

TEST REPORT

FCC ID: 2ACGI-TX900MHH

Applicant : Audio Resource Group, Inc

Address : 405 Main Ave W, Suite 4G, West Fargo, ND58078, USA

Equipment Under Test (EUT):

Name	:	900MHz digital handheld microphone
		ARG-TX900M-HH,RAW-TX900M-HH,
Model	dodel :	ARG-TX900M-HH-X,RAW-TX900M-HH-X,
		ARG-TX900M-HH-XX,RAW-TX900M-HH-XX,
		ARG-TX900M-HH-XXX, RAW-TX900M-HH-XXX

In Accordance with: FCC PART 15, SUBPART C: 2014 (Section 15.247)

Report No : T1850075 01

Date of Test : January 30, 2015 to February 26, 2015

Date of Issue : March 13, 2015

Test Result : PASS

In the configuration tested, the EUT complied with the standards specified above

Authorized Signature

(Mark Zhu) General Manager

The manufacture should ensure that all the products in series production are in conformity with the product sample detailed in this report. If the product in this report is used in any configuration other than that detailed in the report, the manufacturer must ensure the new system complies with all relevant standards. Any mention of Alpha Product Testing Laboratory Or test done by Alpha Product Testing Laboratory Approvals in connection with, distribution or use of the product described in this report must be approved by Alpha Product Testing Laboratory Approvals in writing.

TABLE OF CONTENT

1	Gene	eral Informationeral Information	
	1.1	Description of Device (EUT)	3
	1.2	Description of Test Facility	4
		Equipment List	
3 T		rocedure	
4	Sum	mary of Measurement	· 6
	4.1	Summary of test result	
	4.2	Test connection	
	4.3	Assistant equipment used for test	
	4.4	Test mode	
	4.5	Test Conditions	
	4.6	Measurement Uncertainty (95% confidence levels, k=2)	7
5	Spu	rious Emission	·8
	5.1	Radiation Emission	
6		VER LINE CONDUCTED EMISSION	
	6.1	Conducted Emission Limits(15.207)	
	6.2	Test Setup	
	6.3	Test Procedure	
	6.4	Test Results	
7		ducted Maximum Output Power	
	7.1	Test limit	
	7.2	Test Procedure	
	7.3	Test Setup	
_	7.4	Test Results	
8		K POWER SPECTRAL DENSITY	
	8.1	Test limit	
	8.2	Method of measurement	
	8.3	Test Setup	
_	8.4	Test Results	_
9		dwidth	
	9.1	Test limit	
	9.2	Method of measurement	
	9.3	Test Setup	
4.0	9.4	Test Results	
10		d Edge Check	
	10.1	Test limit	
	10.2	Test Procedure	
	10.3	Test Setup	
44	10.4	Test Result	
11		enna Requirement	
	11.1	Standard Requirement	
	11.2	Antenna Connected Construction Result	
12	11.3		
12		tographs of Test SetupPhotos of Radiated emission	
12		tographs of EUTtographs	
ıJ		LUVI AVIJO VI LU I	Z9

1 General Information

1.1 Description of Device (EUT)

EUT : 900MHz digital handheld microphone

Model No. : ARG-TX900M-HH, RAW-TX900M-HH,

ARG-TX900M-HH-X, RAW-TX900M-HH-X, ARG-TX900M-HH-XX,

RAW-TX900M-HH-XX, ARG-TX900M-HH-XXX,

RAW-TX900M-HH-XXX

DIFF Only different in Model No, the other the same. The test model:

ARG-TX900M-HH

Trade mark : ARG

Power supply : DC 3V, 2*1.5V AA Battery

Radio Technology : O-QPSK

Operation frequency: 903-927MHz

Channel No. 25 Channels

Modulation : O-QPSK

Antenna Type : Integrated Antenna, max gain 0dBi.

Applicant : Audio Resource Group, Inc

Address : 405 Main Ave W, Suite 4G, West Fargo, ND58078, USA

Manufacturer : Shenzhen Alors Technology Co., Ltd.

