

Test report

258627-1R1TRFWL

Date of issue: February 21, 2017

Applicant:

Kongsberg Automotive

Product:

Radio Frequency Digitally Encoded Security System (RF DESS)

Model:

M01456

FCC ID: IC Reg. Number

2ACERM01456 12006A-M01456

Specifications:

FCC 47 CFR Part 15 Subpart C, §15.225

Operation within the band 13.110-14.010 MHz

RSS-210 Issue 9, August 2016

Annex B.6 Devices operating in 13.110–14.010 MHz frequency band for any application

Test location

Company name	Nemko Canada Inc.
Address	303 River Road
City	Ottawa
Province	Ontario
Postal code	K1V 1H2
Country	Canada
Telephone	+1 613 737 9680
Facsimile	+1 613 737 9691
Toll free	+1 800 563 6336
Website	www.nemko.com
Site number	FCC test site registration number: 176392, IC: 2040A-4 (3 m semi anechoic chamber)

Tested by	Andrey Adelberg, Senior Wireless/EMC Specialist
Reviewed by	Kevin Rose, Wireless/EMC Specialist
Date	February 21, 2017
Signature	

Limits of responsibility

Note that the results contained in this report relate only to the items tested and were obtained in the period between the date of initial receipt of samples and the date of issue of the report.

This test report has been completed in accordance with the requirements of ISO/IEC 17025. All results contain in this report are within Nemko Canada's ISO/IEC 17025 accreditation.

Copyright notification

Nemko Canada Inc. authorizes the applicant to reproduce this report provided it is reproduced in its entirety and for use by the company's employees only. Any use which a third party makes of this report, or any reliance on or decisions to be made based on it, are the responsibility of such third parties.

Nemko Canada Inc. accepts no responsibility for damages, if any, suffered by any third party as a result of decisions made or actions based on this report.

© Nemko Canada Inc.

Table of contents

Table of	contents	3
Section 1	1. Report summary	4
1.1	Applicant and manufacturer	4
1.2	Test specifications	4
1.3	Test methods	4
1.4	Statement of compliance	4
1.5	Exclusions	4
1.6	Test report revision history	4
Section 2	2. Summary of test results	5
2.1	FCC Part 15 Subpart C, general requirements test results	5
2.2	FCC Part 15 Subpart C, intentional radiators test results	5
2.3	IC RSS-GEN, Issue 4, test results	5
2.4	IC RSS-210, Issue 9, test results	5
Section 3	3. Equipment under test (EUT) details	6
3.1	Sample information	6
3.2	EUT information	6
3.3	Technical information	6
3.4	Product description and theory of operation	6
3.5	EUT exercise details	6
3.6	EUT setup diagram	6
Section	4. Engineering considerations	7
4.1	Modifications incorporated in the EUT	7
4.2	Technical judgment	7
4.3	Deviations from laboratory tests procedures	7
Section !	5. Test conditions	8
5.1	Atmospheric conditions	8
5.2	Power supply range	8
Section (6. Measurement uncertainty	9
6.1	Uncertainty of measurement	9
Section	7. Test equipment	10
7.1	Test equipment list	10
Section 8	8. Testing data	11
8.1	FCC 15.215(c) 20 dB bandwidth	11
8.2	RSS-Gen 4.6.1 Occupied bandwidth	13
8.3	FCC 15.225(a–c) and RSS-210 A2.6 (a–c) Field strength within the 13.110–14.010 MHz band	15
8.4	FCC 15.225(d) and RSS-210 A2.6(d) Field strength of emissions outside 13.110–14.010 MHz band	18
8.5	FCC 15.225(e) and RSS-210 A2.6 Frequency tolerance of the carrier signal	21
Section	9. Block diagrams of test set-ups	22
9.1	Radiated emissions set-up	22

Section 1. Report summary

1.1 Applicant and manufacturer

Company name	Kongsberg Automotive
Address	90, 28th street CP10034
City	Grand-Mere
Province/State	Quebec
Postal/Zip code	G9T 5K7
Country	Canada

1.2 Test specifications

FCC 47 CFR Part 15, Subpart C, Clause 15.225	Operation in the 13.110–14.010 MHz
RSS-210 Issue 9, August 2016, Annex B.6	Devices operating in 13.110–14.010 MHz frequency band for any application

1.3 Test methods

ANSI C63.10 v2013	American National Standard of Procedures for Compliance Testing of Unlicensed Wireless Devices

1.4 Statement of compliance

In the configuration tested, the EUT was found compliant.

