

TEST REPORT

Product Name	:
Model Number	:
FCC ID	:

DRC262-NOC 2ACFM1223

3.5 Channel Helicopter

Prepared for Address	 SHANTOU CITY DAYE PLASTIC TOYS,CO,LTD Baisha Industry Areas, Chenghai Borough, Shantou City, Guangdong Province, CHINA
Prepared by Address	 EMTEK (Dongguan) Co., Ltd. -1&2F., Building 2, Zone A, Zhongda Marine Biotechnology Research and Development Base, No. 9, Xincheng Avenue, Songshanhu High-technology Industrial Development Zone, Dongguan, Guangdong, China

Tel: +86-0769-22807078 Fax: +86-0769-22807079

Report Number	:	EDG2311150147E00801R
Date(s) of Tests	:	November 15, 2023 to November 28, 2023
Date of issue	:	November 28, 2023

东莞市信测科技有限公司 地址:广东省东莞市松山湖高新技术产业开发区新城大道9号中大海洋生物科技研发基地A区2号办公楼负一层、第二层 网址:Http://www.emtek.com.cn 邮箱:E-mail: project@emtek.com.cn EMTEK (Dongguan) Co., Ltd. Add: -182/F , Building 2, Zone A, Zhongda Marine Biotechnology Research and Development Base , No.9, Xincheng Avenue, Songshanhu High-technology Industrial Development Zone, Dongguan, Guangdong, China Http://www.emtek.com.cn E-mail: project@emtek.com.cn

Table of Contents

TEST REPORT	1
1 TEST RESULT CERTIFICATION	3
2 EUT TECHNICAL DESCRIPTION	5
3 SUMMARY OF TEST RESULT	6
4 TEST METHODOLOGY	7
4.1 GENERAL DESCRIPTION OF APPLIED STANDARDS 4.2 MEASUREMENT EQUIPMENT USED 4.3 DESCRIPTION OF TEST MODES	7 8
5 FACILITIES AND ACCREDITATIONS	
5.1 FACILITIES 5.2 LABORATORY ACCREDITATIONS AND LISTINGS	9
6 TEST SYSTEM UNCERTAINTY	
7 SETUP OF EQUIPMENT UNDER TEST	11
 7.1 RADIO FREQUENCY TEST SETUP 1 7.2 RADIO FREQUENCY TEST SETUP 2 7.3 CONDUCTED EMISSION TEST SETUP 7.4 SUPPORT EQUIPMENT 	11 12 13
8 TEST REQUIREMENTS	14
 8.1 BANDWIDTH TEST	17 17 18 27

TEST RESULT CERTIFICATION 1

Applicant	:	SHANTOU CITY DAYE PLASTIC TOYS,CO,LTD
Address	:	Baisha Industry Areas, Chenghai Borough, Shantou City, Guangdong Province, CHINA
Manufacturer	:	SHANTOU CITY DAYE PLASTIC TOYS,CO,LTD
Address	:	Baisha Industry Areas, Chenghai Borough, Shantou City, Guangdong Province, CHINA
EUT	:	3.5 Channel Helicopter
Model Name	:	VIVITAR
Trademark	:	N/A

Measurement Procedure Used:

APPLICABLE STANDARDS				
STANDARD TEST RESULT				
FCC 47 CFR Part 2, Subpart J FCC 47 CFR Part 15, Subpart C	PASS			
IC RSS-GEN, Issue 5, March 2021 IC RSS-210, Issue 10, April 2020	PASS			

The above equipment was tested by EMTEK (Dongguan) Co., Ltd.The test data, data evaluation, test procedures, and equipment configurations shown in this report were made in accordance with the procedures given in ANSI C63.10 (2013) and the energy emitted by the sample EUT tested as described in this report is in compliance with the requirements of FCC Rules Part 2, Part 15.249, IC RSS-GEN Issue 5 and IC RSS-210 Issue 10. The test results of this report relate only to the tested sample identified in this report.

Date of Test :	November 15, 2023 to November 28, 2023
Prepared by :	Warren Deng
	Warren Deng /Editor
Reviewer :	Tim Dong
	Tim Dong /Supervisor
Approved & Authorized Signer :	Sam Lv /Manager

亲莞市信测科技有限公司 地址:广东省东莞市松山湖高新技术产业开发区新城大道9号中大海洋生物科技研发基地A区2号办公楼负一层. 第二层 网址:Http://www.emtek.com.cn 邮箱:E-mail: project@emtek.com.cn EMTEK (Dongguan) Co., Ltd. Add: -1&2/F , Building 2, Zone A, Zhongda Marine Biotechnology Research and Development Base , No.9, Xincheng Avenue, Songshanhu High-technology Industrial Development Zone, Dongguan, Guangdong, China Http://www.emtek.com.cn E-mail: project@emtek.com.cn

Modified History

Version	Report No.	Revision Date	Summary
	EDG2311150147E00801R	/	Original Report

 东莞市信测科技有限公司
 地址:广东省东莞市松山湖高新技术产业开发区新城大道9号中大海洋生物科技研发基地A区2号办公楼负一层、第二层 网址:Http://www.emtek.com.cn 邮箱:E-mail: project@emtek.com.cn

 EMTEK (Dongguan) Co., Ltd.
 Add: -182/F ., Building 2,Zone A,Zhongda Marine Biotechnology Research and Development Base. No.9. Xincheng Avenue Songshaphy High-technology Industrial Development Zong

 Add: -182/F ., Building 2, Zone A, Zhongda Marine Biotechnology Research and Development Base , No.9, Xincheng Avenue, Songshanhu High-technology Industrial Development Zone, Dongguan, Guangdong, China Http://www.emtek.com.cn E-mail: project@emtek.com.cn

2 EUT TECHNICAL DESCRIPTION

Product:	3.5 Channel Helicopter		
Model Number:	DRC262-NOC		
Sample number:	2#		
Modulation:	GFSK		
Frequency Range:	2416MHz-2478MHz		
Number of Channels:	15 Channels		
Max Transmit Power:	77.2 dBuV@3m		
Antenna Gain:	0 dBi		
Antenna:	2.4G transparent antenna		
Power supply:	DC 6V from battery		
Product SW/HW version:	HW: / SW: /		
Radio SW/HW version:	HW: / SW: /		
Temperature Range:	0°C ~ +45°C		

Note: for more details, please refer to the User's manual of the EUT.

 东莞市信測科技有限公司

 地址:广东省东莞市松山湖高新技术产业开发区新城大道9号中大海洋生物科技研发基地A区2号办公楼负一层、第二层 网址:Http://www.emtek.com.cn 邮箱:E-mail: project@emtek.com.cn

 EMTEK (Dongguan) Co., Ltd.

 Add: -182/F ,,Building 2,Zone A,Zhongda Marine Biotechnology Research and Development Base ,No.9, Xincheng Avenue,Songshanhu High-technology Industrial Development Zone,

 Dongguan, Guangdong, China Http://www.emtek.com.cn E-mail: project@emtek.com.cn

FCC Part Clause	IC Part Clause	Test Parameter	Verdict	Remark
15.207	RSS-GEN Clause 8.8	Conducted Emission	N/A	
15.209	RSS-Gen.8.9 RSS-210 Annex B.10(a)	Radiated Emission	PASS	
15.249	RSS-210 Annex B.10(a)	Radiated Spurious Emission	PASS	
15.249	RSS-210 Annex B.10(a)	Band edge test	PASS	
15.249	RSS-GEN Clause 6.7 RSS-210 Annex B.10 (b)	Emission Bandwidth	PASS	
15.203	RSS-GEN Clause 6.8	Antenna Requirement	PASS	
NOTE1: N/A (Not	Applicable)			

SUMMARY OF TEST RESULT 3

NOTE2: The report use radiated measurements in the restricted frequency bands. In addition, the radiated test is also performed to ensure the emissions emanating from the device cabinet also comply with the applicable limits.

RELATED SUBMITTAL(S) / GRANT(S):

This submittal(s) (test report) is intended for FCC ID: 2ACFM1223 filing to comply with Section 15.249 of the FCC Part 15, Subpart C Rules.