Address : South of 4th Floor, BLDG23, LianChuang Sci&Tech Park, Bulan

Road, LongGang District, Shenzhen

1.2 Description of Test Facility

Alpha Product Testing Laboratory Building B, East Area of Nanchang Second, Industrial Zone, Gushu 2nd Road, Bao'an, Shenzhen, China

August 11, 2014 File on Federal Communication Commission

Registration Number: 203110

July 18, 2014 Certificated by IC Registration Number: 12135A

2 EMC Equipment List

Equipment	Manufacture	Model No.	Serial No.	Last cal.	Cal Interval
3m Semi-Anechoic	ETS-LINDGREN	N/A	SEL0017	2015.01.19	1Year
Spectrum analyzer	Agilent	E4407B	MY49510055	2015.01.19	1Year
Receiver	R&S	ESCI	101165	2015.01.19	1Year
Bilog Antenna	SCHWARZBECK	VULB 9168	9168-438	2015.01.21	2Year
Horn Antenna	Horn Antenna SCHWARZBECK		BBHA 9120 D(1201)	2015.01.21	2Year
Horn Antenna	SCHWARZBECK	BBHA 9170	BBHA 9170 D(1432)	2015.01.21	2Year
Active Loop Antenna	Beijing Daze	ZN30900A	SEL0097	2015.01.19	1Year
Cable	Resenberger	SUCOFLEX 104	MY6562/4	2015.01.19	1Year
Cable	Resenberger	SUCOFLEX 104	309972/4	2015.01.19	1Year
Cable	Resenberger	SUCOFLEX 104	329112/4	2015.01.19	1Year
Pre-amplifier	SCHWARZBECK	BBV9743	9743-019	2015.01.19	1Year
Pre-amplifier	Quietek	AP-180C	CHM-0602012	2015.01.19	1Year
Power Meter	Anritsu	ML2487A	6K00001491	2015.01.19	1Year
Power sensor	Anritsu	ML2491A	32516	2015.01.19	1Year

3 Test Procedure

POWER LINE CONDUCTED INTERFERENCE: The test procedure used was ANSI Standard C63.4-2009 using a 50 u H LISN. Both Lines were observed. The bandwidth of the receiver was 10kHz with an appropriate sweep speed. The ambient temperature of the EUT was 25°C with a humidity of 58%.

RADIATION INTERFERENCE: The test procedure used was ANSI Standard C63.4-2009 using a ANRITSU spectrum analyzer with a pre-selector. The analyzer was calibrated in dB above a micro volt at the output of the antenna. The resolution bandwidth was 100kHz and the video bandwidth was 300 kHz up to 1 GHz and 1 MHz with a video BW of 3MHz above 1 GHz. The ambient temperature of the EUT was 25 °C with a humidity of 58%.

FORMULA OF CONVERSION FACTORS: The Field Strength at 3m was established by adding the meter reading of the spectrum analyzer (which is set to read in units of dBuV) to the antenna correction factor supplied by the antenna manufacturer and cable loss. The antenna correction factors and cable loss are stated in terms of dB. The gain of the Pre-selector was accounted for in the Spectrum Analyzer Meter Reading. Example:

Freq (MHz) METER READING + ACF + CABLE = FS 33.20 dBuV + 10.36 dB + 0.9 dB = 44.46 dBuV/m @ 3m

ANSI STANDARD C63.4-2009 10.1.7 MEASUREMENT PROCEDURES: The EUT was placed on a table 80 cm high and with dimensions of 1m by 1.5m. The EUT was placed in the center of the table (1.5m side). The table used for radiated measurements is capable of continuous rotation. When an emission was found, the table was rotated to produce the maximum signal strength. At this point, the antenna was raised and lowered from 1m to 4m. The antenna was placed in both the horizontal and vertical planes. The situation was similar for the conducted measurement except that the table did not rotate. The EUT was setup as described in ANSI Standard C63.4-2009 10.1.7 with the EUT 40 cm from the vertical ground wall.

4 Summary of Measurement

4.1 Summary of test result

Test Item	Test Requirement	Standards Paragraph	Result					
Spurious Emission	FCC PART 15:2014	Section 15.247&15.209	Compliance					
Conduction Emission	FCC PART 15:2014	Section 15.207	N/A					
Bandwidth Test	FCC PART 15:2014	Section 15.247	Compliance					
Peak Power	FCC PART 15:2014	Section 15.247	Compliance					
Power Density	FCC PART 15:2014	Section 15.247	Compliance					
Band Edge	FCC PART 15:2014	Section 15.247	Compliance					
Antenna Requirement	FCC PART 15:2014	Section 15.203	Compliance					
Note: N/A means this tes	Note: N/A means this test item is not applicable for this device.							

Note: The EUT has been tested as an independent unit. And Continual Transmitting in maximum power (Fully charged battery is used during the test)

EUT is configured to transmit continuously (Duty cycle) is 100%, average correction factor = $20 \log 1=0$

4.2 Test connection

1, EUT was placed on a turn table, which is 0.8 meter high above ground.

