Page 1 of 48

Report No.: UNIA19080123FR-01

FCC AND IC RADIO TEST REPORT

FCC ID: 2ACCU-E35BT001

IC:11982A-E35BT001

Product: High-Definition Studio Monitor

Trade Name: Wh PreSonus®

Model Name: E3.5BT

Serial Model: N/A

Report No.: UNIA19080123FR-01

Prepared for

PreSonus Audio Electronics, Inc.

18011 Grand Bay Court, Baton Rouge, LA 70809-USA

Prepared by

Shenzhen United Testing Technology Co., Ltd.

2F, Annex Bldg, Jiahuangyuan Tech Park, #365 Baotian 1 Rd, Tiegang Community, Xixiang Str, Bao'an District, Shenzhen, China

TEST RESULT CERTIFICATION

Applicant's name...... PreSonus Audio Electronics, Inc.

Address:	18011 Grand Bay Court, Baton Rouge, LA 70809-USA
Manufacture's Name:	PreSonus Audio Electronics, Inc.
Address:	18011 Grand Bay Court, Baton Rouge, LA 70809-USA
Product description	
Product name:	High-Definition Studio Monitor
Trade Mark:	(Wi) PreSonus®
Model and/or type reference .:	E3.5BT
	FCC Rules and Regulations Part 15 Subpart C Section 15.247
Standards	ANSI C63.10: 2013
Otanuarus	RSS-247 Issue 2: February 2017,
	RSS-Gen Issue 5 April 2018;
	has been tested by Shenzhen United Testing Technology
	show that the equipment under test (EUT) is in compliance
report.	and it is applicable only to the tested sample identified in the
	duced except in full, without the written approval of UNI, this
	revised by Shenzhen United Testing Technology Co., Ltd.,
-	noted in the revision of the document.
Date of Test	:
Date (s) of performance of tests	Jul. 25, 2019 ~Aug. 12, 2019
Date of Issue	: Aug. 13, 2019
Test Result	: Pass
	G. C.
	Kaln Yang
Prepared by:	
	Kahn yang/Editor
	OTESTING TECHNOLOGY
	Slavin Gias
Reviewer:	
	Sherwin Qian/Supervisor
Approved & Authorized Signe	er: Jimel
	Liuze/Manager

Table of Contents Page 1. TEST SUMMARY 2. GENERAL INFORMATION 2.1 GENERAL DESCRIPTION OF EUT 2.2 Carrier Frequency of Channels 2.3 Operation of EUT during testing 2.4 DESCRIPTION OF TEST SETUP 2.5 MEASUREMENT INSTRUMENTS LIST 3. CONDUCTED EMISSIONS TEST 9 3.1 Conducted Power Line Emission Limit 3.2 Test Setup 3.3 Test Procedure 3.4 Test Result 9 4. RADIATED EMISSION TEST 12 4.1 Radiation Limit 12 4.2 Test Setup 12 4.3 Test Procedure 13 4.4 Test Result 13 5. BAND EDGE 19 5.1 Limits 19 5.2 Test Procedure 19 5.3 Test Result 19 6. OCCUPIED BANDWIDTH MEASUREMENT 22 6.1 Test Setup 22 22 6.2 Test Procedure 22 6.3 Measurement Equipment Used 22 6.4 Test Result 7. MAXIMUM PEAK OUTPUT POWER 26 7.1 Test Setup 26 7.2 Test Procedure 26 7.3 Limit 26 7.4 Test Result 26 8. FREQUENCY SEPARATION 27 8.1 Test Setup 27 8.2 Test Procedure 27

	Table of Contents		Page
			17
8.3 Limit			27
8.4 Test Result			27
9. CONDUCTED BANDE	GE MEASUREMENT		31
9.1 Test Setup			31
9.2 Test Procedure			31
9.3 Limit			31
9.4 Test Result			31
10. SPURIOUS RF CON	DUCTED EMISSION		34
10.1 Test Limit			34
10.2 Test Procedure			34
10.3 Test Setup			34
10.4 Test Result			34
11. NUMBER OF HOPPI	NG FREQUENCY		40
11.1 Test Limit			40
11.2 Test Procedure			40
11.3 Test Setup			40
11.4 Test Result			40
12. TIME OF OCCUPAN	CY(DWELL TIME)		42
12.1 Test Limit			42
12.2 Test Procedure			42
12.3 Test Setup			42
12.4 Test Result			42
13. PSEUDORANDOM F	REQUENCY HPPPING	G SEQUENCE	46
For 47 CFR Part 15C s	ection 15.247 (a)(1) req	uirement	46
14. ANTENNA REQUIRE	EMENT		47
15. PHOTOGRAPH OF 1	TEST		48

TEST PROCEDURES AND RESULTS

DESCRIPTION OF TEST	RESULT
CONDUCTED EMISSIONS TEST	COMPLIANT
RADIATED EMISSION TEST	COMPLIANT
BAND EDGE	COMPLIANT
OCCUPIED BANDWIDTH MEASUREMENT	COMPLIANT
MAXIMUM PEAK OUTPUT POWER	COMPLIANT
FREQUENCY SEPARATION	COMPLIANT
CONDUCTED BANDEGE MEASUREMENT	COMPLIANT
SPURIOUS RF CONDUCTED EMISSION	COMPLIANT
NUMBER OF HOPPING FREQUENCY	COMPLIANT
TIME OF OCCUPANCY(DWELL TIME)	COMPLIANT
ANTENNA REQUIREMENT	COMPLIANT

TEST FACILITY

Test Firm : Shenzhen United Testing Technology Co., Ltd.

