

	TEST REPORT					
	FCC Part 22 /Part 24					
Report Reference No.:	HK1911263018-2E					
FCC ID :	2ACG9-G5					
Compiled by						
(position+printed name+signature):	File administrators Gary Qian	Gog Bian Edan Hu Jason Zhou				
Supervised by						
(position+printed name+signature):	Technique principal Eden Hu	Edan Ma				
Approved by		1 1				
(position+printed name+signature):	Manager Jason Zhou	Jason 2Nou				
Date of issue	Nov, 26, 2019					
Testing Laboratory Name	-					
Address	Idress					
Applicant's name CONEDERA S.A.						
Address	dress ALBORADA 10 ETAPA AVE. BENJAMIN, CARRION C.C. LA ROTONDA LOCAT 2, Guayaquil, Ecuador					
Test specification						
Standard	FCC Part 22/FCC Part 24					
Shenzhen HUAK Testing Technology Co., Ltd.All rights reserved. This publication may be reproduced in whole or in part for non-commercial purposes as long as the Shenzhen HUAK Testing Technology Co., Ltd.as copyright owner and source of the material. Shenzhen HUAK Testing Technology Co., Ltd.takess no responsibility for and will not assume liability for damages resulting from the reader's interpretation of the reproduced material due to its placement and context.						
Test item description						
Trade Mark						
Manufacturer	•••	Ltd				
Model/Type reference: G5						
Listed Models						
Ratings DC 5V from USB or DC3.7V By Battery						
Modulation	GSM/WCDMA					
Hardware version	J106-6580MD3M22-D16					
Software version	Software version S501_V01_20191122					
Frequency	Frequency UMTS Band II, UMTS Band V					
Result	PASS					

TEST REPORT

Test Report No. :		HK1911263018-2E	Nov, 26, 2019	
		11(1911203010-2L	Date of issue	
Equipment under Test	:	smart phone		
Model /Type	:	G5		
Listed Models	:	1		
Applicant	:	CONEDERA S.A.		
Address	:	ALBORADA 10 ETAPA LA ROTONDA LOCAT 2	AVE. BENJAMIN, CARRION C.C. 2, Guayaquil, Ecuador	
Manufacturer	:	Shenzhen Diadem Tech	nnology Co., Ltd	
Address	:	2nd floor, Jinhuiqiu Buid second Road, Nanshan	ling, 15 Gaoxin North District, Shenzhen, China	

Test Result:	PASS
--------------	------

The test report merely corresponds to the test sample. It is not permitted to copy extracts of these test result without the written permission of the test laboratory.

Revison History

Revision	Issue Date	Revisions	Revised By
V1.0	2019-11-26	Initial Issue	James Zhou

Contents

<u>1</u>	TEST STANDARDS	5
<u>2</u>	SUMMARY	6
2.1	General Remarks	6
2.2	Product Description	6
2.3	Equipment under Test	6
2.4	Short description of the Equipment under Test (EUT)	7
2.5	EUT configuration	7
2.6	Related Submittal(s) / Grant (s)	7
2.7	General Test Conditions/Configurations	7
2.8	Modifications	7
<u>3</u>	TEST ENVIRONMENT	8
3.1	Address of the test laboratory	8
3.2	Environmental conditions	8
3.3	Test Description	8
3.4	Equipments Used during the Test	10
<u>4</u>	TEST CONDITIONS AND RESULTS	11
4.1	Output Power	11
4.2	Radiated Spurious Emssion	15
4.3	Occupied Bandwidth and Emission Bandwith	18
4.4	Band Edge Compliance	20
4.5	Spurious Emssion on Antenna Port	22
4.6	Frequency Stability Test	27
4.7	Peak-to-Average Ratio (PAR)	29

1 <u>TEST STANDARDS</u>

The tests were performed according to following standards:

FCC Part 2: FREQUENCY ALLOCA-TIONS AND RADIO TREATY MAT-TERS; GENERAL RULES AND REG-ULATIONS

FCC Part 22 Subpart H: PRIVATE LAND MOBILE RADIO SERVICES.

FCC Part 24 Subpart E: PUBLIC MOBILE SERVICES

ANSI/TIA-603-E-2016: Land Mobile FM or PM Communications Equipment Measurement and Performance Standards.

ANSI C63.26-2015: IEEE/ANSI Standard for Compliance Testing of Transmitters Used in Licensed Radio Services

FCCKDB971168D01 Power Meas License Digital Systems

2 <u>SUMMARY</u>

2.1 General Remarks

Date of receipt of test sample	:	Nov, 19, 2019
Testing commenced on	•••	Nov, 19, 2019
Testing concluded on	•	Nov, 26, 2019

2.2 Product Description

The **CONEDERA S.A.** 's Model: G5. or the "EUT" as referred to in this report; more general information as follows, for more details, refer to the user's manual of the EUT.

Name of EUT	smart phone
Model Number	G5
Modilation Type	QPSK for UMTS
Antenna Type	Internal Antenna
UMTS Operation Frequency Band	Device supported UMTS FDD Band II, FDD Band V
HSDPA Release Version	Release 10
HSUPA Release Version	Release 6
DC-HSUPA Release Version	Not Supported
WCDMA Release Version	R99
Extreme temp. Tolerance	-30°C to +50°C
Extreme vol. Limits	DC 5V from USB or DC3.7V By Battery
Antenna gain:	FDD Band V: 1.2dBi, FDD Band II: 1.0dBi

2.3 Equipment under Test

Power supply system utilised

Power supply voltage	:	0	120V / 60 Hz	0	115V / 60Hz
		0	12 V DC	0	24 V DC
		•	Other (specified in blank bel	ow)

DC 5V from USB or DC3.7V By Battery

Test frequency list

Test Mode	TX/RX	RF Channel			
Test Mode		Low(L)	Middle(M)	High (H)	
	ТХ	Channel 4132	Channel 4182	Channel 4233	
WCDMA850		826.4 MHz	836.4 MHz	846.6 MHz	
VVCDIVIA030	RX	Channel 4357	Channel 4407	Channel 4458	
	ΓΛ	871.4 MHz	881.4 MHz	891.6 MHz	
Test Mode	TX/RX	RF Channel			
Test Mode		Low(L)	Middle (M)	High (H)	
	ТХ	Channel 9262	Channel 9400	Channel 9538	
WCDMA1900		1852.4 MHz	1880.0 MHz	1907.6 MHz	
	RX	Channel 9662	Channel 9800	Channel 9938	
	ΓΛ	1932.4 MHz	1960.0 MHz	1987.6 MHz	

2.4 Short description of the Equipment under Test (EUT)

2.4.1 General Description

This is a smart phone .

For more details, refer to the user's manual of the EUT

2.5 EUT configuration

The following peripheral devices and interface cables were connected during the measurement:

- - supplied by the manufacturer
- supplied by the lab

0	1	M/N :	1
		Manufacturer:	1

2.6 Related Submittal(s) / Grant (s)

This submittal(s) (test report) is intended for FCC ID: 2ACG9-G5 filing to comply with FCC Part 22 and Part 24 Rules.

2.7 General Test Conditions/Configurations

2.7.1 Test Modes

NOTE: The test mode(s) are selected according to relevant radio technology specifications.

Test Mode	Test Modes Description
UMTS/TM1	WCDMA system, QPSK modulation
UMTS/TM2	HSDPA system, QPSK modulation
UMTS/TM3	HSUPA system, QPSK modulation

Note:

1. As WCDMA, HSDPA and HSUPA with the same emission designator, test result recorded in this report at the worst case UMTS/TM1 only after exploratory scan.

2.7.2 Test Environment

Environment Parameter	Selected Values During Tests		
Relative Humidity	Ambient		
Temperature	TN	Ambient	
	VL	3.1V	
Voltage	VN	3.7V	
	VH	4.3V	

NOTE: VL=lower extreme test voltage VN=nominal voltage VH=upper extreme test voltage TN=normal temperature

2.8 Modifications

No modifications were implemented to meet testing criteria.

3 TEST ENVIRONMENT

3.1 Address of the test laboratory

Shenzhen HUAK Testing Technology Co., Ltd. Add.:1F, B2 Building, Junfeng Zhongcheng Zhizao Innovation Park,Heping Community, Fuhai Street, Bao'an District, Shenzhen, China

3.2 Environmental conditions

During the measurement the environmental conditions were within the listed ranges:

Temperature:	15-35 ° C
Humidity:	30-60 %
Atmospheric pressure:	950-1050mbar

(1) expressed at approximately the 95% confidence level using a coverage factor of k=1.96.

