

FCC Test Report

FCC ID : 2ACDL-C600
Equipment : Canary Flex Home Security Device
Model No. : CAN600
Brand Name : Canary
Applicant : Canary Connect, Inc.
Address : 606 West 28th Street, 7th Floor New York NY
10001, USA
Standard : 47 CFR FCC Part 15.247
Received Date : Aug. 18, 2016
Tested Date : Aug. 22 ~ Aug. 29, 2016

We, International Certification Corp., would like to declare that the tested sample has been evaluated and in compliance with the requirement of the above standards. The test results contained in this report refer exclusively to the product. It may be duplicated completely for legal use with the approval of the applicant. It shall not be reproduced except in full without the written approval of our laboratory.

Reviewed by:

Felix Sung

Felix Sung / Senior Engineer

Approved by:

Along Chen

Along Chen / Assistant Manager

Table of Contents

1	GENERAL DESCRIPTION	5
1.1	Information.....	5
1.2	Local Support Equipment List	7
1.3	Test Setup Chart	7
1.4	The Equipment List	8
1.5	Test Standards	9
1.6	Measurement Uncertainty	9
2	TEST CONFIGURATION.....	10
2.1	Testing Condition	10
2.2	The Worst Test Modes and Channel Details	10
3	TRANSMITTER TEST RESULTS.....	11
3.1	Conducted Emissions.....	11
3.2	6dB and Occupied Bandwidth	14
3.3	RF Output Power.....	17
3.4	Power Spectral Density	19
3.5	Unwanted Emissions into Restricted Frequency Bands	21
3.6	Emissions in Non-Restricted Frequency Bands	43
4	TEST LABORATORY INFORMATION	53

Release Record

Report No.	Version	Description	Issued Date
FR681802AC	Rev. 01	Initial issue	Oct. 12, 2016
FR681802AC	Rev. 02	Test frequency is corrected (page 41 & 42)	Nov. 14, 2016

Summary of Test Results

FCC Rules	Test Items	Measured	Result
15.207	Conducted Emissions	[dBuV]: 0.788MHz 42.23 (Margin -12.77dB) - QP	Pass
15.247(d) 15.209	Radiated Emissions	[dBuV/m at 3m]: 2483.50MHz 52.72 (Margin -1.28dB) - AV	Pass
15.247(b)(3)	Maximum Output Power	Max Power [dBm]: 22.67	Pass
15.247(a)(2)	6dB Bandwidth	Meet the requirement of limit	Pass
15.247(e)	Power Spectral Density	Meet the requirement of limit	Pass
15.203	Antenna Requirement	Meet the requirement of limit	Pass

1 General Description

1.1 Information

1.1.1 Specification of the Equipment under Test (EUT)

RF General Information					
Frequency Range (MHz)	IEEE Std. 802.11	Ch. Freq. (MHz)	Channel Number	Transmit Chains (N _{TX})	Data Rate / MCS
2400-2483.5	b	2412-2462	1-11 [11]	1	1-11 Mbps
2400-2483.5	g	2412-2462	1-11 [11]	1	6-54 Mbps
2400-2483.5	n (HT20)	2412-2462	1-11 [11]	1	MCS 0-7

Note 1: RF output power specifies that Maximum Peak Conducted Output Power.
 Note 2: 802.11b uses a combination of DSSS-DBPSK, DQPSK, CCK modulation.
 Note 3: 802.11g/n uses a combination of OFDM-BPSK, QPSK, 16QAM, 64QAM modulation.

1.1.2 Antenna Details

Ant. No.	Type	Connector	Operating Frequencies (MHz) / Antenna Gain (dBi)		
			2400~2483.5	5150~5250	5725~5850
1	PIFA	UFL	3.4	1.5	3

1.1.3 Power Supply Type of Equipment under Test (EUT)

Power Supply Type	Power by 5Vdc adapter & 2 x 3.63Vdc batteries in parallel connection
-------------------	--

1.1.4 Accessories

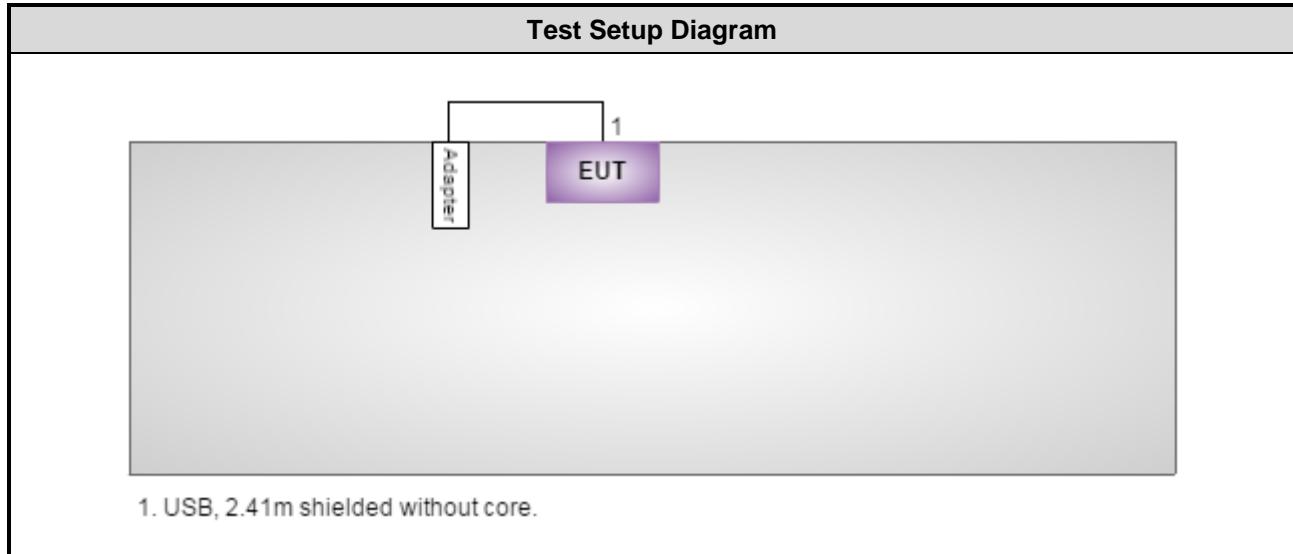
Accessories		
No.	Equipment	Description
1	Adapter	Brand: canary Model: CAN100USA I/P: 100-240Vac, 50/60Hz, 0.3A O/P: 5Vdc, 2000mA Manufacturer: Vanze
2	Adapter	Brand: canary Model: CAN100USA I/P: 100-240Vac, 50/60Hz, 0.35A O/P: 5Vdc, 2000mA Manufacturer: T&W
3	Li-ion Rechargeable Battery (x2)	Brand: Sunwoda Model: SUN-INTE-16 Rating: 3.63Vdc, 3350mAh
4	USB cable (black) For charging use	2.41m shielded without core.
5	USB cable (white) For charging use	2.41m shielded without core.

1.1.5 Channel List

Channel	Frequency(MHz)
1	2412
2	2417
3	2422
4	2427
5	2432
6	2437
7	2442
8	2447
9	2452
10	2457
11	2462

1.1.6 Test Tool and Duty Cycle

Test Tool	Console		
	Mode	Duty cycle (%)	Duty factor (dB)
Duty Cycle and Duty Factor	11b	100.00%	0.00
	11g	100.00%	0.00
	HT20	100.00%	0.00


1.1.7 Power Setting

Modulation Mode	Test Frequency (MHz)	Power Set
11b	2412	78
11b	2437	86
11b	2462	84
11g	2412	68
11g	2437	86
11g	2462	70
HT20	2412	68
HT20	2437	86
HT20	2462	70

1.2 Local Support Equipment List

Support Equipment List					
No.	Equipment	Brand	Model	FCC ID	Signal cable / Length (m)
1	Notebook	DELL	Latitude E6430	DoC	---

1.3 Test Setup Chart

Note: The support notebook was disconnected from EUT and removed from test table when EUT is set to transmit continuously.

1.4 The Equipment List

Test Item	Conducted Emission				
Test Site	Conduction room 1 / (CO01-WS)				
Instrument	Manufacturer	Model No.	Serial No.	Calibration Date	Calibration Until
EMC Receiver	R&S	ESCS 30	100169	Oct. 21, 2015	Oct. 20, 2016
LISN	SCHWARZBECK	Schwarzbeck 8127	8127-667	Nov. 13, 2015	Nov. 12, 2016
RF Cable-CON	EMC	EMCCFD300-BM-BM-6000	50821	Dec. 21, 2015	Dec. 20, 2016
Measurement Software	AUDIX	e3	6.120210k	NA	NA

Note: Calibration Interval of instruments listed above is one year.

Test Item	Radiated Emission				
Test Site	966 chamber1 / (03CH01-WS)				
Instrument	Manufacturer	Model No.	Serial No.	Calibration Date	Calibration Until
Spectrum Analyzer	R&S	FSV40	101498	Dec. 13, 2015	Dec. 12, 2016
Receiver	R&S	ESR3	101658	Nov. 04, 2015	Nov. 03, 2016
Bilog Antenna	SCHWARZBECK	VULB9168	VULB9168-522	Aug. 04, 2016	Aug. 03, 2017
Horn Antenna 1G-18G	SCHWARZBECK	BBHA 9120 D	BBHA 9120 D 1096	Dec. 16, 2015	Dec. 15, 2016
Horn Antenna 18G-40G	SCHWARZBECK	BBHA 9170	BBHA 9170517	Nov. 04, 2015	Nov. 03, 2016
Preamplifier	EMC	EMC02325	980225	Aug. 05, 2016	Aug. 04, 2017
Preamplifier	Agilent	83017A	MY39501308	Oct. 02, 2015	Oct. 01, 2016
Preamplifier	EMC	EMC184045B	980192	Sep. 01, 2015	Aug. 31, 2016
RF Cable	HUBER+SUHNER	SUCOFLEX104	MY16014/4	Dec. 10, 2015	Dec. 09, 2016
RF Cable	HUBER+SUHNER	SUCOFLEX104	MY16019/4	Dec. 10, 2015	Dec. 09, 2016
RF Cable	HUBER+SUHNER	SUCOFLEX104	MY16139/4	Dec. 10, 2015	Dec. 09, 2016
LF cable 3M	Woken	CFD400NL-LW	CFD400NL-001	Dec. 10, 2015	Dec. 09, 2016
LF cable 10M	Woken	CFD400NL-LW	CFD400NL-002	Dec. 10, 2015	Dec. 09, 2016
Loop Antenna	R&S	HFH2-Z2	100330	Nov. 16, 2015	Nov. 15, 2016
Measurement Software	AUDIX	e3	6.120210g	NA	NA

Note: Calibration Interval of instruments listed above is one year.

Test Item	RF Conducted				
Test Site	(TH01-WS)				
Instrument	Manufacturer	Model No.	Serial No.	Calibration Date	Calibration Until
Spectrum Analyzer	R&S	FSV40	101063	Feb. 17, 2016	Feb. 16, 2017
Power Meter	Anritsu	ML2495A	1241002	Sep. 21, 2015	Sep. 20, 2016
Power Sensor	Anritsu	MA2411B	1207366	Sep. 21, 2015	Sep. 20, 2016
AC POWER SOURCE	APC	AFC-500W	F312060012	Oct. 26, 2015	Oct. 25, 2016
Measurement Software	Sporton	Sporton_1	1.3.30	NA	NA

Note: Calibration Interval of instruments listed above is one year.

1.5 Test Standards

According to the specification of EUT, the EUT must comply with following standards and KDB documents.

47 CFR FCC Part 15.247

ANSI C63.10-2013

FCC KDB 558074 D01 DTS Meas Guidance v03r05

1.6 Measurement Uncertainty

ISO/IEC 17025 requires that an estimate of the measurement uncertainties associated with the emissions test results be included in the report. The measurement uncertainties given below are based on a 95% confidence level (based on a coverage factor (k=2)

Measurement Uncertainty	
Parameters	Uncertainty
Bandwidth	±34.134 Hz
Conducted power	±0.808 dB
Power density	±0.463 dB
Conducted emission	±2.670 dB
AC conducted emission	±2.90 dB
Radiated emission ≤ 1GHz	±3.66 dB
Radiated emission > 1GHz	±5.63 dB

2 Test Configuration

2.1 Testing Condition

Test Item	Test Site	Ambient Condition	Tested By
AC Conduction	CO01-WS	24°C / 59%	Howard Huang
Radiated Emissions	03CH01-WS	22-24°C / 60-62%	Vincent Yeh Kevin Lee
RF Conducted	TH01-WS	25°C / 64%	Alex Huang

➤ FCC site registration No.: 181692

➤ IC site registration No.: 10807A-1

2.2 The Worst Test Modes and Channel Details

Test item	Modulation Mode	Test Frequency (MHz)	Data Rate	Test Configuration
Conducted Emissions	HT20	2437	MCS 0	---
Radiated Emissions ≤1GHz	HT20	2437	MCS 0	---
Radiated Emissions >1GHz				
Maximum Output Power	11b	2412 / 2437 / 2462	1 Mbps	
6dB bandwidth	11g	2412 / 2437 / 2462	6 Mbps	
Power spectral density	HT20	2412 / 2437 / 2462	MCS 0	

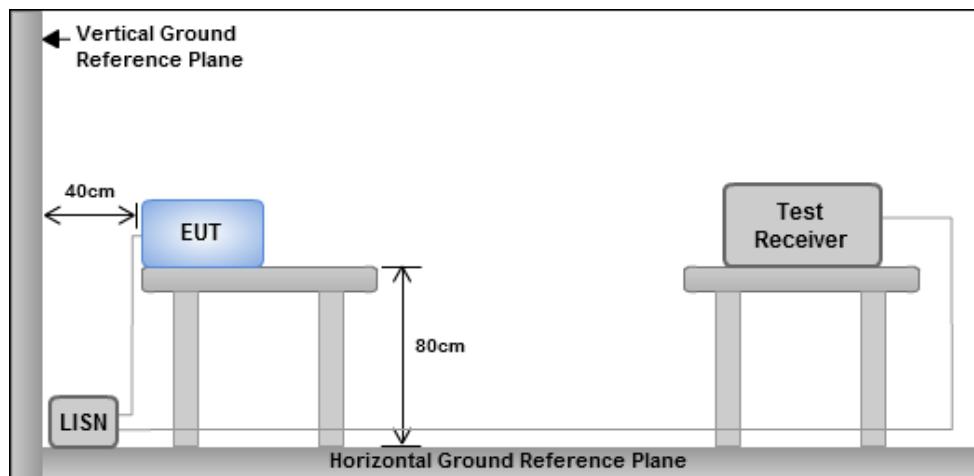
NOTE:

1. The EUT was pretested with 3 orientations placed on the table for the radiated emission measurement – X, Y, and Z-plane. The **X-plane** results were found as the worst case and were shown in this report.
2. Adapter Vanze and T&W had been covered during the pretest. The worst adapter is Vanze, therefore the following test results came out from this.

3 Transmitter Test Results

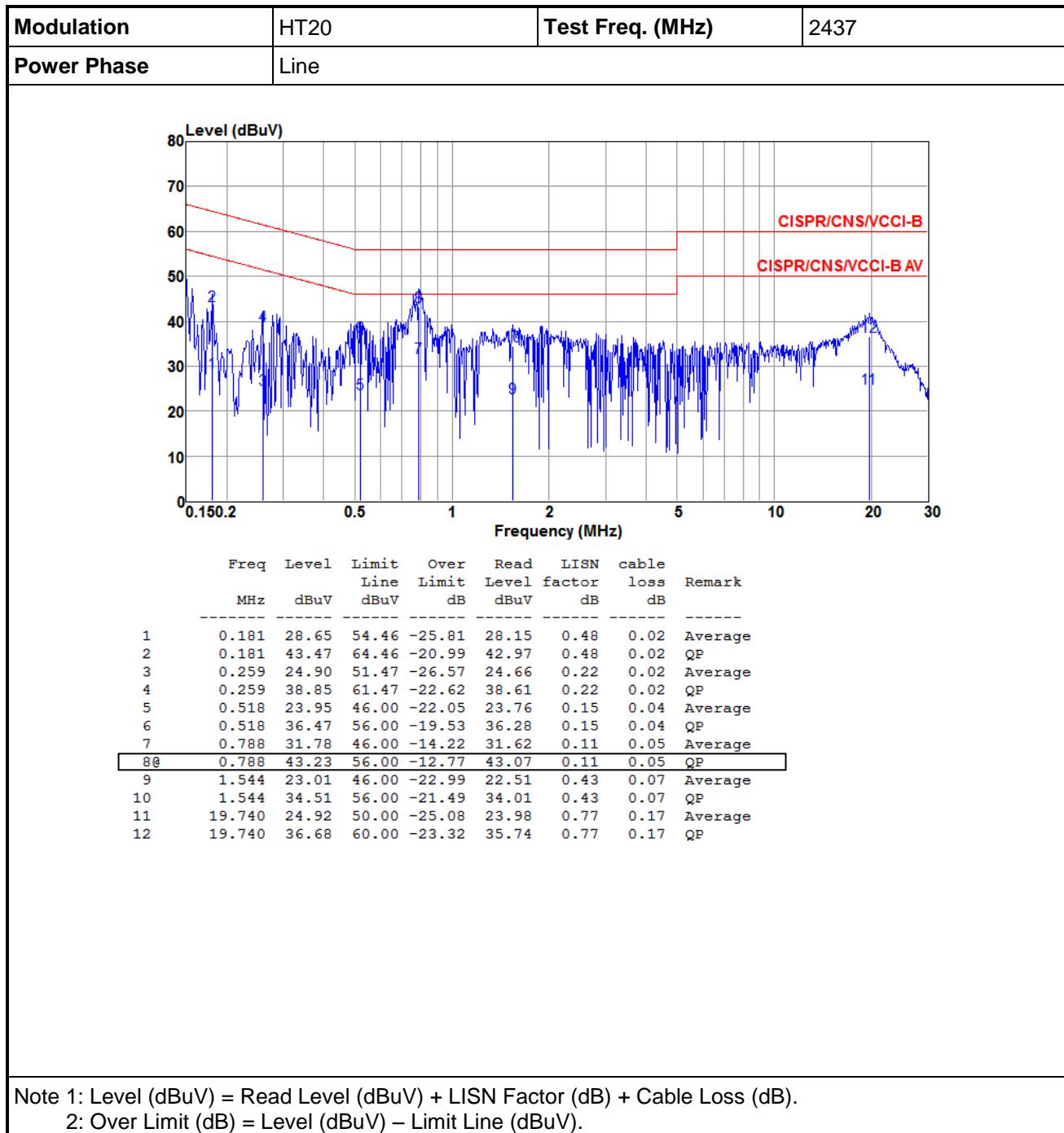
3.1 Conducted Emissions

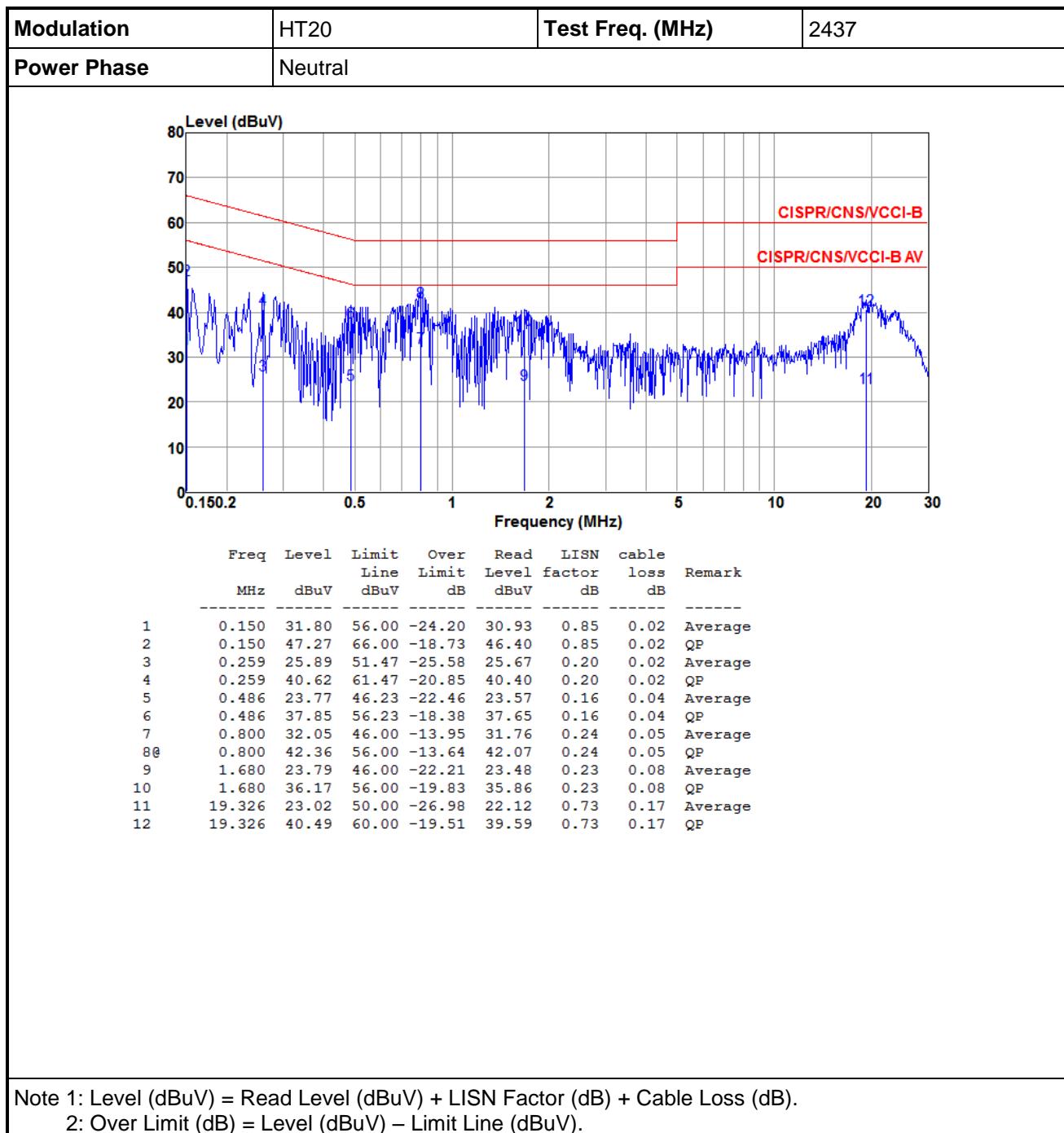
3.1.1 Limit of Conducted Emissions


Conducted Emissions Limit		
Frequency Emission (MHz)	Quasi-Peak	Average
0.15-0.5	66 - 56 *	56 - 46 *
0.5-5	56	46
5-30	60	50

Note 1: * Decreases with the logarithm of the frequency.