Address 2F, Annex Bldg, Jiahuangyuan Tech Park, #365 Baotian 1 Rd, Tiegang

Community, Xixiang Str, Bao'an District, Shenzhen, China

The testing quality ability of our laboratory meet with "Quality Law of People's Republic of China" Clause 19. The testing quality system of our laboratory meets with ISO/IEC-17025 requirements, which is approved by CNAS. This approval result is accepted by MRA of APLAC.

Our test facility is recognized, certified, or accredited by the following organizations:

CNAS-LAB Code: L6494

The EMC Laboratory has been assessed and in compliance with CNAS-CL01 accreditation criteria for testing Laboratories (identical to ISO/IEC 17025:2017 General Requirements) for the Competence of testing Laboratories.

Designation Number: CN1227

Test Firm Registration Number: 674885

The EMC Laboratory has been registered and fully described in a report filed with the (FCC) Federal Communications commission. The acceptance letter from the FCC is maintained in our files.

MEASUREMENT UNCERTAINTY

Measurement Uncertainty

Conducted Emission Expanded Uncertainty = 2.23dB, k=2 Radiated emission expanded uncertainty(9kHz-30MHz) = 3.08dB, k=2 Radiated emission expanded uncertainty(30MHz-1000MHz) = 4.42dB, k=2 Radiated emission expanded uncertainty(Above 1GHz) = 4.06dB, k=2

2. GENERAL INFORMATION

2.1 GENERAL DESCRIPTION OF EUT

High-Definition Studio Monitor
(Wi) PreSonus®
E3.5BT
N/A
N/A
2ACCU-E35BT001
11982A-E35BT001
Internal Antenna
3dBi
2402-2480MHz
79CH
GFSK, π/4 DQPSK
AC 100-240V~50-60Hz

Note:

- 1. The EUT consists of a pair of headphones, divided into left and right headphone. The software and electric circuit of the two headphones are the same.
- 2. This report shows the right headphone.

Table for auxiliary equipment:

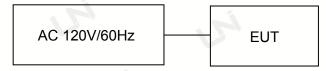
Equipment Description	Manufacturer	Model	Calibration Due Date
Notebook	Lenovo	Lenovo G475	GB14477457

2.2 Carrier Frequency of Channels

1			Chann	el List			
Channel	Frequency (MHz)	Channel	Frequency (MHz)	Channel	Frequency (MHz)	Channel	Frequency (MHz)
00	2402	21	2423	42	2444	63	2465
01	2403	22	2424	43	2445	64	2466
02	2404	23	2425	44	2446	65	2467
03	2405	24	2426	45	2447	66	2468
04	2406	25	2427	46	2448	67	2469
05	2407	26	2428	47	2449	68	2470
06	2408	27	2429	48	2450	69	2471
07	2409	28	2430	49	2451	70	2472
08	2410	29	2431	50	2452	71	2473
09	2411	30	2432	51	2453	72	2474
10	2412	31	2433	52	2454	73	2475
11	2413	32	2434	53	2455	74	2476
12	2414	33	2435	54	2456	75	2477
13	2415	34	2436	55	2457	76	2478
14	2416	35	2437	56	2458	77	2479
15	2417	36	2438	57	2459	78	2480
16	2418	37	2439	58	2460	4	
17	2419	38	2440	59	2461	12	3)
18	2420	39	2441	60	2462		
19	2421	40	2442	61	2463		
20	2422	41	2443	62	2464		i

2.3 Operation of EUT during testing

Operating Mode


The mode is used: Transmitting mode

Low Channel: 2402MHz Middle Channel: 2441MHz High Channel: 2480MHz

Test SW Version: FCCAssist 2.4

2.4 DESCRIPTION OF TEST SETUP

Operation of EUT during Conducted testing:

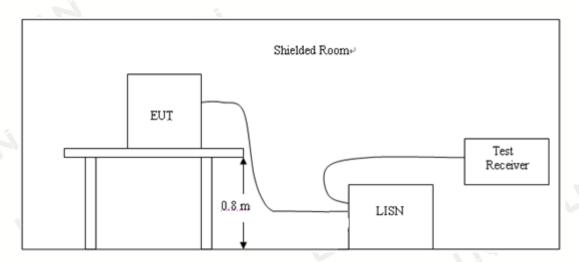
Operation of EUT during Radiation testing:

2.5 MEASUREMENT INSTRUMENTS LIST

Item	Equipment	Manufacturer	Model No.	Serial No.	Calibrated until	
		CONDUCTED	EMISSIONS TEST			
1	AMN	Schwarzbeck	NNLK8121	8121370	2019.9.9	
2	AMN	ETS	3810/2	00020199	2019.9.9	
3	EMI TEST RECEIVER	Rohde&Schwarz	ESCI	101210	2019.9.9	
4	AAN	TESEQ	T8-Cat6	38888	2019.9.9	
	6	RADIATED	EMISSION TEST			
1	Horn Antenna	Sunol	DRH-118	A101415	2019.9.29	
2	BicoNILog Antenna	Sunol	JB1 Antenna	A090215	2019.9.29	
3	PREAMP	HP	8449B	3008A00160	2019.9.9	
4	PREAMP	HP	8447D	2944A07999	2019.9.9	
5	EMI TEST RECEIVER	Rohde&Schwarz	ESR3	101891	2019.9.9	
6	VECTOR Signal Generator	Rohde&Schwarz	SMU200A	101521	2019.9.28	
7	Signal Generator	Agilent	E4421B	MY4335105	2019.9.28	
8	MXA Signal Analyzer	Agilent	N9020A	MY50510140	2019.9.28	
9	MXA Signal Analyzer	Agilent	N9020A	MY51110104	2019.9.9	
10	ANT Tower&Turn table Controller	Champro	EM 1000	60764	2019.9.28	
11	Anechoic Chamber	Taihe Maorui	9m*6m*6m	966A0001	2019.9.9	
12	Shielding Room	Taihe Maorui	6.4m*4m*3m	643A0001	2019.9.9	
13	RF Power sensor	DARE	RPR3006W	15I00041SNO88	2020.3.14	
14	RF Power sensor	DARE	RPR3006W	15I00041SNO89	2020.3.14	
15	RF power divider	Anritsu	K241B	992289	2019.9.28	
16	Wideband radio communication tester	Rohde&Schwarz	CMW500	154987	2019.9.28	
17	Biconical antenna	Schwarzbeck	VHA 9103	91032360	2019.9.8	
18	Biconical antenna	Schwarzbeck	VHA 9103	91032361	2019.9.8	
19	Broadband Hybrid Antennas	Schwarzbeck	VULB9163	VULB9163#958	2019.9.8	
20	Horn Antenna	Schwarzbeck	BBHA9120D	9120D-1680	2020.1.12	
21	Active Receive Loop Antenna	Schwarzbeck	FMZB 1919B	00023	2019.11.02	
22	Horn Antenna	Schwarzbeck	BBHA 9170	BBHA9170651	2020.03.14	
23	Microwave Broadband Preamplifier	Schwarzbeck	BBV 9721	100472	2019.10.24	
24	Active Loop Antenna	Com-Power	AL-130R	10160009	2020.05.10	
25	Power Meter	KEYSIGHT	N1911A	MY50520168	2020.05.10	
26	Frequency Meter	VICTOR	VC2000	997406086	2020.05.10	
27	DC Power Source	HYELEC	HY5020E	055161818	2020.05.10	
		Test	software		FI	
1	E3	Audix	6.101223a	N/A	N/A	

Page 9 of 48 Report No.: UNIA19080123FR-01

3. CONDUCTED EMISSIONS TEST


3.1 Conducted Power Line Emission Limit

For unintentional device, according to § 15.107(a) & RSS-Gen [8.8] Line Conducted Emission Limits is as following

_		Maximum RF L	ine Voltage(dBμV)		
Frequency	CLA	SS A	CLASS B		
(MHz)	Q.P.	Ave.	Q.P.	Ave.	
0.15~0.50	79	66	66~56*	56~46*	
0.50~5.00	73	60	56	46	
5.00~30.0	73	60	60	50	

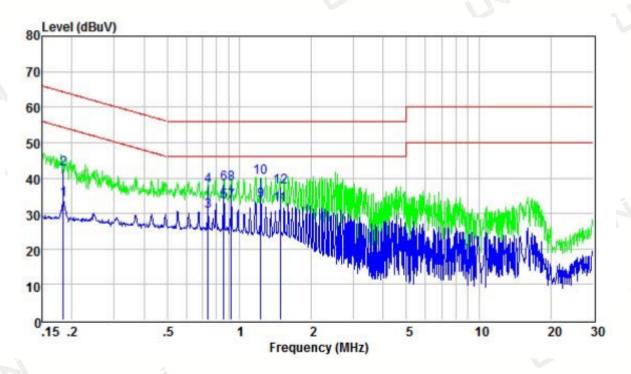
^{*} Decreasing linearly with the logarithm of the frequency
For intentional device, according to §15.207(a) Line Conducted Emission Limit is same as above table.

3.2 Test Setup

3.3 Test Procedure

- 1, The equipment was set up as per the test configuration to simulate typical actual usage per the user's manual. The EUT is a tabletop system, a wooden table with a height of 0.8 meters is used and is placed on the ground plane as per ANSI C63.10.
- 2, Support equipment, if needed, was placed as per ANSI C63.10.
- 3, All I/O cables were positioned to simulate typical actual usage as per ANSI C63.10.
- 4, If a EUT received DC power from the USB Port of Notebook PC, the PC's adapter received AC120V/60Hz power through a Line Impedance Stabilization Network (LISN) which supplied power source and was grounded to the ground plane.
- 5, All support equipments received AC power from a second LISN, if any.
- 6, The EUT test program was started. Emissions were measured on each current carrying line of the EUT using a spectrum Analyzer / Receiver connected to the LISN powering the EUT. The LISN has two monitoring points: Line 1 (Hot Side) and Line 2 (Neutral Side). Two scans were taken: one with Line 1 connected to Analyzer / Receiver and Line 2 connected to a 50 ohm load; the second scan had Line 1 connected to a 50 ohm load and Line 2 connected to the Analyzer / Receiver.
- 7, Analyzer / Receiver scanned from 150 KHz to 30MHz for emissions in each of the test modes.