东莞市信测科技有限公司 地址:广东省东莞市松山湖高新技术产业开发区新城大道9号中大海洋生物科技研发基地A区2号办公楼负一层.第二层 网址:Http://www.emtek.com.cn 邮箱:E-mail: project@emtek.com.cn EMTEK (Dongguan) Co., Ltd. Add: -182/F ,,Building 2,Zone A,Zhongda Marine Biotechnology Research and Development Base ,No.9, Xincheng Avenue,Songshanhu High-technology Industrial Development Zone, Dongguan, Guangdong, China Http://www.emtek.com.cn E-mail: project@emtek.com.cn

4 TEST METHODOLOGY

4.1 GENERAL DESCRIPTION OF APPLIED STANDARDS

According to its specifications, the EUT must comply with the requirements of the following standards: FCC 47 CFR Part 2, Subpart J FCC 47 CFR Part 15, Subpart C IC RSS-GEN, Issue 5, March 2021 IC RSS-210, Issue 10, April 2020

4.2 MEASUREMENT EQUIPMENT USED

4.2.1 Conducted Emission Test Equipment

Equipment	Manufacturer	Model No.	Serial No.	Last Cal.	Cal. Interval
EMI Test Receiver	Rohde&Schwarz	ESCI	100137	2023/5/11	1Year
AMN	Rohde&Schwarz	ENV216	101209	2023/5/11	1Year
AMN	Rohde&Schwarz	ENV216	100017	2023/5/11	1Year
RF Switching Unit	CDS	RSU-M2	38401	2023/5/11	1Year
AMN	Schwarzbeck	NNLK8121	8121-641	2023/5/11	1Year
AMN	Rohde&Schwarz	ESH3-Z6	101101	2023/5/11	1Year
AMN	Rohde&Schwarz	ESH3-Z6	101102	2023/5/11	1Year
Power Splitters & Dividers	Weinschel Associates	WA1506A	A1066	2023/5/11	1Year
Current Probe	FCC	F-52	8377	2023/5/11	1Year
Passive voltage probe	Rohde&Schwarz	ESH2-Z3	100122	2023/5/11	1Year

4.2.2 Radiated Emission Test Equipment

Equipment	Manufacturer	Model No.	Serial No.	Last Cal.	Cal. Interval
EMI Test Receiver	Rohde&Schwarz	ESCI	101415	2023/5/11	1Year
Bi-log Hybrid Antenna	Schwarzbeck	VULB9163	141	2023/5/15	1Year
Pre-Amplifie	HP	8447F	OPTH64	2023/5/11	1 Year
Signal Analyzer	R&S	FSV30	103039	2023/5/11	1 Year
Horn Antenna	Schwarzbeck	BBHA9120D	1272	2023/5/15	1Year
Horn Antenna	Schwarzbeck	BBHA9170	9170-567	2023/5/15	1Year
Pre-Amplifie	LUNAR EM	PM1-18-40	J1010000081	2023/5/11	1Year
Loop antenna	Schwarzbeck	FMZB1519	1519-012	2023/5/15	1Year

4.2.3 Radio Frequency Test Equipment

[Item	Equipment	Manufacturer	Model No.	Serial No.	Last Cal.	Cal. Interval
[1.	Signal Analyzer	R&S	FSV30	103039	2023/5/11	1 Year

Remark: Each piece of equipment is scheduled for calibration once a year.

东莞市信測科技有限公司
地址:广东省东莞市松山湖高新技术产业开发区新城大道9号中大海洋生物科技研发基地A区2号办公楼负一层、第二层 网址:Http://www.emtek.com.cn 邮箱:E-mail: project@emtek.com.cn
EMTEK (Dongguan) Co., Ltd.
Add: -1&2/F .,Building 2,Zone A,Zhongda Marine Biotechnology Research and Development Base ,No.9, Xincheng Avenue,Songshanhu High-technology Industrial Development Zone,
Dongguan, Guangdong,China Http://www.emtek.com.cn E-mail: project@emtek.com.cn

4.3 DESCRIPTION OF TEST MODES

The EUT has been tested under its typical operating condition.

The EUT configuration for testing is installed on RF field strength measurement to meet the Commissions requirement and operating in a manner which intends to maximize its emission characteristics in a continuous normal application.

The Transmitter was operated in the normal operating mode. The TX frequency was fixed which was for the purpose of the measurements.

Test of channel included the lowest and middle and highest frequency to perform the test, then record on this report.

The EUT has been tested under its typical operating condition so those modulation and channel were used for all test.

Pre-defined engineering program for regulatory testing used to control the EUT for staying in continuous transmitting and receiving mode is programmed.

Channel	Frequency (MHz)	Channel	Frequency (MHz)	Channel	Frequency (MHz)
1	2416.0	17		33	
2	2460.0	18		34	
3	2462.0	19		35	
4	2463.0	20		36	
5	2464.0	21		37	
6	2465.0	22		38	
7	2466.0	23		39	
8	2468.0	24		40	
9	3469.0	25		41	
10	2470.0	26		42	
11	2471.0	27		43	
12	2472.0	28		44	
13	2473.0	29		45	
14	2474.0	30		46	
15	2475.0	31		47	
16		32		48	

Frequency and Channel list:

Test Frequency and Channel list:

Lowest Frequency		Middle Frequency		Highest Frequency	
Channel	Frequency (MHz)	Channel	Frequency (MHz)	Channel	Frequency (MHz)
1	2416	8	2468	15	2475

东莞市信测科技有限公司 地址:广东省东莞市松山湖高新技术产业开发区新城大道9号中大海洋生物科技研发基地A区2号办公楼负一层、第二层 网址:Http://www.emtek.com.cn 邮箱:E-mail: project@emtek.com.cn EMTEK (Dongguan) Co., Ltd. Add: -1&2/F , Building 2, Zone A, Zhongda Marine Biotechnology Research and Development Base , No.9, Xincheng Avenue, Songshanhu High-technology Industrial Development Zone, Dongguan, Guangdong, China Http://www.emtek.com.cn E-mail: project@emtek.com.cn

FACILITIES AND ACCREDITATIONS 5

5.1 FACILITIES

All measurement facilities used to collect the measurement data are located at EMTEK (Dongguan) Co., Ltd.

-1&2F., Building 2, Zone A, Zhongda Marine Biotechnology Research and Development Base, No. 9, Xincheng Avenue, Songshanhu High-technology Industrial Development Zone, Dongguan, Guangdong, China.

The sites are constructed in conformance with the requirements of ANSI C63.7, ANSI C63.10 and CISPR Publication 22.

5.2 LABORATORY ACCREDITATIONS AND LISTINGS

Site Description	
EMC Lab.	: Accredited by CNAS The Laboratory has been assessed and proved to be in compliance with CNAS-CL01:2018
	The Certificate Registration Number is L3150
	Accredited by FCC
	Designation Number: CN1300
	Test Firm Registration Number: 945551
	Accredited by A2LA
	The Certificate Registration Number is 4321.02
	Accredited by Industry Canada
	The Certificate Registration Number is CN0113
Name of Firm	: EMTEK (DONGGUAN) CO., LTD.
Site Location	: -1&2/F.,Building 2, Zone A, Zhongda Marine Biotechnology Research and Development Base, No.9, Xincheng Avenue, Songshanhu High-technology Industrial Development Zone, Dongguan, Guangdong, China

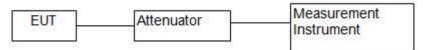
东莞市信测科技有限公司 地址:广东省东莞市松山湖高新技术产业开发区新城大道9号中大海洋生物科技研发基地A区2号办公楼负一层. 第二层 网址:Http://www.emtek.com.cn 邮箱:E-mail: project@emtek.com.cn EMTEK (Dongguan) Co., Ltd. Add: -1&2/F , Building 2, Zone A, Zhongda Marine Biotechnology Research and Development Base , No.9, Xincheng Avenue, Songshanhu High-technology Industrial Development Zone, Dongguan, Guangdong, China Http://www.emtek.com.cn E-mail: project@emtek.com.cn

TEST SYSTEM UNCERTAINTY 6

The following measurement uncertainty levels have been estimated for tests performed on the apparatus:

Parameter	Uncertainty
Radio Frequency	±1x10^-5
Maximum Peak Output Power Test	±1.0dB
Conducted Emissions Test	±2.0dB
Radiated Emission Test	±2.0dB
Occupied Bandwidth Test	±1.0dB
Band Edge Test	±3dB
All emission, radiated	±3dB
Antenna Port Emission	±3dB
Temperature	±0.5°C
Humidity	±3%

Measurement Uncertainty for a level of Confidence of 95%


东莞市信测科技有限公司 地址:广东省东莞市松山湖高新技术产业开发区新城大道9号中大海洋生物科技研发基地A区2号办公楼负一层、第二层网址:Http://www.emtek.com.cn邮箱:E-mail: project@emtek.com.cn EMTEK (Dongguan) Co., Ltd. Add: -182/F , Building 2, Zone A, Zhongda Marine Biotechnology Research and Development Base , No.9, Xincheng Avenue, Songshanhu High-technology Industrial Development Zone, Dongguan, Guangdong, China Http://www.emtek.com.cn E-mail: project@emtek.com.cn

7 SETUP OF EQUIPMENT UNDER TEST

7.1 RADIO FREQUENCY TEST SETUP 1

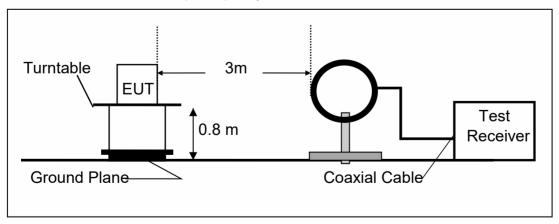
The EUT wireless component's antenna ports(s) of the EUT are connected to the measurement instrument per an appropriate attenuator. The EUT is controlled by PC/software to emit the specified signals for the purpose of measurements.