3.3 Test Description

3.3.1 Cellular Band (824-849MHz paired with 869-894MHz)

Test Item	FCC Rule No.	Requirements	Verdict
Effective(Isotropic) Radiated Output Power	Part§2.1046, Part§22.913	FCC: ERP ≤ 7W. IC≤11.5W.	Pass
Bandwidth	Part§2.1049	OBW: No limit. EBW: No limit.	Pass
Band Edges Compliance	Part§2.1051, Part§22.917	 ≤-13dBm/1%*EBW, in 1MHz bands immediately outside and adjacent to The frequency block. 	Pass
Spurious Emission at Antenna Terminals	Part§2.1051, Part§22.917	FCC/IC: ≤ -13dBm/100kHz, from 9kHz to 10th harmonics but outside authorized operating frequency ranges.	Pass
Field Strength of Spurious Radiation	Part§2.1053, Part§22.917	FCC/IC: ≤ -13dBm/100kHz.	Pass
Frequency Stability	Part§2.1055, Part§22.355	FCC/IC:≤ ±2.5ppm.	Pass
NOTE 1: For the verdict, t	he "N/A" denotes "no	t applicable", the "N/T" de notes "not tested".	

3.3.2 PCS Band (1850-1915MHz paired with 1930-1995MHz)

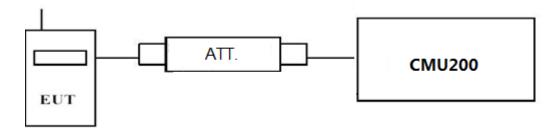
Test Item	FCC/IC Rule No.	Requirements	Verdict
Effective(Isotropic) Radiated Output Power	Part§2.1046, Part§24.232	EIRP ≤ 2W	Pass
Peak-Average Ratio	Part§2.1046, Part§24.232	FCC:Limit≤13dB	Pass
Bandwidth	Part§2.1049	OBW: No limit. EBW: No limit.	Pass
Band Edges Compliance	Part§2.1051, Part§24.238	 ≤ -13dBm/1%*EBW, In 1MHz bands immediately outside and adjacent to The frequency block. 	Pass
Spurious Emission at Antenna Terminals	Part§2.1051, Part§24.238	≤-13dBm/1MHz, from 9kHz to10th harmonics but outside authorized Operating frequency ranges.	Pass
Field Strength of Spurious Radiation	Part§2.1053, Part§24.238	≤ -13dBm/1MHz.	Pass
Frequency Stability	Part§2.1055, Part§24.235	FCC: within authorized frequency block.	Pass
NOTE 1: For the verdic	ct, the "N/A" denotes "	"not applicable", the "N/T" de notes "not tested".	•

3.4 Equipments Used during the Test

					Calibration
Test Equipment	Manufacturer	Model No.	Serial No.	Calibration Date	Due Date
LISN	R&S	ENV216	HKE-059	2018/12/27	2019/12/26
LISN	R&S	ENV216	HKE-002	2018/12/27	2019/12/26
Receiver	R&S	ESCI 7	HKE-010	2018/12/27	2019/12/26
Spectrum analyzer	R&S	FSP40	HKE-025	2018/12/27	2019/12/26
Spectrum analyzer	Agilent	N9020A	HKE-048	2018/12/27	2019/12/26
RF automatic control unit	Tonscend	JS0806-1	HKE-060	2018/12/27	2019/12/26
Loop antenna	Schwarzbeck	FMZB 1519 B	HKE-014	2018/12/27	2019/12/26
Bilog Broadband Antenna	Schwarzbeck	VULB9163	HKE-012	2018/12/27	2019/12/26
Horn antenna	Schwarzbeck	9120D	HKE-013	2018/12/27	2019/12/26
High gain antenna	Schwarzbeck	LB-180400KF	HKE-054	2018/12/27	2019/12/26
Preamplifier	EMCI	EMC051845SE	HKE-015	2018/12/27	2019/12/26
Preamplifier	Agilent	83051A	HKE-016	2018/12/27	2019/12/26
Preamplifier	Schwarzbeck	BBV 9743	HKE-006	2018/12/27	2019/12/26
Temperature and humidity meter	Boyang	HTC-1	HKE-075	2018/12/27	2019/12/26
High-low temperature chamber	Guangke	HT-80L	HKE-118	2018/12/27	2019/12/26
High pass filter unit	Tonscend	JS0806-F	HKE-055	2018/12/27	2019/12/26
RF Cable(below1GHz)	Times	9kHz-1GHz	HKE-117	2018/12/27	2019/12/26
RF Cable(above 1 1GHz)	Times	1-40G	HKE-034	2018/12/27	2019/12/26
Power meter	Agilent	E4419B	HKE-085	2018/12/27	2019/12/26
Power Sensor	Agilent	E9300A	HKE-086	2018/12/27	2019/12/26
Conducted test software	Tonscend	TS+ Rev 2.5.0.0	HKE-081	N/A	N/A
Radiated test software	Tonscend	TS+ Rev 2.5.0.0	HKE-082	N/A	N/A
RF test software	Tonscend	JS1120-B Version 2.6	HKE-083	N/A	N/A
RF test software	Tonscend	JS1120-4	HKE-113	N/A	N/A
RF test software	Tonscend	JS1120-3	HKE-114	N/A	N/A
RF test software	Tonscend	JS1120-1	HKE-115	N/A	N/A
Wireless Communication Test Set	R&S	CMW500	HKE-026	2018/12/27	2019/12/26
Wireless Communication Test Set	R&S	CMU200	HKE-029	2018/12/27	2019/12/26

Note: 1. The Cal.Interval was one year.

4 TEST CONDITIONS AND RESULTS


4.1 Output Power

TEST APPLICABLE

During the process of testing, the EUT was controlled via R&S Digital Radio Communication tester (CMU200) to ensure max power transmission and proper modulation. This result contains output power and EIRP measurements for the EUT. In all cases, output power is within the specified limits.

4.1.1 Conducted Output Power

TEST CONFIGURATION

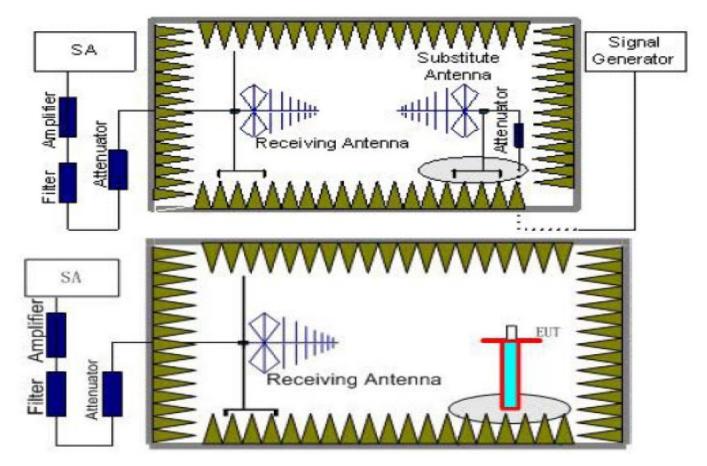
TEST PROCEDURE

Conducted Power Measurement:

- a) Place the EUT on a bench and set it in transmitting mode.
- b) Connect a low loss RF cable from the antenna port to a CMU200 by an Att.
- c) EUT Communicate with CMU200 then selects a channel for testing.
- d) Add a correction factor to the display CMU200, and then test.

TEST RESULTS

Test Mode	Test Channel	Burst Average Conducted power (dBm)				
		UMTS Band V	UMTS Band II			
	LCH	21.95	22.90			
UMTS/TM1	MCH	22.31	21.57			
	HCH	22.25	21.36			
UMTS/TM2	LCH_SubTest-1	21.63	22.10			
	LCH_SubTest-2	22.05	21.08			
	LCH_SubTest-3	22.06	22.21			
	LCH_SubTest-4	21.04	21.32			
	MCH_SubTest-1	22.23	21.08			
	MCH_SubTest-2	21.24	21.42			
	MCH_SubTest-3	21.25	22.12			
	MCH_SubTest-4	21.43	21.62			
	HCH_SubTest-1	21.55	22.48			
	HCH_SubTest-2	21.82	21.34			
	HCH_SubTest-3	22.36	21.72			
	HCH_SubTest-4	21.02	19.77			
	LCH_SubTest-1	20.39	20.61			
	LCH_SubTest-2	19.98	19.14			
	LCH_SubTest-3	20.58	20.50			
	LCH_SubTest-4	21.95	21.31			
	LCH_SubTest-5	22.31	20.26			
	MCH_SubTest-1	22.25	21.20			
	MCH_SubTest-2	21.63	20.16			
UMTS/TM3	MCH_SubTest-3	22.05	21.57			
	MCH_SubTest-4	22.06	20.19			
	MCH_SubTest-5	21.04	20.09			
	HCH_SubTest-1	22.33	19.70			
	HCH_SubTest-2	21.24	20.05			
	HCH_SubTest-3	21.25	20.58			
	HCH_SubTest-4	21.43	21.90			
	HCH_SubTest-5	21.55	21.57			


4.1.2 Radiated Output Power

TEST DESCRIPTION

This is the test for the maximum radiated power from the EUT.