TX Mode:

EUT

4.3 Assistant equipment used for test

Description	:	N/A
Manufacturer	:	N/A
Model No.	:	N/A

4.4 Test mode

The EUT was used to control EUT work in Continuous TX mode, and select test channel, wireless mode

Channel List

Channel No.	Frequency (MHz)	Channel No.	Frequency (MHz)	Channel No.	Frequency (MHz)
1	903	10	912	19	921
2	904	11	913	20	922
3	905	12	914	21	923
4	906	13	915	22	924
5	907	14	916	23	925
6	908	15	917	24	926
7	909	16	918	25	927
8	910	17	919		
9	911	18	920		

4.5 Test Conditions

Temperature range	21-25℃
Humidity range	40-75%
Pressure range	86-106kPa

4.6 Measurement Uncertainty (95% confidence levels, k=2)

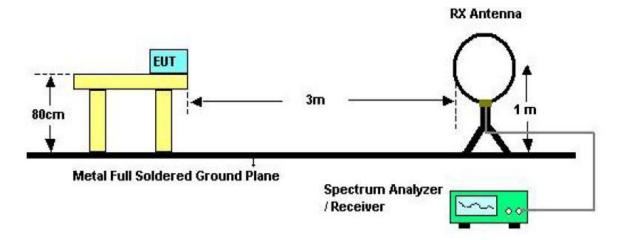
Item	MU	Remark
Uncertainty for Power point Conducted Emissions Test	2.42dB	
Uncertainty for Radiation Emission test in 3m	2.13 dB	Polarize: V
chamber (below 30MHz)	2.57dB	Polarize: H
Uncertainty for Radiation Emission test in 3m	3.54dB	Polarize: V
chamber (30MHz to 1GHz)	4.1dB	Polarize: H
Uncertainty for Radiation Emission test in 3m	2.08dB	Polarize: H
chamber (1GHz to 25GHz)	2.56dB	Polarize: V
Uncertainty for radio frequency	1×10-9	
Uncertainty for DC and low frequency voltages	0.06%	

5 Spurious Emission

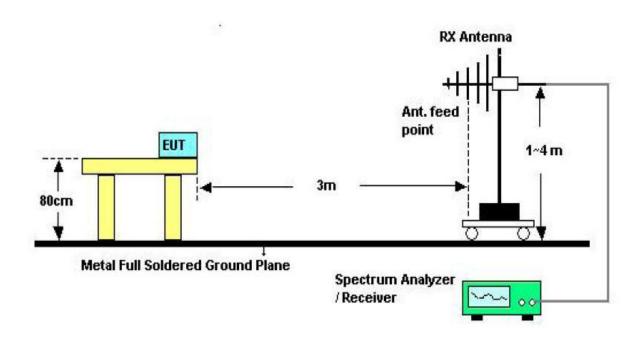
5.1 Radiation Emission

5.1.1Radiation Emission Limits(15.209)

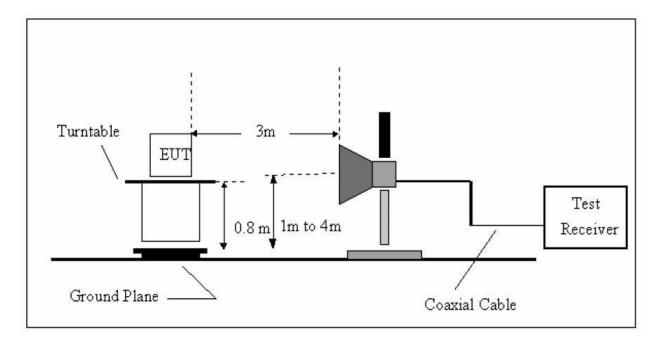
Frequencies (MHz)	Field Strength (micorvolts/meter)	Measurement Distance (meters)
0.009~0.490	2400/F(KHz)	300
0.490~1.705	24000/F(KHz)	30
1.705~30.0	30	30
30~88	100	3
88~216	150	3
216~960	200	3
Above 960	500	3


Harmonic emissions limits comply with below 54 dBuV/m at 3m. Other emissions radiated outside of the specified frequency bands, except for harmonics, shall be attenuated by at least 50 dB below the level of the fundamental or comply with the radiated emissions limits specified in section 15.209(a) limit in the table below has to be followed.

NOTE:


- a) The tighter limit applies at the band edges.
- b) Emission Level(dB uV/m)=20log Emission Level(Uv/m)

5.1.2Test Setup


See the next page

Below 30MHz Test Setup

Above 30MHz Test Setup

Above 1GHz Test Setup

5.1.3Test Procedure

- a) The measuring distance of 3m shall be used for measurements at frequency up to 1GHz and above 1GHz, The EUT was placed on a rotating 0.8 m high above ground, The table was rotated 360 degrees to determine the position of the highest radiation
- b) The Test antenna shall vary between 1m and 4m, Both Horizontal and Vertical antenna are set of make measurement.
- c) The initial step in collecting conducted emission data is a spectrum analyzer Peak detector mode pre-scanning the measurement frequency range. Significant Peaks are then marked. And then Qusia Peak Detector mode premeasured
- d) If Peak value comply with QP limit Below 1GHz. The EUT deemed to comply with QP limit. But the Peak value and average value both need to comply with applicable limit above 1GHz.
- e) For the actual test configuration, please see the test setup photo.
- f) Test for all x, y, z axes is performed and only the worst case of y axes was recorded in the test report.
- 5.1.4Test Equipment Setting For emission test Result.