7.2 RADIO FREQUENCY TEST SETUP 2

The test site semi-anechoic chamber has met the requirement of NSA tolerance 4 dB according to the standards: ANSI C63.10. The test distance is 3m. The setup is according to the requirements in Section 13.1.4.1 of ANSI C63.10-2013 and CAN/CSA-CEI/IEC CISPR 22.

Below 30MHz:

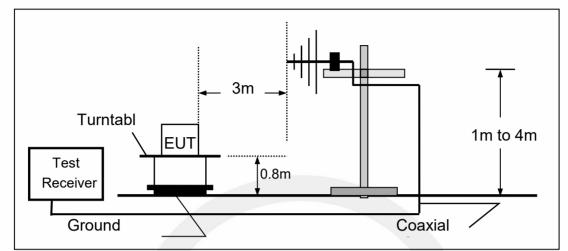
The EUT is placed on a turntable 0.8 meters above the ground in the chamber, 3 meter away from the antenna (loop antenna). The Antenna should be positioned with its plane vertical at the specified distance from the EUT and rotated about its vertical axis for maximum response at each azimuth about the EUT. The center of the loop shall be 1 m above the ground. For certain applications, the loop antenna plane may also need to be positioned horizontally at the specified distance from the EUT.


30MHz-1GHz:

The EUT is placed on a turntable 0.8 meters above the ground in the chamber, 3 meter away from the antenna. The maximal emission value is acquired by adjusting the antenna height, polarisation and turntable azimuth. Normally, the height range of antenna is 1 m to 4 m, the azimuth range of turntable is 0° to 360°, and the receive antenna has two polarizations Vertical (V) and Horizontal (H).

Above 1GHz:

The EUT is placed on a turntable 1.5 meters above the ground in the chamber, 3 meter away from the antenna. The maximal emission value is acquired by adjusting the antenna height, polarisation and turntable azimuth. Normally, the height range of antenna is 1 m to 4 m, the azimuth range of turntable is 0° to 360°, and the receive antenna has two polarizations Vertical (V) and Horizontal (H).


(a) Radiated Emission Test Set-Up, Frequency Below 30MHz

EMTEK (Dongguan) Co., Ltd.

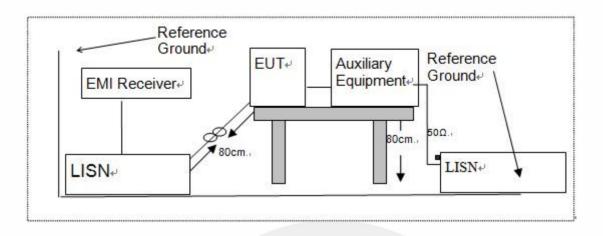

赛蒙市信调科特有限分司 地址:广东省东莞市松山湖高新技术产业开发区新城大道9号中大海洋生物科技研发基地A区2号办公楼负一层,第二层 网址:Http://www.emtek.com.cn 邮箱:E-mail: project@emtek.com.cn Add: -182/F ., Building 2, Zone A, Zhongda Marine Biotechnology Research and Development Base , No.9, Xincheng Avenue, Songshanhu High-technology Industrial Development Zone, Dongguan, Guangdong, China Http://www.emtek.com.cn E-mail: project@emtek.com.cn

(b) Radiated Emission Test Set-Up, Frequency Below 1000MHz

(c) Radiated Emission Test Set-Up, Frequency above 1000MHz

7.3 CONDUCTED EMISSION TEST SETUP

The mains cable of the EUT (maybe per AC/DC Adapter) must be connected to LISN. The LISN shall be placed 0.8 m from the boundary of EUT and bonded to a ground reference plane for LISN mounted on top of the ground reference plane. This distance is between the closest points of the LISN and the EUT. All other units of the EUT and associated equipment shall be at least 0.8m from the LISN.


Ground connections, where required for safety purposes, shall be connected to the reference ground point of the LISN and, where not otherwise provided or specified by the manufacturer, shall be of same length as the mains cable and run parallel to the mains connection at a separation distance of not more than 0.1 m.

According to the requirements in Section 13.1.4.1 of ANSI C63.10-2013 Conducted emissions from the EUT measured in the frequency range between 0.15 MHz and 30 MHz using CISPR Quasi-Peak and average detector mode.

东莞市信测科技有限公司 EMTEK (Dongguan) Co., Ltd.

な可 地址: 广东省东莞市松山湖高新技术产业开发区新城大道9号中大海洋生物科技研发基地A区2号办公楼负一层、第二层 网址: Http://www.emtek.com.cn 邮箱: E-mail: project@emtek.com.cn , Ltd. Add: -1&2/F , Building 2, Zone A, Zhongda Marine Biotechnology Research and Development Base , No.9, Xincheng Avenue, Songshanhu High-technology Industrial Development Zone, Dongguan, Guangdong, China Http://www.emtek.com.cn E-mail: project@emtek.com.cn

7.4 SUPPORT EQUIPMENT

EUT Cable List and Details							
Cable Description	Length (m)	Shielded/Unshielded	With / Without Ferrite				
	/	1	1				

Auxiliary Cable List and Details							
Cable Description	Length (m)	Shielded/Unshielded	With / Without Ferrite				
1	1	1	1				

Auxiliary Equipment List and Details							
Description Manufacturer Model Serial Number							
1	1	1	1				

Notes:

- *1.* All the equipment/cables were placed in the worst-case configuration to maximize the emission during the test.
- 2. Grounding was established in accordance with the manufacturer's requirements and conditions for the intended use.

TEST REQUIREMENTS 8

8.1 BANDWIDTH TEST

8.1.1 **Applicable Standard**

According to FCC Part 15.249 According to RSS-GEN Clause 6.7

8.1.2 Conformance Limit

N/A

8.1.3 **Test Configuration**

Test according to clause 7.1 radio frequency test setup 1

8.1.4 **Test Procedure**

The EUT was operating in controlled its channel. Printed out the test result from the spectrum by hard copy function. The RF output of EUT was connected to the spectrum analyzer by RF cable and attenuator. The path loss was compensated to the results for each measurement.

Set to the maximum power setting and enable the EUT transmit continuously

Set RBW \geq 1% of the 20 dB bandwidth(30KHz)

Set the video bandwidth (VBW) \geq RBW(100KHz).

Set Span= approximately 2 to 3 times the 20 dB bandwidth

Set Detector = Peak.

Set Trace mode = max hold.

Set Sweep = auto couple.

Measure the maximum width of the emission that is constrained by the frequencies associated with the two outermost amplitude points (upper and lower frequencies) that are attenuated by 20 dB relative to the maximum level measured in the fundamental emission.

Measure and record the results in the test report.