3.1.2 Test Procedures


1. The device is placed on a test table, raised 80 cm above the reference ground plane. The vertical conducting plane is located 40 cm to the rear of the device.
2. The device is connected to line impedance stabilization network (LISN) and other accessories are connected to other LISN. Measured levels of AC power line conducted emission are across the 50 Ω LISN port.
3. AC conducted emission measurements is made over frequency range from 150 kHz to 30 MHz.
4. This measurement was performed with AC 120V / 60Hz.


3.1.3 Test Setup

Note: 1. Support units were connected to second LISN.
 2. Both of LISNs (AMN) are 80 cm from EUT and at least 80 cm from other units and other metal planes

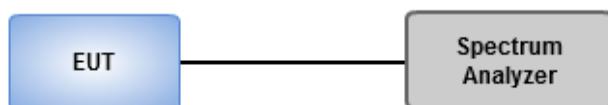
3.1.4 Test Result of Conducted Emissions

3.2 6dB and Occupied Bandwidth

3.2.1 Limit of 6dB Bandwidth

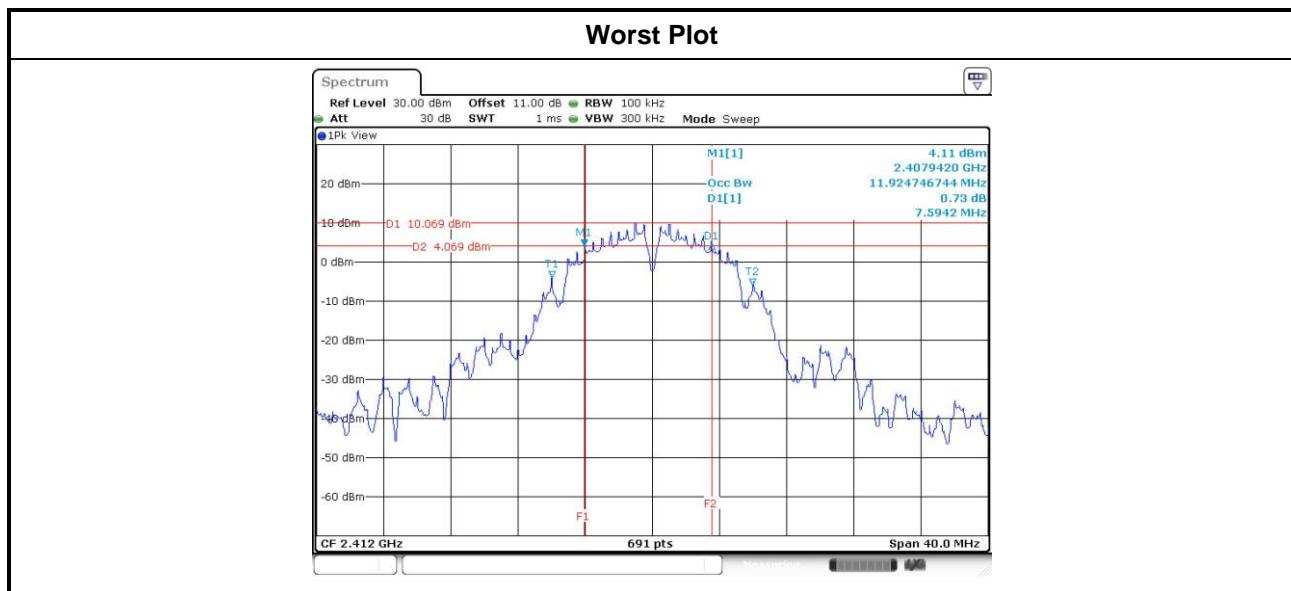
The minimum 6dB bandwidth shall be at least 500 kHz.

3.2.2 Test Procedures

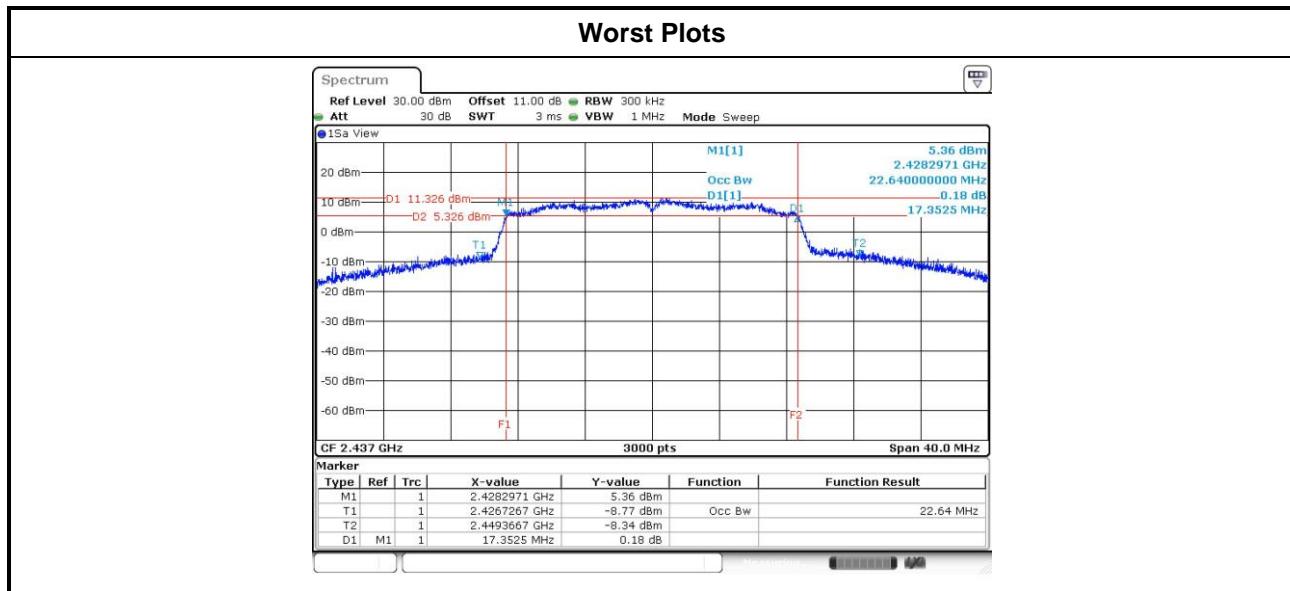

6dB Bandwidth

1. Set resolution bandwidth (RBW) = 100 kHz, Video bandwidth = 300 kHz.
2. Detector = Peak, Trace mode = max hold.
3. Sweep = auto couple, Allow the trace to stabilize.
4. Measure the maximum width of the emission that is constrained by the frequencies associated with the two outermost amplitude points (upper and lower) that are attenuated by 6dB relative to the maximum level measured in the fundamental emission.

Occupied Bandwidth


1. Set resolution bandwidth (RBW) = 1 MHz, Video bandwidth = 3 MHz.
2. Detector = Sample, Trace mode = max hold.
3. Sweep = auto couple, Allow the trace to stabilize.
4. Use the OBW measurement function of spectrum analyzer to measure the occupied bandwidth.

3.2.3 Test Setup



3.2.4 Test Result of 6dB and Occupied Bandwidth

Modulation Mode	N _{TX}	Freq. (MHz)	6dB Bandwidth (MHz)				Limit (kHz)
			Chain 0	Chain 1	Chain 2	Chain 3	
11b	1	2412	7.59	---	---	---	500
11b	1	2437	8.06	---	---	---	500
11b	1	2462	8.12	---	---	---	500
11g	1	2412	13.51	---	---	---	500
11g	1	2437	14.43	---	---	---	500
11g	1	2462	14.43	---	---	---	500
HT20	1	2412	15.13	---	---	---	500
HT20	1	2437	15.07	---	---	---	500
HT20	1	2462	14.96	---	---	---	500

Modulation Mode	N _{TX}	Freq. (MHz)	99% Occupied Bandwidth (MHz)			
			Chain 0	Chain 1	Chain 2	Chain 3
11b	1	2412	12.07	---	---	---
11b	1	2437	13.73	---	---	---
11b	1	2462	12.99	---	---	---
11g	1	2412	16.64	---	---	---
11g	1	2437	22.41	---	---	---
11g	1	2462	16.68	---	---	---
HT20	1	2412	17.57	---	---	---
HT20	1	2437	22.64	---	---	---
HT20	1	2462	17.61	---	---	---

3.3 RF Output Power

3.3.1 Limit of RF Output Power

Conducted power shall not exceed 1Watt.


- Antenna gain <= 6dBi, no any corresponding reduction is in output power limit.
- Antenna gain > 6dBi
 - Non Fixed, point to point operations.
The conducted output power from the intentional radiator shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dB
 - Fixed, point to point operations
Systems operating in the 2400–2483.5 MHz band that are used exclusively for fixed, point-to-point Operations, maximum peak output power of the intentional radiator is reduced by 1 dB for every 3 dB that the directional gain of the antenna exceeds 6 dBi.

Systems operating in the 5725–5850 MHz band that are used exclusively for fixed, point-to-point operations ,no any corresponding reduction is in transmitter peak output power

3.3.2 Test Procedures

- Maximum Peak Conducted Output Power
 - Spectrum analyzer**
 1. Set RBW = 1MHz, VBW = 3MHz, Detector = Peak.
 2. Sweep time = auto, Trace mode = max hold, Allow trace to fully stabilize.
 3. Use the spectrum analyzer channel power measurement function with the band limits set equal to the DTS bandwidth edges.
 - Power meter**
 1. A broadband Peak RF power meter is used for output power measurement. The video bandwidth of power meter is greater than DTS bandwidth of EUT. If duty cycle of test signal is not 100 %, trigger and gating function of power meter will be enabled to capture transmission burst for measuring output power.
- Maximum Conducted Output Power (For reference only)
 - Power meter**
 1. A broadband Average RF power meter is used for output power measurement. The video bandwidth of power meter is greater than DTS bandwidth of EUT. If duty cycle of test signal is not 100 %, trigger and gating function of power meter will be enabled to capture transmission burst for measuring output power.

3.3.3 Test Setup

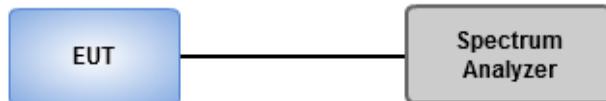
3.3.4 Test Result of Maximum Output Power

Modulation Mode	N _{TX}	Freq. (MHz)	Peak conducted Output Power (dBm)							Ant. Gain (dBi)	EIRP (dBm)	EIRP Limit (dBm)
			Chain 0	Chain 1	Chain 2	Chain 3	Total Power (mW)	Total Power (dBm)	Limit (dBm)			
11b	1	2412	20.91	---	---	---	123.310	20.91	30.00	3.40	24.31	36.00
11b	1	2437	21.87	---	---	---	153.815	21.87	30.00	3.40	25.27	36.00
11b	1	2462	21.57	---	---	---	143.549	21.57	30.00	3.40	24.97	36.00
11g	1	2412	22.43	---	---	---	174.985	22.43	30.00	3.40	25.83	36.00
11g	1	2437	22.66	---	---	---	184.502	22.66	30.00	3.40	26.06	36.00
11g	1	2462	22.48	---	---	---	177.011	22.48	30.00	3.40	25.88	36.00
HT20	1	2412	22.38	---	---	---	172.982	22.38	30.00	3.40	25.78	36.00
HT20	1	2437	22.67	---	---	---	184.927	22.67	30.00	3.40	26.07	36.00
HT20	1	2462	22.49	---	---	---	177.419	22.49	30.00	3.40	25.89	36.00

Modulation Mode	N _{TX}	Freq. (MHz)	Conducted (Average) Output Power (dBm)				Total Power (mW)	Total Power (dBm)	Limit (dBm)
			Chain 0	Chain 1	Chain 2	Chain 3			
11b	1	2412	17.92	---	---	---	61.944	17.92	---
11b	1	2437	19.88	---	---	---	97.275	19.88	---
11b	1	2462	19.12	---	---	---	81.658	19.12	---
11g	1	2412	14.77	---	---	---	29.992	14.77	---
11g	1	2437	18.92	---	---	---	77.983	18.92	---
11g	1	2462	15.18	---	---	---	32.961	15.18	---
HT20	1	2412	14.68	---	---	---	29.376	14.68	---
HT20	1	2437	19.01	---	---	---	79.616	19.01	---
HT20	1	2462	15.19	---	---	---	33.037	15.19	---

Note: Conducted average output power is for reference only.

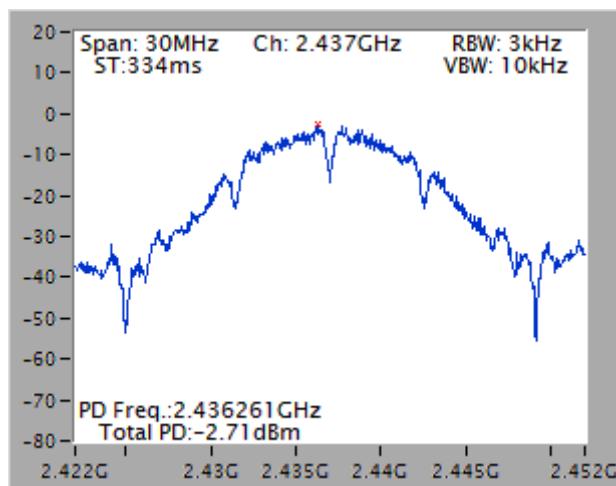
3.4 Power Spectral Density


3.4.1 Limit of Power Spectral Density

Power spectral density shall not be greater than 8 dBm in any 3 kHz band.

3.4.2 Test Procedures

- Maximum peak conducted output power was used to demonstrate compliance to the fundamental output power limit.
 1. Set the RBW = 3kHz, VBW = 10kHz.
 2. Detector = Peak, Sweep time = auto couple.
 3. Trace mode = max hold, allow trace to fully stabilize.
 4. Use the peak marker function to determine the maximum amplitude level.
- Maximum (average) conducted output power was used to demonstrate compliance to the fundamental output power limit.
 1. Set the RBW = 100kHz, VBW = 300 kHz.
 2. Detector = RMS, Sweep time = auto couple.
 3. Set the sweep time to: $\geq 10 \times (\text{number of measurement points in sweep}) \times (\text{maximum data rate per stream})$.
 4. Perform the measurement over a single sweep.
 5. Use the peak marker function to determine the maximum amplitude level.


3.4.3 Test Setup

3.4.4 Test Result of Power Spectral Density

Modulation Mode	N _{TX}	Freq. (MHz)	Total Power Spectral Density (dBm/3kHz)	Limit (dBm/3kHz)
11b	1	2412	-4.28	8.00
11b	1	2437	-2.71	8.00
11b	1	2462	-4.03	8.00
11g	1	2412	-9.70	8.00
11g	1	2437	-5.28	8.00
11g	1	2462	-9.25	8.00
HT20	1	2412	-10.40	8.00
HT20	1	2437	-5.40	8.00
HT20	1	2462	-9.76	8.00

Worst Plot

3.5 Unwanted Emissions into Restricted Frequency Bands

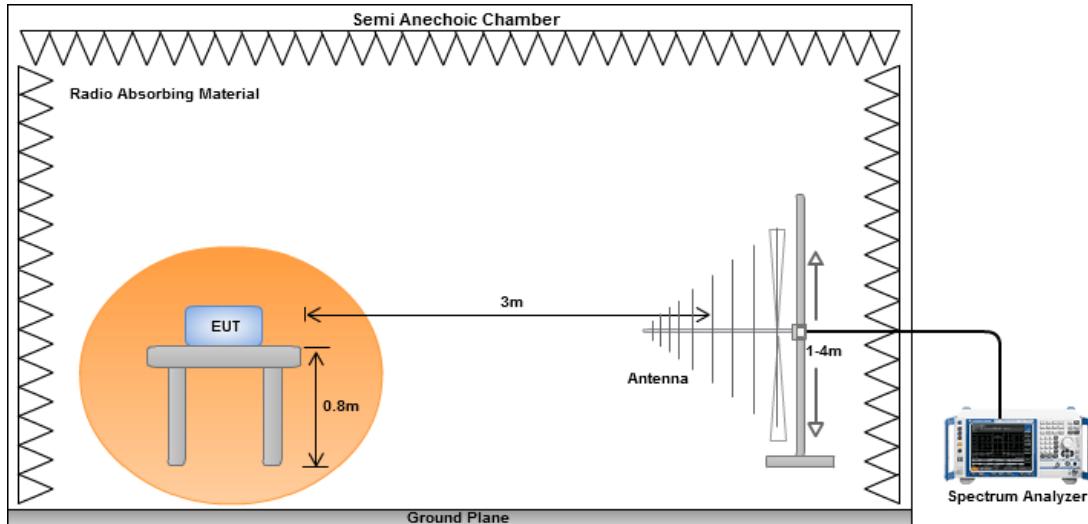
3.5.1 Limit of Unwanted Emissions into Restricted Frequency Bands

Restricted Band Emissions Limit			
Frequency Range (MHz)	Field Strength (uV/m)	Field Strength (dBuV/m)	Measure Distance (m)
0.009~0.490	2400/F(kHz)	48.5 - 13.8	300
0.490~1.705	24000/F(kHz)	33.8 - 23	30
1.705~30.0	30	29	30
30~88	100	40	3
88~216	150	43.5	3
216~960	200	46	3
Above 960	500	54	3

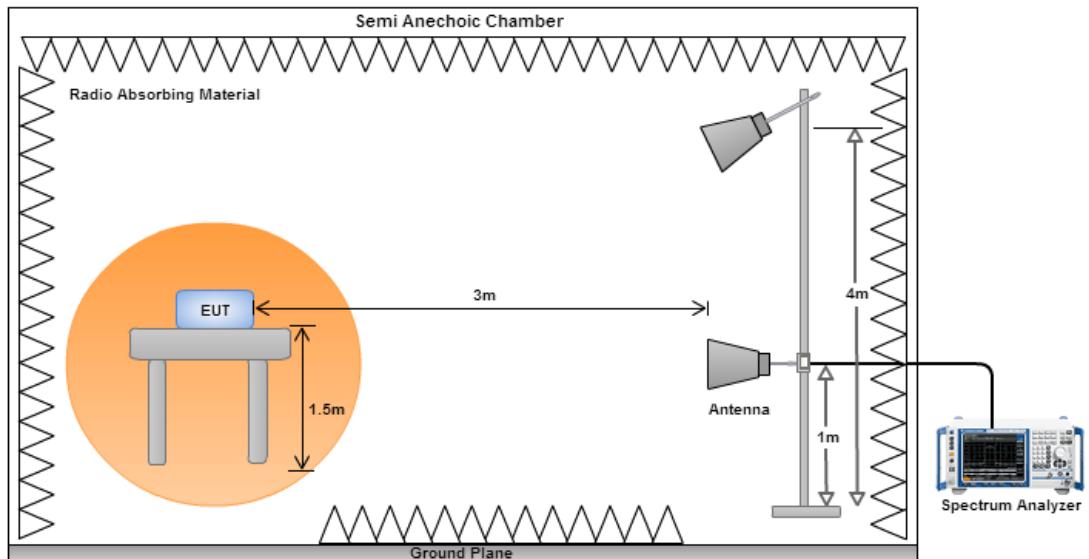
Note 1:
Quasi-Peak value is measured for frequency below 1GHz except for 9–90 kHz, 110–490 kHz frequency band. Peak and average value are measured for frequency above 1GHz. The limit on average radio frequency emission is as above table. The limit on peak radio frequency emissions is 20 dB above the maximum permitted average emission limit

Note 2:
Measurements may be performed at a distance other than what is specified provided. When performing measurements at a distance other than that specified, the results shall be extrapolated to the specified distance using an extrapolation factor as below, Frequency at or above 30 MHz: 20 dB/decade Frequency below 30 MHz: 40 dB/decade.