Testing was completed against all relevant requirements of the test standard. Results obtained indicate that the product under test complies in full with the requirements tested. The test results relate only to the items tested.

See "Summary of test results" for full details.

1.5 Exclusions

None

1.6 Test report revision history

Revision #	Details of changes made to test report	
TRF	Original report issued	
R1TRF	Report has been refreshed with the updated standard	

Section 2. Summary of test results

2.1 FCC Part 15 Subpart C, general requirements test results

Part	Test description	Verdict
§15.207(a)	Conducted limits	Not applicable
§15.31(e)	Variation of power source	Pass ¹
§15.203	Antenna requirement	Pass ²
§15.215(c)	20 dB bandwidth	Pass

Notes: ¹ EUT uses a car battery as a main power supply. The testing was performed using a fully charged battery

2.2 FCC Part 15 Subpart C, intentional radiators test results

Part	Test description	Verdict
§15.225(a)	Field strength within 13.553–13.567 MHz band	Pass
§15.225(b)	Field strength within 13.410–13.553 MHz and 13.567–13.710 MHz bands	Pass
§15.225(c)	Field strength within 13.110–13.410 MHz and 13.710–14.010 MHz bands	Pass
§15.225(d)	Field strength outside 13.110–14.010 MHz band	Pass
§15.225(e)	Frequency tolerance of carrier signal	Pass

Notes: None

2.3 IC RSS-GEN, Issue 4, test results

Part	Test description	Verdict
6.6	Occupied bandwidth	Pass
6.11	Transmitter frequency stability	Pass ¹
7.1.2	Receiver radiated emission limits	Not applicable ²
7.1.3	Receiver conducted emission limits	Not applicable ²
8.8	Power Line Conducted Emissions Limits for Licence-Exempt Radio Apparatus	Not applicable ³

Notes: ¹ Frequency stability covered in RSS-210.

2.4 IC RSS-210, Issue 9, test results

Part	Test description	Verdict
A B.6 (a)	The field strength within the band 13.553–13.567 MHz.	Pass
A B.6 (b)	The field strength within the bands 13.410–13.553 MHz and 13.567–13.710 MHz	Pass
A B.6 (c)	The field strength within the bands 13.110–13.410 MHz and 13.710–14.010 MHz.	Pass
A B.6 (d)	The field strength outside the band 13.110–14.010 MHz.	Pass
A B.6	Carrier frequency stability shall be maintained to ±0.01% (±100 ppm)	Pass

Notes: None

² The Antennas are located within the enclosure of EUT and not user accessible.

² According to sections 5.2 and 5.3 of RSS-Gen, Issue 4 the EUT does not have a stand-alone receiver neither scanner receiver, therefore exempt from receiver requirements.

³ EUT is a car battery powered

Section 3. Equipment under test (EUT) details

3.1 Sample information

Receipt date	May 8, 2014
Nemko sample ID number	1

3.2 EUT information

Product name	Radio Frequency Digitally Encoded Security System (RF DESS)
Model	M01456
Serial number	458A11914075

3.3 Technical information

Operating band	13.553–13.567 MHz
Operating frequency	13.56 MHz
Modulation type	ASK/AM
Occupied bandwidth (99 %)	79 kHz
Power requirements	Standard 12 V _{DC} car battery
Emission designator	79K0M1D
Antenna information	The EUT has an integrated, non-detachable and not-user-accessible loop antenna.