9KHz~150KHz	RBW 200Hz	VBW1KHz
150KHz~30MHz	RBW 9KHz	VBW 30KHz
30MHZ~1GHz	RBW 120KHz	VBW 300KHz
Above 1GHz	RBW 1MHz	VBW 3MHz

5.1.5Test Condition

Continual Transmitting in maximum power.

5.1.6Test Result

We have scanned the 10th harmonic from 9KHz to the EUT. Detailed information please see the following page.

From 9KHz to 30MHz: Conclusion: PASS

Note: The amplitude of spurious emissions which are attenuated by more than 20dB below the permissible value has no need to be reported.

Remark: Only show the test data of the worst Channel in this report.

From 30MHz to 1000MHz: Conclusion: PASS

Below 1GHz

	30—1000MHz Radiated emissison Test result										
EUT	EUT: 900MHz digital handheld microphone M/N: ARG-TX900M-HH										
Power: DC 3.0V From battery											
Test	Test date: 2015-02-06 Test site: 3m Chamber Tested by: Store Chu										
Test	Test mode: Tx Mode										
Ante	nna polai	rity: Vertica	.1								
No Freq (MHz) Read Level (dBuV/m) Result (dBuV/m) Remark (dBuV								Remark			
1	47.99	48.72	13.59	0.09	31.83	30.57	40	9.43	PK		
2	71.83	51.28	10.51	0.19	31.69	30.29	40	9.71	PK		
3	83.82	53.61	9.35	0.23	31.53	31.66	40	8.34	PK		
4	185.79	47.26	10.95	0.57	31.0	27.78	43.5	15.72	PK		
5	/	/									
	/	/									
Ante	nna Pola	rity: Horizo	ntal								
1	47.99	50.26	13.59	0.09	31.83	33.39	40	6.61	PK		
2	71.83	47.85	10.51	0.19	31.69	27.6	40	12.4	PK		
3	83.82	50.26	9.35	0.23	31.53	27.31	40	12.69	PK		
4	185.79	51.36	10.95	0.57	31.0	29.88	43.5	13.62	PK		
5											
	/	/									
Moto	Teter										

Note:

- 1,Measuring frequency from 30MHz to 1GHz
- 2,Spectrum Set for PK measure: RBW=100KHz, VBW=300KHz, Sweep time=Auto, Detector: PK
- 3, Result = Read level + Antenna factor + cable loss-Amp factor
- 4, All the other emissions not reported were too low to read and deemed to comply with FCC limit.

Above 1GHz

	1GHz—25GHz Radiated emissison Test result									
EUT	: 900MH	z digital ha	ndheld mi	icropho	ne	M/N	: ARG-TX9	900M-H	H	
Pow	Power: DC 3.0V from battery									
Test	Test date: 2015-02-06 Test site: 3m Chamber Tested by: Store Chu									
Test	Test mode: 903MHz									
Ante	nna polai	rity: Vertica	.1							
No Freq (MHz) Read Level Factor (dBuV/m) Result (dBuV/m) Result (dBuV/m) Remark									Remark	
1	1806	52.16	25.03	3.45	34.85	45.79	74	28.21	PK	
2	1806	42.63	25.03	3.45	34.85	36.26	54	17.74	AV	
3	2709	44.54	27.88	4.19	34.98	41.63	74	32.37	PK	
4	2709	33.76	27.88	4.19	34.98	30.85	54	23.15	AV	
5	/	/								
	/	/								
Ante	nna Pola	rity: Horizo	ntal							
1	1806	51.85	25.03	3.45	34.85	45.48	74	28.52	PK	
2	1806	42.63	25.03	3.45	34.85	36.26	54	17.74	AV	
3	2709	44.73	27.88	4.19	34.98	41.82	74	32.18	PK	
4	2709	33.95	27.88	4.19	34.98	31.04	54	22.96	AV	
5										
	/	/								
Note		Note:								

- 1,Measuring frequency from 1GHz to 25GHz
- 2,Spectrum Set for PK measure: RBW=1MHz, VBW=1MHz, Sweep time=Auto, Detector: PK
- 2,Spectrum Set for AV measure: RBW=1MHz, VBW=3MHz, Sweep time=Auto, Detector: RMS
- 3, Result = Read level + Antenna factor + cable loss-Amp factor
- 4, All the other emissions not reported were too low to read and deemed to comply with FCC limit.