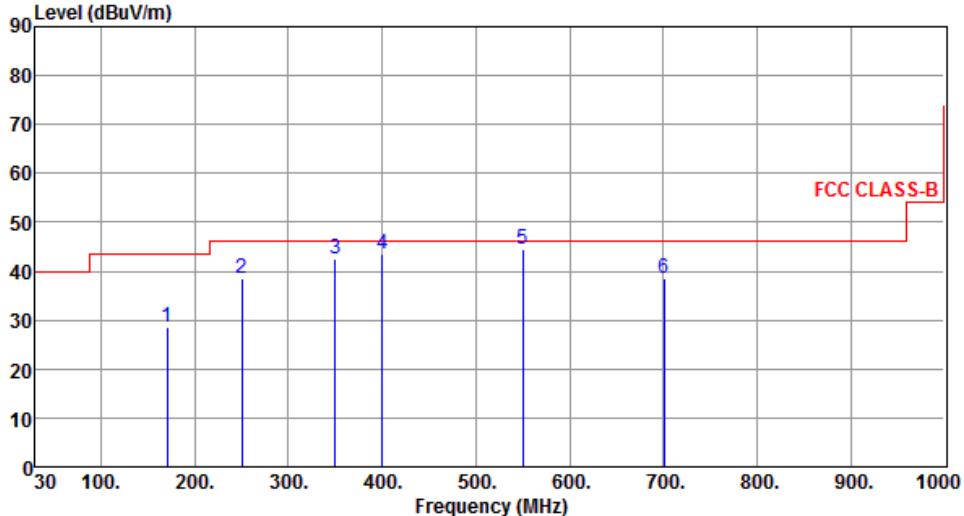
3.5.2 Test Procedures

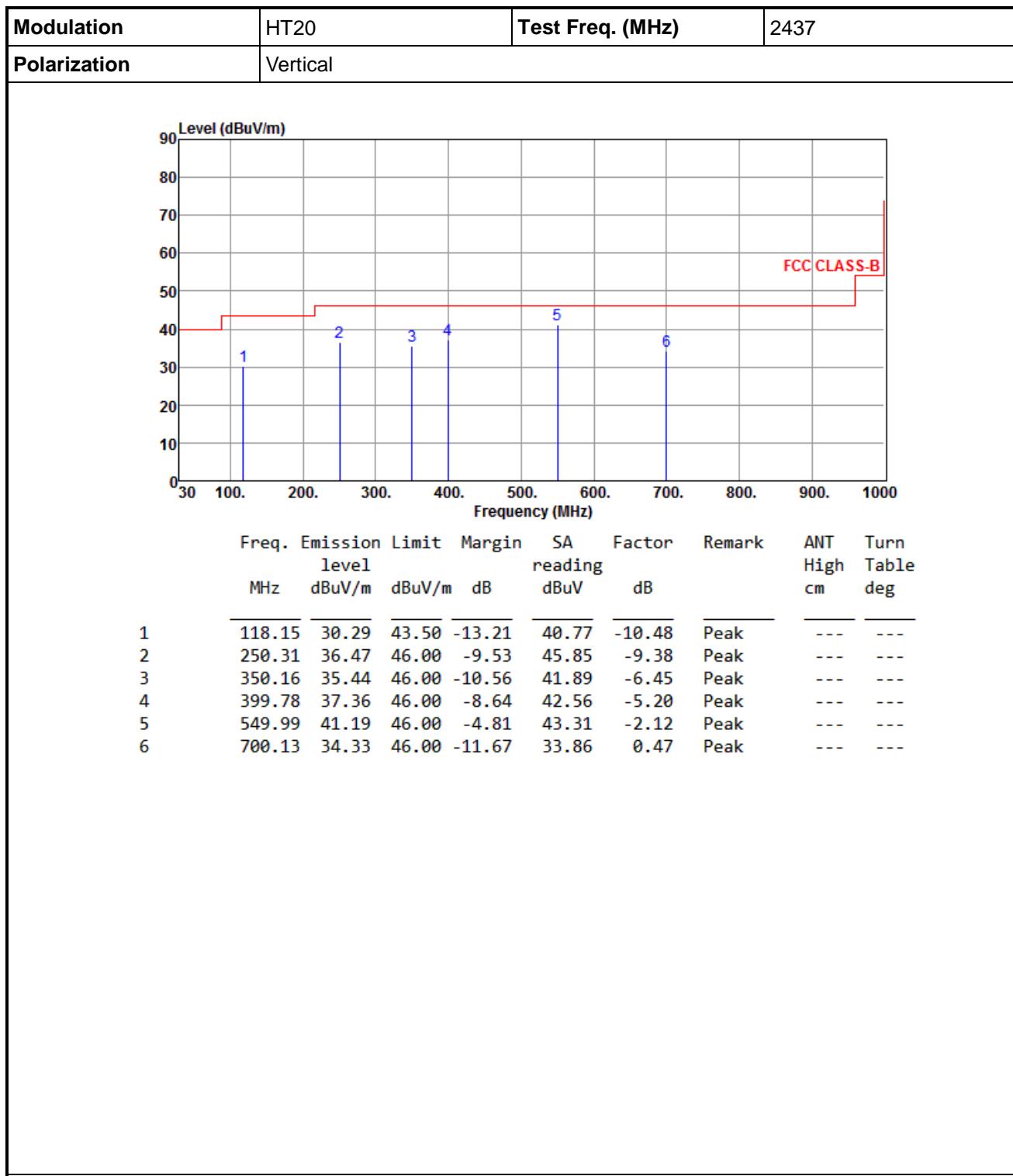

1. Measurement is made at a semi-anechoic chamber that incorporates a turntable allowing a EUT rotation of 360°. A continuously-rotating, remotely-controlled turntable is installed at the test site to support the EUT and facilitate determination of the direction of maximum radiation for each EUT emission frequency. The EUT is placed at test table. For emissions testing at or below 1 GHz, the table height is 80 cm above the reference ground plane. For emission measurements above 1 GHz, the table height is 1.5 m
2. Measurement is made with the antenna positioned in both the horizontal and vertical planes of polarization. The measurement antenna is varied in height (1m ~ 4m) above the reference ground plane to obtain the maximum signal strength. Distance between EUT and antenna is 3 m.
3. This investigation is performed with the EUT rotated 360°, the antenna height scanned between 1 m and 4 m, and the antenna rotated to repeat the measurements for both the horizontal and vertical antenna polarizations.

Note:


1. 120kHz measurement bandwidth of test receiver and Quasi-peak detector is for radiated emission below 1GHz.
2. RBW=1MHz, VBW=3MHz and Peak detector is for peak measured value of radiated emission above 1GHz.
3. RBW=1MHz, VBW=1/T and Peak detector is for average measured value of radiated emission above 1GHz.

3.5.3 Test Setup

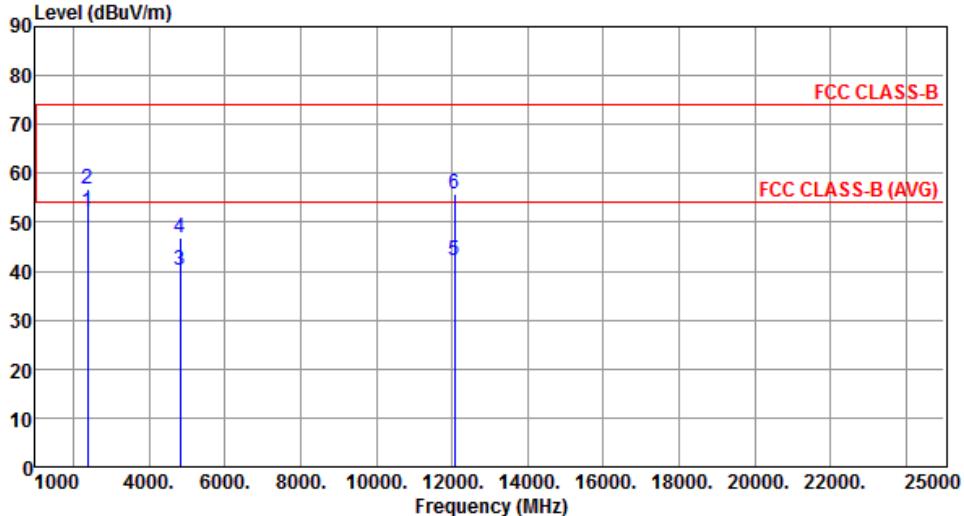

Radiated Emissions below 1 GHz

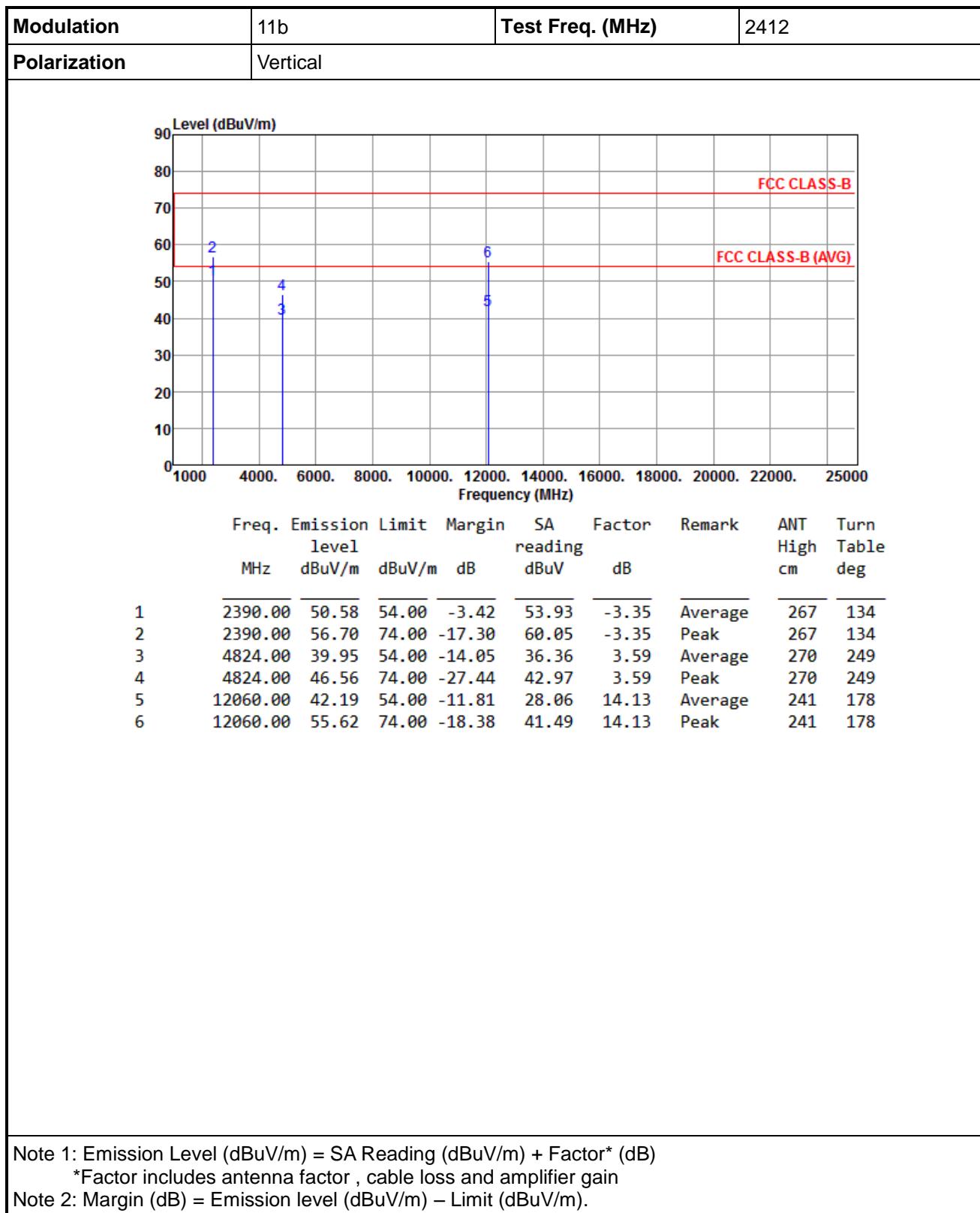


Radiated Emissions above 1 GHz

3.5.4 Transmitter Radiated Unwanted Emissions (Below 1GHz)

Modulation	HT20	Test Freq. (MHz)	2437																																																															
Polarization	Horizontal																																																																	
<table border="1"> <thead> <tr> <th>Freq.</th> <th>Emission level MHz</th> <th>Limit dBuV/m</th> <th>Margin dB</th> <th>SA reading dBuV</th> <th>Factor dB</th> <th>Remark</th> <th>ANT High cm</th> <th>Turn Table deg</th> </tr> </thead> <tbody> <tr> <td>1</td> <td>170.37</td> <td>28.51</td> <td>43.50</td> <td>-14.99</td> <td>37.26</td> <td>-8.75</td> <td>Peak</td> <td>---</td> </tr> <tr> <td>2</td> <td>250.06</td> <td>38.51</td> <td>46.00</td> <td>-7.49</td> <td>47.90</td> <td>-9.39</td> <td>Peak</td> <td>---</td> </tr> <tr> <td>3</td> <td>350.19</td> <td>42.56</td> <td>46.00</td> <td>-3.44</td> <td>49.01</td> <td>-6.45</td> <td>QP</td> <td>100</td> </tr> <tr> <td>4</td> <td>400.16</td> <td>43.48</td> <td>46.00</td> <td>-2.52</td> <td>48.68</td> <td>-5.20</td> <td>QP</td> <td>100</td> </tr> <tr> <td>5</td> <td>550.06</td> <td>44.36</td> <td>46.00</td> <td>-1.64</td> <td>46.48</td> <td>-2.12</td> <td>QP</td> <td>159</td> </tr> <tr> <td>6</td> <td>700.93</td> <td>38.56</td> <td>46.00</td> <td>-7.44</td> <td>38.08</td> <td>0.48</td> <td>Peak</td> <td>---</td> </tr> </tbody> </table>				Freq.	Emission level MHz	Limit dBuV/m	Margin dB	SA reading dBuV	Factor dB	Remark	ANT High cm	Turn Table deg	1	170.37	28.51	43.50	-14.99	37.26	-8.75	Peak	---	2	250.06	38.51	46.00	-7.49	47.90	-9.39	Peak	---	3	350.19	42.56	46.00	-3.44	49.01	-6.45	QP	100	4	400.16	43.48	46.00	-2.52	48.68	-5.20	QP	100	5	550.06	44.36	46.00	-1.64	46.48	-2.12	QP	159	6	700.93	38.56	46.00	-7.44	38.08	0.48	Peak	---
Freq.	Emission level MHz	Limit dBuV/m	Margin dB	SA reading dBuV	Factor dB	Remark	ANT High cm	Turn Table deg																																																										
1	170.37	28.51	43.50	-14.99	37.26	-8.75	Peak	---																																																										
2	250.06	38.51	46.00	-7.49	47.90	-9.39	Peak	---																																																										
3	350.19	42.56	46.00	-3.44	49.01	-6.45	QP	100																																																										
4	400.16	43.48	46.00	-2.52	48.68	-5.20	QP	100																																																										
5	550.06	44.36	46.00	-1.64	46.48	-2.12	QP	159																																																										
6	700.93	38.56	46.00	-7.44	38.08	0.48	Peak	---																																																										
<p>Note 1: Emission Level (dBuV/m) = SA Reading (dBuV/m) + Factor* (dB) *Factor includes antenna factor, cable loss and amplifier gain Note 2: Margin (dB) = Emission level (dBuV/m) – Limit (dBuV/m). Note 3: All spurious emissions below 30MHz are more than 20 dB below the limit.</p>																																																																		