"Mobile/portable stations are limited to 2 watts e.i.r.p. Peak power" and specifies that "Peak transmit power must be measured over any interval of continuous transmission using instrumentation calibrated in terms of an rms-equivalent voltage. The ERP of mobile transmitters and auxiliary test transmitters must not exceed 7 Watts."

TEST CONFIGURATION

TEST PROCEDURE

- EUT was placed on a 0.8 meter high non-conductive stand at a 3 meter test distance from the receive antenna. A receiving antenna was placed on the antenna mast 3 meters from the EUT for emission measurements. The height of receiving antenna is 1.50m. Detected emissions were maximized at each frequency by rotating the EUT through 360° and adjusting the receiving antenna polarization. The radiated emission measurements of all transmit frequencies in three channels (High, Middle, Low) were measured with peak detector.
- 2. A log-periodic antenna or double-ridged waveguide horn antenna shall be substituted in place of the EUT. The log-periodic antenna will be driven by a signal generator and the level will be adjusted till the same power value on the spectrum analyzer or receiver. The level of the spurious emissions can be calculated through the level of the signal generator, cable loss, the gain of the substitution antenna and the reading of the spectrum analyzer or receiver.
- 3. The EUT is then put into continuously transmitting mode at its maximum power level during the test.Set Test Receiver or Spectrum RBW=10MHz,VBW=10MHz, And the maximum value of the receiver should be recorded as (P_r).
- 4. The EUT shall be replaced by a substitution antenna. In the chamber, an substitution antenna for the frequency band of interest is placed at the reference point of the chamber. An RF Signal source for the frequency band of interest is connected to the substitution antenna with a cable that has been constructed to not interfere with the radiation pattern of the antenna. A power (P_{Mea}) is applied to the input of the substitution antenna, and adjust the level of the signal generator output until the value of the receiver

reach the previously recorded (P_r). The power of signal source (P_{Mea}) is recorded. The test should be performed by rotating the test item and adjusting the receiving antenna polarization.

5. A amplifier should be connected to the Signal Source output port. And the cable should be connect between the Amplifier and the Substitution Antenna. The cable loss (P_{cl}) ,the Substitution Antenna Gain (G_a) and the Amplifier Gain (P_{Ag}) should be recorded after test.

The measurement results are obtained as described below:

Power(EIRP)= P_{Mea} - P_{Ag} - P_{cl} + G_a

We used SMF100A micowave signal generator which signal level can up to 33dBm, so we not used power Amplifier for substituation test; The measurement results are amend as described below: Power(EIRP)= P_{Mea} - P_{cl} + G_a

- 6. This value is EIRP since the measurement is calibrated using an antenna of known gain (2.15 dBi) and known input power.
- 7. ERP can be calculated from EIRP by subtracting the gain of the dipole, ERP = EIRP-2.15dBi.

TEST LIMIT

According to 22.913(a), 24.232(c) the ERP(EIRP) should be not exceeding following table limits:

	Burst Average ERP
UMTS Band V	38.45dBm (7W)

	Burst Average ERP
UMTS Band II	33dBm (2W)

TEST RESULTS

Remark:

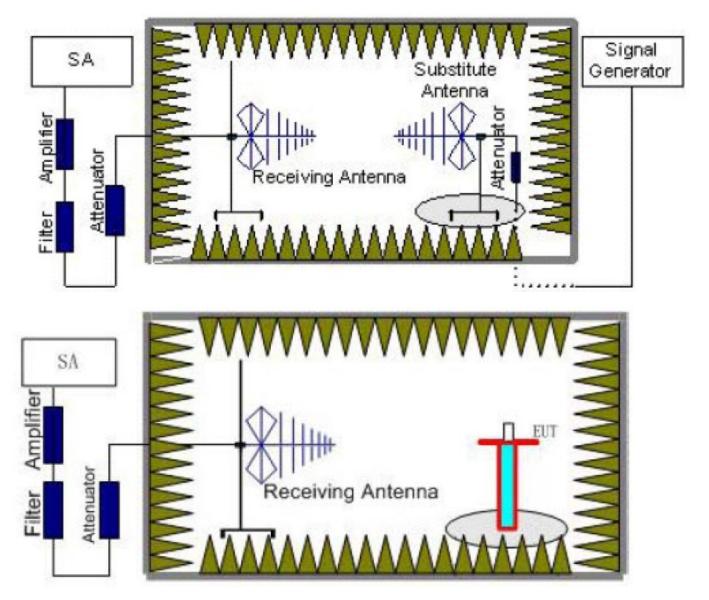
- 1. We were tested all Configuration refer 3GPP TS134 121.
- 2. EIRP= $P_{Mea}(dBm)$ - $P_{cl}(dB)$ + $P_{Ag}(dB)$ + $G_{a}(dBi)$
- 3. ERP = EIRP 2.15dBi as EIRP by subtracting the gain of the dipole.
- 4. Note: We test the H direction and V direction, V direction is worse.

UMTS/TM1/UMTS Band II

			Ga		Burst	Burst		
Frequency	P _{Mea}	P _{cl}	Antenna	P _{Aq}	Average	Average	Limit	Polarization
(MHz)	(dBm)	(dB)	Gain	(dB)	EIRP	ERP	(dBm)	
			(dB)		(dBm)	(dBm)		
1852.4	-20.27	3.41	10.24	33.6	20.16	18.01	33.01	V
1880.0	-19.42	3.49	10.24	33.6	20.93	18.78	33.01	V
1907.6	-20.24	3.55	10.23	33.6	20.04	17.89	33.01	V

UMTS/TM1/UMTS Band V

Frequency (MHz)	P _{Mea} (dBm)	P _{cl} (dB)	G _a Antenna Gain (dB)	Correction (dB)	P _{Aq} (dB)	Burst Average ERP (dBm)	Limit (dBm)	Polarization
826.40	-13.47	2.42	8.45	2.15	36.82	27.23	38.45	V
836.60	-15.53	2.46	8.45	2.15	36.82	25.13	38.45	V
846.60	-11.63	2.53	8.36	2.15	36.82	28.87	38.45	V



4.2 Radiated Spurious Emssion

TEST APPLICABLE

According to the TIA/EIA 603D:2010 test method, The Receiver or Spectrum was scanned from 9 KHz to the 10th harmonic of the highest frequency generated within the equipment, which is the transmitted carrier that can be as high as 1910 MHz The resolution bandwidth is set as outlined in TIA/EIA 603D:2010. The spectrum is scanned with the mobile station transmitting at carrier frequencies that pertain to low, mid and high channels of WCDMA Band II, WCDMA Band V., WCDMA Band IV

TEST CONFIGURATION

TEST PROCEDURE

- EUT was placed on a 1.50 meter high non-conductive stand at a 3 meter test distance from the receive antenna. A receiving antenna was placed on the antenna mast 3 meters from the EUT for emission measurements. The height of receiving antenna is 1.50m. Detected emissions were maximized at each frequency by rotating the EUT through 360° and adjusting the receiving antenna polarization. The radiated emission measurements of all transmit frequencies in three channels (High, Middle, Low) were measured with peak detector.
- 2. A log-periodic antenna or double-ridged waveguide horn antenna shall be substituted in place of the EUT. The log-periodic antenna will be driven by a signal generator and the level will be adjusted till the same power value on the spectrum analyzer or receiver. The level of the spurious emissions can be calculated through the level of the signal generator, cable loss, the gain of the substitution antenna and the reading of the spectrum analyzer or receiver.