3.4 Product description and theory of operation

The product uses a magnetic sensing technology as a Kill-safe device and NFCv RFID signal (ISO15693) to identify the driver of the vehicle. The driver of the vehicle should snap a key-like device that uses a passive RFID tag device (ISO15693). During the starting process, the RFID reader will read the tag and give the authorization to the vehicle to start the ignition system.

3.5 EUT exercise details

The EUT was set to transmit continuously within the vicinity of the ignition key

3.6 EUT setup diagram

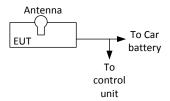


Figure 3.6-1: Setup diagram

Section 4. Engineering considerations

4.1 Modifications incorporated in the EUT

There were no modifications performed to the EUT during this assessment.

4.2 Technical judgment

This is to confirm that Kongsberg Automotive product model M01456 for certification under IC: 12006A-M01456 is identical to the product that was tested by Nemko Canada on May 8, 2014 in test report No. 258627-1R1TRFWL. There have been no antenna changes, no part substitutions, no PCB changes, no change in radio parameters, no enclosure changes, no software changes.

4.3 Deviations from laboratory tests procedures

No deviations were made from laboratory procedures.

Section 5. Test conditions

5.1 Atmospheric conditions

Temperature	15–30 °C
Relative humidity	20–75 %
Air pressure	860–1060 mbar

When it is impracticable to carry out tests under these conditions, a note to this effect stating the ambient temperature and relative humidity during the tests shall be recorded and stated.

5.2 Power supply range

The normal test voltage for equipment to be connected to the mains shall be the nominal mains voltage. For the purpose of the present document, the nominal voltage shall be the declared voltage, or any of the declared voltages ±5 %, for which the equipment was designed.

Section 6. Measurement uncertainty

6.1 Uncertainty of measurement

UKAS Lab 34 and TIA-603-B have been used as guidance for measurement uncertainty reasonable estimations with regards to previous experience and validation of data. Nemko Canada, Inc. follows these test methods in order to satisfy ISO/IEC 17025 requirements for estimation of uncertainty of measurement for wireless products.

Measurement uncertainty budgets for the tests are detailed below. Measurement uncertainty calculations assume a coverage factor of K = 2 with 95% certainty.

Test name	Measurement uncertainty, dB
All antenna port measurements	0.55
Conducted spurious emissions	1.13
Radiated spurious emissions	3.78
AC power line conducted emissions	3.55

Section 7. Test equipment

7.1 Test equipment list

Table 7.1-1: Equipment list

Equipment	Manufacturer	Model no.	Asset no.	Cal cycle	Next cal.
3 m EMI test chamber	TDK	SAC-3	FA002047	1 year	Mar. 18/15
Flush mount turntable	Sunol	FM2022	FA002082	_	NCR
Controller	Sunol	SC104V	FA002060	_	NCR
Antenna mast	Sunol	TLT2	FA002061	_	NCR
Receiver/spectrum analyzer	Rohde & Schwarz	ESU 26	FA002043	1 year	Oct. 24/14
Bilog antenna (20–3000 MHz)	Sunol	JB3	FA002108	1 year	Mar. 12/15
Active loop antenna (0.01–30 MHz)	EMCO	6502	FA001686	1 year	Sept. 27/14
Spectrum analyzer	Rohde & Schwarz	FSU	FA001877	1 year	Jan. 27/15
Temperature chamber	Thermotron	SM-16C	FA001030	1 year	NCR
Multimeter	Fluke	16	FA001831	1 year	Jan. 30/14

Note: NCR - no calibration required

FCC 15.215(c) 20 dB bandwidth

Specification FCC 15 Subpart C

Section 8. Testing data

8.1 FCC 15.215(c) 20 dB bandwidth

8.1.1 Definitions and limits

Intentional radiators operating under the alternative provisions to the general emission limits, as contained in §§15.217 through 15.257 and in Subpart E of this part, must be designed to ensure that the 20 dB bandwidth of the emission, or whatever bandwidth may otherwise be specified in the specific rule section under which the equipment operates, is contained within the frequency band designated in the rule section under which the equipment is operated. The requirement to contain the designated bandwidth of the emission within the specified frequency band includes the effects from frequency sweeping, frequency hopping and other modulation techniques that may be employed as well as the frequency stability of the transmitter over expected variations in temperature and supply voltage.