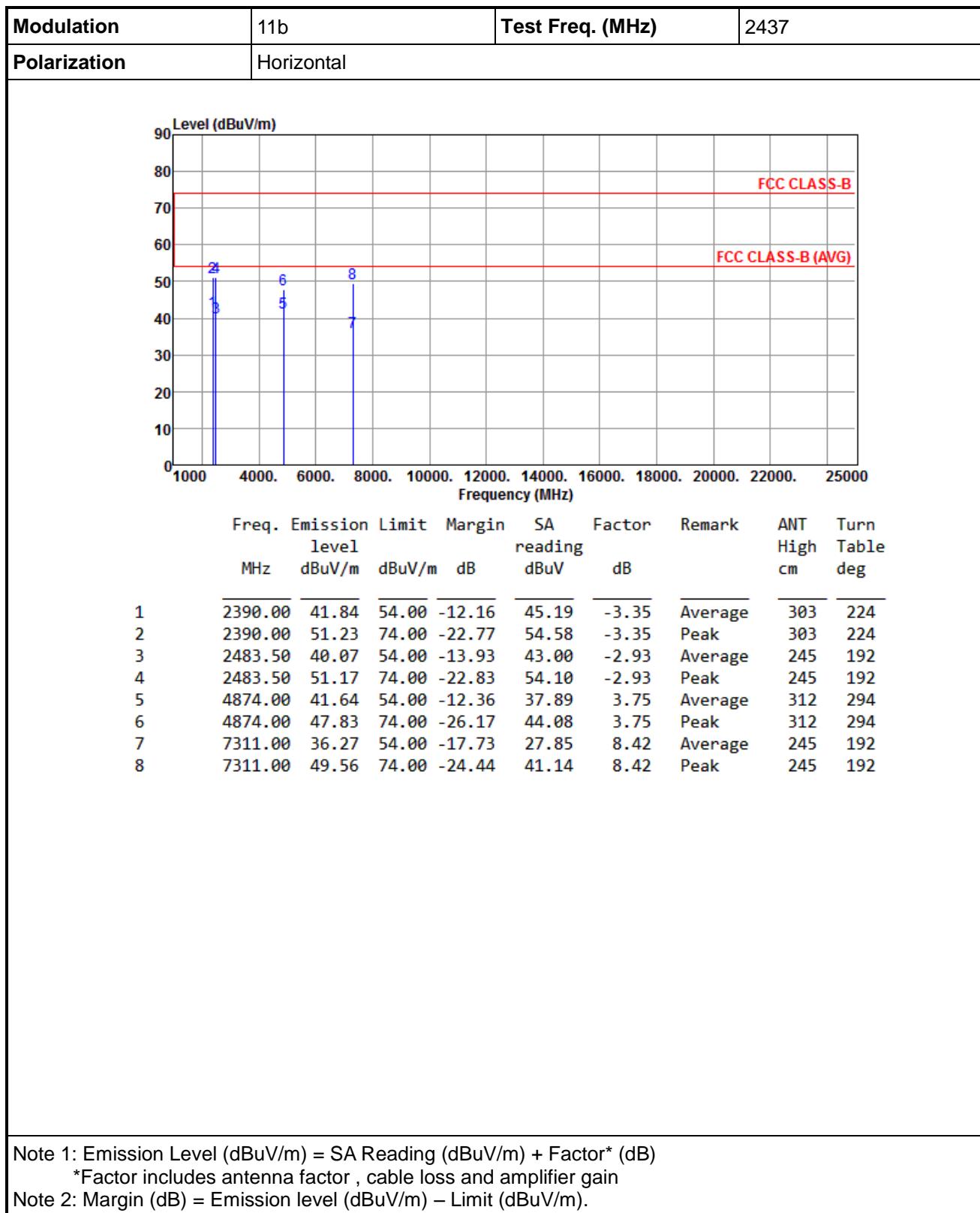

Note 1: Emission Level (dBuV/m) = SA Reading (dBuV/m) + Factor* (dB)

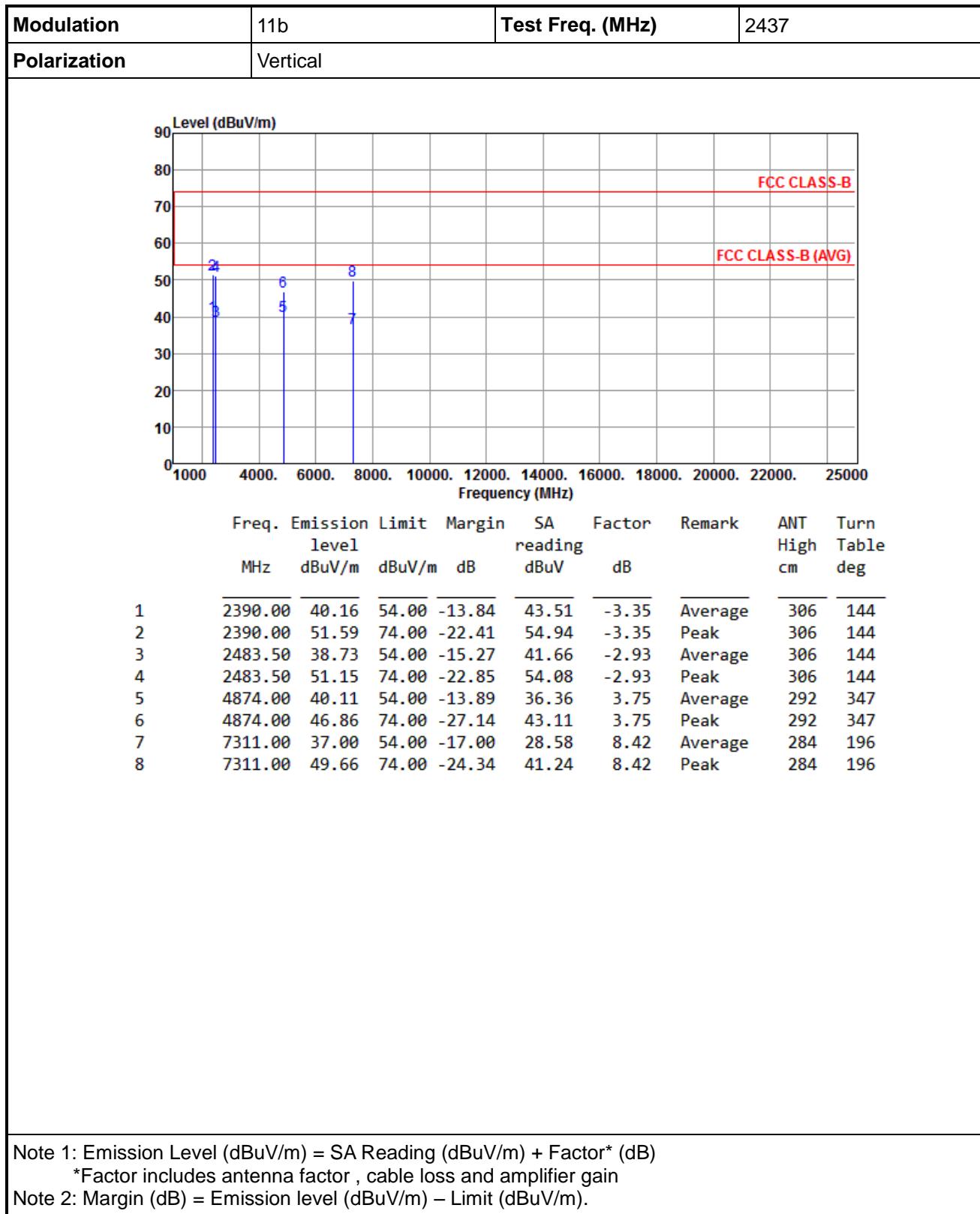

*Factor includes antenna factor , cable loss and amplifier gain

Note 2: Margin (dB) = Emission level (dBuV/m) – Limit (dBuV/m).

Note 3: All spurious emissions below 30MHz are more than 20 dB below the limit.

3.5.5 Transmitter Radiated Unwanted Emissions (Above 1GHz) for 11b

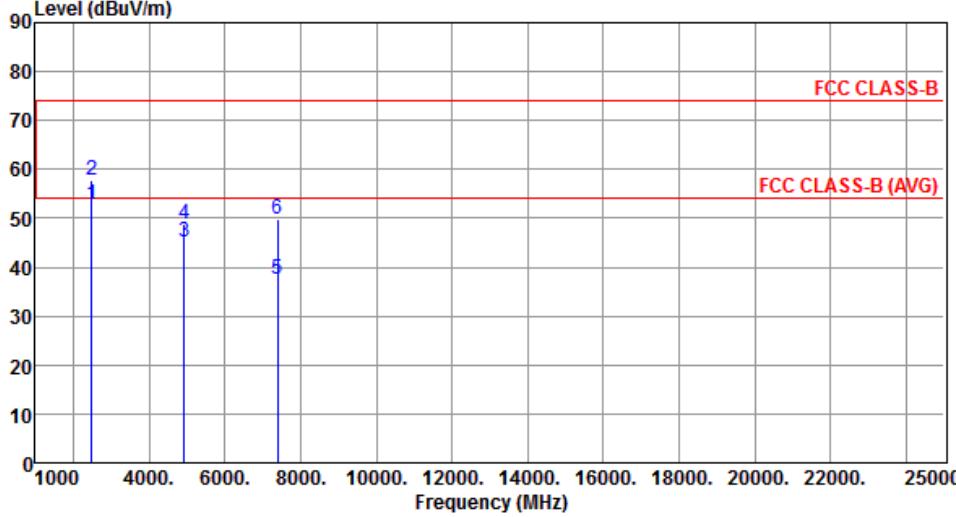

Modulation	11b	Test Freq. (MHz)	2412																																																																												
Polarization	Horizontal																																																																														
<table border="1"> <thead> <tr> <th>Freq.</th> <th>Emission Limit</th> <th>Margin</th> <th>SA</th> <th>Factor</th> <th>Remark</th> <th>ANT</th> <th>Turn</th> </tr> <tr> <th>MHz</th> <th>level</th> <th>level</th> <th>reading</th> <th>reading</th> <th></th> <th>High</th> <th>Table</th> </tr> </thead> <tbody> <tr> <td>1</td> <td>2390.00</td> <td>52.15</td> <td>54.00</td> <td>-1.85</td> <td>55.50</td> <td>-3.35</td> <td>Average</td> <td>317</td> <td>226</td> </tr> <tr> <td>2</td> <td>2390.00</td> <td>56.79</td> <td>74.00</td> <td>-17.21</td> <td>60.14</td> <td>-3.35</td> <td>Peak</td> <td>317</td> <td>226</td> </tr> <tr> <td>3</td> <td>4824.00</td> <td>40.14</td> <td>54.00</td> <td>-13.86</td> <td>36.55</td> <td>3.59</td> <td>Average</td> <td>336</td> <td>296</td> </tr> <tr> <td>4</td> <td>4824.00</td> <td>46.70</td> <td>74.00</td> <td>-27.30</td> <td>43.11</td> <td>3.59</td> <td>Peak</td> <td>336</td> <td>296</td> </tr> <tr> <td>5</td> <td>12060.00</td> <td>42.20</td> <td>54.00</td> <td>-11.80</td> <td>28.07</td> <td>14.13</td> <td>Average</td> <td>214</td> <td>263</td> </tr> <tr> <td>6</td> <td>12060.00</td> <td>55.92</td> <td>74.00</td> <td>-18.08</td> <td>41.79</td> <td>14.13</td> <td>Peak</td> <td>214</td> <td>263</td> </tr> </tbody> </table>				Freq.	Emission Limit	Margin	SA	Factor	Remark	ANT	Turn	MHz	level	level	reading	reading		High	Table	1	2390.00	52.15	54.00	-1.85	55.50	-3.35	Average	317	226	2	2390.00	56.79	74.00	-17.21	60.14	-3.35	Peak	317	226	3	4824.00	40.14	54.00	-13.86	36.55	3.59	Average	336	296	4	4824.00	46.70	74.00	-27.30	43.11	3.59	Peak	336	296	5	12060.00	42.20	54.00	-11.80	28.07	14.13	Average	214	263	6	12060.00	55.92	74.00	-18.08	41.79	14.13	Peak	214	263
Freq.	Emission Limit	Margin	SA	Factor	Remark	ANT	Turn																																																																								
MHz	level	level	reading	reading		High	Table																																																																								
1	2390.00	52.15	54.00	-1.85	55.50	-3.35	Average	317	226																																																																						
2	2390.00	56.79	74.00	-17.21	60.14	-3.35	Peak	317	226																																																																						
3	4824.00	40.14	54.00	-13.86	36.55	3.59	Average	336	296																																																																						
4	4824.00	46.70	74.00	-27.30	43.11	3.59	Peak	336	296																																																																						
5	12060.00	42.20	54.00	-11.80	28.07	14.13	Average	214	263																																																																						
6	12060.00	55.92	74.00	-18.08	41.79	14.13	Peak	214	263																																																																						
Note 1: Emission Level (dBuV/m) = SA Reading (dBuV/m) + Factor* (dB) *Factor includes antenna factor , cable loss and amplifier gain Note 2: Margin (dB) = Emission level (dBuV/m) – Limit (dBuV/m).																																																																															



Note 1: Emission Level (dBuV/m) = SA Reading (dBuV/m) + Factor* (dB)

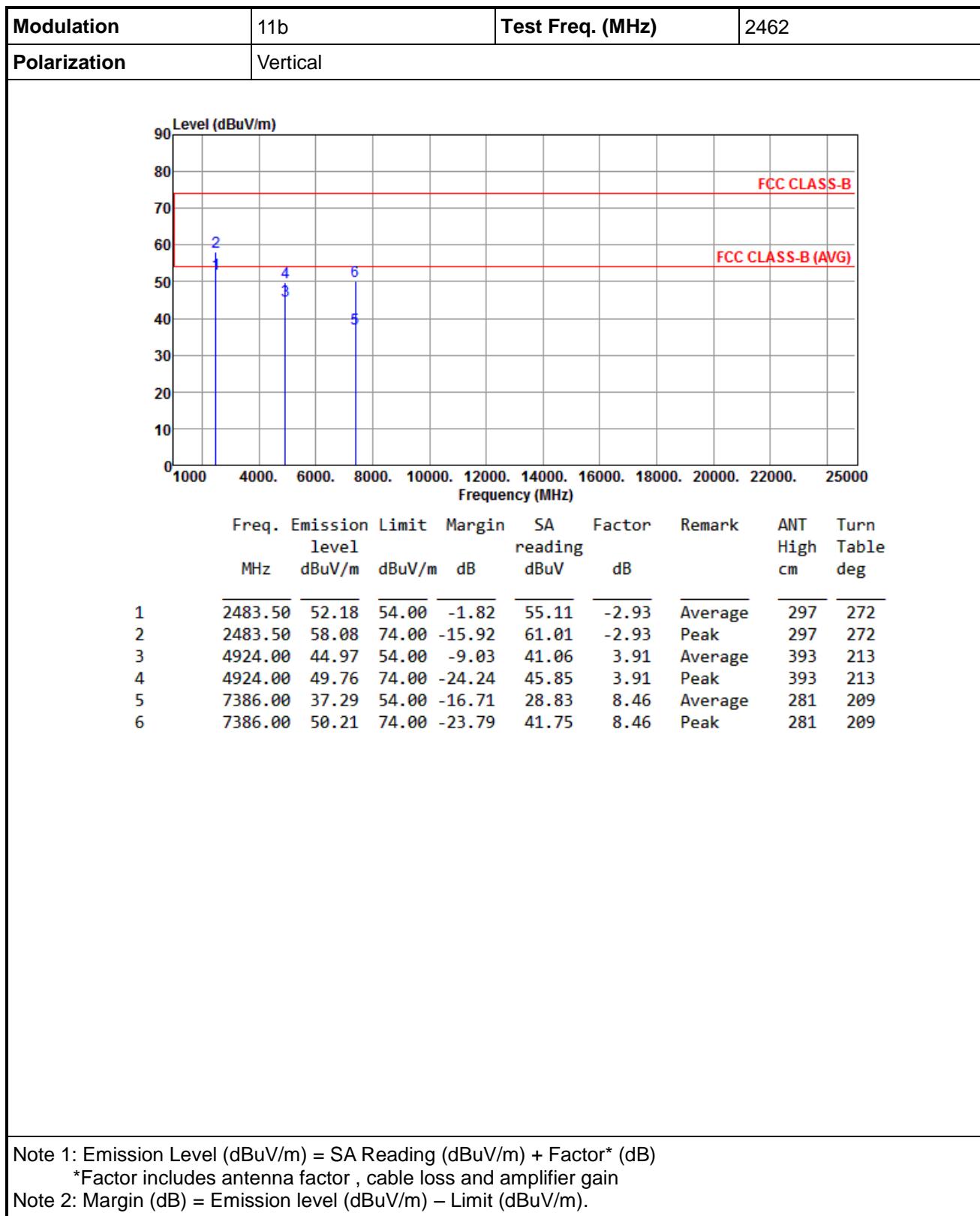
*Factor includes antenna factor , cable loss and amplifier gain

Note 2: Margin (dB) = Emission level (dBuV/m) – Limit (dBuV/m).



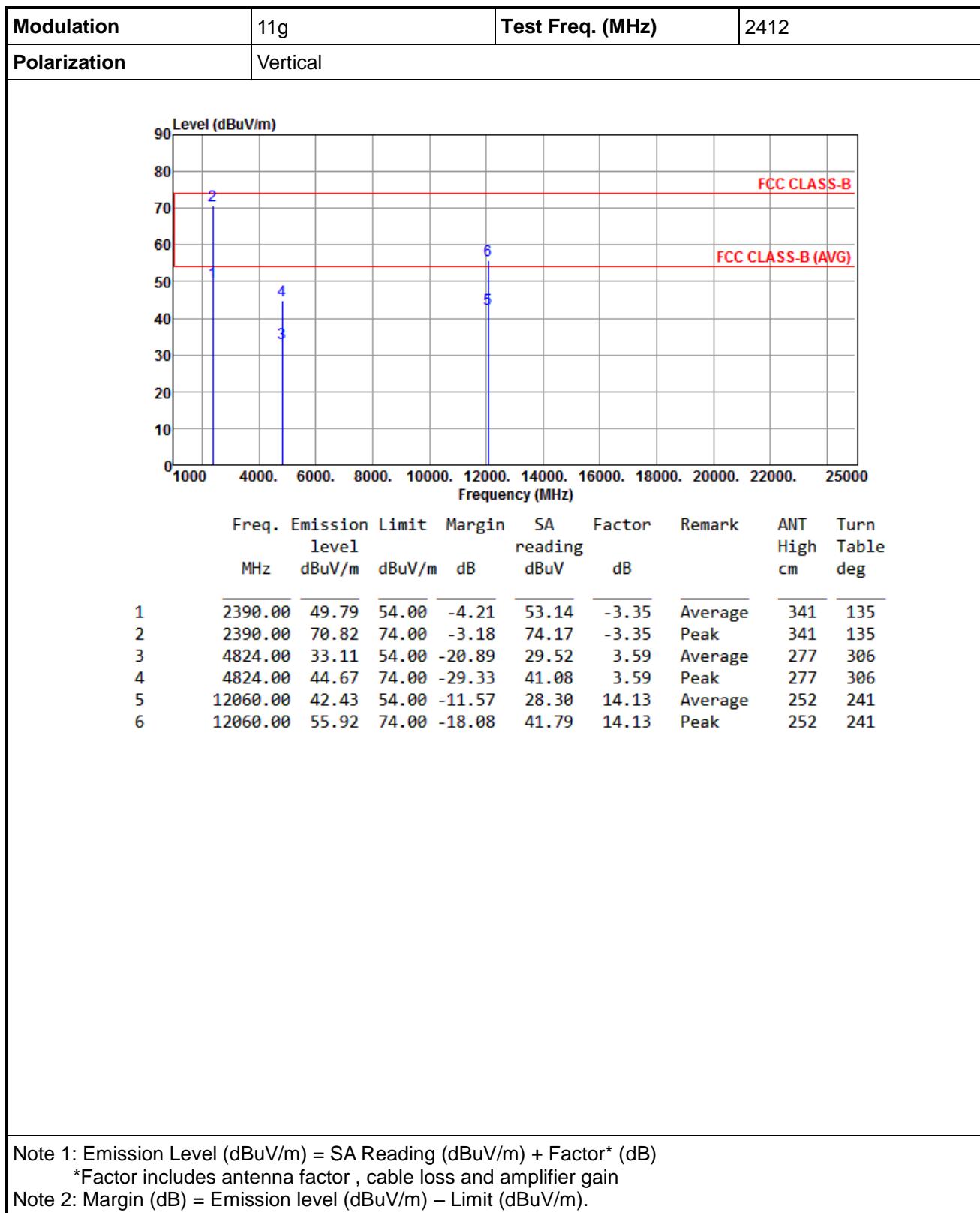
Note 1: Emission Level (dBuV/m) = SA Reading (dBuV/m) + Factor* (dB)