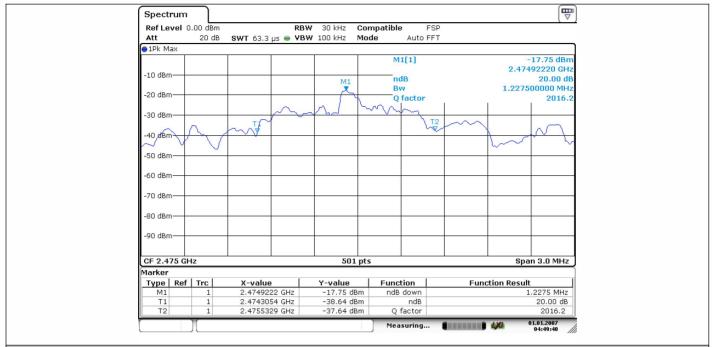
Test Results


Temperature:	25°C
Relative Humidity:	45%
ATM Pressure:	1011 mbar

Note: N/A

Antenna	Frequency[MHz]	20db EBW[мнz]	FL[MHz]	FH[MHz]	Limit[MHz]	Verdict
Ant1	2416	1.11	2415.37	2416.48		
Ant1	2468	1.20	2467.30	2468.50		
Ant1	2475	1.23	2474.30	2475.53		

赛蒙市信调科特有限分司 地址:广东省东莞市松山湖高新技术产业开发区新城大道9号中大海洋生物科技研发基地A区2号办公楼负一层,第二层 网址:Http://www.emtek.com.cn 邮箱:E-mail: project@emtek.com.cn EMTEK (Dongguan) Co., Ltd. Add: -1&2/F , Building 2, Zone A, Zhongda Marine Biotechnology Research and Development Base , No.9, Xincheng Avenue, Songshanhu High-technology Industrial Development Zone, Dongguan, Guangdong, China Http://www.emtek.com.cn E-mail: project@emtek.com.cn



EMTEK (Dongguan) Co., Ltd.

东莞市信测科技有限公司 地址:广东省东莞市松山湖高新技术产业开发区新城大道9号中大海洋生物科技研发基地A区2号办公楼负一层.第二层 网址:Http://www.emtek.com.cn 邮箱:E-mail: project@emtek.com.cn Add: -182/F ., Building 2, Zone A, Zhongda Marine Biotechnology Research and Development Base , No.9, Xincheng Avenue, Songshanhu High-technology Industrial Development Zone, Dongguan, Guangdong, China Http://www.emtek.com.cn E-mail: project@emtek.com.cn

Ant1-2475

EMTEK (Dongguan) Co., Ltd.

东莞市信测科技有限公司 地址:广东省东莞市松山湖高新技术产业开发区新城大道9号中大海洋生物科技研发基地4区2号办公楼负一层、第二层 网址:Http://www.emtek.com.cn 邮箱:E-mail: project@emtek.com.cn Add: -182/F ., Building 2, Zone A, Zhongda Marine Biotechnology Research and Development Base , No.9, Xincheng Avenue, Songshanhu High-technology Industrial Development Zone, Dongguan, Guangdong, China Http://www.emtek.com.cn E-mail: project@emtek.com.cn

8.2 99% **BANDWIDTH**

8.2.1 **Applicable Standard**

According to RSS-GEN Clause 6.7

8.2.2 **Test Configuration**

Test according to clause 7.1 radio frequency test setup 1

8.2.3 **Test Procedure**

The EUT was operating in Bluetooth mode and controlled its channel. Printed out the test result from the spectrum by hard copy function.

The RF output of EUT was connected to the spectrum analyzer by RF cable and attenuator. The path loss was compensated to the results for each measurement.

Set to the maximum power setting and enable the EUT transmit continuously

Set RBW = 1%-5% OBW(30 KHz).

Set the video bandwidth (VBW) =100 kHz.

Set Span=3 MHz

Set Detector = Peak.

Set Trace mode = max hold.

Set Sweep = auto couple.

Allow the trace to stabilize.

Use the 99 % power bandwidth function of the instrument

Measure the maximum width of the emission.

Measure and record the results in the test report.

8.2.4 **Test Results**

Temperature:	25°C
Relative Humidity:	45%
ATM Pressure:	1011 mbar

Not Applicable

EMTEK (Dongguan) Co., Ltd.

8.3 RADIATED SPURIOUS EMISSION

8.3.1 **Applicable Standard**

According to FCC Part 15.249 and 15.209 According to RSS-Gen.8.9, RSS-Gen 8.10 and RSS-210 Annex B.10

8.3.2 Conformance Limit

According to FCC Part 15.249 and RSS-210 Annex B.10(a): radiated emissions which fall in the restricted bands, as defined in §15.205(a), must also comply with the radiated emission limits specified in §15.209(a) (see §15.205(c)). According to ECC Part15 205 and RSS-Gen 8 10. Restricted bands

_According to FCC Fait 15.205 and KSS-Gen.o. 10, Restricted bands						
MHz	MHz	MHz	GHz			
0.090-0.110	16.42-16.423	399.9-410	4.5-5.15			
10.495-0.505	16.69475-16.69525	608-614	5.35-5.46			
2.1735-2.1905	16.80425-16.80475	960-1240	7.25-7.75			
4.125-4.128	25.5-25.67	1300-1427	8.025-8.5			
4.17725-4.17775	37.5-38.25	1435-1626.5	9.0-9.2			
4.20725-4.20775	73-74.6	1645.5-1646.5	9.3-9.5			
6.215-6.218	74.8-75.2	1660-1710	10.6-12.7			
6.26775-6.26825	123-138	2200-2300	14.47-14.5			
8.291-8.294	149.9-150.05	2310-2390	15.35-16.2			
8.362-8.366	156.52475-156.52525	2483.5-2500	17.7-21.4			
8.37625-8.38675	156.7-156.9	2690-2900	22.01-23.12			
8.41425-8.41475	162.0125-167.17	3260-3267	23.6-24.0			
12.29-12.293	167.72-173.2	3332-3339	31.2-31.8			
12.51975-12.52025	240-285	3345.8-3358	36.43-36.5			
12.57675-12.57725	322-335.4	3600-4400	(2)			
13.36-13.41						

According to FCC Part15.205 and RSS-Gen.8.9, the level of any transmitter spurious emission in Restricted bands shall not exceed the level of the emission specified in the following table

Restricted Frequency(MHz)	Field Strength (µV/m)	Field Strength (dBµV/m)	Measurement Distance	
0.009-0.490	2400/F(KHz)	20 log (uV/m)	300	
0.490-1.705	24000/F(KHz)	20 log (uV/m)	30	
1.705-30	30	29.5	30	
30-88	100	40	3	
88-216	150	43.5	3	
216-960	200	46	3	
Above 960	500	54	3	

Remark :1. Emission level in dBuV/m=20 log (uV/m)

2. Measurement was performed at an antenna to the closed point of EUT distance of meters.

3. Distance extrapolation factor =40log(Specific distance/ test distance)(dB);

Limit line=Specific limits(dBuV) + distance extrapolation factor.

for the frequency ranges below 30 MHz, a narrower RBW is used for these ranges but the measured value should add a RBW correction factor (RBWCF) where RBWCF [dB] =10*lg(100 [kHz]/narrower RBW [kHz]). , the narrower RBW is 1 kHz and RBWCF is 20 dB for the frequency 9 kHz to 150 kHz, and the narrower RBW is 10 kHz and RBWCF is 10 dB for the frequency 150 kHz to 30 MHz.

赛蒙市信调科特有限分司 地址:广东省东莞市松山湖高新技术产业开发区新城大道9号中大海洋生物科技研发基地A区2号办公楼负一层,第二层 网址:Http://www.emtek.com.cn 邮箱:E-mail: project@emtek.com.cn EMTEK (Dongguan) Co., Ltd. Add: -1&2/F , Building 2, Zone A, Zhongda Marine Biotechnology Research and Development Base , No.9, Xincheng Avenue, Songshanhu High-technology Industrial Development Zone, Dongguan, Guangdong, China Http://www.emtek.com.cn E-mail: project@emtek.com.cn

Field strength of fundamental and Field strength of harmonics Lir	
- FIELD STRENDIN OF TUNDAMENTAL AND FIELD STRENDIN OF DATIONICS FIT	it

Fundamental fro	equency	Field strength of fundamental (millivolts/meter)	Field strength of harmonics (microvolts/meter)			
902-928 M	IHz	50(94 dBV/m)	500(54 dBV/m)			
2400-2483.5	MHz	50(94 dBV/m)	500(54 dBV/m)			
5725-5875	MHz	50(94 dBV/m)	500(54 dBV/m)			
24.0-24.25	GHz	250(108 dBV/m)	2500(68 dBV/m)			

As shown in §15.35(b) and RSS-210 Annex B.10, for frequencies above 1000 MHz, the field strength limits in paragraphs (a) and (b) of this section are based on average limits. However, the peak field strength of any emission shall not exceed the maximum permitted average limits specified above by more than 20 dB under any condition of modulation

For this report

Fundamental Frequency	Field Strength	Field Strength of Spurious		
Fundamental Frequency	Of Fundamental	Emissions		
	AV:94 dBuV/m at 3m distance	AV:54 dBuV/m at 3m		
2400-2483.5 MHz	AV.94 ubuv/iii at Sill distance	distance		
2400-2463.5 MIHZ	PK:114 dBuV/m at 3m	PK:74 dBuV/m at 3m		
	distance	distance		

8.3.3 Test Configuration

Test according to clause 7.2 radio frequency test setup 2

8.3.4 Test Procedure

This test is required for any spurious emission that falls in a Restricted Band, as defined in Section 15.205. It must be performed with the highest gain of each type of antenna proposed for use with the EUT. Use the following spectrum analyzer settings:

The EUT was placed on a turn table which is 0.8m above ground plane.