3.4 Test Result


Pass

Remark:

1. All modes of Low, Middle, and High channel were tested, only the worst result of High Channel was reported as below:

Temperature:	26℃	Relative Humidity:	48%
Test Date:	Jul. 30, 2019	Pressure:	1010hPa
Test Voltage:	AC 120V, 60Hz	Phase:	Line
Test Mode:	Transmitting mode of GFSK 2402	MHz	

	Freq	Read Level	LISN Factor	Cable Loss	Level	Limit Line	Over Limit	Remark
	MHz	dBuV	dB	dB	dBuV	dBuV	dB	
1	0.184	23.86	9.66	0.24	33.76	54.28	-20.52	Average
2	0.184	32.56	9.66	0.24	42.46	64.28	-21.82	QP
3	0.739	20.88	9.61	0.26	30.75	46.00	-15.25	Average
4	0.739	27.80	9.61	0.26	37.67	56.00	-18.33	QP
5	0.862	23.33	9.60	0.26	33.19	46.00	-12.81	Average
6	0.862	28.62	9.60	0.26	38.48	56.00	-17.52	QP
7	0.923	23.33	9.59	0.26	33.18	46.00	-12.82	Average
8	0.923	28.62	9.59	0.26	38.47	56.00	-17.53	QP
9	1.229	23.74	9.60	0.27	33.61	46.00	-12.39	Average
10	1.229	30.28	9.60	0.27	40.15	56.00	-15.85	QP
11	1.480	22.41	9.60	0.27	32.28	46.00	-13.72	Average
12	1.480	27.63	9.60	0.27	37.50	56.00	-18.50	QP

Remark: Factor = Insertion Loss + Cable Loss, Result = Reading + Factor, Margin = Result – Limit.

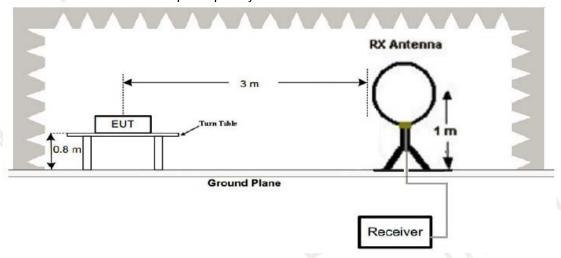
Temperature:	26℃	Relative Humidity:	48%
Test Date:	Jul. 30, 2019	Pressure:	1010hPa
Test Voltage:	AC 120V, 60Hz	Phase:	Neutral
Test Mode:	Transmitting mode of GFSK 2402	MHz	H

	Freq	Read	LISN Factor	Cable	Level	Limit Line	Over	Remark
	Freq	rever	ractor	LOSS	rever	Line	LIMIC	Remark
	MHz	dBuV	dB	dB	dBuV	dBuV	dB	
1	0.184	23.54	9.54	0.24	33.32	54.28	-20.96	Average
2	0.184	34.38	9.54	0.24	44.16	64.28	-20.12	QP
3	0.555	21.21	9.59	0.25	31.05	46.00	-14.95	Average
4	0.555	27.81	9.59	0.25	37.65	56.00	-18.35	QP
5	0.739	22.99	9.60	0.26	32.85	46.00	-13.15	Average
6	0.739	27.77	9.60	0.26	37.63	56.00	-18.37	QP
7	0.862	22.33	9.60	0.26	32.19	46.00	-13.81	Average
8	0.862	27.98	9.60	0.26	37.84	56.00	-18.16	QP
9	1.296	23.91	9.59	0.27	33.77	46.00	-12.23	Average
10	1.296	29.62	9.59	0.27	39.48	56.00	-16.52	QP
11	1.535	23.17	9.58	0.27	33.02	46.00	-12.98	Average
12	1.535	28.82	9.58	0.27	38.67	56.00	-17.33	QP

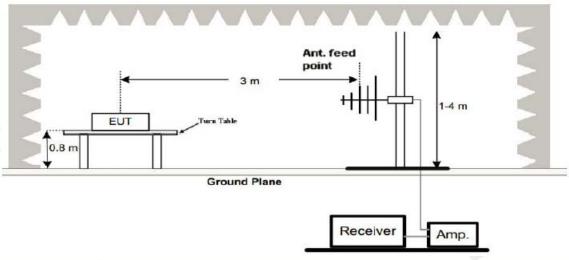
Remark: Factor = Insertion Loss + Cable Loss, Result = Reading + Factor, Margin = Result – Limit.