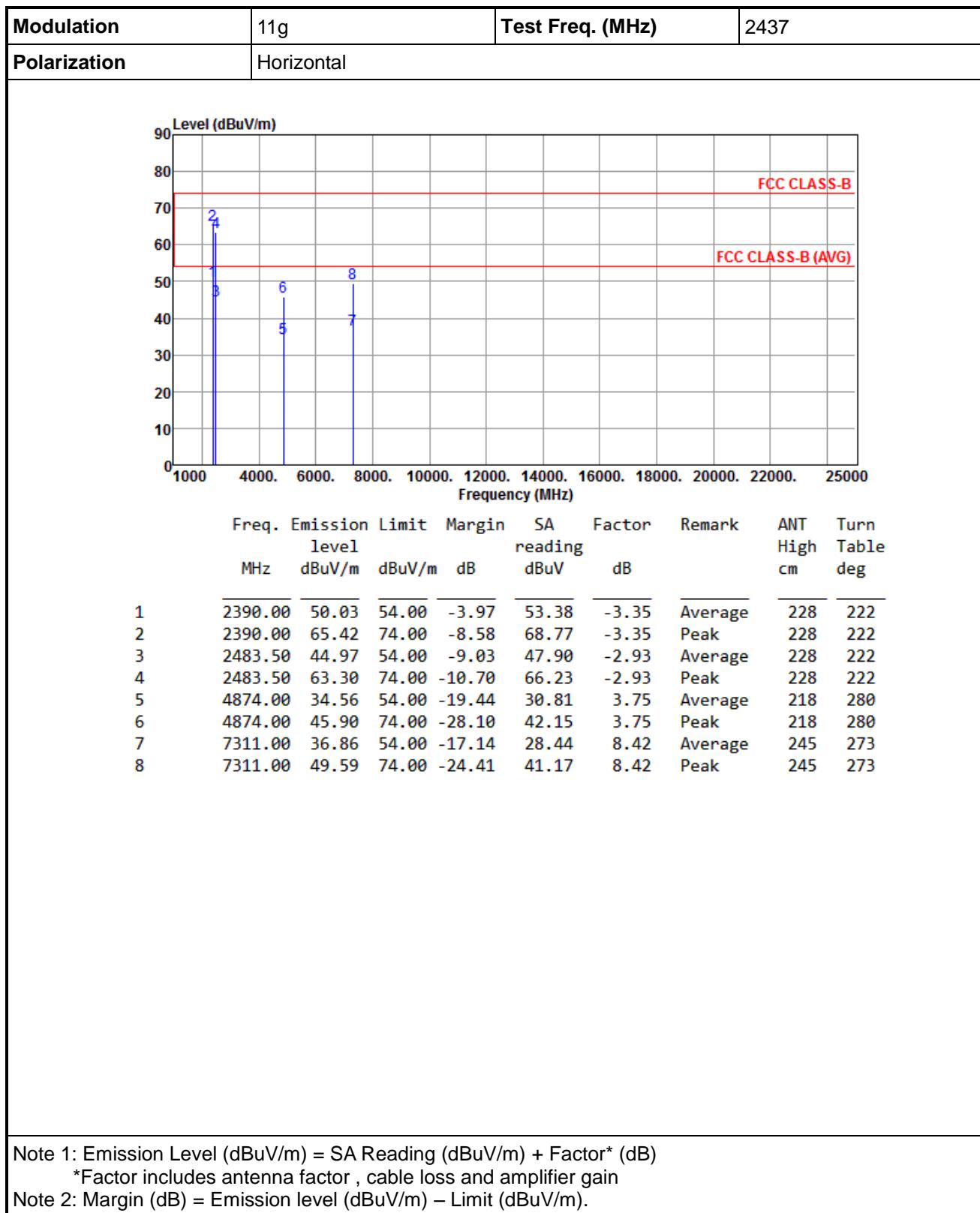
*Factor includes antenna factor , cable loss and amplifier gain

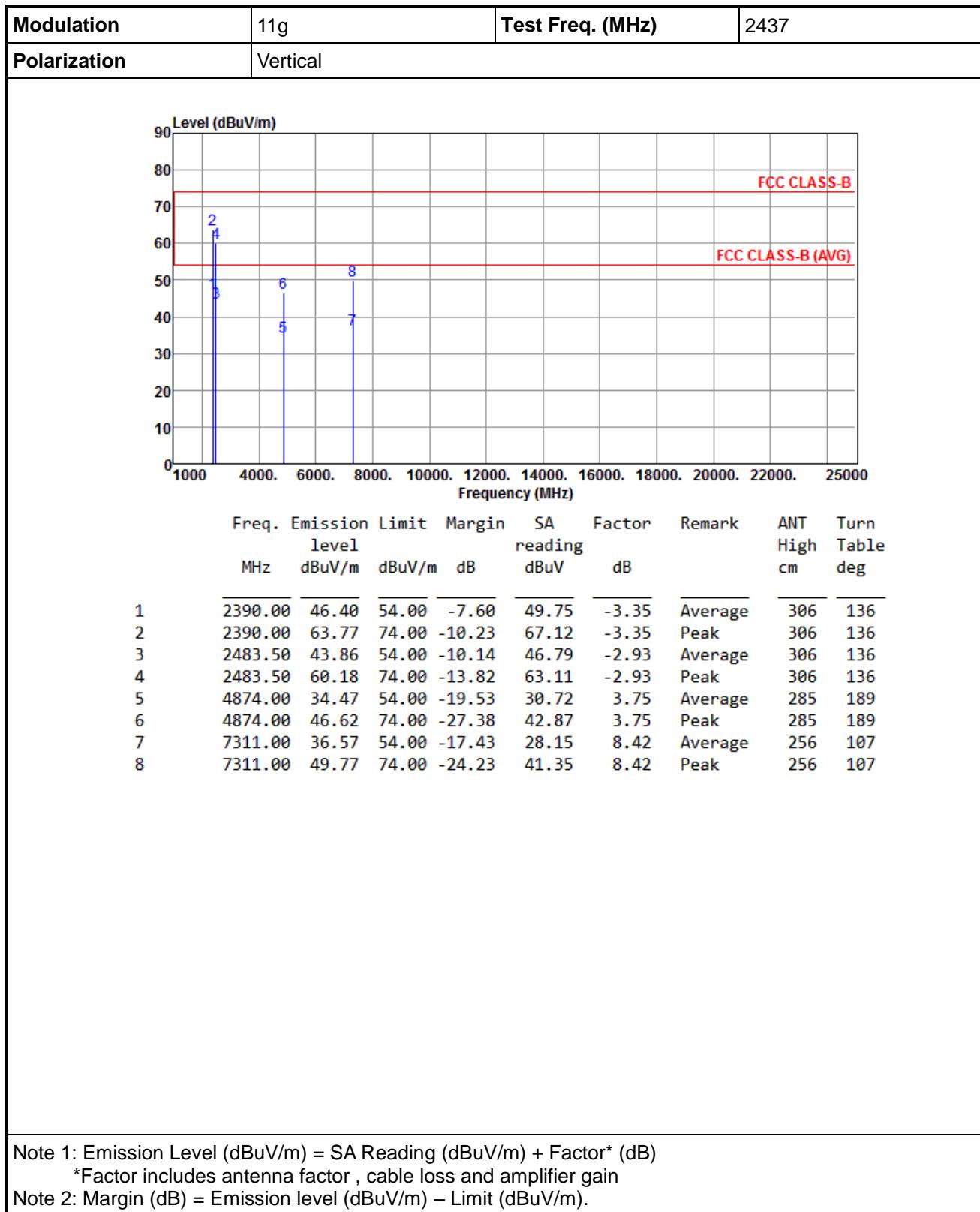

Note 2: Margin (dB) = Emission level (dBuV/m) – Limit (dBuV/m).

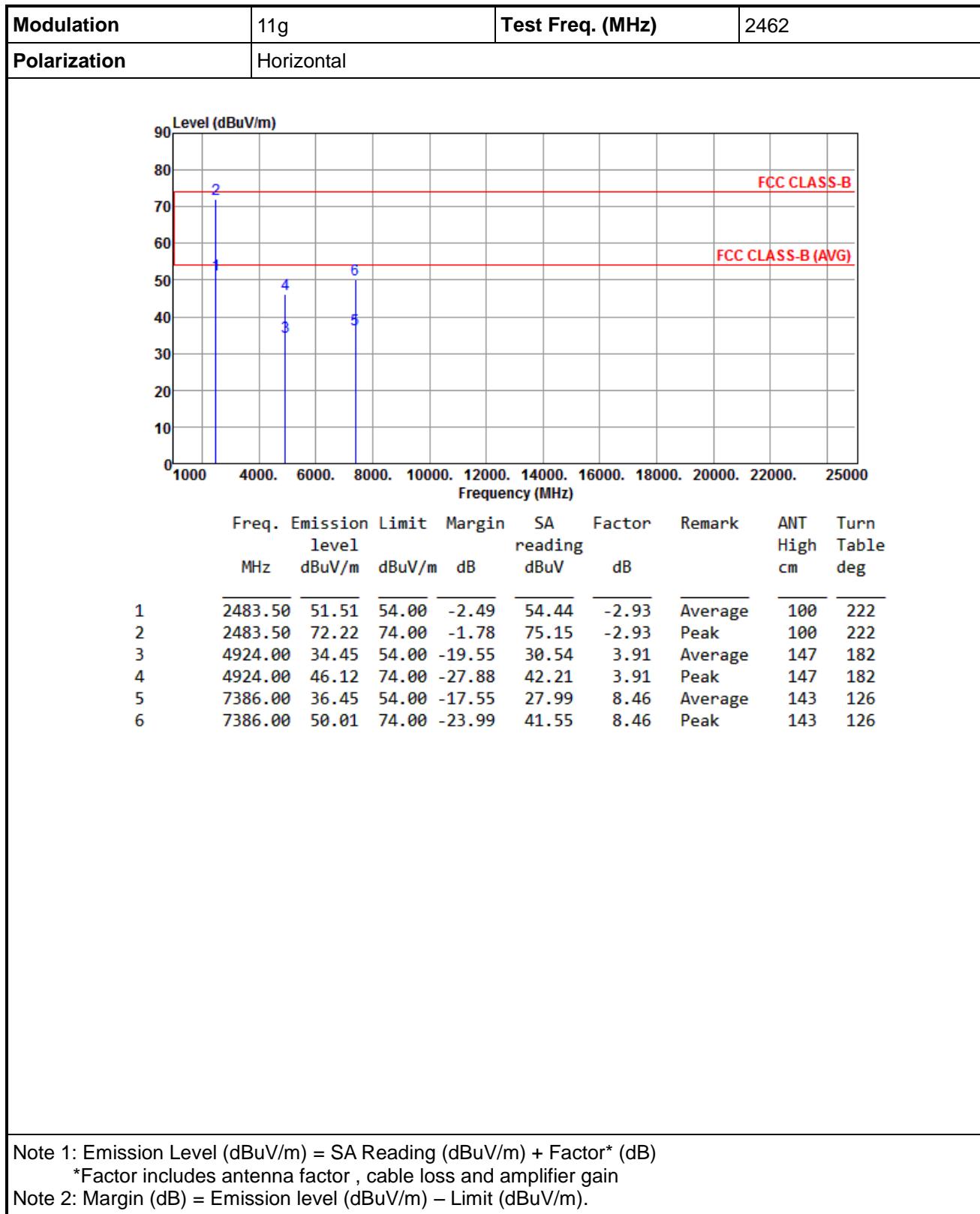
Modulation	11b	Test Freq. (MHz)	2462																																																																																							
Polarization	Horizontal																																																																																									
<table border="1" style="width: 100%; border-collapse: collapse;"> <thead> <tr> <th style="text-align: left;">Freq.</th> <th style="text-align: left;">Emission</th> <th style="text-align: left;">Limit</th> <th style="text-align: left;">Margin</th> <th style="text-align: left;">SA</th> <th style="text-align: left;">Factor</th> <th style="text-align: left;">Remark</th> <th style="text-align: left;">ANT</th> <th style="text-align: left;">Turn</th> </tr> <tr> <th style="text-align: left;">level</th> <th style="text-align: left;">level</th> <th style="text-align: left;">dBuV/m</th> <th style="text-align: left;">dB</th> <th style="text-align: left;">reading</th> <th style="text-align: left;">dB</th> <th style="text-align: left;"> </th> <th style="text-align: left;">High</th> <th style="text-align: left;">Table</th> </tr> <tr> <th style="text-align: left;">MHz</th> <th style="text-align: left;">dBuV/m</th> <th style="text-align: left;">dBuV/m</th> <th style="text-align: left;">dB</th> <th style="text-align: left;">dBuV</th> <th style="text-align: left;">dB</th> <th style="text-align: left;"> </th> <th style="text-align: left;">cm</th> <th style="text-align: left;">deg</th> </tr> </thead> <tbody> <tr> <td style="text-align: left;">1</td> <td style="text-align: left;">2483.50</td> <td style="text-align: left;">52.72</td> <td style="text-align: left;">54.00</td> <td style="text-align: left;">-1.28</td> <td style="text-align: left;">55.65</td> <td style="text-align: left;">-2.93</td> <td style="text-align: left;">Average</td> <td style="text-align: left;">185</td> <td style="text-align: left;">224</td> </tr> <tr> <td style="text-align: left;">2</td> <td style="text-align: left;">2483.50</td> <td style="text-align: left;">57.93</td> <td style="text-align: left;">74.00</td> <td style="text-align: left;">-16.07</td> <td style="text-align: left;">60.86</td> <td style="text-align: left;">-2.93</td> <td style="text-align: left;">Peak</td> <td style="text-align: left;">185</td> <td style="text-align: left;">224</td> </tr> <tr> <td style="text-align: left;">3</td> <td style="text-align: left;">4924.00</td> <td style="text-align: left;">45.03</td> <td style="text-align: left;">54.00</td> <td style="text-align: left;">-8.97</td> <td style="text-align: left;">41.12</td> <td style="text-align: left;">3.91</td> <td style="text-align: left;">Average</td> <td style="text-align: left;">270</td> <td style="text-align: left;">286</td> </tr> <tr> <td style="text-align: left;">4</td> <td style="text-align: left;">4924.00</td> <td style="text-align: left;">48.83</td> <td style="text-align: left;">74.00</td> <td style="text-align: left;">-25.17</td> <td style="text-align: left;">44.92</td> <td style="text-align: left;">3.91</td> <td style="text-align: left;">Peak</td> <td style="text-align: left;">270</td> <td style="text-align: left;">286</td> </tr> <tr> <td style="text-align: left;">5</td> <td style="text-align: left;">7386.00</td> <td style="text-align: left;">37.66</td> <td style="text-align: left;">54.00</td> <td style="text-align: left;">-16.34</td> <td style="text-align: left;">29.20</td> <td style="text-align: left;">8.46</td> <td style="text-align: left;">Average</td> <td style="text-align: left;">14</td> <td style="text-align: left;">294</td> </tr> <tr> <td style="text-align: left;">6</td> <td style="text-align: left;">7386.00</td> <td style="text-align: left;">49.87</td> <td style="text-align: left;">74.00</td> <td style="text-align: left;">-24.13</td> <td style="text-align: left;">41.41</td> <td style="text-align: left;">8.46</td> <td style="text-align: left;">Peak</td> <td style="text-align: left;">14</td> <td style="text-align: left;">294</td> </tr> </tbody> </table>				Freq.	Emission	Limit	Margin	SA	Factor	Remark	ANT	Turn	level	level	dBuV/m	dB	reading	dB		High	Table	MHz	dBuV/m	dBuV/m	dB	dBuV	dB		cm	deg	1	2483.50	52.72	54.00	-1.28	55.65	-2.93	Average	185	224	2	2483.50	57.93	74.00	-16.07	60.86	-2.93	Peak	185	224	3	4924.00	45.03	54.00	-8.97	41.12	3.91	Average	270	286	4	4924.00	48.83	74.00	-25.17	44.92	3.91	Peak	270	286	5	7386.00	37.66	54.00	-16.34	29.20	8.46	Average	14	294	6	7386.00	49.87	74.00	-24.13	41.41	8.46	Peak	14	294
Freq.	Emission	Limit	Margin	SA	Factor	Remark	ANT	Turn																																																																																		
level	level	dBuV/m	dB	reading	dB		High	Table																																																																																		
MHz	dBuV/m	dBuV/m	dB	dBuV	dB		cm	deg																																																																																		
1	2483.50	52.72	54.00	-1.28	55.65	-2.93	Average	185	224																																																																																	
2	2483.50	57.93	74.00	-16.07	60.86	-2.93	Peak	185	224																																																																																	
3	4924.00	45.03	54.00	-8.97	41.12	3.91	Average	270	286																																																																																	
4	4924.00	48.83	74.00	-25.17	44.92	3.91	Peak	270	286																																																																																	
5	7386.00	37.66	54.00	-16.34	29.20	8.46	Average	14	294																																																																																	
6	7386.00	49.87	74.00	-24.13	41.41	8.46	Peak	14	294																																																																																	

Note 1: Emission Level (dBuV/m) = SA Reading (dBuV/m) + Factor* (dB)


*Factor includes antenna factor , cable loss and amplifier gain


Note 2: Margin (dB) = Emission level (dBuV/m) – Limit (dBuV/m).