Maximum procedure was performed on the highest emissions to ensure EUT compliance.

Span = wide enough to fully capture the emission being measured

```
RBW = 1 MHz for f \ge 1 GHz(1GHz to 25GHz), 100 kHz for f < 1 GHz(30MHz to 1GHz)
```

 $\mathsf{VBW} \geq \mathsf{RBW}$

Sweep = auto

Detector function = peak

Trace = max hold

Follow the guidelines in ANSI C63.10-2013 with respect to maximizing the emission by rotating the EUT, measuring the emission while the EUT is situated in three orthogonal planes (if appropriate), adjusting the measurement antenna height and polarization, etc. A pre-amp and a high pass filter are required for this test, in order to provide the measuring system with sufficient sensitivity. Allow the trace to stabilize. The peak reading of the emission, after being corrected by the antenna factor, cable loss, pre-amp gain, etc., is the peak field strength, which must comply with the limit specified in Section 15.35(b). Submit this data.

Now set the VBW to 10 Hz, while maintaining all of the other instrument settings. This peak level, once corrected, must comply with the limit specified in Section 15.209. If the dwell time per channel of the hopping signal is less than 100 ms, then the reading obtained with the 10 Hz VBW may be further adjusted by a "duty cycle correction factor", derived from 20log(dwell time/100 ms), in an effort to demonstrate compliance with the 15.209 limit. Submit this data.

Repeat above procedures until all frequency measured was complete.

8.3.5 Test Results

Temperature:	24° C
Relative Humidity:	53%
ATM Pressure:	1011 mbar

Spurious Emission below 30MHz (9KHz to 30MHz)

	Freq.	Ant.Pol.		ssion BuV/m)	Limit 3m((dBuV/m)	Over(dB)		
	(MHz)	H/V	PK È	ÁÝ	PK	AV	PK	AV	
Ī									

Note: the amplitude of spurious emission that is attenuated by more than 20dB below the permissible limit has no need to be reported.

Distance extrapolation factor =40log(Specific distance/ test distance)(dB);

Limit line=Specific limits(dBuV) + distance extrapolation factor

Field Strength of the fundamental signal

Freq.	Ant.Pol.	Emis Level(d	sion BuV/m)	Limit 3m	(dBuV/m)	Over(dB)		
(MHz)	H/V	PK	AV	PK	AV	PK	AV	
2416	V	73.05	52.23	114	94	-40.95	-41.77	
2416	Н	76.17	56.77	114	94	-37.83	-37.23	
2468	V	72.32	51.24	114	94	-41.68	-42.76	
2468	Н	75.32	55.12	114	94	-38.68	-38.88	
2475	V	73.81	54.19	114	94	-40.19	-39.81	
2475	Н	77.20	56.08	114	94	-36.8	-37.92	

Note: (1) Correct Factor= Antenna Factor + Cable Loss- Amplifier Gain (2) Emission Level= Reading Level+Probe Factor +Cable Loss

东莞市信测科技有限公司 地址:广东省东莞市松山湖高新技术产业开发区新城大道9号中大海洋生物科技研发基地A区2号办公楼负一层. 第二层 网址:Http://www.emtek.com.cn 邮箱:E-mail: project@emtek.com.cn EMTEK (Dongguan) Co., Ltd. Add: -182/F ,,Building 2,Zone A,Zhongda Marine Biotechnology Research and Development Base ,No.9, Xincheng Avenue,Songshanhu High-technology Industrial Development Zone, Dongguan, Guangdong, China Http://www.emtek.com.cn E-mail: project@emtek.com.cn

Out of Band Test mode:	d Emissions GFSK	F	requency:	Channel 1: 2416MHz			
Frequency (MHz)	Polarity	PK(dBuV/m) (VBW=3MHz)	Limit 3m (dBuV/m)	AV(dBuV/m) (VBW=10Hz)	Limit 3m (dBuV/m)		
2399.037	399.037 H 43.74			30.45	54		
2392.035	V	43.42	74	29.84	54		
Test mode	9:	GFSK	Frequency:	Channel 15: 2478MHz			
Frequency (MHz) Polarity		PK(dBuV/m) (VBW=3MHz)	Limit 3m (dBuV/m)	AV(dBuV/m) (VBW=10Hz)	Limit 3m (dBuV/m)		
2485.881	Н	43.38	74	29.86	54		

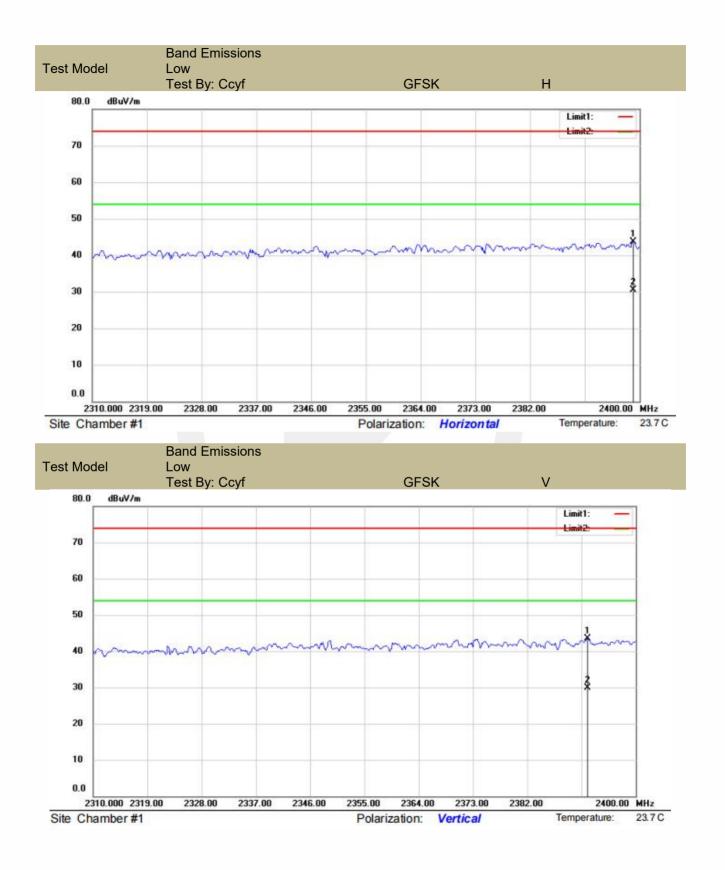
2483.680 (1) All Readings are Peak Value (VBW=3MHz) and Peak Value (VBW=10Hz). Note:

74

(2) Emission Level= Reading Level+Correct Factor +Cable Loss.

(3) Correct Factor= Ant F + Cab L - Preamp

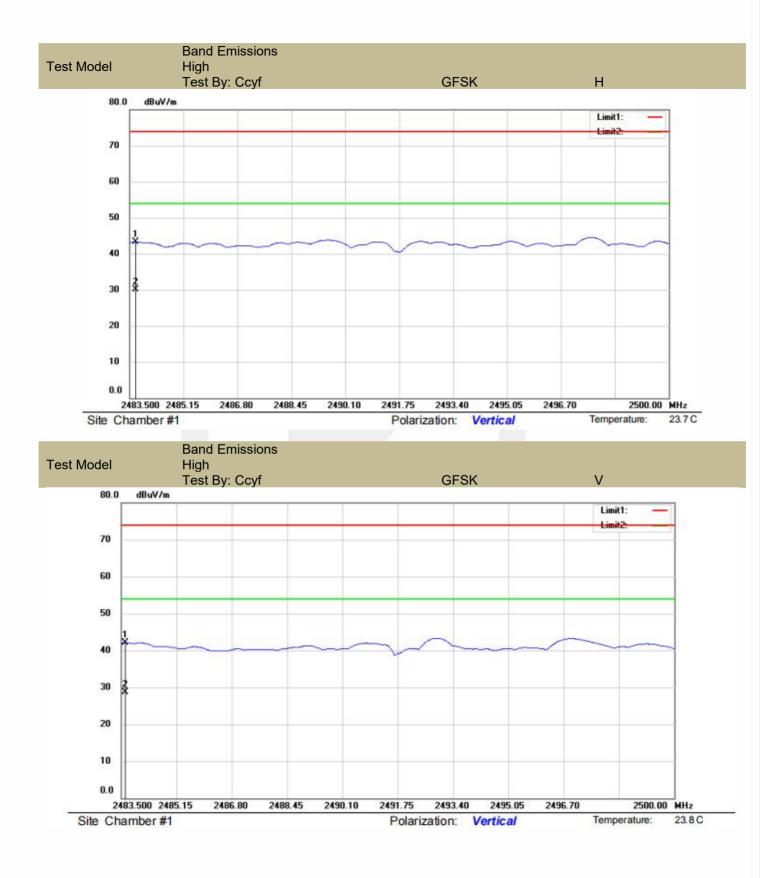
43.39


V

(4)Data of measurement within this frequency range shown " -- " in the table above means the reading of emissions are attenuated more than 20dB below the permissible limits or the field strength is too small to be measured.