4. RADIATED EMISSION TEST

4.1 Radiation Limit

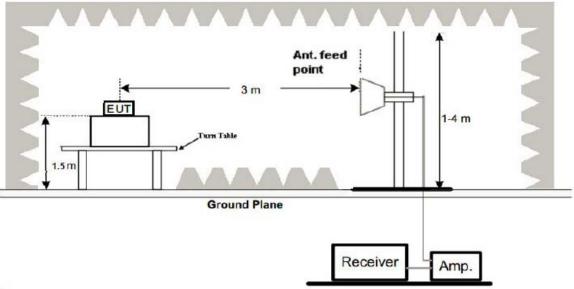

For unintentional device, according to § 15.109(a) & RSS-247 [5.5], except for Class A digital devices, the field strength of radiated emissions from unintentional radiators at a distance of 3 meters shall not exceed the following values:

Frequency	Distance	Radiated	Radiated
(MHz)	(Meters)	(dBµV/m)	(μV/m)
30-88	3	40	100
88-216	3	43.5	150
216-960	3	46	200
Above 960	3	54	500


For intentional device, according to § 15.209(a), the general requirement of field strength of radiated emissions from intentional radiators at a distance of 3 meters shall not exceed the above table.

4.2 Test Setup

1. Radiated Emission Test-Up Frequency Below 30MHz



2. Radiated Emission Test-Up Frequency 30MHz~1GHz

3. Radiated Emission Test-Up Frequency Above 1GHz

4.3 Test Procedure

- 1. Below 1GHz measurement the EUT is placed on turntable which is 0.8m above ground plane. And above 1GHz measurement EUT was placed on low permittivity and low tangent turn table which is 1.5m above ground plane.
- 2. The turntable shall be rotated for 360 degrees to determine the position of maximum emission level.
- 3. EUT is set 3m away from the receiving antenna, which is varied from 1m to 4m to find out the highest emissions.
- 4. Maximum procedure was performed on the six highest emissions to ensure EUT compliance.
- 5. And also, each emission was to be maximized by changing the polarization of receiving antenna both horizontal and vertical.
- 6. Repeat above procedures until the measurements for all frequencies are complete.
- 7. The test frequency range from 9KHz to 25GHz per FCC PART 15.33(a).

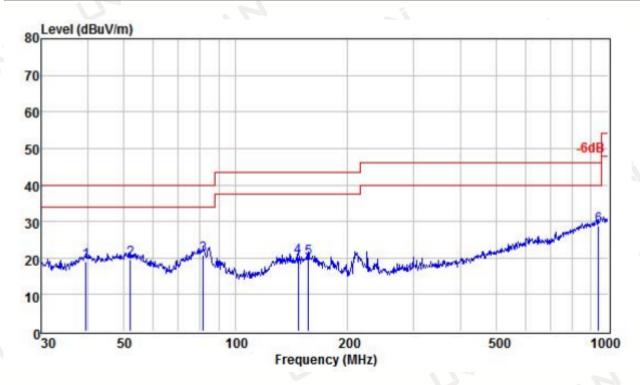
Test Frequency range	Test Antenna Type	Test Distance
9KHz-30MHz	Active Loop Antenna	3
30MHz-1GHz	Bilog Antenna	3
1GHz-18GHz	Horn Antenna	3
18GHz-25GHz	Horn Anternna	1

Note:

For battery operated equipment, the equipment tests shall be performed using a new battery.

4.4 Test Result

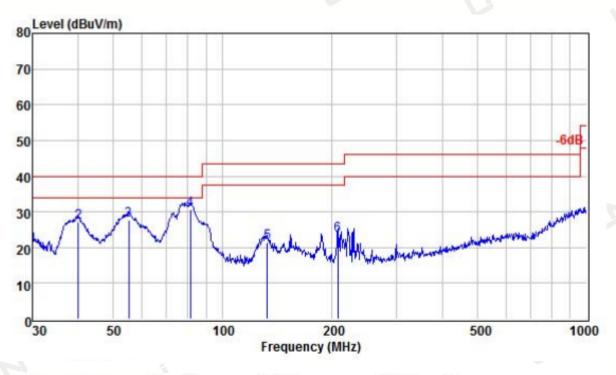
PASS


Remark:

- 1. All modes of GFSK, $\pi/4$ DQPSK were test at Low, Middle, and High channel, only the worst result of GFSK High Channel was reported for below 1GHz test.
- 2. For BT3.0 above 1GHz test all modes of GFSK, $\pi/4$ DQPSK, were test at Low, Middle, and High channel, only the worst result of GFSK DH5 was reported.
- 3. By preliminary testing and verifying three axis (X, Y and Z) position of EUT transmitted status, it was found that "Z axis" position was the worst, and test data recorded in this report.
- 4. Radiated emission test from 9KHz to 10th harmonic of fundamental was verified, and no emission found except system noise floor in 9KHz to 30MHz and not recorded in this report.