- 3. The EUT is then put into continuously transmitting mode at its maximum power level during the test.Set Test Receiver or Spectrum RBW=1MHz,VBW=3MHz, And the maximum value of the receiver should be recorded as (P_r).
- 4. The EUT shall be replaced by a substitution antenna. In the chamber, an substitution antenna for the frequency band of interest is placed at the reference point of the chamber. An RF Signal source for the frequency band of interest is connected to the substitution antenna with a cable that has been constructed to not interfere with the radiation pattern of the antenna. A power (P_{Mea}) is applied to the input of the substitution antenna, and adjust the level of the signal generator output until the value of the receiver reach the previously recorded (P_r). The power of signal source (P_{Mea}) is recorded. The test should be performed by rotating the test item and adjusting the receiving antenna polarization.
- A amplifier should be connected to the Signal Source output port. And the cable should be connect between the Amplifier and the Substitution Antenna. The cable loss (P_{cl}), the Substitution Antenna Gain (G_a) and the Amplifier Gain (P_{Ag}) should be recorded after test. The measurement results are obtained as described below: Power(EIRP)=P_{Mea}- P_{Ag} P_{cl} + G_a
- 6. This value is EIRP since the measurement is calibrated using an antenna of known gain (2.15 dBi) and known input power.
- 7. ERP can be calculated from EIRP by subtracting the gain of the dipole, ERP = EIRP -2.15dBi.
- 8. In order to make sure test results more clearly, we set frequency range and sweep time for difference frequency range as follows table:

Working Frequency	Subrange (GHz)	RBW	VBW	Sweep time (s)
	0.00009~0.15	1KHz	3KHz	30
	0.00015~0.03	10KHz	30KHz	10
UMTS/TM1/	0.03~1	100KHz	300KHz	10
WCDMA Band V	1~2	1 MHz	3 MHz	2
VUCDIVIA Dallu V	2~5	1 MHz	3 MHz	3
	5~8	1 MHz	3 MHz	3
	8~10	1 MHz	3 MHz	3
	0.00009~0.15	1KHz	3KHz	30
	0.00015~0.03	10KHz	30KHz	10
	0.03~1	100KHz	300KHz	10
	1~2	1 MHz	3 MHz	2
UMTS/TM1/	2~5	1 MHz	3 MHz	3
WCDMA Band II	5~8	1 MHz	3 MHz	3
	8~11	1 MHz	3 MHz	3
	11~14	1 MHz	3 MHz	3
	14~18	1 MHz	3 MHz	3
	18~20	1 MHz	3 MHz	2

TEST LIMITS

that the power of any emission outside of the authorized operating frequency ranges must be attenuated below the transmitting power (P) by a factor of at least 43 + 10 log(P) dB.

The specification that emissions shall be attenuated below the transmitter power (P) by at least 43 + 10 log (P) dB, translates in the relevant power range (1 to 0.001 W) to -13 dBm. At 1 W the specified minimum attenuation becomes 43 dB and relative to a 30 dBm (1 W) carrier becomes a limit of -13 dBm. At 0.001 W (0 dBm) the minimum attenuation is 13 dB, which again yields a limit of -13 dBm. In this way a translation of the specification from relative to absolute terms is carried out.

Frequency	Channel	Frequency Range	Verdict
UMTS/TM1/ WCDMA	Low	9KHz-10GHz	PASS
Band V	Middle	9KHz -10GHz	PASS
Band V	High	9KHz -10GHz	PASS
UMTS/TM1/ WCDMA Band II	Low	9KHz -20GHz	PASS
	Middle	9KHz -20GHz	PASS
	High	9KHz -20GHz	PASS

Remark:

- 1. We were tested all Configuration refer 3GPP TS134 121.
- 2. EIRP= $P_{Mea}(dBm)$ - $P_{cl}(dB)$ + $P_{Ag}(dB)$ + $G_a(dBi)$
- 3. ERP = EIRP -2.15dBi as EIRP by subtracting the gain of the dipole.
- 5. Margin = Limit Emission Level
- 6. We test both H direction and V direction, recorded worst case direction.

Frequency (MHz)	P _{Mea} (dBm)	P _{cl} (dB)	Diatance	G _a Antenna Gain(dB)	Peak EIRP (dBm)	Limit (dBm)	Margin (dB)	Polarization
3704.8	-35.88	4.39	3.00	12.34	-27.93	-13.00	14.93	Н
5557.2	-41.15	5.31	3.00	13.52	-32.94	-13.00	19.94	Н
3704.8	-35.37	4.39	3.00	12.34	-27.42	-13.00	14.42	V
5557.2	-43.02	5.31	3.00	13.52	-34.81	-13.00	21.81	V

UMTS/TM1/ WCDMA Band II Low Channel

UMTS/TM1/ WCDMA Band II _ Middle Channel

Frequency (MHz)	P _{Mea} (dBm)	P _{cl} (dB)	Diatance	G _a Antenna Gain(dB)	Peak EIRP (dBm)	Limit (dBm)	Margin (dB)	Polarization
3760.0	-37.3	4.41	3.00	12.34	-29.37	-13.00	16.37	Н
5640.0	-43.09	5.38	3.00	13.58	-34.89	-13.00	21.89	Н
3760.0	-35.77	4.41	3.00	12.34	-27.84	-13.00	14.84	V
5640.0	-42.92	5.38	3.00	13.58	-34.72	-13.00	21.72	V

UMTS/TM1/ WCDMA Band II _ High Channel

Frequency (MHz)	P _{Mea} (dBm)	P _{cl} (dB)	Diatance	G _a Antenna Gain(dB)	Peak EIRP (dBm)	Limit (dBm)	Margin (dB)	Polarization
3815.2	-36.41	4.45	3.00	12.45	-28.41	-13.00	15.41	Н
5722.8	-41.9	5.47	3.00	13.66	-33.71	-13.00	20.71	Н
3815.2	-35.71	4.45	3.00	12.45	-27.71	-13.00	14.71	V
5722.8	-44.3	5.48	3.00	13.66	-36.12	-13.00	23.12	V

UMTS/TM1/ WCDMA Band V _ Low Channel

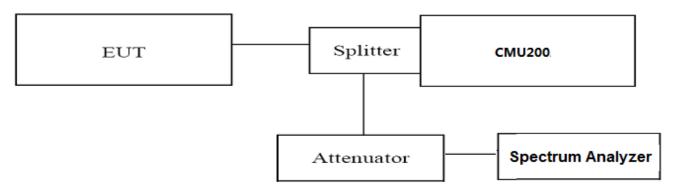
Frequency (MHz)	P _{Mea} (dBm)	P _{cl} (dB)	Diatance	G _a Antenna Gain(dB)	Peak EIRP (dBm)	Limit (dBm)	Margin (dB)	Polarization
1652.8	-29.77	3.00	3.00	9.58	-23.19	-13.00	10.19	Н
2479.2	-35.8	3.03	3.00	10.72	-28.11	-13.00	15.11	Н
1652.8	-31.3	3.00	3.00	9.68	-24.62	-13.00	11.62	V
2479.2	-39.82	3.03	3.00	10.72	-32.13	-13.00	19.13	V

UMTS/TM1/ WCDMA Band V _ Middle Channel

Frequency (MHz)	P _{Mea} (dBm)	P _{cl} (dB)	Diatance	G _a Antenna Gain(dB)	Peak EIRP (dBm)	Limit (dBm)	Margin (dB)	Polarization
1672.8	-28.09	3.00	3.00	9.58	-21.51	-13.00	8.51	Н
2509.2	-38.49	3.03	3.00	10.72	-30.8	-13.00	17.8	Н
1672.8	-31.47	3.00	3.00	9.68	-24.79	-13.00	11.79	V
2509.2	-38.68	3.03	3.00	10.72	-30.99	-13.00	17.99	V

UMTS/TM1/ WCDMA Band V _ High Channel

Frequency (MHz)	P _{Mea} (dBm)	P _{cl} (dB)	Diatance	G _a Antenna Gain(dB)	Peak EIRP (dBm)	Limit (dBm)	Margin (dB)	Polarization
1693.2	-32.57	3.00	3.00	9.58	-25.99	-13.00	12.99	Н
2539.8	-38.24	3.03	3.00	10.72	-30.55	-13.00	17.55	Н
1693.2	-30.32	3.00	3.00	9.68	-23.64	-13.00	10.64	V
2539.8	-35.24	3.03	3.00	10.72	-27.55	-13.00	14.55	V