30.08

54



EMTEK (Dongguan) Co., Ltd.

东莞市信测科技有限公司 地址:广东省东莞市松山湖高新技术产业开发区新城大道9号中大海洋生物科技研发基地A区2号办公楼负一层、第二层 网址:Http://www.emtek.com.cn 邮箱:E-mail: project@emtek.com.cn Add: -182/F ., Building 2, Zone A, Zhongda Marine Biotechnology Research and Development Base , No.9, Xincheng Avenue, Songshanhu High-technology Industrial Development Zone, Dongguan, Guangdong, China Http://www.emtek.com.cn E-mail: project@emtek.com.cn

EMTEK (Dongguan) Co., Ltd.

东莞市信测科技有限公司 地址:广东省东莞市松山湖高新技术产业开发区新城大道9号中大海洋生物科技研发基地A区2号办公楼负一层、第二层 网址:Http://www.emtek.com.cn 邮箱:E-mail: project@emtek.com.cn Add: -182/F ., Building 2, Zone A, Zhongda Marine Biotechnology Research and Development Base , No.9, Xincheng Avenue, Songshanhu High-technology Industrial Development Zone, Dongguan, Guangdong, China Http://www.emtek.com.cn E-mail: project@emtek.com.cn

Spurious Emission Above 1GHz (1GHz to 25GHz)

Test mode: GFSK Frequency: Channel 1: 2416MHz Emission Ant.Pol. Limit 3m(dBuV/m) Over(dB) Freq. Level(dBuV/m) (MHz) ΡK H/V ΡK AV ΡK AV AV 7647 V 59.76 45.31 74 54 -14.24 -8.69 10302.4 V 59.56 45.19 74 54 -14.44-8.81 12502.2 V 59.85 45.16 74 54 -14.15 -8.84 7545 Н 59.99 45.4 74 54 -14.01 -8.60 74 10712.1 Н 58.97 44.65 54 -15.03 -9.35 14107 Н 58.63 44.31 74 54 -15.37 -9.69

GFSK Test mode:

Frequency:

Channel 8: 2468MHz

Freq.	Ant.Pol.		Emission Level(dBuV/m)		dBuV/m)	Over(dB)		
(MHz)	H/V	PK È	ÁÝ	PK	AV	PK	AV	
8002.3	V	59.98	45.51	74	54	-14.02	-8.49	
9874	V	59.07	44.71	74	54	-14.93	-9.29	
12811.6	V	58.4	44.11	74	54	-15.60	-9.89	
7572.2	Н	59.58	45.14	74	54	-14.42	-8.86	
10225.9	Н	58.95	44.56	74	54	-15.05	-9.44	
13153.3	Н	58.82	44.53	74	54	-15.18	-9.47	

Test mode: GFSK

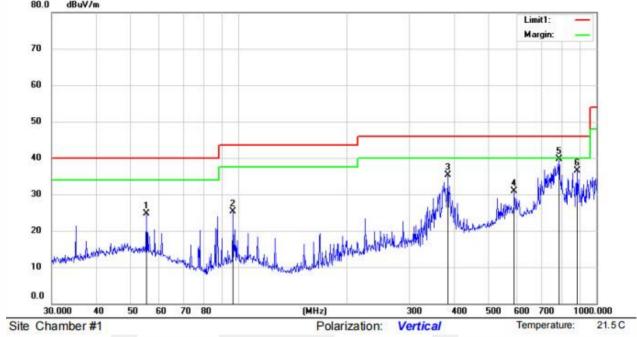
Frequency:

Channel 15: 2475MHz

Freq.	Ant.Pol.		ssion BuV/m)	Limit 3m((dBuV/m)	Over(dB)		
(MHz)	H/V	PK AV		PK	AV	PK	AV	
7788.1	V	59.48	45.15	74	54	-14.52	-8.85	
9794.1	V	58.8	44.51	74	74 54		-9.49	
12913.6	V	58.69	44.36	74	54	-15.31	-9.64	
7672.5	Н	60.05	45.6	74	54	-13.95	-8.40	
10873.6	Н	59.26	44.88	74	54	-14.74	-9.12	
13994.8	H	59.13	44.72	74	54	-14.87	-9.28	

(1) All Readings are Peak Value (VBW=3MHz) and Peak Value (VBW=10Hz). Note:

(2) Emission Level= Reading Level+Correct Factor +Cable Loss.


(3) Correct Factor= Ant_F + Cab_L - Preamp

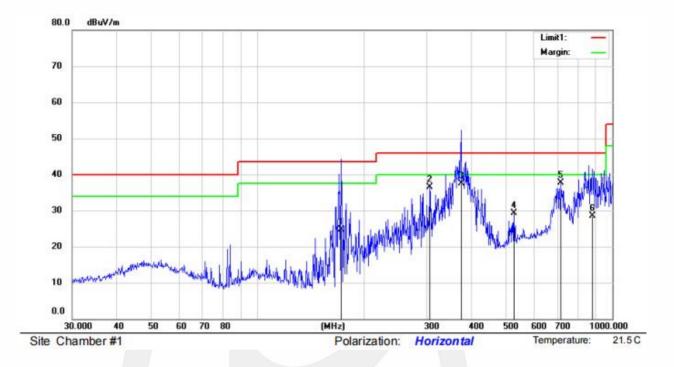
(4)Data of measurement within this frequency range shown " -- " in the table above means the reading of emissions are attenuated more than 20dB below the permissible limits or the field strength is too small to be measured.

EMTEK (Dongguan) Co., Ltd.

东莞市信测科技有限公司 地址:广东省东莞市松山湖高新技术产业开发区新城大道9号中大海洋生物科技研发基地A区2号办公楼负一层. 第二层 网址:Http://www.emtek.com.cn 邮箱:E-mail: project@emtek.com.cn Add: -182/F ., Building 2, Zone A, Zhongda Marine Biotechnology Research and Development Base , No.9, Xincheng Avenue, Songshanhu High-technology Industrial Development Zone, Dongguan, Guangdong, China Http://www.emtek.com.cn E-mail: project@emtek.com.cn

Spurious Emission below 1GHz (30MHz to 1GHz)

All modes have been tested, and the worst result recorded was report as below: 80.0 dBu∀/m