Below 1GHz Test Results:

Temperature:	22 ℃	Relative Humidity:	48%
Test Date:	Jul. 30, 2019	Pressure:	1010hPa
Test Voltage:	AC 120V, 60Hz	Polarization:	Horizontal
Test Mode:	Transmitting mode of GFSK 2402I	MHz	



		Read	Antenna	Cable		Limit	Over	
	Freq	Level	Factor	Loss	Level	Line	Limit	Remark
	MHz	dBuV	dBuV dB/m		dB dBuV/m d	dBuV/m	dB	-
1	39.576	5.39	13.44	0.14	18.97	40.00	-21.03	QP
2	52.208	6.65	12.75	0.12	19.52	40.00	-20.48	QP
3	81.783	7.76	12.97	0.15	20.88	40.00	-19.12	QP
4	147.404	4.69	15.40	0.23	20.32	43.50	-23.18	QP
5	157.007	3.94	15.63	0.23	19.80	43.50	-23.70	QP
6	942.131	3.89	23.19	1.65	28.73	46.00	-17.27	QP

Remark: Absolute Level = Reading Level + Factor, Margin = Absolute Level – Limit Factor = Ant. Factor + Cable Loss – Pre-amplifier

Temperature:	22 ℃	Relative Humidity:	48%
Test Date:	Jul. 30, 2019	Pressure:	1010hPa
Test Voltage:	AC 120V, 60Hz	Polarization:	Vertical
Test Mode:	Transmitting mode of GFSK 2402	MHz	

		Read	dAntenna Cable			Limit	Over	
	Freq	Level	Factor	Loss	Level	Line	Limit	Remark
	MHz	dBuV	dB/m	dB	dBuV/m	dBuV/m	dB	
1	30.000	5.26	14.80	0.34	20.40	40.00	-19.60	QP
2	40.135	13.45	13.49	0.13	27.07	40.00	-12.93	QP
3	55.221	15.08	12.41	0.13	27.62	40.00	-12.38	QP
4	81.497	19.21	11.15	0.15	30.51	40.00	-9.49	QP
5	132.685	7.12	14.21	0.22	21.55	43.50	-21.95	QP
6	207.123	11.64	11.44	0.34	23.42	43.50	-20.08	QP

Remark: Absolute Level = Reading Level + Factor, Margin = Absolute Level – Limit Factor = Ant. Factor + Cable Loss – Pre-amplifier

Remark:

- (1) Measuring frequencies from 9 KHz to the 1 GHz, Radiated emission test from 9KHz to 30MHz was verified, and no any emission was found except system noise floor.
- (2) * denotes emission frequency which appearing within the Restricted Bands specified in provision of 15.205, then the general radiated emission limits in 15.209 apply.
- (3) The IF bandwidth of EMI Test Receiver between 30MHz to 1GHz was 120KHz, 1 MHz for measuring above 1 GHz, below 30MHz was 10KHz.

Above 1 GHz Test Results (GFSK Worst Case): CH Middle (2402MHz)

Horizontal:

Frequency	Reading Result	Factor	Emission Level	Limits	Margin	Detector
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Туре
2402	104.93	-5.84	99.09	114.00	-14.91	PK
2402	82.16	-5.84	76.32	94.00	-17.68	AV
4804	62.34	-3.64	58.7	74.00	-15.3	PK
4804	51.24	-3.64	47.6	54.00	-6.4	AV
7206	61.33	-0.95	60.38	74.00	-13.62	PK
7206	49.26	-0.95	48.31	54.00	-5.69	AV
		•	•	•		

Remark: Factor = Antenna Factor + Cable Loss – Pre-amplifier. Margin = Absolute Level – Limit

Vertical:

Frequency	Reading Result	Factor	Emission Level	Limits	Margin	Detector
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Туре
2402	103.24	-5.84	97.4	114.00	-16.6	PK
2402	80.36	-5.84	74.52	94.00	-19.48	AV
4804	63.49	-3.64	59.85	74.00	-14.15	PK
4804	49.27	-3.64	45.63	54.00	-8.37	AV
7206	61.33	-0.95	60.38	74.00	-13.62	PK
7206	46.84	-0.95	45.89	54.00	-8.11	AV
		·	·	·		·

Remark: Factor = Antenna Factor + Cable Loss – Pre-amplifier. Margin = Absolute Level – Limit

CH Middle (2441MHz)

Horizontal:

Frequency	Reading Result	Factor	Emission Level	Limits	Margin	Detector
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Туре
2441	104.26	-5.84	98.42	114.00	-15.58	PK
2441	85.39	-5.84	79.55	94.00	-14.45	AV
4882	66.83	-3.64	63.19	74.00	-10.81	PK
4882	51.28	-3.64	47.64	54.00	-6.36	AV
7323	60.38	-0.95	59.43	74.00	-14.57	PK
7323	44.27	-0.95	43.32	54.00	-10.68	AV

Remark: Factor = Antenna Factor + Cable Loss - Pre-amplifier. Margin = Absolute Level - Limit

Vertical:

Frequency	Reading Result	Factor	Emission Level	Limits	Margin	Detector
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Туре
2441	105.42	-5.84	99.58	114.00	-14.42	PK
2441	80.43	-5.84	74.59	94.00	-19.41	AV
4882	61.24	-3.64	57.6	74.00	-16.4	PK
4882	48.29	-3.64	44.65	54.00	-9.35	AV
7323	58.43	-0.95	57.48	74.00	-16.52	PK
7323	47.83	-0.95	46.88	54.00	-7.12	AV

Remark: Factor = Antenna Factor + Cable Loss - Pre-amplifier. Margin = Absolute Level - Limit