4.3 Occupied Bandwidth and Emission Bandwith

TEST APPLICABLE

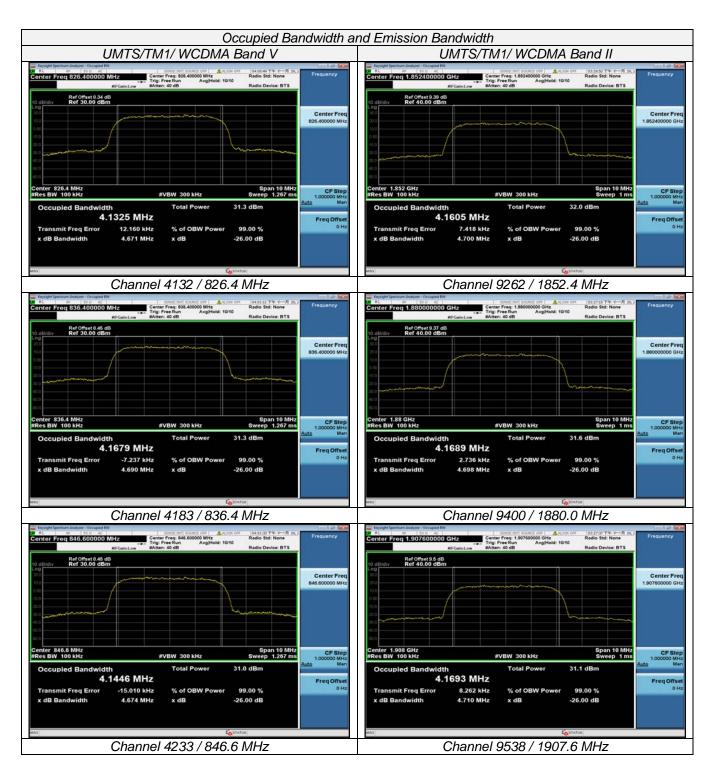
Similar to conducted emissions; occupied bandwidth measurements are only provided for selected frequencies in order to reduce the amount of submitted data. Data were taken at the extreme and mid frequencies of WCDMA Band II, WCDMA band V, WCDMA band IV. The table below lists the measured 99% Bandwidth and -26dBc Bandwidth.

TEST CONFIGURATION

TEST PROCEDURE

- 1. The EUT was set up for the max output power with pseudo random data modulation;
- 2. Set RBW=100KHz,VBW=300KHz,Span=10MHz, SWT=Auto;
- 3. Set SPA Max hold and View, Set 99% Occupied Bandwidth/ Set -26dBc Occupied Bandwidth
- 4. These measurements were done at 3 frequencies for WCDMA band II /V. (low, middle and high of operational frequency range).

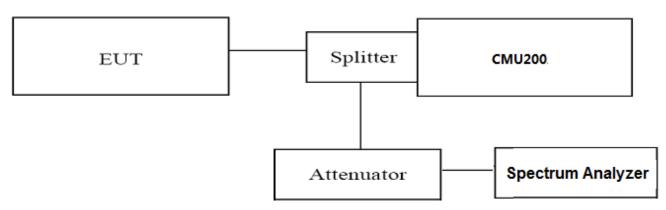
TEST RESULTS


Test Mode	Channel	Frequency (MHz)	Occupied Bandwidth (99% BW) (MHz)	Emission Bandwidth (-26 dBc BW) (MHz)	Verdict
UMTS/TM1/	4132	826.40	4.1325	4.671	PASS
WCDMA Band	4182	836.40	4.1679	4.690	PASS
V	4233	846.60	4.1446	4.674	PASS
UMTS/TM1/	9262	1852.4	4.1605	4.700	PASS
WCDMA Band	9400	1880.0	4.1689	4.698	PASS
II	9538	1907.6	4.1693	4.710	PASS

Remark:

1. Test results including cable loss;

2. please refer to following plots;



4.4 Band Edge Compliance

TEST APPLICABLE

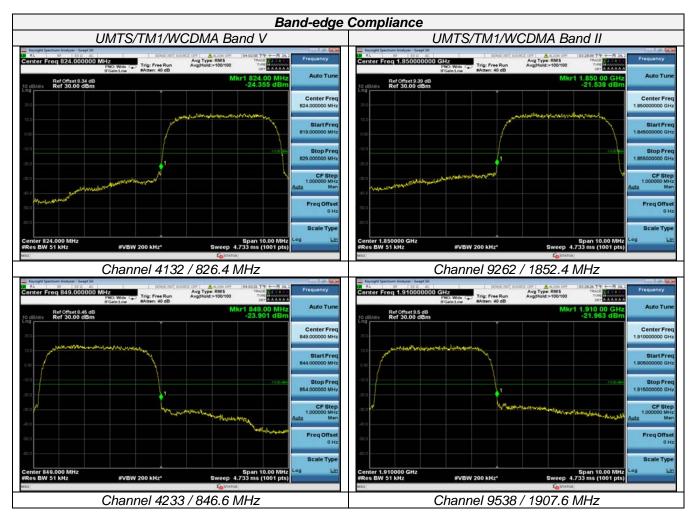
During the process of testing, the EUT was controlled via Aglient Digital Radio Communication tester (CMU200) to ensure max power transmission and proper modulation.

TEST CONFIGURATION

TEST PROCEDURE

- 1. The EUT was set up for the max output power with pseudo random data modulation;
- 2. Set RBW=51KHz,VBW=200KHz,Span=2MHz ,Dector: RMS;
- 3. These measurements were done at 2 frequencies (low and high of operational frequency range).

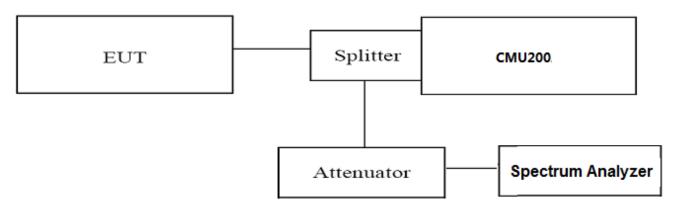
TEST RESULTS


	UMTS/TM1/WCDMA Band V									
Test Mode	Channel	Band Edg Compliance (dBm)	Limits (dBm)	Verdict						
UMTS/TM1/WCDMA	4132	826.4	<-13dBm	-13dBm	PASS					
Band V	4233	846.6	<-13dBm	-13dBm	FA35					
		UMTS/TM1/WC	DMA Band II							
Test Mode	Channel	Frequency (MHz)	Band Edg Compliance (dBm)	Limits (dBm)	Verdict					
UMTS/TM1/WCDMA	9262	1852.4	<-13dBm	-13dBm	PASS					
Band II	9538	1907.6	<-13dBm	-13dBm	FA33					

Remark:

1. Test results including cable loss;

2. please refer to following plots;


4.5 Spurious Emssion on Antenna Port

TEST APPLICABLE

The following steps outline the procedure used to measure the conducted emissions from the EUT.

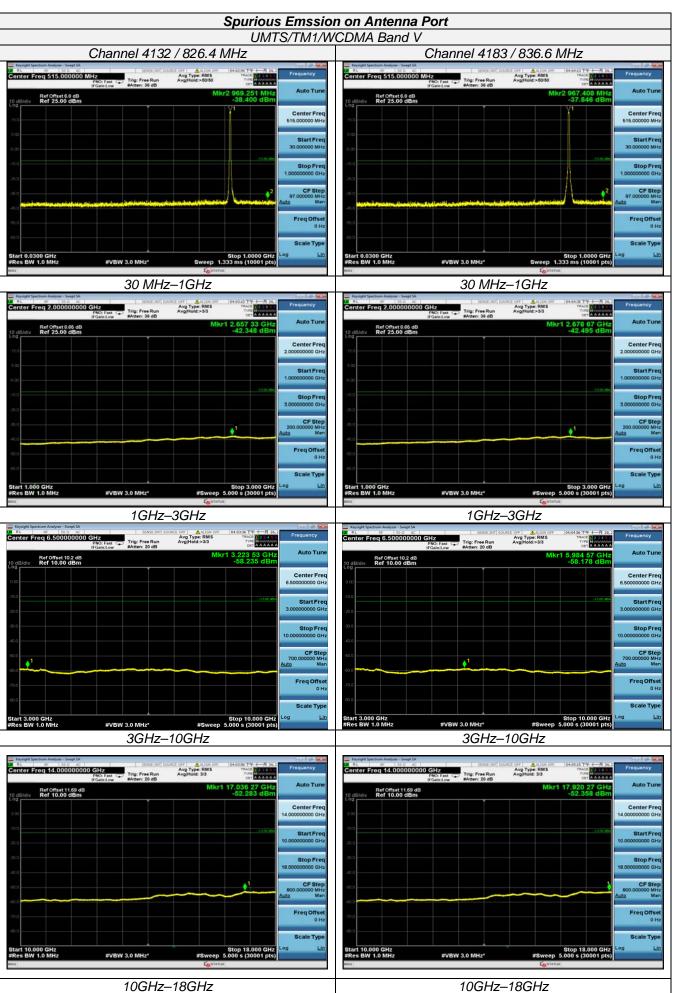
- Determine frequency range for measurements: the spectrum should be investigated from the lowest radio frequency generated in the equipment up to at least the 10th harmonic of the carrier frequency. For the equipment of WCDMA band II data taken from 9 KHz to 20 GHz. For WCDMA Band V, data taken from 9 KHz to 9 GHz. WCDMA band I V data taken from 9 KHz to 20 GHz.
- 2. The sweep time is set automatically by instrument itself. That should be the optimal sweep time for the span and the RBW. If the sweep time is too short, that is sweep is too fast, the sweep result is not accurate; if the sweep time is too long, that is sweep is too low, some frequency components may be lost. The instrument will give an optimal sweep time according the selected span and RBW.
- The procedure to get the conducted spurious emission is as follows: The trace mode is set to MaxHold to get the highest signal at each frequency; Wait 25 seconds; Get the result.
- 4. Determine EUT transmit frequencies: below outlines the band edge frequencies pertinent to conducted emissions testing.