Mk.	Freq.	Reading Level	Ant. Factor	Pre Amp Gain	Cable loss	Measure- ment	Limit	Over		н	Degree	
	MHz	dBuV	dB/m	dB	dB	dBuV/m	dBuV/m	dB	Detector	cm	deg.	Comment
_	55.2207	40.83	13.45	30.5	0.92	24.70	40.00	-15.30	QP			
	96.4362	44.07	11.03	30.84	1.08	25.34	43.50	-18.16	QP			
3	383.9318	45.94	15.88	29.82	3.27	35.27	46.00	-10.73	QP			
ł	588.9051	37.92	19.76	29.94	3.09	30.83	46.00	-15.17	QP			
*	785.0935	44.65	21.4	30.23	3.79	39.61	46.00	-6.39	QP			
	881.4067	39.69	22.68	29.9	3.95	36.42	46.00	-9.58	QP			
	*	MHz 55.2207 96.4362 383.9318 588.9051	Mk. Freq. Level MHz dBuV 55.2207 40.83 96.4362 44.07 383.9318 45.94 588.9051 37.92 * 785.0935 44.65	Mk. Freq. Level Factor MHz dBuV dB/m 55.2207 40.83 13.45 96.4362 44.07 11.03 383.9318 45.94 15.88 588.9051 37.92 19.76 * 785.0935 44.65 21.4	Mk. Freq. Level Factor Gain MHz dBuV dB/m dB 55.2207 40.83 13.45 30.5 96.4362 44.07 11.03 30.84 383.9318 45.94 15.88 29.82 588.9051 37.92 19.76 29.94 * 785.0935 44.65 21.4 30.23	Mk. Freq. Level Factor Gain loss MHz dBuV dB/m dB dB 55.2207 40.83 13.45 30.5 0.92 96.4362 44.07 11.03 30.84 1.08 383.9318 45.94 15.88 29.82 3.27 588.9051 37.92 19.76 29.94 3.09 * 785.0935 44.65 21.4 30.23 3.79	Mk. Freq. Level Factor Gain loss ment MHz dBuV dB/m dB dB dB dBuV/m 55.2207 40.83 13.45 30.5 0.92 24.70 96.4362 44.07 11.03 30.84 1.08 25.34 383.9318 45.94 15.88 29.82 3.27 35.27 588.9051 37.92 19.76 29.94 3.09 30.83 * 785.0935 44.65 21.4 30.23 3.79 39.61	Mk. Freq. Level Factor Gain loss ment Limit MHz dBuV dB/m dB dB dBuV/m dBuV/m 55.2207 40.83 13.45 30.5 0.92 24.70 40.00 96.4362 44.07 11.03 30.84 1.08 25.34 43.50 383.9318 45.94 15.88 29.82 3.27 35.27 46.00 588.9051 37.92 19.76 29.94 3.09 30.83 46.00 * 785.0935 44.65 21.4 30.23 3.79 39.61 46.00	Mk. Freq. Level Factor Gain loss ment Limit Over MHz dBuV dB/m dB dB dBuV/m dBuV/m dB 55.2207 40.83 13.45 30.5 0.92 24.70 40.00 -15.30 96.4362 44.07 11.03 30.84 1.08 25.34 43.50 -18.16 383.9318 45.94 15.88 29.82 3.27 35.27 46.00 -10.73 588.9051 37.92 19.76 29.94 3.09 30.83 46.00 -15.17 * 785.0935 44.65 21.4 30.23 3.79 39.61 46.00 -6.39	Mk. Freq. Level Factor Gain loss ment Limit Over MHz dBuV dB/m dB dB dBuV/m dBuV/m dB Detector 55.2207 40.83 13.45 30.5 0.92 24.70 40.00 -15.30 QP 96.4362 44.07 11.03 30.84 1.08 25.34 43.50 -18.16 QP 383.9318 45.94 15.88 29.82 3.27 35.27 46.00 -10.73 QP 588.9051 37.92 19.76 29.94 3.09 30.83 46.00 -15.17 QP * 785.0935 44.65 21.4 30.23 3.79 39.61 46.00 -6.39 QP	Mk. Freq. Level Factor Gain loss ment Limit Over HI MHz dBuV dB/m dB dB dBuV/m dB Detector cm 55.2207 40.83 13.45 30.5 0.92 24.70 40.00 -15.30 QP - 96.4362 44.07 11.03 30.84 1.08 25.34 43.50 -18.16 QP - 383.9318 45.94 15.88 29.82 3.27 35.27 46.00 -10.73 QP - 588.9051 37.92 19.76 29.94 3.09 30.83 46.00 -15.17 QP * 785.0935 44.65 21.4 30.23 3.79 39.61 46.00 -6.39 QP	Mk. Freq. Level Factor Gain loss ment Limit Over HI Degree MHz dBuV dB/m dB dB dB dBuV/m dB Detector cm deg. 55.2207 40.83 13.45 30.5 0.92 24.70 40.00 -15.30 QP - - - - - deg. -<

*:Maximum data x:Over limit l:over margin Operator: Ccyf

EMTEK (Dongguan) Co., Ltd.

东莞市信测科技有限公司 地址:广东省东莞市松山湖高新技术产业开发区新城大道9号中大海洋生物科技研发基地A区2号办公楼负一层、第二层 网址:Http://www.emtek.com.cn 邮箱:E-mail: project@emtek.com.cn Add: -182/F ., Building 2, Zone A, Zhongda Marine Biotechnology Research and Development Base , No.9, Xincheng Avenue, Songshanhu High-technology Industrial Development Zone, Dongguan, Guangdong, China Http://www.emtek.com.cn E-mail: project@emtek.com.cn

No.	Mk	. Freq.	Reading Level	Ant. Factor	Pre Amp Gain	Cable	Measure- ment	Limit	Over		н	Degree	
		MHz	dBuV	dB/m	dB	dB	dBuV/m	dBuV/m	dB	Detector	cm	deg.	Commen
1	ļ.	171.9946	44.12	9.54	30.51	1.55	24.70	43.50	-18.80	QP			
2		305.6800	50.18	14.02	29.83	2.18	36.55	46.00	-9. <mark>4</mark> 5	QP			
3		374.6225	48.66	15.64	29.82	3.02	37.50	46.00	-8.50	QP			
4	3	528.2458	37.68	18.42	29.85	3	29.25	46.00	-16.75	QP			
5	*	716.6820	42.84	21.43	30.13	3.59	37.73	46.00	-8.27	QP			
6		878.3214	31.82	22.64	29.91	3.95	28.50	46.00	-17.50	QP			

*:Maximum data x:Over limit I:over margin Operator: Ccyf

Remark:

1. Measurement (dB μ V/m) = Antenna Factor(dB) -Amp Factor(dB) +Cable Loss(dB) + Reading(dB μ V/m) 2. Over (dB) = Measurement (dB μ V/m) - Limit (dB μ V/m)

EMTEK (Dongguan) Co., Ltd.

东莞市信测科技有限公司 地址:广东省东莞市松山湖高新技术产业开发区新城大道9号中大海洋生物科技研发基地A区2号办公楼负一层.第二层 网址:Http://www.emtek.com.cn 邮箱:E-mail: project@emtek.com.cn Add: -182/F ., Building 2, Zone A, Zhongda Marine Biotechnology Research and Development Base , No.9, Xincheng Avenue, Songshanhu High-technology Industrial Development Zone, Dongguan, Guangdong, China Http://www.emtek.com.cn E-mail: project@emtek.com.cn

CONDUCTED EMISSIONS TEST 8.4

8.4.1 **Applicable Standard**

According to FCC Part 15.207(a)

8.4.2 Conformance Limit

C	onducted Emission Limit	
Frequency(MHz)	Quasi-peak	Average
0.15-0.5	66-56	56-46
0.5-5.0	56	46
5.0-30.0	60	50

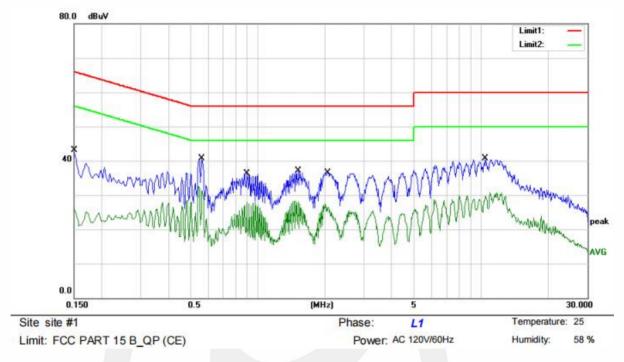
Note: 1. The lower limit shall apply at the transition frequencies

2. The limit decreases in line with the logarithm of the frequency in the range of 0.15 to 0.50MHz.

8.4.3 **Test Configuration**

Test according to clause 7.3 conducted emission test setup

8.4.4 Test Procedure


The EUT was placed on a table which is 0.8m above ground plane. Maximum procedure was performed on the highest emissions to ensure EUT compliance. Repeat above procedures until all frequency measured were complete.

8.4.5 **Test Results**

PASS.

The test data are attach on following pages.