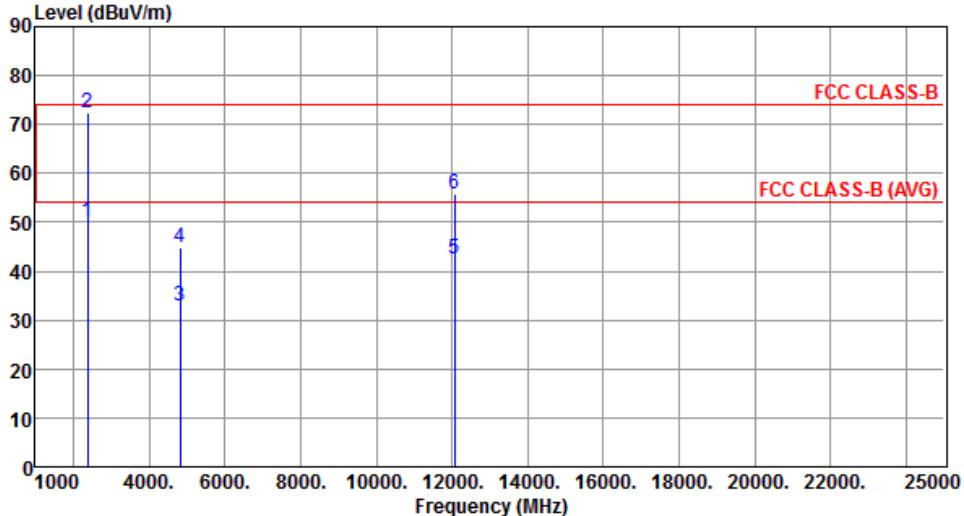

3.5.6 Transmitter Radiated Unwanted Emissions (Above 1GHz) for 11g

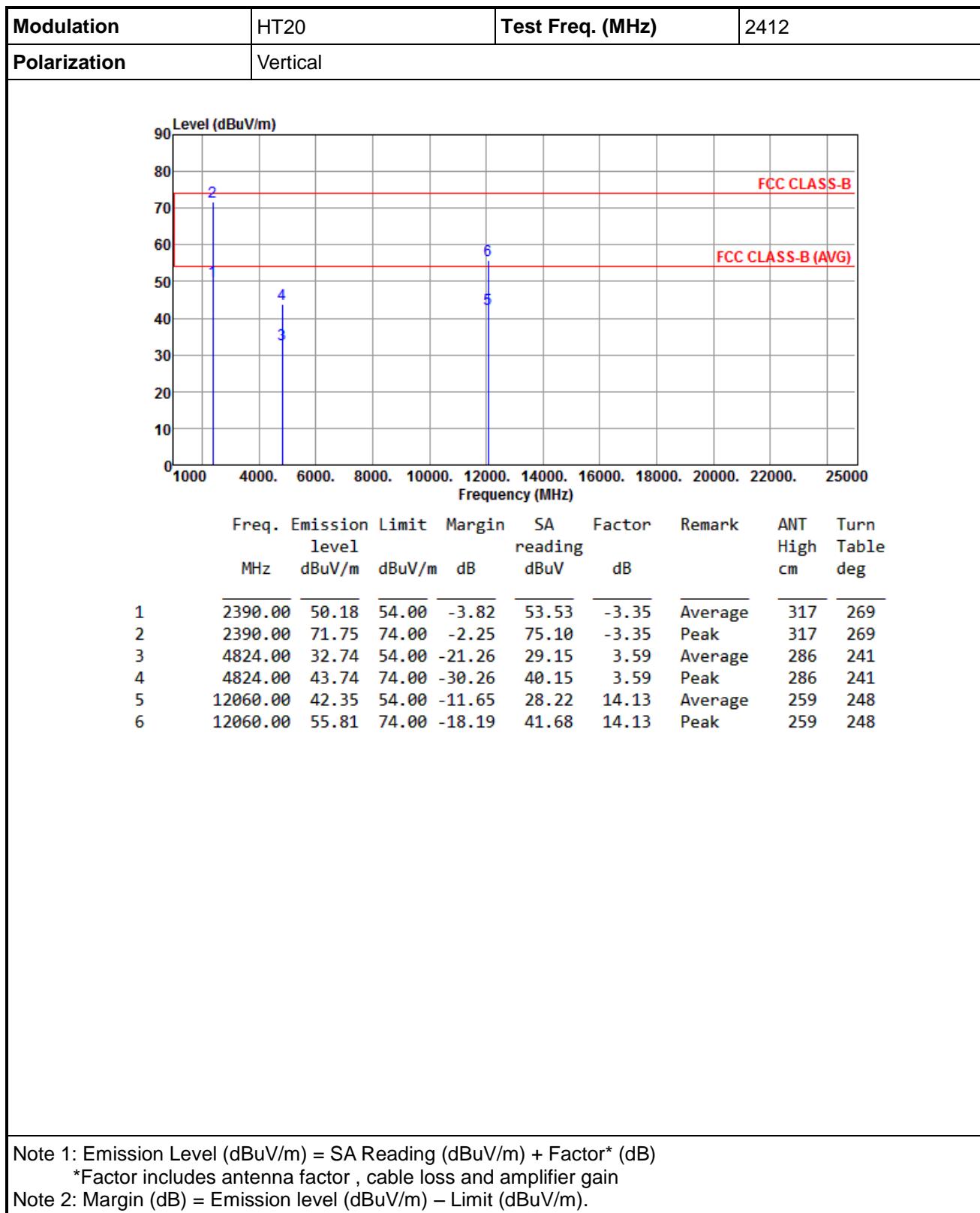
Modulation	11g	Test Freq. (MHz)	2412																																																																												
Polarization	Horizontal																																																																														
<p>Graph showing Level (dBuV/m) vs Frequency (MHz). The Y-axis ranges from 0 to 90 dBuV/m, and the X-axis ranges from 1000 to 25000 MHz. Six data points are plotted: 1 (2390.00 MHz, 50.85 dBuV/m), 2 (2390.00 MHz, 72.21 dBuV/m), 3 (4824.00 MHz, 33.26 dBuV/m), 4 (4824.00 MHz, 47.56 dBuV/m), 5 (12060.00 MHz, 42.66 dBuV/m), and 6 (12060.00 MHz, 55.96 dBuV/m). Two horizontal lines are shown: FCC CLASS-B (72 dBuV/m) and FCC CLASS-B (AVG) (54 dBuV/m).</p>																																																																															
<table border="1"> <thead> <tr> <th>Freq.</th> <th>Emission Limit</th> <th>Margin</th> <th>SA</th> <th>Factor</th> <th>Remark</th> <th>ANT</th> <th>Turn</th> </tr> <tr> <th>MHz</th> <th>level</th> <th>level</th> <th>reading</th> <th>reading</th> <th></th> <th>High</th> <th>Table</th> </tr> </thead> <tbody> <tr> <td>1</td> <td>2390.00</td> <td>50.85</td> <td>54.00</td> <td>-3.15</td> <td>54.20</td> <td>-3.35</td> <td>Average</td> <td>100</td> <td>219</td> </tr> <tr> <td>2</td> <td>2390.00</td> <td>72.21</td> <td>74.00</td> <td>-1.79</td> <td>75.56</td> <td>-3.35</td> <td>Peak</td> <td>100</td> <td>219</td> </tr> <tr> <td>3</td> <td>4824.00</td> <td>33.26</td> <td>54.00</td> <td>-20.74</td> <td>29.67</td> <td>3.59</td> <td>Average</td> <td>242</td> <td>189</td> </tr> <tr> <td>4</td> <td>4824.00</td> <td>47.56</td> <td>74.00</td> <td>-26.44</td> <td>43.97</td> <td>3.59</td> <td>Peak</td> <td>242</td> <td>189</td> </tr> <tr> <td>5</td> <td>12060.00</td> <td>42.66</td> <td>54.00</td> <td>-11.34</td> <td>28.53</td> <td>14.13</td> <td>Average</td> <td>171</td> <td>206</td> </tr> <tr> <td>6</td> <td>12060.00</td> <td>55.96</td> <td>74.00</td> <td>-18.04</td> <td>41.83</td> <td>14.13</td> <td>Peak</td> <td>171</td> <td>206</td> </tr> </tbody> </table>				Freq.	Emission Limit	Margin	SA	Factor	Remark	ANT	Turn	MHz	level	level	reading	reading		High	Table	1	2390.00	50.85	54.00	-3.15	54.20	-3.35	Average	100	219	2	2390.00	72.21	74.00	-1.79	75.56	-3.35	Peak	100	219	3	4824.00	33.26	54.00	-20.74	29.67	3.59	Average	242	189	4	4824.00	47.56	74.00	-26.44	43.97	3.59	Peak	242	189	5	12060.00	42.66	54.00	-11.34	28.53	14.13	Average	171	206	6	12060.00	55.96	74.00	-18.04	41.83	14.13	Peak	171	206
Freq.	Emission Limit	Margin	SA	Factor	Remark	ANT	Turn																																																																								
MHz	level	level	reading	reading		High	Table																																																																								
1	2390.00	50.85	54.00	-3.15	54.20	-3.35	Average	100	219																																																																						
2	2390.00	72.21	74.00	-1.79	75.56	-3.35	Peak	100	219																																																																						
3	4824.00	33.26	54.00	-20.74	29.67	3.59	Average	242	189																																																																						
4	4824.00	47.56	74.00	-26.44	43.97	3.59	Peak	242	189																																																																						
5	12060.00	42.66	54.00	-11.34	28.53	14.13	Average	171	206																																																																						
6	12060.00	55.96	74.00	-18.04	41.83	14.13	Peak	171	206																																																																						
<p>Note 1: Emission Level (dBuV/m) = SA Reading (dBuV/m) + Factor* (dB) *Factor includes antenna factor, cable loss and amplifier gain Note 2: Margin (dB) = Emission level (dBuV/m) – Limit (dBuV/m).</p>																																																																															

Note 1: Emission Level (dBuV/m) = SA Reading (dBuV/m) + Factor* (dB)

*Factor includes antenna factor , cable loss and amplifier gain

Note 2: Margin (dB) = Emission level (dBuV/m) – Limit (dBuV/m).

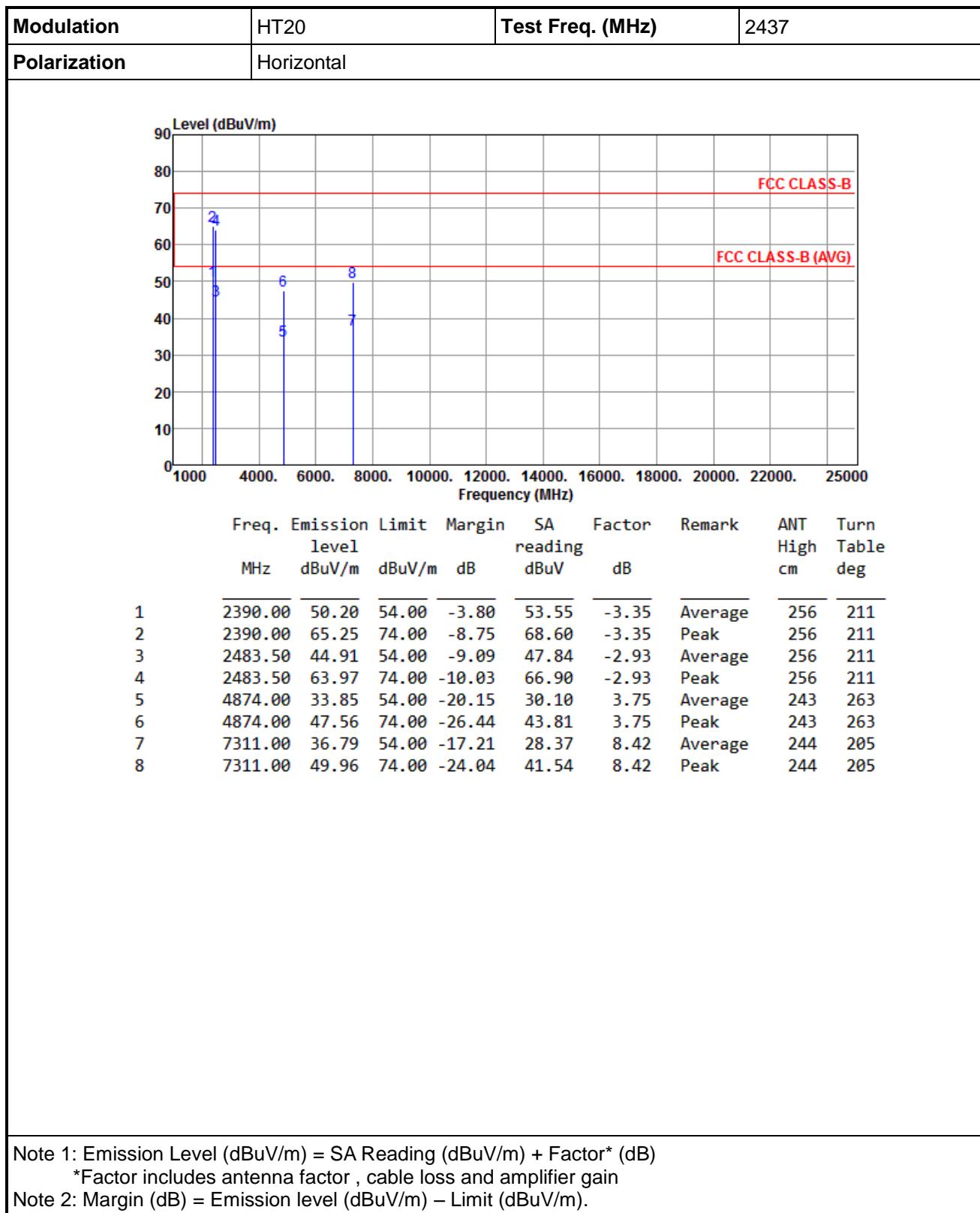


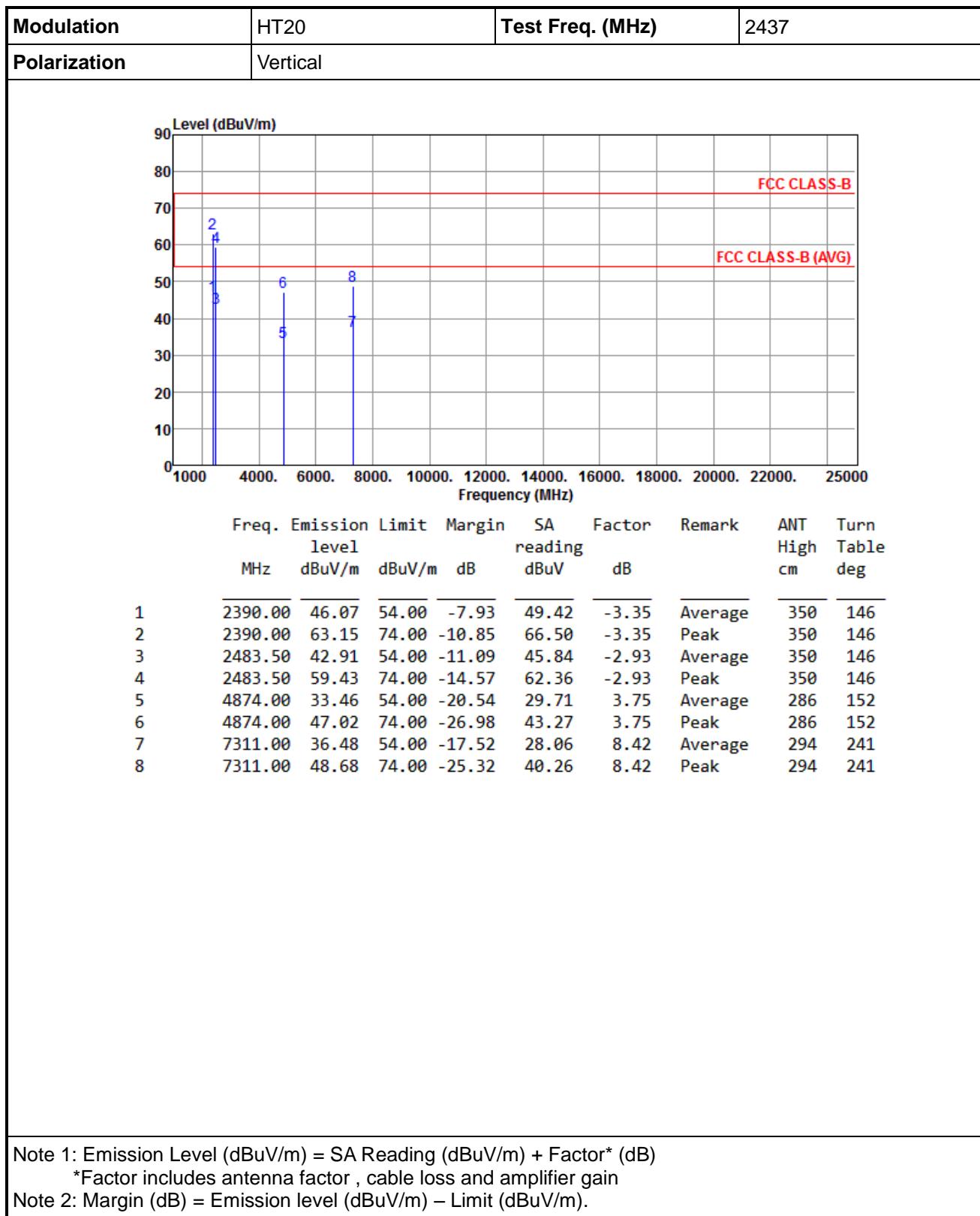

Note 1: Emission Level (dBuV/m) = SA Reading (dBuV/m) + Factor* (dB)

*Factor includes antenna factor , cable loss and amplifier gain

Note 2: Margin (dB) = Emission level (dBuV/m) – Limit (dBuV/m).

3.5.7 Transmitter Radiated Unwanted Emissions (Above 1GHz) for HT20

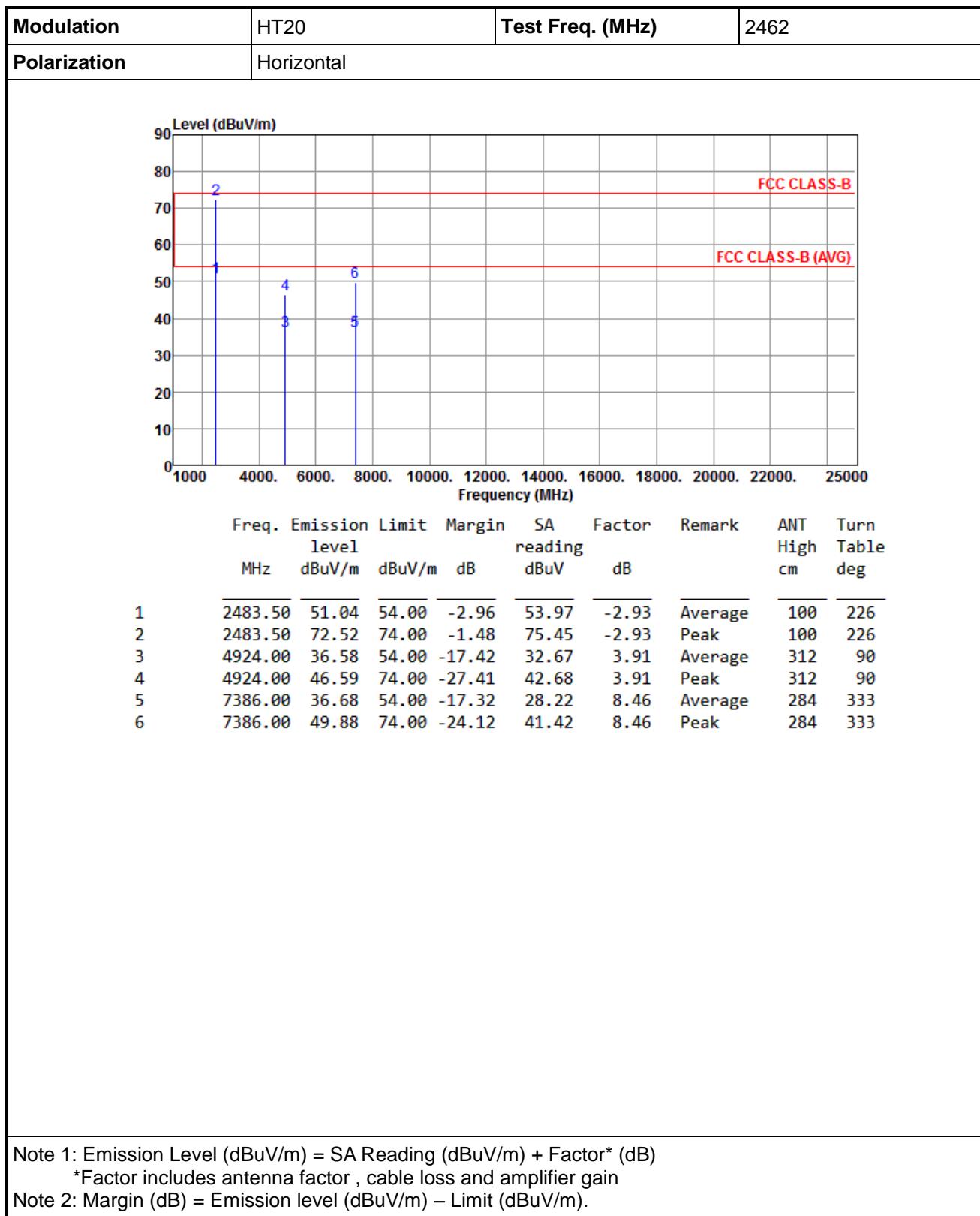

Modulation	HT20	Test Freq. (MHz)	2412																																																																												
Polarization	Horizontal																																																																														
<table border="1"> <thead> <tr> <th>Freq.</th> <th>Emission Limit</th> <th>Margin</th> <th>SA</th> <th>Factor</th> <th>Remark</th> <th>ANT</th> <th>Turn</th> </tr> <tr> <th>MHz</th> <th>level</th> <th>dBuV/m</th> <th>reading</th> <th>dBuV</th> <th></th> <th>High</th> <th>Table</th> </tr> </thead> <tbody> <tr> <td>1</td> <td>2390.00</td> <td>50.07</td> <td>54.00</td> <td>-3.93</td> <td>53.42</td> <td>-3.35</td> <td>Average</td> <td>100</td> <td>209</td> </tr> <tr> <td>2</td> <td>2390.00</td> <td>72.54</td> <td>74.00</td> <td>-1.46</td> <td>75.89</td> <td>-3.35</td> <td>Peak</td> <td>100</td> <td>209</td> </tr> <tr> <td>3</td> <td>4824.00</td> <td>32.93</td> <td>54.00</td> <td>-21.07</td> <td>29.34</td> <td>3.59</td> <td>Average</td> <td>250</td> <td>273</td> </tr> <tr> <td>4</td> <td>4824.00</td> <td>44.80</td> <td>74.00</td> <td>-29.20</td> <td>41.21</td> <td>3.59</td> <td>Peak</td> <td>250</td> <td>273</td> </tr> <tr> <td>5</td> <td>12060.00</td> <td>42.54</td> <td>54.00</td> <td>-11.46</td> <td>28.41</td> <td>14.13</td> <td>Average</td> <td>169</td> <td>211</td> </tr> <tr> <td>6</td> <td>12060.00</td> <td>55.83</td> <td>74.00</td> <td>-18.17</td> <td>41.70</td> <td>14.13</td> <td>Peak</td> <td>169</td> <td>211</td> </tr> </tbody> </table>				Freq.	Emission Limit	Margin	SA	Factor	Remark	ANT	Turn	MHz	level	dBuV/m	reading	dBuV		High	Table	1	2390.00	50.07	54.00	-3.93	53.42	-3.35	Average	100	209	2	2390.00	72.54	74.00	-1.46	75.89	-3.35	Peak	100	209	3	4824.00	32.93	54.00	-21.07	29.34	3.59	Average	250	273	4	4824.00	44.80	74.00	-29.20	41.21	3.59	Peak	250	273	5	12060.00	42.54	54.00	-11.46	28.41	14.13	Average	169	211	6	12060.00	55.83	74.00	-18.17	41.70	14.13	Peak	169	211
Freq.	Emission Limit	Margin	SA	Factor	Remark	ANT	Turn																																																																								
MHz	level	dBuV/m	reading	dBuV		High	Table																																																																								
1	2390.00	50.07	54.00	-3.93	53.42	-3.35	Average	100	209																																																																						
2	2390.00	72.54	74.00	-1.46	75.89	-3.35	Peak	100	209																																																																						
3	4824.00	32.93	54.00	-21.07	29.34	3.59	Average	250	273																																																																						
4	4824.00	44.80	74.00	-29.20	41.21	3.59	Peak	250	273																																																																						
5	12060.00	42.54	54.00	-11.46	28.41	14.13	Average	169	211																																																																						
6	12060.00	55.83	74.00	-18.17	41.70	14.13	Peak	169	211																																																																						
Note 1: Emission Level (dBuV/m) = SA Reading (dBuV/m) + Factor* (dB) *Factor includes antenna factor , cable loss and amplifier gain Note 2: Margin (dB) = Emission level (dBuV/m) – Limit (dBuV/m).																																																																															