8.1.2 Test summary

Test date	May 8, 2014	Temperature	21 °C
Test engineer	Andrey Adelberg	Air pressure	1006 mbar
Verdict	Pass	Relative humidity	33 %

8.1.3 Observations, settings and special notes

Spectrum analyzer settings:

Detector mode	Peak
Resolution bandwidth	≥1 % of span
Video bandwidth	RBW×3
Trace mode	Max Hold

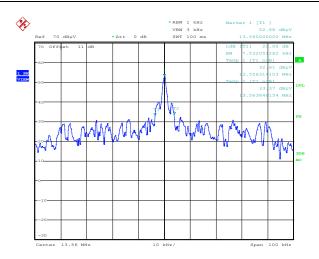
8.1.4 Test data

Table 8.1-1: Lower 20 dBc frequency cross result

Fundamental frequency, MHz	Lower 20 dBc frequency cross, MHz	Limit, MHz	Margin, kHz
13.560	13.556	13.553	3.0

Table 8.1-2: Upper 20 dBc frequency cross result

Fundamental frequency, MHz	Upper 20 dBc frequency cross, MHz	Limit, MHz	Margin, kHz
13.560	13.564	13.567	3.0


Section 8 Testing data

Test name FCC 15.215(c) 20 dB bandwidth

Specification FCC 15 Subpart C

8.1.4 Test data, continued

Date: 8.MAY.2014 11:08:27

Figure 8.1-1: 20 dB bandwidth spectrum plot

Specification RSS-Gen Issue 4

8.2 RSS-Gen 6.6 Occupied bandwidth

8.2.1 Definitions and limits

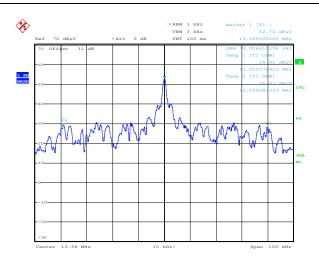
The emission bandwidth (xdB) is defined as the frequency range between two points, one above and one below the carrier frequency, at which the spectral density of the emission is attenuated x dB below the maximum in-band spectral density of the modulated signal. Spectral density (power per unit bandwidth) is to be measured with a detector of resolution bandwidth in the range of 1% to 5% of the anticipated emission bandwidth, and a video bandwidth at least 3× the resolution bandwidth.

8.2.2 Test summary

Test date	May 8, 2014	Temperature	21 °C
Test engineer	Andrey Adelberg	Air pressure	1006 mbar
Verdict	Pass	Relative humidity	33 %

8.2.3 Observations, settings and special notes

Spectrum analyzer settings:


Detector mode	Peak
Resolution bandwidth	≥1 % of span
Video bandwidth	RBW × 3
Trace mode	Max Hold

8.2.4 Test data

Table 8.2-1: 99 % occupied bandwidth result

Fundamental frequency, MHz	99 % occupied bandwidth, kHz
13.560	79.0

8.2.5 Test data, continued

Date: 8.MAY.2014 11:12:25

Figure 8.2-1: 99 % occupied bandwidth

8.3 FCC 15.225(a-c) and RSS-210 A B.6 (a-c) Field strength within the 13.110-14.010 MHz band

8.3.1 Definitions and limits

- a) The field strength of any emissions within the band 13.553–13.567 MHz shall not exceed 15848 μ V/m (84 dB μ V/m) at 30 m.
- b) Within the bands 13.410–13.553 MHz and 13.567–13.710 MHz, the field strength of any emissions shall not exceed 334 μ V/m (50.5 dB μ V/m) at 30 m.
- c) Within the bands 13.110–13.410 MHz and 13.710–14.010 MHz the field strength of any emissions shall not exceed 106 μ V/m (40.5 dB μ V/m) at 30 m.