TEST CONFIGURATION

TEST PROCEDURE

- 1. The EUT was set up for the max output power with pseudo random data modulation;
- 2. These measurements were done at 3 frequencies (low, middle and high of operational frequency range) of each band.

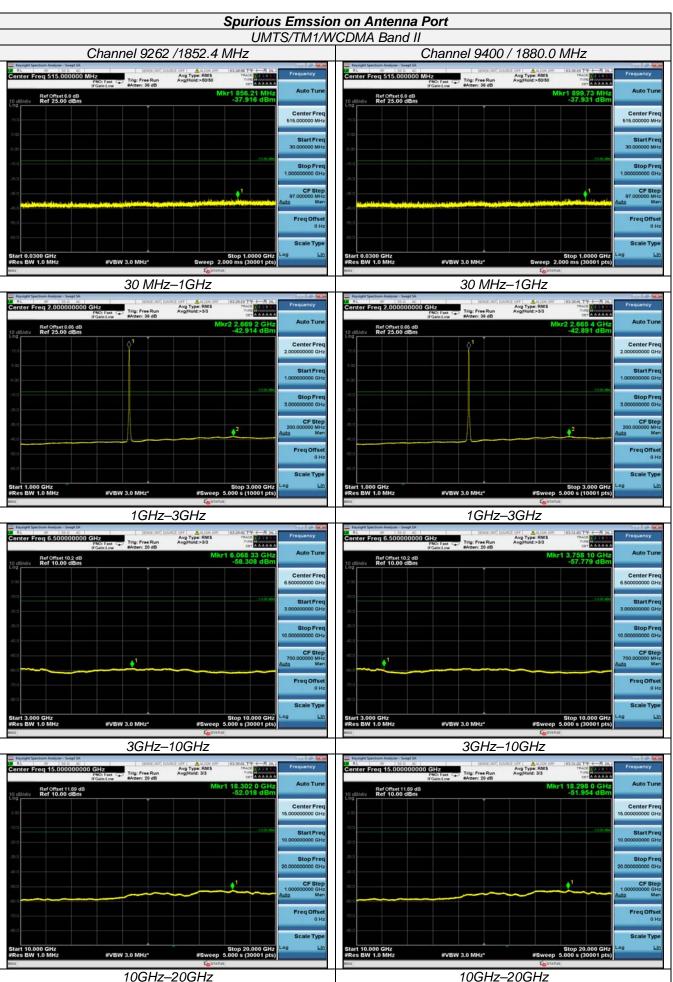
TEST LIMIT


the power of any emission outside of the authorized operating frequency ranges must be attenuated below the transmitting power (P) by a factor of at least $43 + 10 \log(P) dB$.

The specification that emissions shall be attenuated below the transmitter power (P) by at least 43 + 10 log (P) dB, translates in the relevant power range (1 to 0.001 W) to -13 dBm. At 1 W the specified minimum attenuation becomes 43 dB and relative to a 30 dBm (1 W) carrier becomes a limit of -13 dBm. At 0.001 W (0 dBm) the minimum attenuation is 13 dB, which again yields a limit of -13 dBm. In this way a translation of the specification from relative to absolute terms is carried out.

TEST RESULTS

Test Mode	Channel	Frequency (MHz)	Spurious RF Conducted Emission (dBm)	Limits (dBm)	Verdict
UMTS/TM1/WCDMA	4132	826.40	<-13dBm	-13dBm	
Band V	4182	836.40	<-13dBm	-13dBm	PASS
Dallu V	4233	846.60	<-13dBm	-13dBm	
UMTS/TM1/WCDMA	9262	1852.40	<-13dBm	-13dBm	
Band II	9400	1880.00	<-13dBm	-13dBm	PASS
Dailu II	9538	1907.60	<-13dBm	-13dBm	