1GHz—25GHz Radiated emissison Test result										
EUT:	900MHz	digital han	dheld mid	crophor	ie	M/N:	ARG-TX	900M-HI	Η	
Powe	Power: DC 3.0V from battery									
Test o	Test date: 2015-02-06 Test site: 3m Chamber Tested by: Store Chu									
Test 1	mode: 915	5MHz								
Anter	nna polari	ty: Vertical								
No Freq (MHz) Read Level (dBuV/m) Result (dBuV								Remark		
1	1830	55.67	25.1	3.47	34.86	49.38	74	24.62	PK	
2	1830	41.68	25.1	3.47	34.86	35.39	54	18.61	AV	
3	2745	47.29	27.9	4.25	34.98	44.46	74	29.54	PK	
4	2745	33.86	27.9	4.25	34.98	31.03	54	22.97	AV	
5										
	/	/								
Anter	nna Polari	ity: Horizon	ıtal							
1	1830	53.29	25.1	3.47	34.86	47	74	27	PK	
2	1830	40.96	25.1	3.47	34.86	34.67	54	19.33	AV	
3	2745	47.29	27.9	4.25	34.98	44.46	74	29.54	PK	
4	2745	42.65	27.9	4.25	34.98	39.82	54	14.18	AV	
5										
		1		1	1					

Note:

- 1, Measuring frequency from 1GHz to 25GHz
- 2,Spectrum Set for PK measure: RBW=1MHz, VBW=1MHz, Sweep time=Auto, Detector: PK
- 2,Spectrum Set for AV measure: RBW=1MHz, VBW=3MHz, Sweep time=Auto, Detector: RMS
- 3, Result = Read level + Antenna factor + cable loss-Amp factor
- 4, All the other emissions not reported were too low to read and deemed to comply with FCC limit.

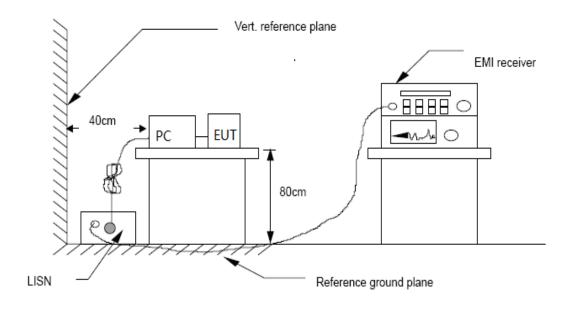
	1GHz—25GHz Radiated emissison Test result											
EUT	EUT: 900MHz digital handheld microphone M/N: ARG-TX900M-HH											
Pow	Power: DC 3.0V from battery											
Test	Test date: 2015-02-06 Test site: 3m Chamber Tested by: Store Chu											
Test	Test mode: 927MHz											
Ante	enna po	larity: Verti	cal									
No	No Freq (MHz) Read Level (dBuV/m) Antenna Cable Ioss Factor (dB/m) (dB) Result (dBuV/m) Result (dBuV/m) (dB) Remark											
1	1854	51.79	25.16	3.48	34.86	45.57	74	28.43	PK			
2	1854	39.86	25.16	3.48	34.86	33.64	54	20.36	AV			
3	2781	42.79	27.9	4.25	34.98	39.96	74	34.04	PK			
4	2781	32.04	27.9	4.25	34.98	29.21	54	24.79	AV			
5	/	/										
Ante	enna Po	larity: Horiz	zontal									
1	1854	51.63	25.16	3.48	34.86	45.41	74	28.59	PK			
2	1854	41.09	25.16	3.48	34.86	34.87	54	19.13	AV			
3	2781	44.38	27.9	4.25	34.98	41.55	74	32.45	PK			
4	2781	30.48	27.9	4.25	34.98	27.65	54	26.35	AV			
5	/	/										

Note:

- 1, Measuring frequency from 1GHz to 25GHz
- 2, Spectrum Set for PK measure: RBW=1MHz, VBW=1MHz, Sweep time=Auto, Detector: PK
- 2,Spectrum Set for AV measure: RBW=1MHz, VBW=3MHz, Sweep time=Auto, Detector: RMS
- 3, Result = Read level + Antenna factor + cable loss-Amp factor
- 4, All the other emissions not reported were too low to read and deemed to comply with FCC limit.

6 POWER LINE CONDUCTED EMISSION

6.1 Conducted Emission Limits(15.207)


Frequency	Limits $dB(\mu V)$				
MHz	Quasi-peak Level	Average Level			
0.15 -0.50	66 -56*	56 - 46*			
0.50 -5.00	56	46			
5.00 -30.00	60	50			

Notes: 1. *Decreasing linearly with logarithm of frequency.