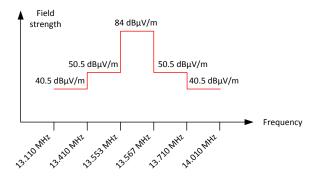


Figure 8.3-1: In-band spurious emissions limit

8.3.2 Test summary

Test date	May 8, 2014	Temperature	21 °C
Test engineer	Andrey Adelberg	Air pressure	1006 mbar
Verdict	Pass	Relative humidity	33 %

8.3.3 Observations/special notes

The measurements were performed at the distance of 3 m. 40 dB distance correction factor* was applied to the measurement result in order to comply with 30 m limits

$$40 \times Log_{10} (3 \text{ m}/30 \text{ m}) = 40 \times Log_{10} (0.1) = -40 \text{ dB}$$

Spectrum analyzer settings:

Detector mode	Peak
Resolution bandwidth	10 kHz
Video bandwidth	30 kHz
Trace mode	Max Hold

^{* 30} m to 3 m distance correction factor calculation (for 13 MHz band):

8.3.4 Test data

Table 8.3-1: Field strength measurements results

Frequency range, MHz	Frequency, MHz	Field strength at 3 m, dBμV/m	Calculated field strength at 30 m, dBμV/m	Limit, dΒμV/m	Margin, dB
13.553-13.567	13.559	54.11	14.11	84.00	69.89
13.410-13.553	13.552	49.66	9.66	50.50	40.84
13.567-13.710	13.567	49.77	9.77	50.50	40.73
13.110-13.410	13.398	27.00	-13.00	40.50	53.50
13.710-14.010	13.719	25.50	-14.50	40.50	55.00

Note: Calculated field strength at 30 m = Measured field strength at 3 m - 40 dB

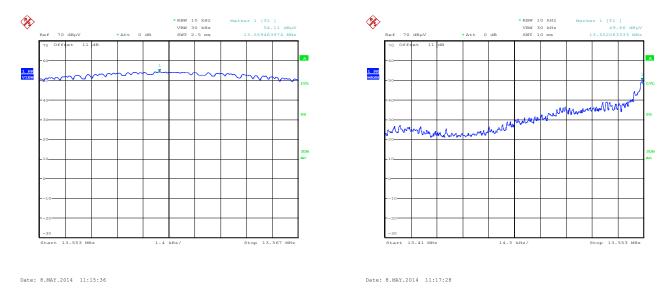


Figure 8.3-2: Field strength within 13.553–13.567 MHz band

Figure 8.3-3: Field strength within 13.410–13.553 MHz band

8.3.4 Test data, continued

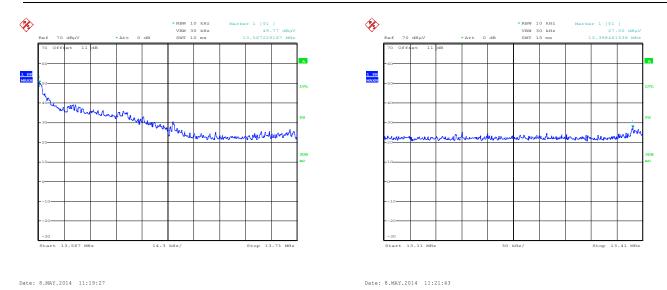
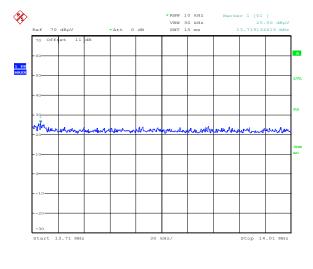



Figure 8.3-4: Field strength within 13.567–13.710 MHz band

Figure 8.3-5: Field strength within 13.110–13.410 MHz band

Date: 8.MAY.2014 11:23:04

Figure 8.3-6: Field strength within 13.710–14.010 MHz band

8.4 FCC 15.225(d) and RSS-210 A B.6(d) Field strength of emissions outside 13.110–14.010 MHz band

8.4.1 Definitions and limits

FCC: The field strength of any emissions appearing outside of the 13.110–14.010 MHz band shall not exceed the general radiated emission limits in §15.209 The field strength of emissions appearing within restricted bands (as specified in §15.205) shall not exceed the limits from §15.209. IC: The field strength of any emission outside the band 13.110–14.010 MHz shall not exceed the 30 μ V/m (29.5 dB μ V/m) limit.

