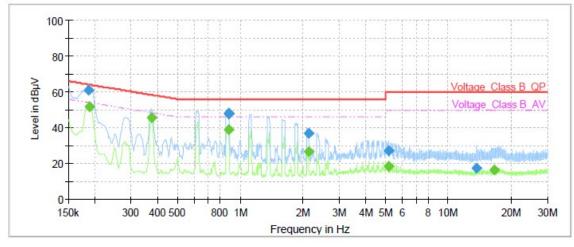
Measurement Uncertainty


The assessed measurement uncertainty to ensure 95% confidence level for the normal distribution is with the coverage factor k = 1.96, U= 2.69 dB.

Report No.: R2311A1195-R1

Test Results:

Following plots, Blue trace uses the peak detection and Green trace uses the average detection.



Frequency (MHz)	QuasiPeak (dBµV)	Average (dBµV)	Limit (dBµV)	Margin (dB)	Meas. Time (ms)	Bandwidth (kHz)	Line	Filter	Corr. (dB)
0.15	61.21		66.00	4.79	1000.0	9.000	L1	ON	21.0
0.19		52.72	54.21	1.49	1000.0	9.000	L1	ON	21.1
0.37		46.86	48.44	1.58	1000.0	9.000	L1	ON	21.0
0.88	48.70		56.00	7.30	1000.0	9.000	L1	ON	20.3
0.88		40.00	46.00	6.00	1000.0	9.000	L1	ON	20.3
0.88	48.57		56.00	7.43	1000.0	9.000	L1	ON	20.3
2.12		24.46	46.00	21.54	1000.0	9.000	L1	ON	19.7
2.13	37.34		56.00	18.66	1000.0	9.000	L1	ON	19.7
5.15		19.95	50.00	30.05	1000.0	9.000	L1	ON	19.5
5.33	27.66		60.00	32.34	1000.0	9.000	L1	ON	19.5
16.93	18.79		60.00	41.21	1000.0	9.000	L1	ON	19.7
17.61		16.61	50.00	33.39	1000.0	9.000	L1	ON	19.7

Remark: Correct factor=cable loss + LISN factor

L line Conducted Emission from 150 kHz to 30 MHz

Frequency (MHz)	QuasiPeak (dBµV)	Average (dBµV)	Limit (dBµV)	Margin (dB)	Meas. Time (ms)	Bandwidth (kHz)	Line	Filter	Corr. (dB)
0.19	60.82		64.21	3.39	1000.0	9.000	N	ON	21.1
0.19		51.94	54.11	2.17	1000.0	9.000	N	ON	21.1
0.38		45.51	48.39	2.88	1000.0	9.000	N	ON	21.0
0.88	47.96		56.00	8.04	1000.0	9.000	N	ON	20.3
0.88	47.79		56.00	8.21	1000.0	9.000	N	ON	20.3
0.88		39.09	46.00	6.91	1000.0	9.000	N	ON	20.3
2.13	37.03		56.00	18.97	1000.0	9.000	N	ON	19.7
2.13		26.56	46.00	19.44	1000.0	9.000	N	ON	19.7
5.15		18.54	50.00	31.46	1000.0	9.000	N	ON	19.5
5.15	27.14		60.00	32.86	1000.0	9.000	N	ON	19.5
13.70	17.45		60.00	42.55	1000.0	9.000	N	ON	19.6
16.58		16.16	50.00	33.84	1000.0	9.000	Ν	ON	19.7

Remark: Correct factor=cable loss + LISN factor

N line Conducted Emission from 150 kHz to 30 MHz

6. Main Test Instruments

Name	Manufacturer	Туре	Serial Number	Calibration Date	Expiration Date
		Unwanted Emissior	าร		
EMI Test Receiver	R&S	ESR	102389	2023-05-12	2024-05-11
Signal Analyzer	R&S	FSV40	101186	2023-05-12	2024-05-11
TRILOG Broadband Antenna	SCHWARZBECK	VULB 9163	1023	2023-07-14	2026-07-13
Horn Antenna	R&S	HF907	102723	2021-07-24	2024-07-23
Amplifier	R&S	SCU18	10034	2023-05-12	2024-05-11
Horn Antenna	ETS-Lindgren	3160-09	00102643	2021-10-10	2024-10-09
Horn Antenna	STEATITE	QSH-SL-26-40- K-15	16779	2023-01-17	2026-01-16
Amplifier	MicroWave	KLNA-18040050	220826001	2023-05-12	2024-05-11
Software	R&S	EMC32	9.26.01	/	/
		Conducted Emissio	n		
Artificial main network	R&S	ENV216	102191	2022-12-10	2024-12-09
EMI Test Receiver	R&S	ESR	101667	2023-05-12	2024-05-11
Software	R&S	EMC32	10.35.10	/	/

Report No.: R2311A1195-R1

ANNEX A: The EUT Appearance

The EUT Appearance are submitted separately.

ANNEX B: Test Setup Photos

The Test Setup Photos are submitted separately.

ANNEX C: Product Change Description

The Product Change Description are submitted separately.

****** END OF REPORT ******