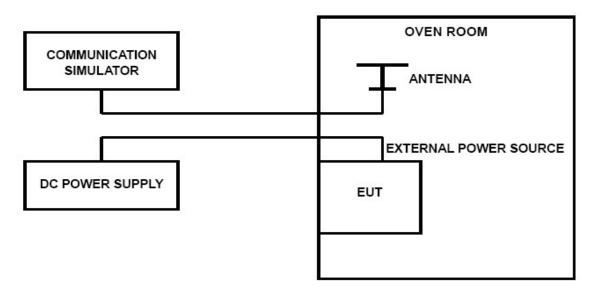


				VCDMA Band V	
Charles Charle	annel 4233 /				
AL 89 39 B 40 Inter Freq 515.000000 MHz PNO: Fe IFGain:L	ast C Trig: Free Run	off Alson Off (04.0) Avg Type: RMS Avg(Hold > 50/50	THE AAAAAA		
Ref Offset 6.8 dB Ref 25.00 dBm		Mkr2 90 -3	09,402 MHz 8.008 dBm		
		Ĭ	Center Freq 515.000000 MHz		
			Start Freq 30.00000 MHz		
			4100.000		
			Stop Freq 1.00000000 GHz		
	a a constantina a sa		2 CF Step 97.000000 MHz Auto Man		
			Freq Offset		
a			0 Hz		
art 0.0300 GHz es BW 1.0 MHz #	#VBW 3.0 MHz*	Stop Sweep 1.333 m	p 1.0000 GHz		
		Costatus.			
Reysight Spectrum Analyzer - Swept SA KL NF 50 D AC	30 MHz-		535 T \$ +		
	ast 😱 Trig: Free Run A	Avg Type: RMS Avg(Hold>3/3	THE MUSEUM		
Ref Offset 8.65 dB dB/dlv Ref 25.00 dBm		Mkr1 2.6 -4	2.450 dBm		
			Center Freq 2.00000000 GHz		
			Start Freq 1.000000000 GHz		
n			Stop Freq		
			3.00000000 GHz		
		¢ ¹	CF Step 200.000000 MHz Auto Man		
			Freq Offset		
			Scale Type		
art 1.000 GHz es BW 1.0 MHz #	#VBW 3.0 MHz*	Sto #Sweep 5.000	op 3.000 GHz s (30001 pts)		
	1GHz–3	GHz			
Keysight Spectrum Analyzer - Swept SA RL RF 50 Ω AC Nter Freq 6.5000000000 GHz	SENSE:INT SOURCE		6617 下午 十一月 26,2 TRACE 2 3 4 5 5 TYPE AAAAAA		
PNO: Fa IFGain:Li Bidiy Ref Offset 10.2 dB Ref 10.00 dBm	ast — Trig: Free Run # .ow #Atten: 20 dB		033 57 GHz Auto Tune 58,260 dBm		
B/div Ref 10.00 dBm			Center Freq 6.50000000 GHz		
			413 00 dbm Start Freq		
			3.000000000 GHz		
			Stop Freq 10.000000000 GHz		
			10.00000000 GHz CF Step 700.00000 MHz		
	1		10.00000000 GHz CF Step 700.000000 MHz <u>Auto</u> Man		
			10.00000000 GHz CF Step 700.00000 MHz <u>Auto</u> Man Freq Offset 0 Hz		
rt 3.000 GHz		Sto	10.00000000 GHz CF Step 700.00000 Minz Auto Man Freq Offset 0 Hz Scale Type		
rt 3.000 GHz es BW 1.0 MHz #	FVBW 3.0 MHz*		10.00000000 GHz CF Step 700.00000 MHz Auto Freq Offset 0 Hz Scale Type		
Facility Continue Andrew Teach IA	FVBW 3.0 MHz" 3GHz—1(OGHz	10.00000000 GHz CF Step 200.00000 Hrz Auta Freq Offset 0 Hz Scale Type 10.000 GHz Log Lin		
Resight Spectrum Analyser - Swept SA RL NP 39 0 AC Inter Freq 14.000000000 GHz IFGeintz	FVBW 3.0 MHz" 3GHz—1(10 00000000 GHz CF Step 700 00000 MHz Auto MHz Auto MHz Auto MHz Scale Type Log Lin Frequency Frequency Frequency		
Facility Continue Andrew Teach IA	FVBW 3.0 MHz" 3GHz—1(10 00000000 GHz CF Step 700 00000 MHz Auto WMHz Auto WHHZ Auto WHHZ Auto WHHZ Auto WHHZ Auto WHHZ Barton Here Constant Consta		
Resight Spectrum Analyser - Swept SA RL NP 39 0 AC Inter Freq 14.000000000 GHz IFGeintz	FVBW 3.0 MHz" 3GHz—1(10.000000000 GHz 10.000000000 GHz 10.000000000 GHz 10.000 GHz		
Resight Spectrum Analyser - Swept SA RL NP 39 0 AC Inter Freq 14.000000000 GHz IFGeintz	FVBW 3.0 MHz" 3GHz—1(10 00000000 GHz CF Step 700 00000 MHz Auto WMHz Auto WHHZ Auto WHHZ Auto WHHZ Auto WHHZ Auto WHHZ Barton Here Constant Consta		
Resight Spectrum Analyser - Swept SA RL NP 39 0 AC Inter Freq 14.000000000 GHz IFGeintz	FVBW 3.0 MHz" 3GHz—1(10.00000000000000000000000000000000000		
Resight Spectrum Analyser - Swept SA RL NP 39 0 AC Inter Freq 14.000000000 GHz IFGeintz	FVBW 3.0 MHz" 3GHz—1(10.00000000000000000000000000000000000		
Resight Spectrum Analyser - Swept SA RL NP 39 0 AC Inter Freq 14.000000000 GHz IFGeintz	FVBW 3.0 MHz" 3GHz—1(10.00000000 GHz Auto CF Step 700.00000 Hrz Auto Mera Auto Mera Freq Offset 0 Hz CF Step 700 Loss P 10.000 GHz Scale Type Log P 10.000 GHz Freq Offset 0 Hz Scale Type Log Lin Freq Offset 0 Hz Freq Offset 0 Hz Scale Type Log Lin Freq Offset 0 Hz CF Step Start Freq 10 0000000 GHz Start Freq 10 0000000 GHz Start Freq 10 0000000 GHz Start Kreq 10 0000000 GHz Start Kreq 10 0000000 GHz		
Resight Spectrum Analyser - Swept SA RL NP 39 0 AC Inter Freq 14.000000000 GHz IFGeintz	FVBW 3.0 MHz" 3GHz—1(10.00000000000000000000000000000000000		
Record Sectors Advance Asset 33.	FVBW 3.0 MHz" 3GHz—1(OGHz	10 00000000 CHz CF Step T00 00000 Miz Auto CF Step T00 00000 Miz Center Freq 10 000 CHz Center Freq 10 00000 Miz Start Freq 10 00000 CHz Start Freq 10 00000 CHz Start Freq 10 000000 CHz Start Freq 10 000000 CHz Start Freq Start Freq 10 000000 CHz Start Freq 10 000000 CHz Start Freq Start Start Freq Start S		
Report System (Sener Sener Sen	FVBW 3.0 MHz" 3GHz—1(OGHz	10.00000000000000000000000000000000000		

			S/TM1/W
		UMTS	5/ T IVI 1/ VV
Keysight Spectrum Analyzer - Swept SA KL 19 10 D AC Center Freq 515.000000 r	AHZ PNO: Fast C	АСЕ ОГР АЛЛОН ОГР (02.31.39 ТФ +→Я 26.3 Avg Type: RMS тилсе и расса Avg/Hold>50/50 тис	Frequency
Ref Offset 5.8 dB dB/div Ref 25.00 dBm	PNO: Feat (Free Run IFGein:Low #Atten: 35 dB	Mkr1 499.54 MHz -38.424 dBm	Auto Tune
5.0			Center Freq 515.000000 MHz
5.00			Start Freq
5.0		A3 00 (094)	30.000000 MHz
×1			Stop Freq 1.00000000 GHz
-35.0			CF Step 97.000000 MHz uto Man
46.0			Freq Offset
65.0			Scale Type
Start 0.0300 GHz #Res BW 1.0 MHz	#VBW 3.0 MHz*	Stop 1.0000 GHz Sweep 2.000 ms (30001 pts)	
80	30 MHz		
Kenight Spectrum Analyzer - Swept SA KL RF 30 D 4C Center Freq 2.000000000	GHZ PNO: Fast IF Gain:Low #Atten: 35 dB	RIC OFF (소시:00 OFF (02:32:02 가부 + 月 36.) Avg Type: RMS 자자이다 2 8 4 Avg[Hold:>3/3 가지는 소소소소소	Frequency
Ref Offset 8.66 dB 0 dB/div Ref 25.00 dBm	IFGainLow #Atten: 35 dB	Mkr2 2.662 4 GHz -42.862 dBm	Auto Tune
15.0	¢1		Center Freq 2.000000000 GHz
5.00			Start Freq
6.00		A100.00+	1.00000000 GHz
-5.0			Stop Freq 3.000000000 GHz
-95.0		A	CF Step 200.000000 MHz uto Man
45.0			Freq Offset
-65.0			Scale Type
Start 1.000 GHz #Res BW 1.0 MHz	#VBW 3.0 MHz*	Stop 3.000 GHz #Sweep 5.000 s (10001 pts)	6.6
80	1GHz-	-3GHz	
Resight Spectrum Analyzer - Swept SA AL BY SOU AC Center Freq 6,500000000	GHz PNO: Fast Trig: Free Run IFGeint.ow #Atten: 20 dB	AND OF 02-32-23 TH +	Frequency
Ref Offset 10.2 dB	IFGain:Low #Atten: 20 dB	Mkr1 3.208 83 GHz -58.273 dBm	Auto Tune
10 dB/div Ref 10.00 dBm			Center Freq
10.0			Start Freq
-30.0			3.000000000 GHz
40.0			Stop Freq 0.000000000 GHz
60.0			CF Step 700.000000 MHz uto Men
-60 n -70 ú			Freq Offset
-00.0		الدالي المراجع	0 Hz Scale Type
Start 3.000 GHz Res BW 1.0 MHz	#VBW 3.0 MHz*	Stop 10.000 GHz #Sweep 5.000 s (30001 pts)	6.6
10	3GHz–	Costatus .	
Keysight Spectrum Analyzer - Swept SA AL BP 100 BC	SENSE INT SOU		Frequency
Center Freq 15.00000000	IFGain:Low #Atten: 20 dB	ArgiHold: 33 Mrg Type: RMS ArgiHold: 33 Mkr1 18.330 GHz -52,212 dBm	Auto Tune
10 dB/div Ref 10.00 dBm			Center Freq
10.00			5.00000000 GHz
-20.0			Start Freq 10.000000000 GHz
-20.0			Stop Freq 20.000000000 GHz
40.0		• • • • • • • • • • • • • • • • • • •	CF Step 1.00000000 GHz uto Man
60.0			Freq Offset
-00.0			0 Hz
Start 10.000 GHz #Res BW 1.0 MHz	#VBW 3.0 MHz*	Stop 20.000 GHz #Sweep 5.000 s (30001 pts)	Scale Type
NGS SW TO MH2		Costatus .	
	10GHz-	ZUGHZ	

4.6 Frequency Stability Test

TEST APPLICABLE


- 1. According to FCC Part 2 Section 2.1055 (a)(1), the frequency stability shall be measured with variation of ambient temperature from -30°C to +50°C centigrade.
- 2. According to FCC Part 2 Section 2.1055 (E) (2), for battery powered equipment, the frequency stability shall be measured with reducing primary supply voltage to the battery operating end point, which is specified by the manufacture.
- 3. Vary primary supply voltage from 85 to 115 percent of the nominal value for other than hand carried voltage equipment and the end voltage point was 4.3V.