2. The lower limit shall apply at the transition frequencies.

3. The limit decreases in line with the logarithm of the frequency in the rang of 0.15 to 0.50 MHz.

6.2 Test Setup

6.3 Test Procedure

The EUT is put on the plane 0.8m high above the ground by insulating support and is connected to the power mains through a line impedance stabilization network (L.I.S.N.). This provides a 50ohm coupling impedance for the EUT system. Please refer the block diagram of the test setup and photographs. Both sides of AC lines are checked to find out the maximum conducted emission. In order to find the maximum emission levels, the relative positions of equipment and all of the interface cables shall be changed according to ANSI C63.4-2009 on Conducted Emission Measurement. The bandwidth of test receiver (R & S ESCS30) is set at 9 kHz.

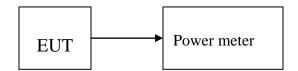
6.4 Test Results

Not applicable to battery operated product.

7 Conducted Maximum Output Power

7.1 Test limit

Please refer section 15.247.


Regulation 15.247(b) The limit of Maximum Peak Output Power Measurement is 1W(30dBm)

7.2 Test Procedure

- 7.2.1 Connected the EUT's antenna port to peak power meter by 20dB attenuator.
- 7.2.2 Measure out each mode and each bands peak output power of EUT.

Note: The cable loss and attenuator loss were offset into measure device as amplitude offset. Details see the KDB558074 D01 DTS Meas Guidance v03r02.

7.3 Test Setup

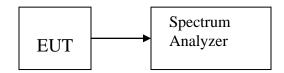
7.4 Test Results

PASS
Detailed information please see the Below.

Channel	Frequency (MHz)	PK Output Power (dBm)	PK Output Power (mW)	Limit (dBm)
CH1	903	9.60	9.12	30
CH7	915	9.52	8.95	30
CH12	927	9.16	8.24	30

8 PEAK POWER SPECTRAL DENSITY

8.1 Test limit

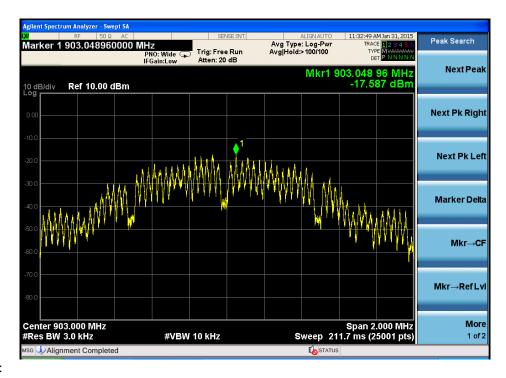

- 8.1.1 Please refer section 15.247.
- 8.1.2 For direct sequence systems, the peak power spectral density conducted from the intentional radiator to the antenna shall not be greater than 8dBm in any 3kHz band during any time interval of continuous transmission.
- 8.1.3 The direct sequence operating of the hybrid system, with the frequency hopping operation turned off, shall comply with the power density requirements of paragraph (d) of this section.

8.2 Method of measurement

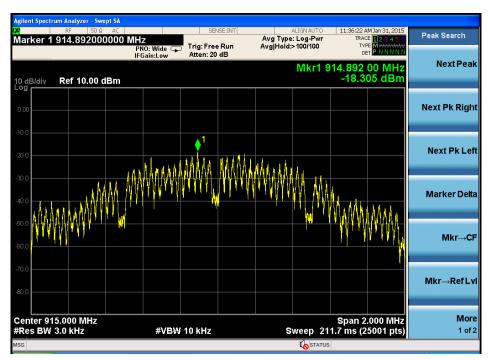
Details see the KDB558074 D01 DTS Meas Guidance v03r02.

- 8.2.1 Place the EUT on the table and set it in transmitting mode.
- 8.2.2 Remove the antenna from the EUT and then connect a low loss RF cable from the antenna port to the spectrum analyzer.
- 8.2.3 Set the spectrum analyzer as RBW = 3kHz, VBW = 10kHz, span=1.5OBW, detail see the test plot.
- 8.2.4 Record the max reading.
- 8.2.5 Repeat the above procedure until the measurements for all frequencies are completed.

8.3 Test Setup


8.4 Test Results

PASS.


Detailed information please see the following page.

Channel	Frequency (MHz) Power Spectral Density (dBm/3KHz)		Limit (dBm/3KHz)	Result
CH1	903	-17.587	8	PASS
CH7	915	-18.305	8	PASS
CH12	927	-16.953	8	PASS

CH Low:

CH Mid:

CH High:

9 Bandwidth

9.1 Test limit

Please refer section 15.247

For direct sequence systems, the minimum 6dB bandwidth shall be at least 500kHz.