Table 8.4-1: FCC §15.209 and RSS-Gen – Radiated emission limits

Frequency,	Field stren	gth of emissions	Measurement distance, m
MHz	μV/m	dBμV/m	
0.009-0.490	2400/F	$67.6 - 20 \times \log_{10}(F)$	300
0.490-1.705	24000/F	87.6 - 20 × log ₁₀ (F)	30
1.705-30.0	30	29.5	30
30–88	100	40.0	3
88–216	150	43.5	3
216–960	200	46.0	3
above 960	500	54.0	3

Notes: In the emission table above, the tighter limit applies at the band edges. For frequencies above 1 GHz the limit on peak RF emissions is 20 dB above the maximum permitted average emission limit applicable to the equipment under test

Table 8.4-2: Restricted frequency bands

MHz	MHz	MHz	GHz
0.090-0.110	16.42–16.423	399.9–410	4.5–5.15
0.495-0.505	16.69475-16.69525	608–614	5.35-5.46
2.1735-2.1905	16.80425-16.80475	960-1240	7.25–7.75
4.125–4.128	25.5–25.67	1300–1427	8.025-8.5
4.17725-4.17775	37.5–38.25	1435–1626.5	9.0-9.2
4.20725-4.20775	73–74.6	1645.5-1646.5	9.3–9.5
6.215-6.218	74.8–75.2	1660–1710	10.6–12.7
6.26775-6.26825	108-121.94	1718.8-1722.2	13.25-13.4
6.31175-6.31225	123–138	2200–2300	14.47–14.5
8.291-8.294	149.9-150.05	2310-2390	15.35-16.2
8.362-8.366	156.52475-156.52525	2483.5–2500	17.7–21.4
8.37625-8.38675	156.7-156.9	2690–2900	22.01-23.12
8.41425-8.41475	162.0125-167.17	3260–3267	23.6-24.0
12.29-12.293	167.72-173.2	3332-3339	31.2-31.8
12.51975-12.52025	240–285	3345.8–3358	36.43–36.5
12.57675–12.57725	322-335.4	3600–4400	Above 38.6
13.36–13.41			

8.4.2 Test summary

Test date	May 8, 2014	Temperature	21 °C
Test engineer	Andrey Adelberg	Air pressure	1006 mbar
Verdict	Pass	Relative humidity	33 %

8.4.3 Observations, settings and special notes

The spectrum was searched from 9 kHz to 1 GHz. Radiated measurements were performed at a distance of 3 m.

Spectrum analyzer settings for frequencies below 30 MHz:

Detector mode	Quasi-Peak
Resolution bandwidth	9 kHz
Video bandwidth	30 kHz
Trace mode	Max Hold
Measurement time	100 ms

Spectrum analyzer settings for frequencies above 30 MHz:

Detector mode	Peak
Resolution bandwidth	100 kHz
Video bandwidth	300 kHz
Trace mode	Max Hold
Measurement time	100 ms