CH High (2480MHz) Horizontal:

Frequency	Reading Result	Factor	Emission Level	Limits	Margin	Detector
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Туре
2480	106.38	-5.84	100.54	114.00	-13.46	PK
2480	83.46	-5.84	77.62	94.00	-16.38	AV
4960	61.22	-3.64	57.58	74.00	-16.42	PK
4960	51.01	-3.64	47.37	54.00	-6.63	AV
7440	60.35	-0.95	59.4	74.00	-14.6	PK
7440	47.94	-0.95	46.99	54.00	-7.01	AV

Remark: Factor = Antenna Factor + Cable Loss – Pre-amplifier. Margin = Absolute Level – Limit

Vertical:

tioui.						
Frequency	Reading Result	Factor	Emission Level	Limits	Margin	Detector
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Туре
2480	104.38	-5.84	98.54	114.00	-15.46	PK
2480	80.46	-5.84	74.62	94.00	-19.38	AV
4960	60.49	-3.64	56.85	74.00	-17.15	PK
4960	52.38	-3.64	48.74	54.00	-5.26	AV
7440	60.75	-0.95	59.8	74.00	-14.2	PK
7440	46.83	-0.95	45.88	54.00	-8.12	AV

Remark: Factor = Antenna Factor + Cable Loss – Pre-amplifier. Margin = Absolute Level – Limit

Remark:

- (1) Measuring frequencies from 1 GHz to the 25 GHz.
- (2) "F" denotes fundamental frequency; "H" denotes spurious frequency. "E" denotes band edge frequency.
- (3) * denotes emission frequency which appearing within the Restricted Bands specified in provision of 15.205, then the general radiated emission limits in 15.209 apply.
- (4) Data of measurement within this frequency range shown "---" in the table above means the reading of emissions are attenuated more than 20dB below the permissible limits or the field strength is too small to be measured.
- (5) The IF bandwidth of EMI Test Receiver between 30MHz to 1GHz was 120KHz, 1 MHz for measuring above 1 GHz, below 30MHz was 10KHz. The resolution bandwidth of test receiver/spectrum analyzer is 1MHz and video bandwidth is 3MHz for peak measurement with peak detector at frequency above 1GHz. The resolution bandwidth of test receiver/spectrum analyzer is 1MHz and video bandwidth is 10Hz for Average measurement with peak detection at frequency above 1GHz.
- (6) When the test results of Peak Detected below the limits of Average Detected, the Average Detected is not need completed. For example: Top Channel at Fundamental 73.16dBuV/m(PK Value) <93.98(AV Limit), at harmonic 53.20 dBuV/m(PK Value) <54 dBuV/m(AV Limit), the Average Detected not need to completed.
- (7)All modes of operation were investigated and the worst-case emissions are reported.

Page 19 of 48

Report No.: UNIA19080123FR-01

5. BAND EDGE

5.1 Limits

FCC PART 15.249(d) Emissions radiated outside of the specified frequency bands, except for harmonics, shall be attenuated by at least 50 dB below the level of the fundamental or to the general radiated emission limits in §15.209, whichever is the lesser attenuation.

5.2 Test Procedure

The band edge compliance of RF radiated emission should be measured by following the guidance in ANSI C63.10 with respect to maximizing the emission by rotating the EUT, measuring the emission while the EUT is situated in three orthogonal planes (if appropriate), adjusting the measurement antenna height and polarization etc. Set RBW to 100KHz and VBM to 300KHz to measure the peak field strength and set RBW to 1MHz and VBW to 10Hz to measure the average radiated field strength. The conducted RF band edge was measured by using a spectrum analyzer. Set span wide enough to capture the highest in-band emission and the emission at the band edge. Set RBW to 100 KHz and VBW to 300 KHz, to measure the conducted peak band edge.

5.3 Test Result

PASS

Remark: All modes of GFSK, $\pi/4$ DQPSK, were tested, only the worst result of GFSK was reported as below:

Radiated Band Edge Test:

Worst case on GFSK

Operation Mode: TX CH Low (2402MHz)

Horizontal:

i ionzontai.						
Frequency	Reading Result	Factor	Emission Level	Limits	Margin	Detector
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Туре
2310	51.36	-5.81	45.55	74.00	-28.45	PK
2310		-5.81	1	54.00	/	AV
2390	51.42	-5.84	45.58	74.00	-28.42	PK
2390	1	-5.84	1	54.00	/	AV
2400	50.43	-5.84	44.59	74.00	-29.41	PK
2400	1	-5.84	1	54.00	1	AV

Remark: Factor = Antenna Factor + Cable Loss – Pre-amplifier.

Vertical:

Frequency	Reading Result	Factor	Emission Level	Limits	Margin	Detector
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Туре
2310	51.34	-5.81	45.53	74.00	-28.47	PK
2310	1	-5.81	1	54.00	1	AV
2390	51.28	-5.84	45.44	74.00	-28.56	PK
2390	1	-5.84	1	54.00	1	AV
2400	50.17	-5.84	44.33	74.00	-29.67	PK
2400	1	-5.84	1	54.00	1	AV

Remark: Factor = Antenna Factor + Cable Loss – Pre-amplifier.