9.2 Method of measurement

Details see the KDB558074 D01 DTS Meas Guidance v03r02.

- a) The bandwidth is measured at an amplitude level reduced 20dB from the reference level. The reference level is the level of the highest amplitude signal observed from the transmitter at the fundamental frequency. Once the reference level is established, the equipment is conditioned with typical modulating signal to produce the worst-case (i.e. the widest) bandwidth.
- b)
- b) The test receiver set RBW =100KHz, VBW≥3RBW, Sweep time set auto, detail see the test plot.

9.3 Test Setup

9.4 Test Results

PASS.

Detailed information please see the following page.

Channel	Frequency (MHz)	6dB Bandwidth (MHz)	Limit (MHz)	Result
CH1	903	0.8183	0.5	PASS
СН7	915	0.8365	0.5	PASS
CH12	927	0.8249	0.5	PASS

CH Low:

CH Mid:

CH High:

10 Band Edge Check

10.1 Test limit

Please refer section 15.247

All the lower and upper band-edges emissions appearing within restricted frequency bands shall not exceed the limits shown in 15.209, all the other emissions outside operation shall be at least 20dB below the fundamental emissions, or comply with 15.209 limits.

10.2 Test Procedure

- 10.2.1 Put the EUT on a 0.8m high table, power on the EUT. Emissions were scanned and measured rotating the EUT to 360 degrees, Find the maximum Emission
- 10.2.2 Check the spurious emissions out of band.
- 10.2.3 RBW, VBW Setting, please see the following test plot.

10.3 Test Setup

Same as 5.2.2.

10.4 Test Result

PASS.

30—1000MHz Radiated emissison Test result										
EUT	: 900MH	z digital ha	ndheld mi	icropho	ne	M/N	: ARG-TX	(900M-H	IH	
Power: DC 3.0V From battery										
Test date: 2015-02-06 Test site: 3m Chamber Tested by: Store Chu										
Test	Test mode: Tx Mode 903MHz									
Ante	nna polar	ity: Vertica	ıl							
No Freq (MHz) Read Level (dBuV/m) Rector (dB/m) Result (dBuV/m) Result (dBuV/m								Remark		
1	902	51.28	21.67	1.41	29.2	45.16	46	0.84	PK	
2	/	/								
3	/	/								
4	/	/								
5	/	/								
	/	/								
Anter	nna Polarit	y: Horizontal								
1	902	48.26	21.67	1.41	29.2	42.14	46	3.86	PK	
2	/	/								
3	/	/								
4	/	/								
5	/	/								
	/	/								

Note:

- 1,Measuring frequency from 30MHz to 1GHz
- 2,Spectrum Set for PK measure: RBW=100KHz, VBW=300KHz, Sweep time=Auto, Detector: PK
- 3, Result = Read level + Antenna factor + cable loss-Amp factor
- 4, All the other emissions not reported were too low to read and deemed to comply with FCC limit.

30—1000MHz Radiated emissison Test result

EUT: 900MHz digital handheld microphone M/N: ARG-TX900M-HH

Power: DC 3.0V From battery

Test date: 2015-02-06 Test site: 3m Chamber Tested by: Store Chu

Test mode: Tx Mode 927MHz

Antenna polarity: Vertical

	I	J							
No	Freq (MHz)	Read Level (dBuV/m)	Antenna Factor (dB/m)	Cable loss(d B)	Amp Factor (dB)	Result (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Remark
1	928	50.77	22	1.29	29.28	44.78	46	1.22	PK
2	/	/							
3	/	/							
4	/	/							
5	/	/							
	/	/							
Antei	nna Polari	ity: Horizont	al						
1	928	47.16	22	1.29	29.28	41.17	46	4.83	PK
2	/	/							
3	/	/							
4	/	/							
5	/	/							
	/	/						•	

Note:

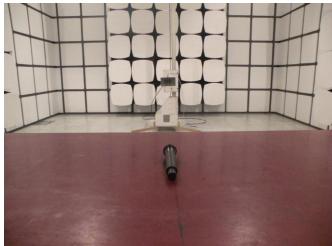
- 1,Measuring frequency from 30MHz to 1GHz
- 2,Spectrum Set for PK measure: RBW=100KHz, VBW=300KHz, Sweep time=Auto, Detector: PK
- 3, Result = Read level + Antenna factor + cable loss-Amp factor
- 4, All the other emissions not reported were too low to read and deemed to comply with FCC limit.

11 Antenna Requirement

11.1 Standard Requirement

An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator shall be considered sufficient to comply with the provisions of this Section. The manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.