8.4.4 Test data

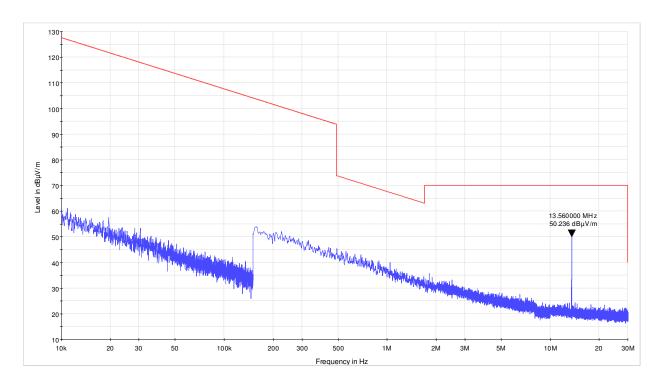


Figure 8.4-1: Field strength of spurious emissions below 30 MHz

8.4.4 Test data, continued

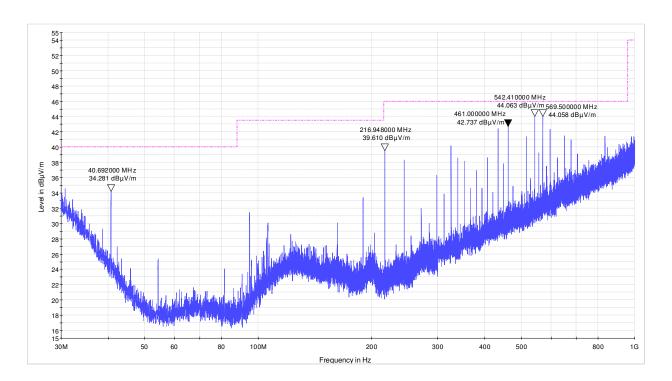


Figure 8.4-2: Field strength of spurious emissions above 30 MHz

Note: all measurement results indicated in the plot were taken with a peak detector, which is more stringent measurement, and still comply with quasi-peak limit.

8.5 FCC 15.225(e) and RSS-210 A B.6 Frequency tolerance of the carrier signal

8.5.1 Definitions and limits

The frequency tolerance of the carrier signal shall be maintained within $\pm 0.01\%$ (± 100 ppm) of the operating frequency over a temperature variation of -20% to +50% c at normal supply voltage, and for a variation in the primary supply voltage from 85% to 115% of the rated supply voltage at a temperature of 20%. For battery operated equipment, the equipment tests shall be performed using a new battery.

8.5.2 Test summary

Test date	May 8, 2014	Temperature	21 °C
Test engineer	Andrey Adelberg	Air pressure	1006 mbar
Verdict	Pass	Relative humidity	33 %

8.5.3 Observations, settings and special notes

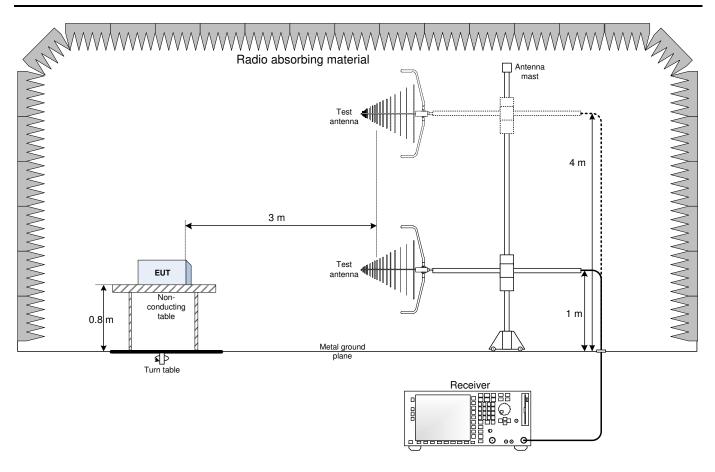
Spectrum analyzer settings:

Detector mode	Peak
Resolution bandwidth	≥1 % of emission bandwidth
Video bandwidth	RBW × 3
Trace mode	Max Hold

8.5.4 Test data

Table 8.5-1: Frequency drift measurements results

Test conditions	Frequency, MHz	Frequency drift, ±ppm	Limit, ±ppm	Margin, ppm
+50 °C, Nominal	13.55998	13.275	100	86.725
+20 °C, +15 %	13.55999	14.012	100	85.988
+20 °C, Nominal	13.55980	Reference	Reference	Reference
+20 °C, −15 %	13.56001	15.487	100	84.513
−20 °C, Nominal	13.55997	12.537	100	87.463


Note: frequency drift was calculated as follows:

Frequency drift (ppm) = $((F_{measured} - F_{reference}) \div F_{reference}) \times 1 \times 10^6$

Section 9. Block diagrams of test set-ups

9.1 Radiated emissions set-up