Note 1: Emission Level (dBuV/m) = SA Reading (dBuV/m) + Factor* (dB)

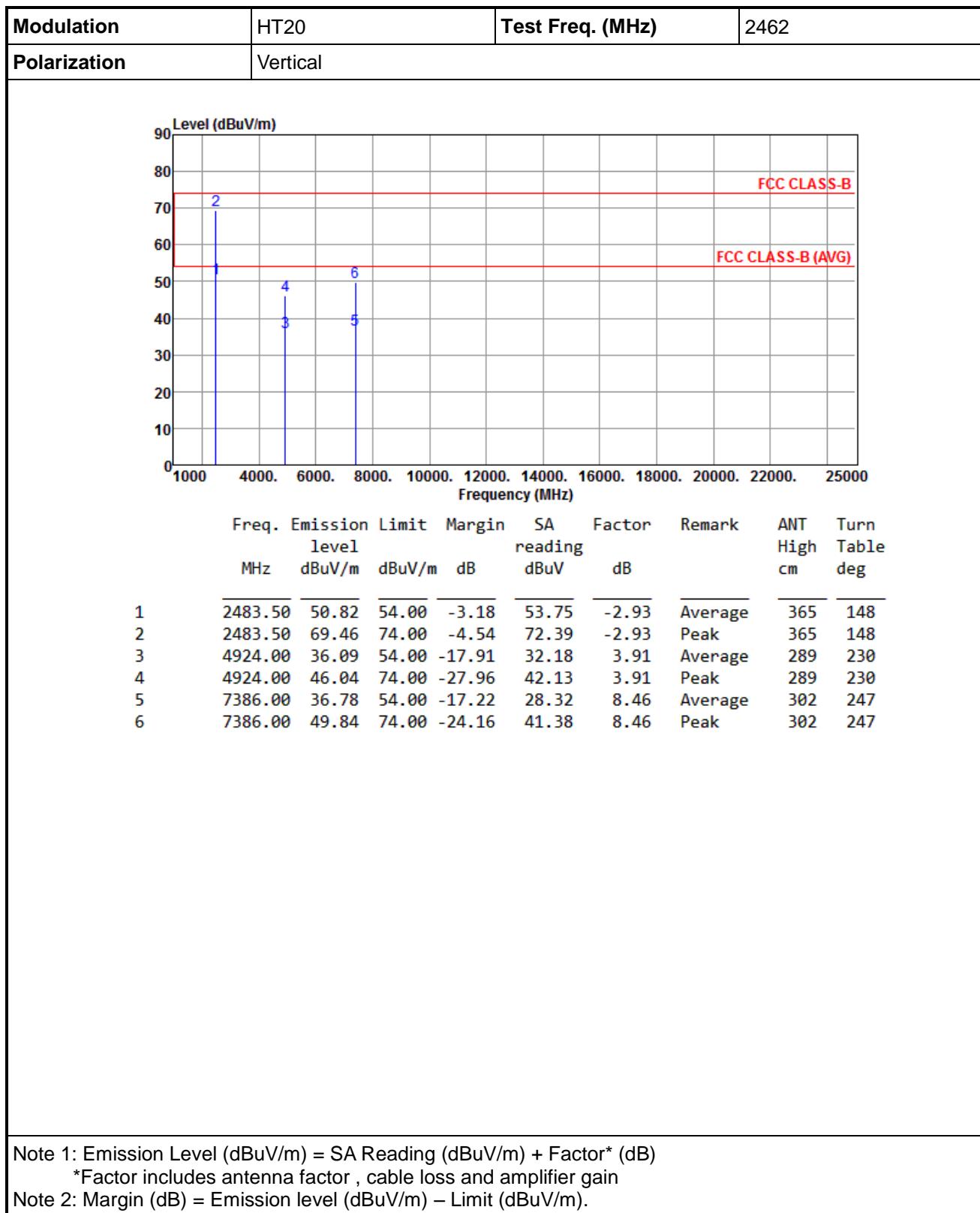
*Factor includes antenna factor , cable loss and amplifier gain

Note 2: Margin (dB) = Emission level (dBuV/m) – Limit (dBuV/m).



Note 1: Emission Level (dBuV/m) = SA Reading (dBuV/m) + Factor* (dB)

*Factor includes antenna factor , cable loss and amplifier gain


Note 2: Margin (dB) = Emission level (dBuV/m) – Limit (dBuV/m).

Note 1: Emission Level (dBuV/m) = SA Reading (dBuV/m) + Factor* (dB)

*Factor includes antenna factor , cable loss and amplifier gain

Note 2: Margin (dB) = Emission level (dBuV/m) – Limit (dBuV/m).

Note 1: Emission Level (dBuV/m) = SA Reading (dBuV/m) + Factor* (dB)

*Factor includes antenna factor , cable loss and amplifier gain

Note 2: Margin (dB) = Emission level (dBuV/m) – Limit (dBuV/m).

3.6 Emissions in Non-Restricted Frequency Bands

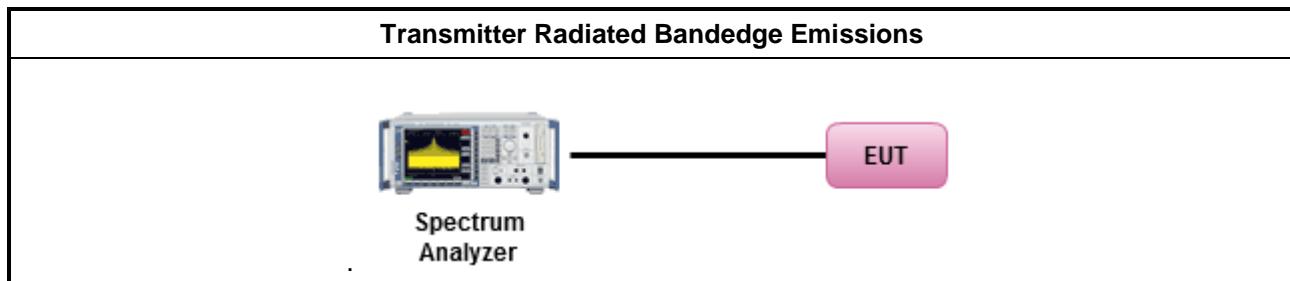
3.6.1 Emissions in Non-Restricted Frequency Bands Limit

Peak power in any 100 kHz bandwidth outside of the authorized frequency band shall be attenuated by at least 20 dB relative to the maximum in-band peak PSD level in 100 kHz

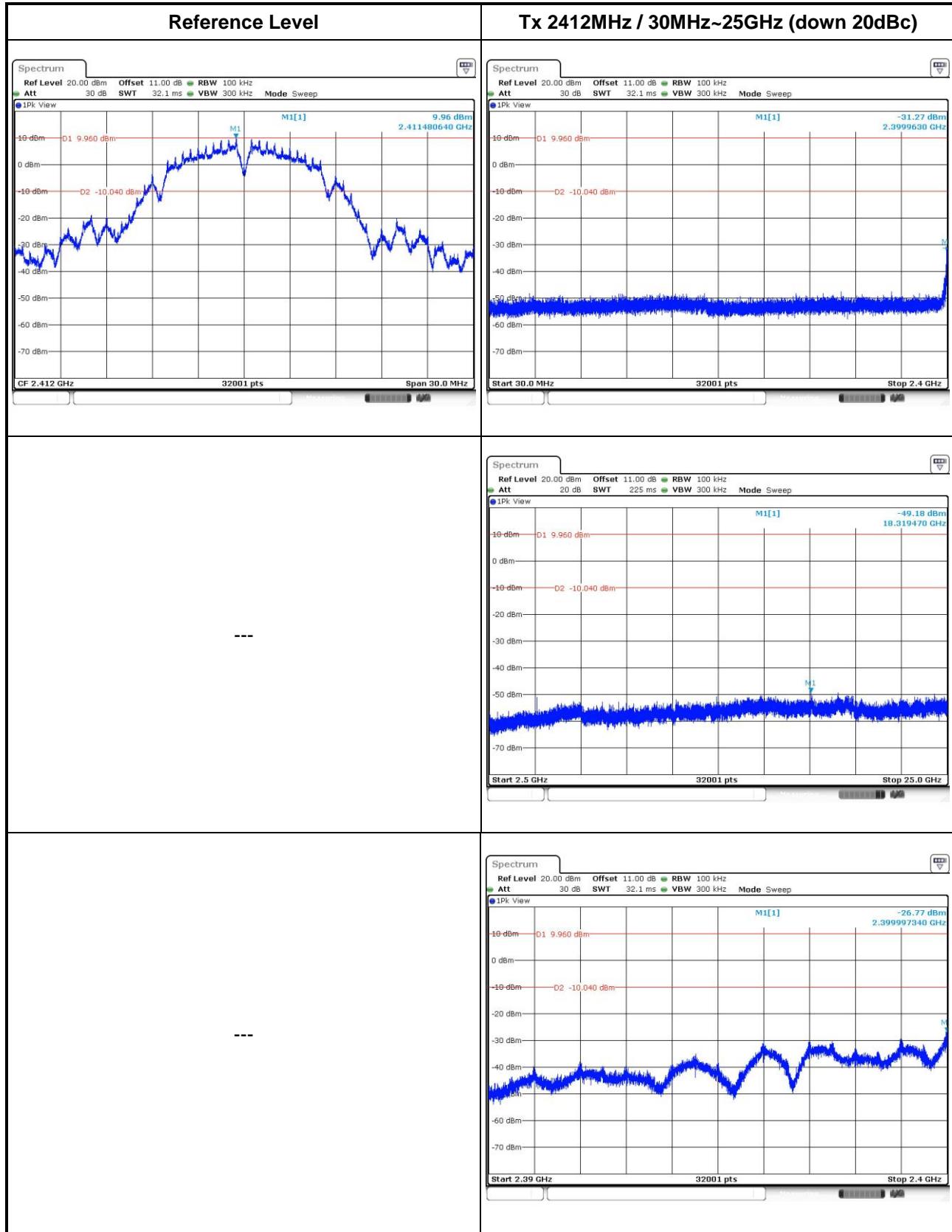
3.6.2 Measuring Instruments

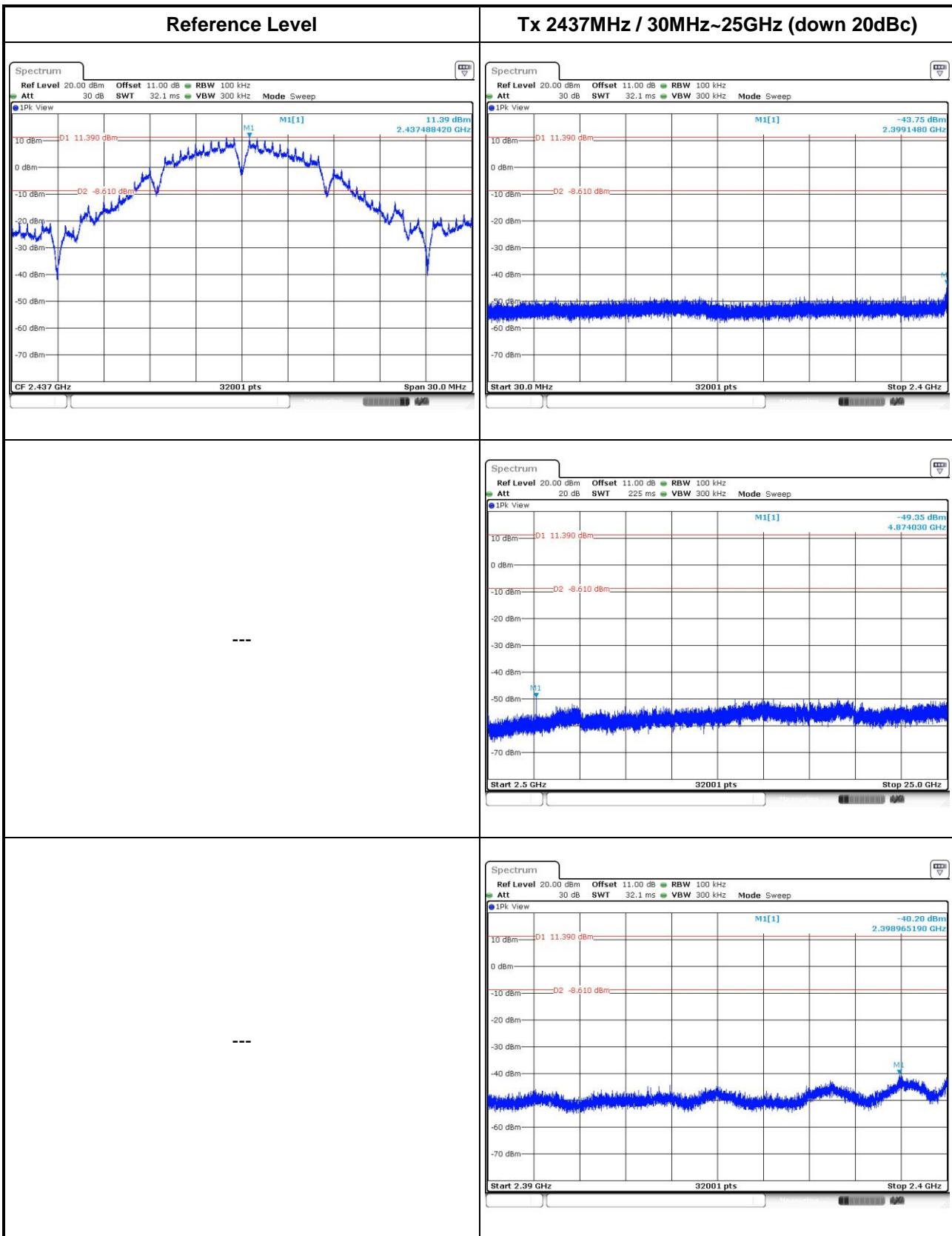
Refer a test equipment and calibration data table in this test report.

3.6.3 Test Procedures

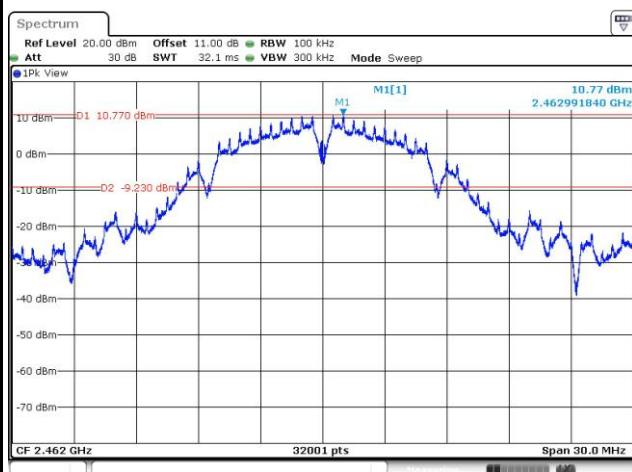

Reference level measurement

1. Set RBW=100kHz, VBW = 300kHz , Detector = Peak, Sweep time = Auto
2. Trace = max hold , Allow Trace to fully stabilize
3. Use the peak marker function to determine the maximum PSD level

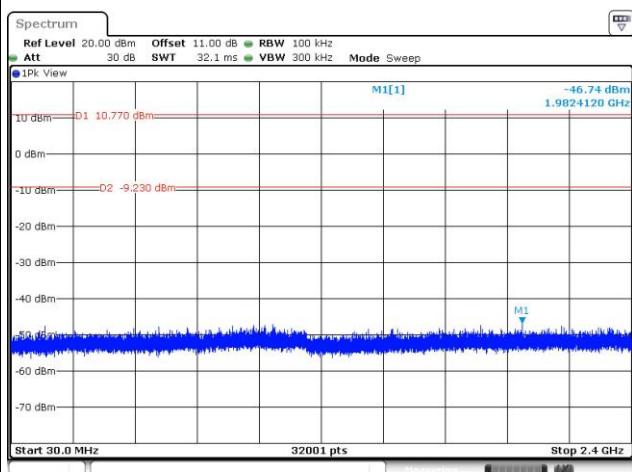

Emission level measurement

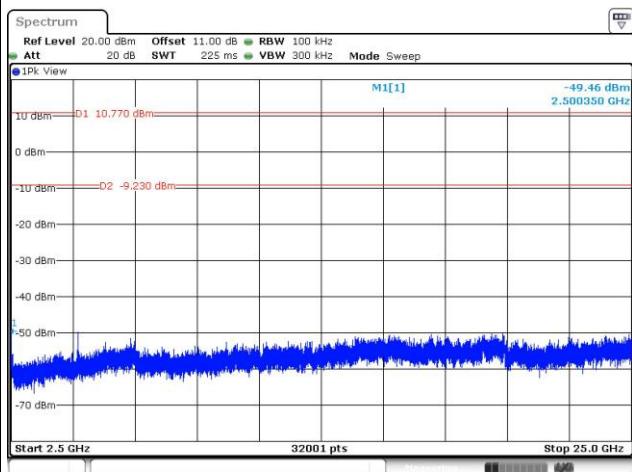

1. Set RBW=100kHz, VBW = 300kHz , Detector = Peak, Sweep time = Auto
2. Trace = max hold , Allow Trace to fully stabilize
3. Scan Frequency range is up to 25GHz
4. Use the peak marker function to determine the maximum amplitude level