Mode: Charging Note:

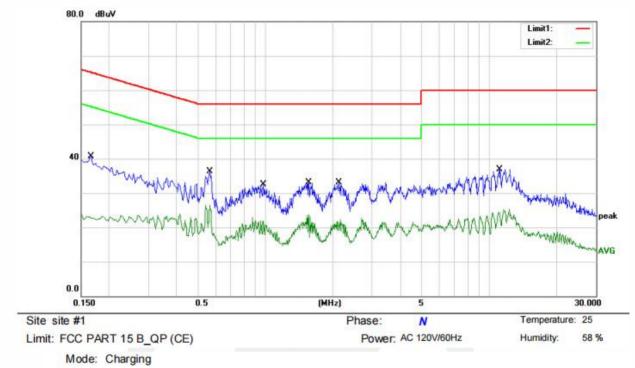
No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over		
		MHz	dBuV	dB	dBuV	dBuV	dB	Detector	Comment
1		0.1500	26.10	17.06	43.16	66.00	-22.84	QP	
2		0.1500	9.24	17.06	26.30	56.00	-29.70	AVG	
3		0.5620	23.58	17.08	40.66	56.00	-15.34	QP	
4	*	0.5620	15.33	17.08	32.41	46.00	-13.59	AVG	
5	-	0.8940	19.30	17.02	36.32	56.00	-19.68	QP	
6		0.8940	10.98	17.02	28.00	46.00	-18.00	AVG	
7		1.5220	19.97	17.07	37.04	56.00	-18.96	QP	
8		1.5220	11.26	17.07	28.33	46.00	-17.67	AVG	
9		2.0620	19.31	17.10	36.41	56.00	-19.59	QP	
10		2.0620	10.34	17.10	27.44	46.00	-18.56	AVG	
11		10.4740	23.82	16.97	40.79	60.00	-19.21	QP	
12		10.4740	12.76	16.97	29.73	50.00	-20.27	AVG	

*:Maximum data

x:Over limit !:over margin

Comment: Factor build in receiver.

Operator: Jayce


Remark:

1. Measurement (dBµV) = AMN Factor (dB) + Cable Loss (dB) + Reading (dBµV)

2. Over (dB) = Measurement (dB μ V) - Limit (dB μ V)

东莞市信测科技有限公司 地址:广东省东莞市松山湖高新技术产业开发区新城大道9号中大海洋生物科技研发基地A区2号办公楼负一层.第二层 网址:Http://www.emtek.com.cn 邮箱:E-mail: project@emtek.com.cn EMTEK (Dongguan) Co., Ltd. Add: -182/F ., Building 2, Zone A, Zhongda Marine Biotechnology Research and Development Base , No.9, Xincheng Avenue, Songshanhu High-technology Industrial Development Zone, Dongguan, Guangdong, China Http://www.emtek.com.cn E-mail: project@emtek.com.cn

Note:

No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over		
		MHz	dBuV	dB	dBuV	dBuV	dB	Detector	Comment
1		0.1660	23.68	17.05	40.73	65.16	-2 <mark>4.4</mark> 3	QP	
2		0.1660	6.20	17.05	23.25	55.16	-31.91	AVG	
3		0.5660	19.14	17.08	36.22	56.00	-19.78	QP	
4	*	0.5660	9.36	17.08	26.44	46.00	-19.56	AVG	
5		0.9820	15.47	17.03	32.50	56.00	-23.50	QP	
6		0.9820	5.87	17.03	22.90	46.00	-23.10	AVG	
7		1.5620	16.01	17.07	33.08	56.00	-22.92	QP	
8		1.5620	6.53	17.07	23.60	46.00	-22.40	AVG	
9		2.1340	15.92	17.10	33.02	56.00	-22.98	QP	
10		2.1340	5.20	17.10	22.30	46.00	-23.70	AVG	
11		11.0860	19.87	16.96	36.83	60.00	-23.17	QP	
12		11.0860	7.49	16.96	24.45	50.00	-25.55	AVG	

*:Maximum data x:Over

ata x:Over limit !:over margin

Comment: Factor build in receiver. Operator: Jayce

Remark:

1. Measurement (dBµV) = AMN Factor (dB) + Cable Loss (dB) + Reading (dBµV)

2. Over (dB) = Measurement (dB μ V) - Limit (dB μ V)

东莞市信測科技有限公司
地址:广东省东莞市松山湖高新技术产业开发区新城大道9号中大海洋生物科技研发基地A区2号办公楼负一层、第二层 网址:Http://www.emtek.com.cn 邮箱:E-mail: project@emtek.com.cn
EMTEK (Dongguan) Co., Ltd.
Add: -1&2/F .,Building 2,Zone A,Zhongda Marine Biotechnology Research and Development Base ,No.9, Xincheng Avenue,Songshanhu High-technology Industrial Development Zone,
Dongguan, Guangdong,China Http://www.emtek.com.cn E-mail: project@emtek.com.cn

8.5 ANTENNA APPLICATION

8.5.1 Antenna Requirement

Standard	Requirement
FCC CRF Part 15.203	An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator shall be considered sufficient to comply with the provisions of this section. The manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited. This requirement does not apply to carrier current devices or to devices operated under the provisions of §15.211, §15.213, §15.217, §15.219, or §15.221. Further, this requirement does not apply to intentional radiators that must be professionally installed, such as perimeter protection systems and some field disturbance sensors, or to other intentional radiators which, in accordance with §15.31(d), must be measured at the installation site. However, the installer shall be responsible for ensuring that the proper antenna is employed so that the limits in this part are not exceeded.
RSS-GEN Clause 6.8	An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator shall be considered sufficient to comply with the provisions of this section. The manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited. This requirement does not apply to carrier current devices or to devices operated under the provisions of RSS-GEN Clause 6.8. Further, this requirement does not apply to intentional radiators that must be professionally installed, such as perimeter protection systems and some field disturbance sensors, or to other intentional radiators which, in accordance with RSS-GEN Clause 6.8, must be measured at the installation site. However, the installer shall be responsible for ensuring that the proper antenna is employed so that the limits in this part are not exceeded.

8.5.2 Result

PASS.

. Note:

- The EUT has 1 antennas: an Integrated antenna for 2.4G, antenna has a gain of 0 dBi;
 - \boxtimes Antenna use a permanently attached antenna which is not replaceable.
 - \square Not using a standard antenna jack or electrical connector for antenna replacement
 - The antenna has to be professionally installed (please provide method of installation)

which in accordance to section 15.203 and RSS-GEN Clause 6.8, please refer to the internal photos.

东莞市信测科技有限公司 地址:广东省东莞市松山湖高新技术产业开发区新城大道9号中大海洋生物科技研发基地A区2号办公楼负一层. 第二层 网址:Http://www.emtek.com.cn 邮箱:E-mail: project@emtek.com.cn EMTEK (Dongguan) Co., Ltd. Add: -182/F ,,Building 2,Zone A,Zhongda Marine Biotechnology Research and Development Base ,No.9, Xincheng Avenue,Songshanhu High-technology Industrial Development Zone, Dongguan, Guangdong, China Http://www.emtek.com.cn E-mail: project@emtek.com.cn

Frequency(MHz)	Ant_F(dB)	Cab_L(dB)	Preamp(dB)	Correct Factor(dB)	
0.009	20.6	0.03	\	20.63	
0.15	20.7	0.1	1	20.8	
1	20.9	0.15	1	21.05	
10	20.1	0.28	1	20.38	
30	18.8	0.45	١	19.25	
30	11.7	0.62	27.9	-15.58	
100	12.5	1.02	27.8	-14.28	
300	12.9	1.91	27.5	-12.69	
600	19.2	2.92	27	-4.88	
800	21.1	3.54	26.6	-1.96	
1000	22.3	4.17	26.2	0.27	
1000	25.6	1.76	41.4	-14.04	
3000	28.9	3.27	43.2	-11.03	
5000	31.1	4.2	44.6	-9.3	
8000	36.2	5.95	44.7	-2.55	
10000	38.4	6.3	43.9	0.8	
12000	38.5	7.14	42.3	3.34	
15000	40.2	8.15	41.4	6.95	
18000	45.4	9.02	41.3	13.12	
18000	37.9	1.81	47.9	-8.19	
21000	37.9	1.95	48.7	-8.85	
25000	39.3	2.01	42.8	-1.49	
28000	39.6	2.16	46.0	-4.24	
31000	41.2	2.24	44.5	-1.06	
34000	41.5	2.29	46.6	-2.81	
37000	43.8	2.30	46.4	-0.3	
40000	43.2	2.50	42.2	3.5	

Detail of factor for radiated emission

*** End of Report ***

 东莞市信測科技有限公司

 地址:广东省东莞市松山湖高新技术产业开发区新城大道9号中大海洋生物科技研发基地A区2号办公楼负一层、第二层 网址:Http://www.emtek.com.cn 邮箱:E-mail: project@emtek.com.cn

 EMTEK (Dongguan) Co., Ltd.

 Add: -182/F ,,Building 2,Zone A,Zhongda Marine Biotechnology Research and Development Base ,No.9, Xincheng Avenue,Songshanhu High-technology Industrial Development Zone,

 Dongguan, Guangdong, China Http://www.emtek.com.cn E-mail: project@emtek.com.cn