11.2 Antenna Connected Construction

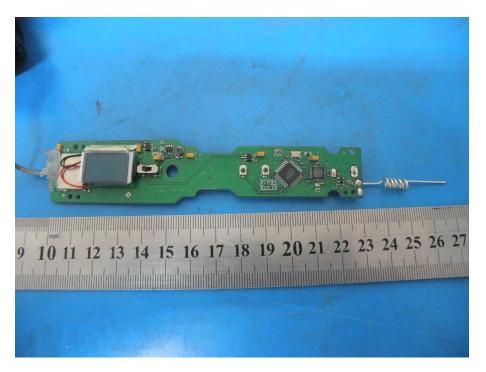

The directional gains of antenna used for transmitting is 0dBi, and de-signed with permanent attachment and no consideration of replacement. Please see EUT photo for details.

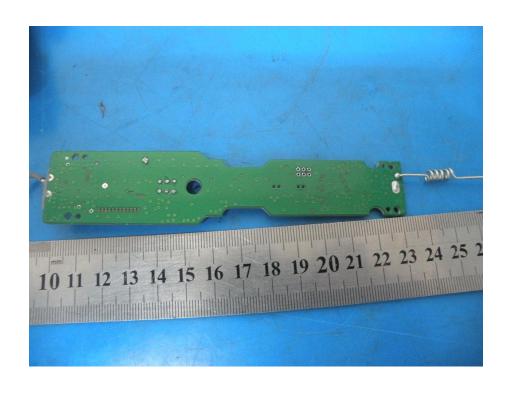
11.3 Result

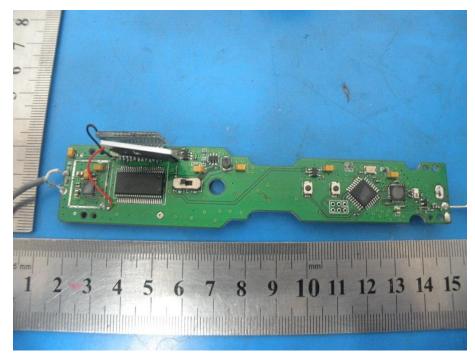
The EUT antenna is Integrated Antenna. It comply with the standard requirement.

Photographs of Test Setup Photos of Radiated emission 12 12.1

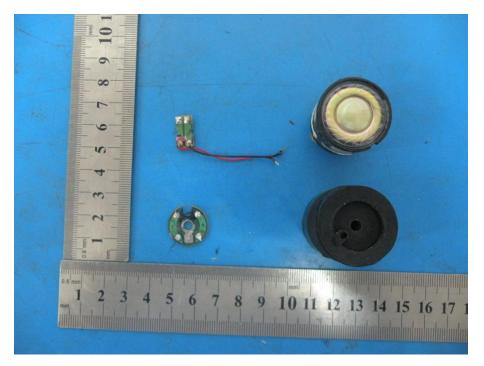
13 Photographs of EUT

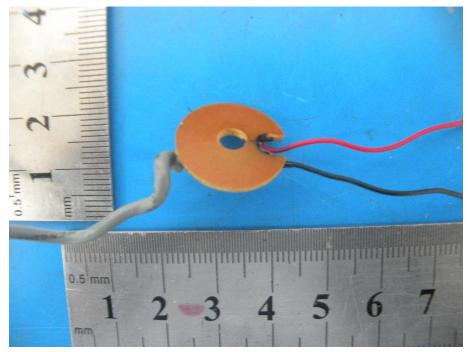


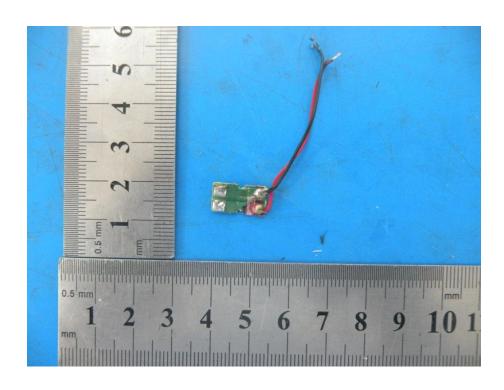


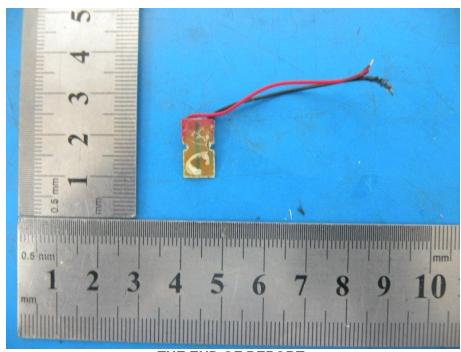












-----THE END OF REPORT------