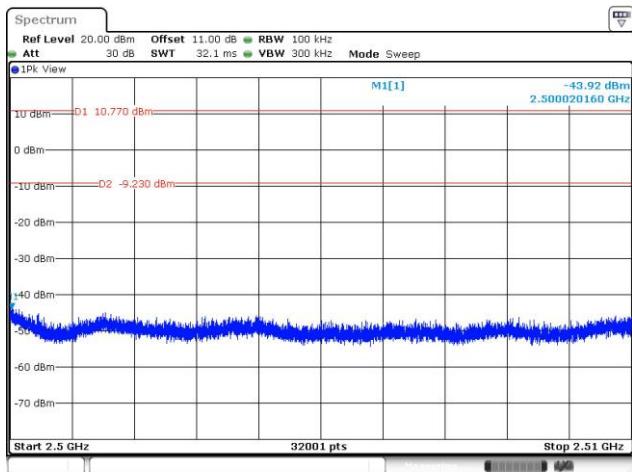
3.6.4 Test Setup

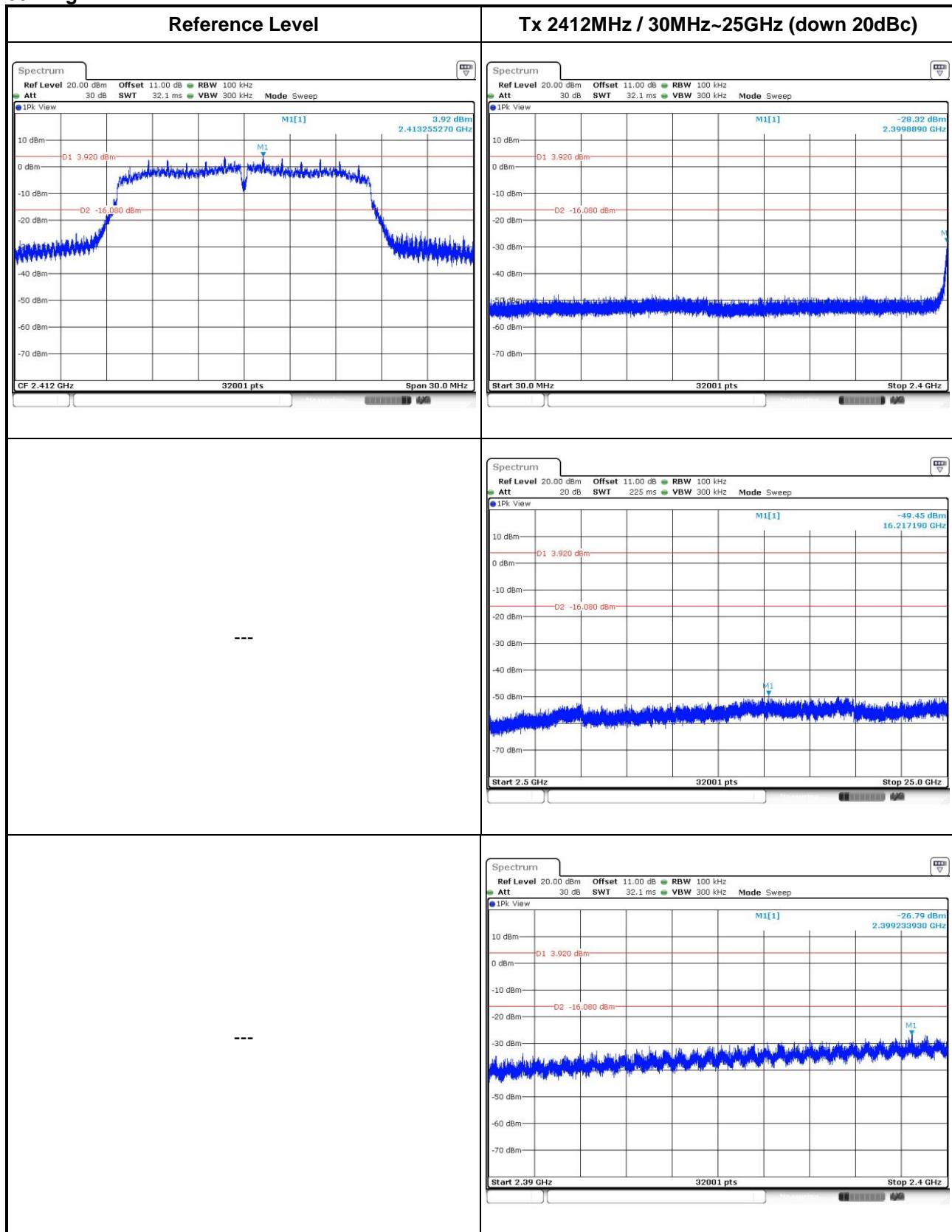


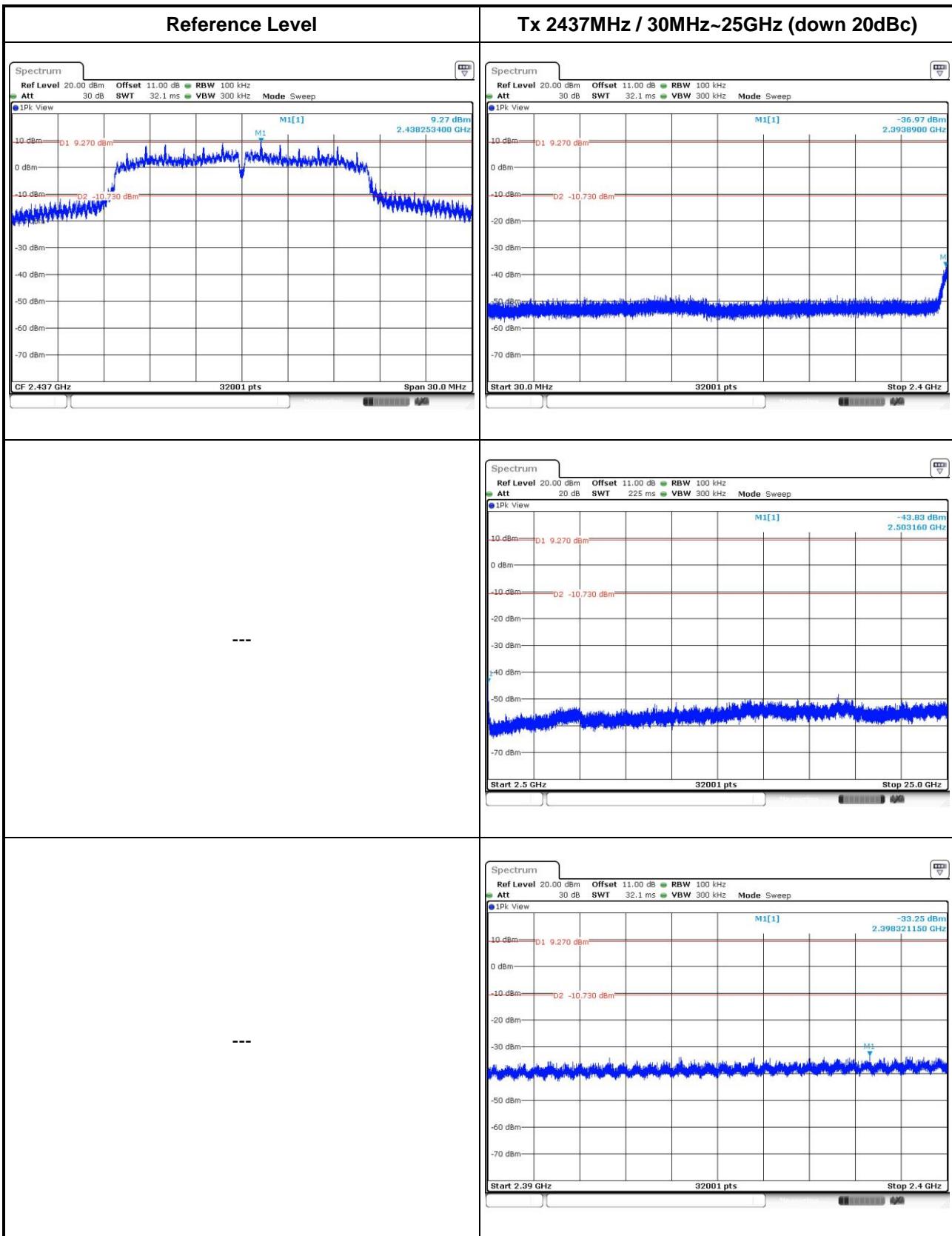
802.11b

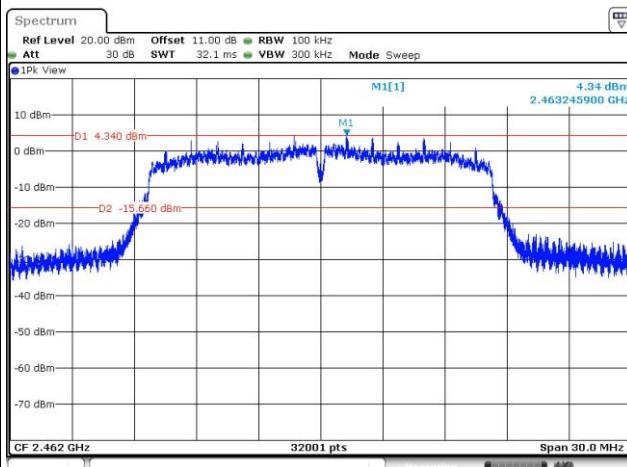



Reference Level

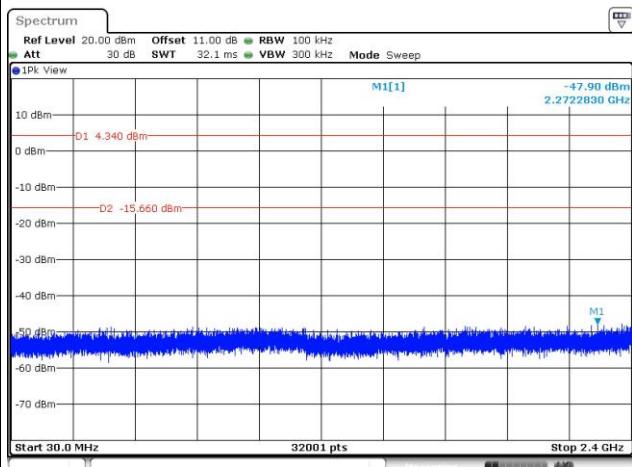

Tx 2462MHz / 30MHz~25GHz (down 20dBc)

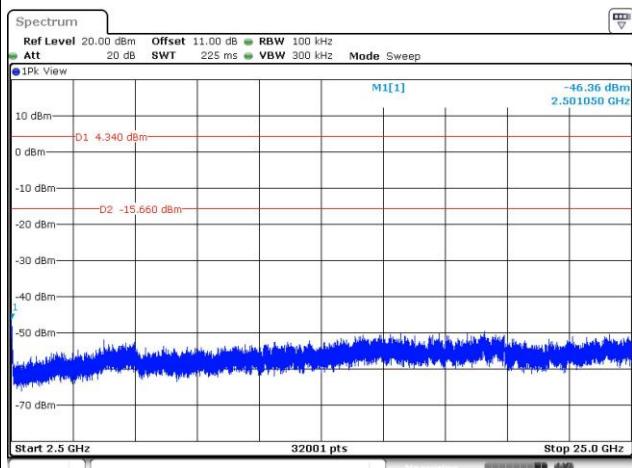




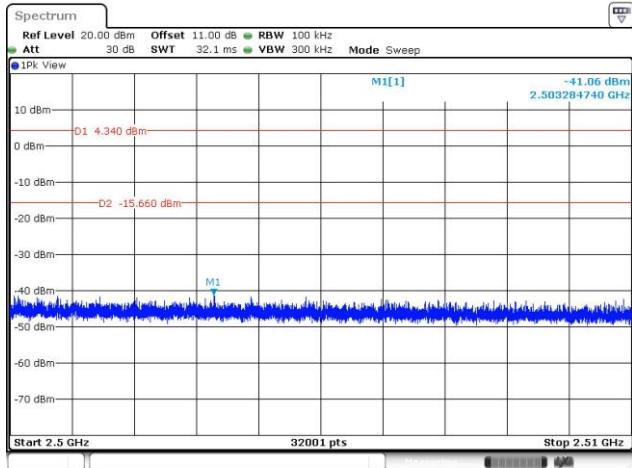


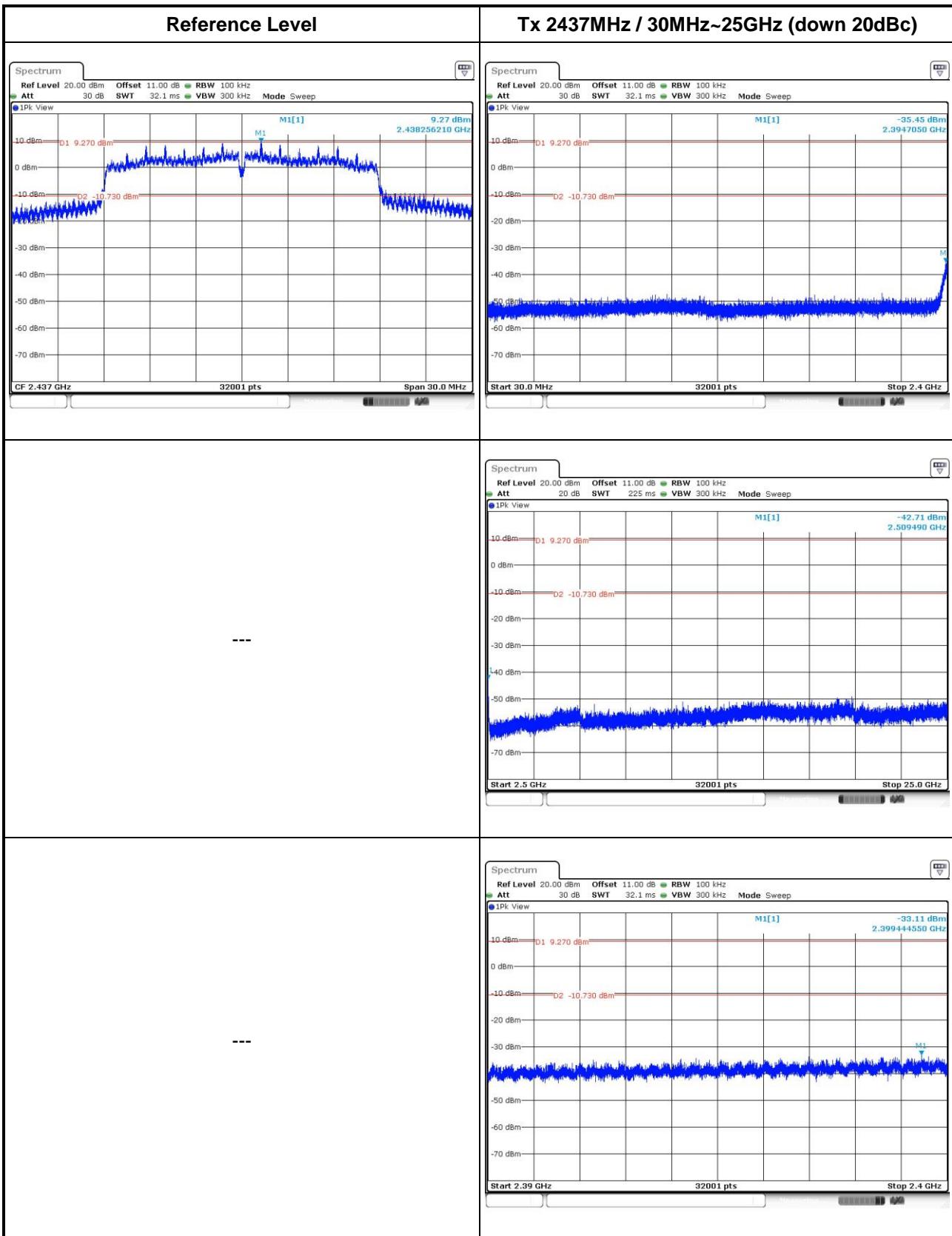
802.11g

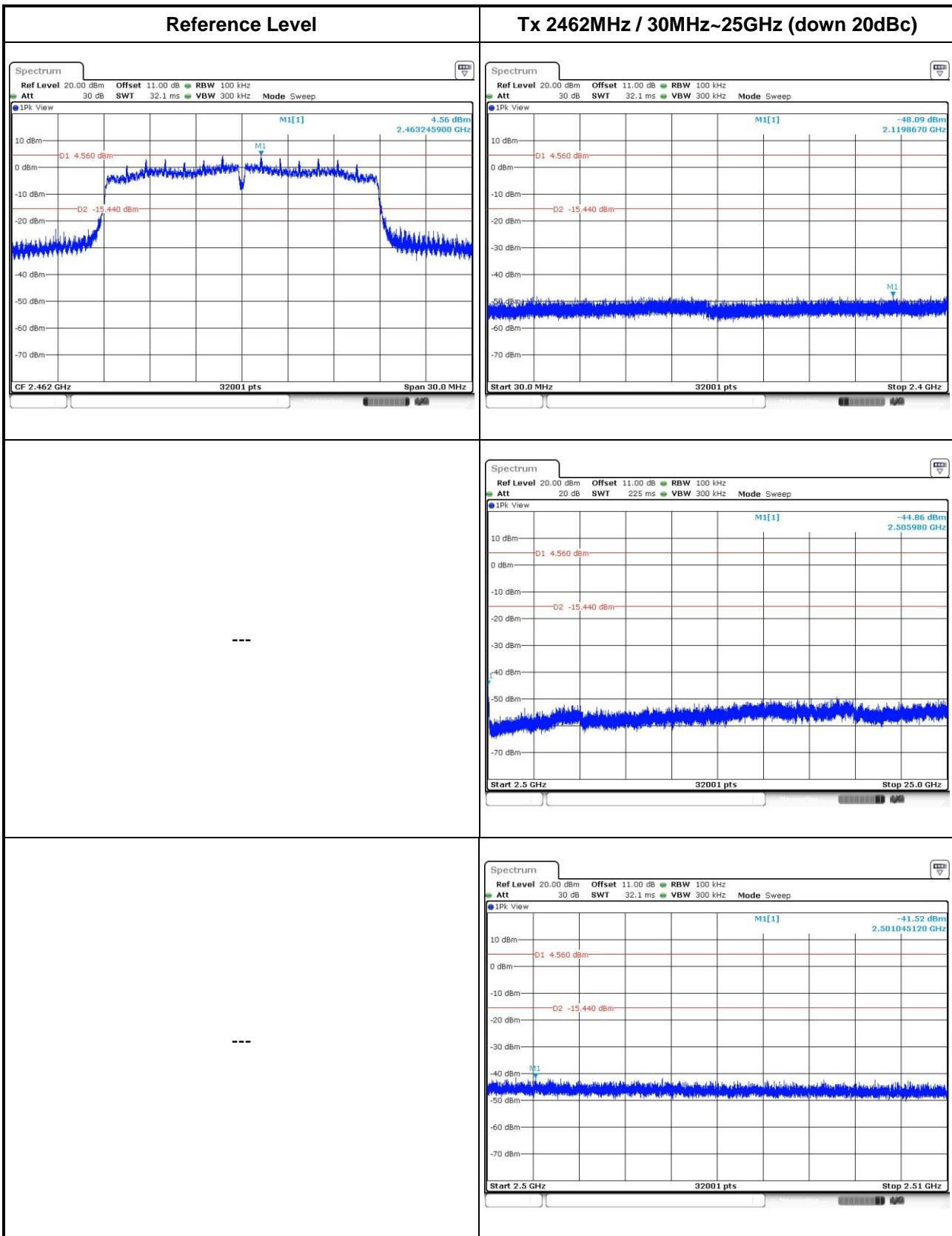



Reference Level

Tx 2462MHz / 30MHz~25GHz (down 20dBc)







802.11n HT20

4 Test laboratory information

Established in 2012, ICC provides foremost EMC & RF Testing and advisory consultation services by our skilled engineers and technicians. Our services employ a wide variety of advanced edge test equipment and one of the widest certification extents in the business.

International Certification Corp (EMC and Wireless Communication Laboratory), it is our definitive objective is to institute long term, trust-based associations with our clients. The expectation we set up with our clients is based on outstanding service, practical expertise and devotion to a certified value structure. Our passion is to grant our clients with best EMC / RF services by oriented knowledgeable and accommodating staff.

Our Test sites are located at Linkou District and Kwei Shan District. Location map can be found on our website <http://www.icertifi.com.tw>.

Linkou

Tel: 886-2-2601-1640

No. 30-2, Ding Fwu Tsuen, Lin
Kou District, New Taipei City,
Taiwan, R.O.C.

Kwei Shan

Tel: 886-3-271-8666

No. 3-1, Lane 6, Wen San 3rd St.,
Kwei Shan District, Tao Yuan City
333, Taiwan, R.O.C.

Kwei Shan Site II

Tel: 886-3-271-8640

No. 14-1, Lane 19, Wen San 3rd
St., Kwei Shan District, Tao Yuan
City 333, Taiwan, R.O.C.

If you have any suggestion, please feel free to contact us as below information.

Tel: 886-3-271-8666

Fax: 886-3-318-0155

Email: ICC_Service@icertifi.com.tw

—END—