TEST PROCEDURE

In order to measure the carrier frequency under the condition of AFC lock, it is necessary to make measurements with the EUT in a "call mode". This is accomplished with the use of R&S CMU200 DIGITAL RADIO COMMUNICATION TESTER.

- 1. Measure the carrier frequency at room temperature;
- 2. Subject the EUT to overnight soak at -30°C;
- 3. With the EUT, powered via nominal voltage, connected to the CMU200 and in a simulated call on middle channel of WCDMA Band V, measure the carrier frequency. These measurements should be made within 2 minutes of Powering up the EUT, to prevent significant self-warming;
- 4. Repeat the above measurements at 10 °C increments from -30 °C to +50 °C. Allow at least 0.5 hours at each temperature, unpowered, before making measurements;
- 5. Remeasure carrier frequency at room temperature with nominal voltage. Vary supply voltage from minimum voltage to maximum voltage, in 0.1Volt increments remeasuring carrier frequency at each voltage. Pause at nominal voltage for 0.5 hours unpowered, to allow any self-heating to stabilize, before continuing;
- 6. Subject the EUT to overnight soak at $+50^{\circ}$ C;
- With the EUT, powered via nominal voltage, connected to the CMU200 and in a simulated call on the centre channel, measure the carrier frequency. These measurements should be made within 2 minutes of Powering up the EUT, to prevent significant self-warming;
- 8. Repeat the above measurements at 10℃ increments from +50℃ to -30℃. Allow at least 0.5 hours at each temperature, unpowered, before making measurements;
- 9. At all temperature levels hold the temperature to +/- 0.5° C during the measurement procedure;

TEST CONFIGURATION

TEST LIMITS

For Hand carried battery powered equipment

According to the JTC standard the frequency stability of the carrier shall be accurate to within 0.1 ppm of the received frequency from the base station. This accuracy is sufficient to meet Sec. 24.235, Frequency Stability. The frequency stability shall be sufficient to ensure that the fundamental emission stays within the authorized

frequency block. As this transceiver is considered "Hand carried, battery powered equipment" Section 2.1055(d)(2) applies. This requires that the lower voltage for frequency stability testing be specified by the manufacturer. This transceiver is specified to operate with an input voltage of between 3.1VDC and 4.3VDC, with a nominal voltage of 3.80DC. Operation above or below these voltage limits is prohibited by transceiver software in order to prevent improper operation as well as to protect components from overstress. These voltages represent a tolerance of -10 % and +12.5 %. For the purposes of measuring frequency stability these voltage limits are to be used.

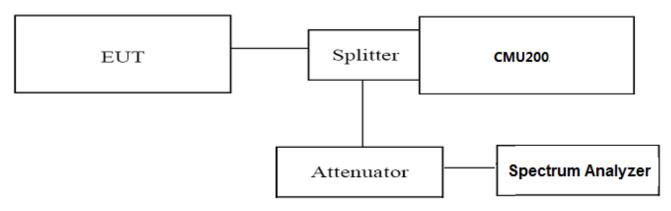
For equipment powered by primary supply voltage

According to the JTC standard the frequency stability of the carrier shall be accurate to within 0.1 ppm of the received frequency from the base station. This accuracy is sufficient to meet Sec. 24.235, Frequency Stability. The frequency stability shall be sufficient to ensure that the fundamental emission stays within the authorized frequency block. For this EUT section 2.1055(d)(1) applies. This requires varying primary supply voltage from 85 to 115 percent of the nominal value for other than hand carried battery equipment.

TEST RESULTS

	UMTS/TM1/WCDMA Band II									
DC Power	Temperature (℃)	Frequency error(Hz)	Frequency error(ppm)	Limit (ppm)	Verdict					
3.1V	20	22.43	0.012109	2.50	PASS					
3.7V	20	22.26	0.012018	2.50	PASS					
4.3V	20	20.34	0.010980	2.50	PASS					
3.7V	-30	27.39	0.014569	2.50	PASS					
3.7V	-20	25.77	0.013709	2.50	PASS					
3.7V	-10	17.30	0.009204	2.50	PASS					
3.7V	0	23.38	0.012434	2.50	PASS					
3.7V	10	19.50	0.010373	2.50	PASS					
3.7V	20	19.78	0.010519	2.50	PASS					
3.7V	30	20.77	0.011046	2.50	PASS					
3.7V	40	23.53	0.012515	2.50	PASS					
3.7V	50	20.80	0.011063	2.50	PASS					

		UMTS/TM1/W	CDMA Band V		
DC Power	Temperature (℃)	Frequency error(Hz)	Frequency error(ppm)	Limit (ppm)	Verdict
3.1V	20	3.48	0.004210	2.50	PASS
3.7V	20	3.42	0.004136	2.50	PASS
4.3V	20	4.71	0.005705	2.50	PASS
3.7V	-30	8.73	0.010435	2.50	PASS
3.7V	-20	8.44	0.010089	2.50	PASS
3.7V	-10	10.50	0.012551	2.50	PASS
3.7V	0	10.68	0.012770	2.50	PASS
3.7V	10	9.72	0.011621	2.50	PASS
3.7V	20	7.78	0.009304	2.50	PASS
3.7V	30	5.11	0.006112	2.50	PASS
3.7V	40	8.79	0.010508	2.50	PASS
3.7V	50	6.06	0.007243	2.50	PASS



4.7 Peak-to-Average Ratio (PAR)

<u>LIMIT</u>

The Peak-to-Average Ratio (PAR) of the transmission may not exceed 13 dB.

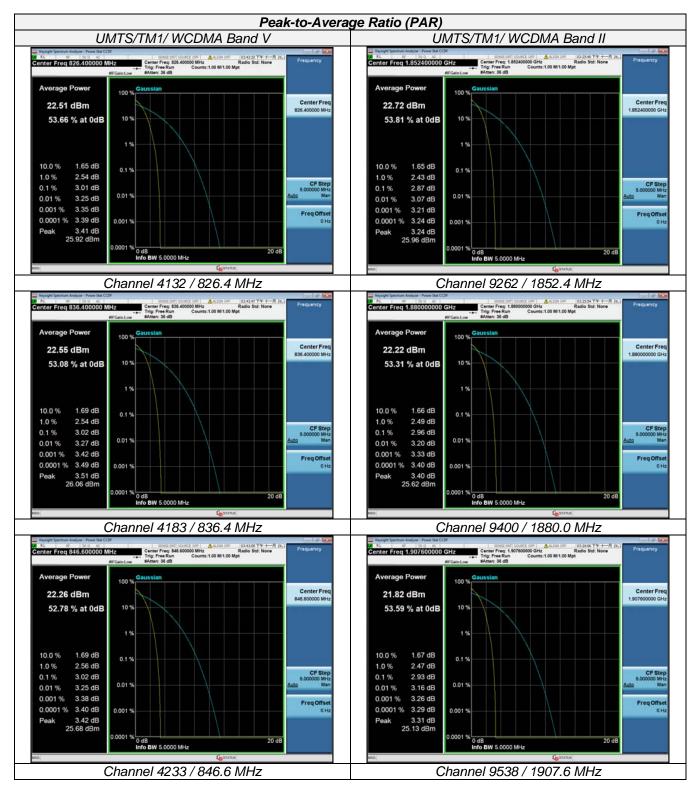
TEST CONFIGURATION

TEST PROCEDURE

- 1. Refer to instrument's analyzer instruction manual for details on how to use the power statistics/CCDF function;
- 2. Set resolution/measurement bandwidth ≥ signal's occupied bandwidth;
- 3. Set the number of counts to a value that stabilizes the measured CCDF curve;
- 4. Set the measurement interval as follows:

for continuous transmissions, set to 1 ms,
 for burst transmissions, employ an external trigger that is synchronized with the EUT burst timing sequence, or use the internal burst trigger with a trigger level that allows the burst to stabilize and set the measurement interval to a time that is less than or equal to the burst duration.

5. Record the maximum PAPR level associated with a probability of 0.1%.


TEST RESULTS

Test Mode	Channel	Frequency (MHz)	PAPR Value (dB)	Limits (dB)	Verdict
UMTS/TM1/WCDMA Band II	9262	1852.40	2.87	13.0	PASS
	9400	1880.00	2.96	13.0	PASS
	9538	1907.60	2.93	13.0	PASS
UMTS/TM1/ WCDMA Band V	4132	826.40	3.01	13.0	PASS
	4183	836.60	3.02	13.0	PASS
	4233	846.60	3.02	13.0	PASS

Remark:

- 1. Test results including cable loss;
- 2. please refer to following plots;

.....End of Report.....