Operation Mode: TX CH High (2480MHz)

Horizontal:

Frequency	Reading Result	Factor	Emission Level	Limits	Margin	Detector
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Туре
2483.5	50.43	-5.65	44.78	74.00	-29.22	PK
2483.5	1	-5.65	1	54.00	1	AV
2500	50.26	-5.72	44.54	74.00	-29.46	PK
2500	1	-5.72	1	54.00	1	AV
Remark: Factor = Antenna Factor + Cable Loss – Pre-amplifier.						

Vertical:

Frequency	Reading Result	Factor	Emission Level	Limits	Margin	Detector
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Туре
2483.5	51.43	-5.65	45.78	74.00	-28.22	PK
2483.5		-5.65	1	54.00	/	AV
2500	50.24	-5.72	44.52	74.00	-29.48	PK
2500	1	-5.72	1	54.00	1	AV

Remark: Factor = Antenna Factor + Cable Loss – Pre-amplifier.

6. OCCUPIED BANDWIDTH MEASUREMENT

6.1 Test Setup

Same as Radiated Emission Measurement

6.2 Test Procedure

- 1. The EUT was placed on a turn table which is 0.8m above ground plane.
- 2. Set EUT as normal operation.
- 3. Based on ANSI C63.10 section 6.9.2: RBW=30KHz, VBW=100KHz, Span=3MHz.
- 4. The useful radiated emission from the EUT was detected by the spectrum analyser with peak detector.

6.3 Measurement Equipment Used

Same as Radiated Emission Measurement

6.4 Test Result

PASS

GFSK Modulation:

Frequency (MHz)	20dB Bandwidth (MHz)	99% Bandwidth (MHz)	Result
2402	0.846	0.831	PASS
2441	0.844	0.826	PASS
2480	0.846	0.826	PASS

CH: 2402MHz

CH: 2441MHz

CH: 2480MHz

π/4 DQPSK Modulation:

Frequency (MHz)	20dB Bandwidth (MHz)	99% Bandwidth (MHz)	Result
2402	1.357	1.192	PASS
2441	1.362	1.194	PASS
2480	1.365	1.194	PASS

CH: 2402MHz

CH: 2441MHz

CH: 2480MHz

Page 26 of 48

Report No.: UNIA19080123FR-01

7. MAXIMUM PEAK OUTPUT POWER

7.1 Test Setup

EUT	, cj	Power Meter

7.2 Test Procedure

According to ANSI C63.10:2013 Maximum peak conducted output power for HFSS devices: The maximum peak conducted output power may be measured using a broadband peak RF power meter. The power meter shall have a video bandwidth that is greater than or equal to the HFSS bandwidth and shall utilize a fast-responding diode detector.

The maximum Average conducted output power may be measured using a wideband RF power meter with a thermocouple derector or equivalent. The power meter shall have a video bandwidth that is greater than or equal to the HFSS bandwidth and shall utilize a fast-responding diode detector.

7.3 Limit

For frequency hopping systems operating in the 2400–2483.5 MHz band employing at least 75 non-overlapping hopping channels, and all frequency hopping systems in the 5725–5850 MHz band: 1 watt. For all other frequency hopping systems in the 2400–2483.5 MHz band: 0.125 watts.

7.4 Test Result

PASS

Туре	Channel	Peak Output power (dBm)	Limit (dBm)	Result	
	Low	-0.745			
GFSK	Mid	-1.256	30	Pass	
	High	-1.923		20	
	Low	-1.231			
π/4DQPSK	Mid	-1.068	21	Pass	
	High	-1.789		4	

8. FREQUENCY SEPARATION

8.1 Test Setup

8.2 Test Procedure

The transmitter output was connected to the spectrum analyzer through an attenuator. The bandwidth of the fundamental frequency was measured by spectrum analyzer with RBW=30KHz and VBW=100KHz.

8.3 Limit

According to 15.247(a)(1), frequency hopping systems shall have hopping channel carrier frequencies separated by minimum of 25KHz or the 2/3*20dB bandwidth of the hopping channel, whichever is greater.

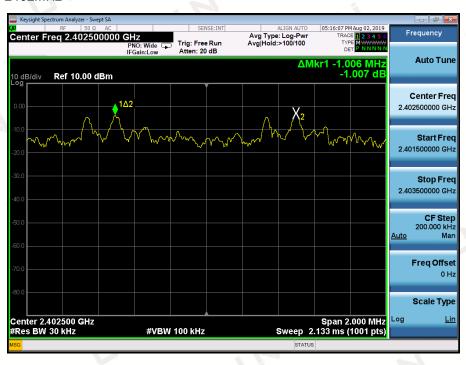
8.4 Test Result

PASS

Type/Modulation	СН	CH Frequency (MHz)	CH Separation (MHz)	Limit (MHz)	Result
	Low Channel	2402	2402 1.004		nass
P	Adjacency Channel	nnel 2403		0.846	pass
CH Separation	Mid Channel	2441	1.004	0.844	200
GFSK	Adjacency Channel	2442	1.004	0.044	pass
N	High Channel	2480	0.000	0.046	2000
	Adjacency Channel	2479	0.996	0.846	pass

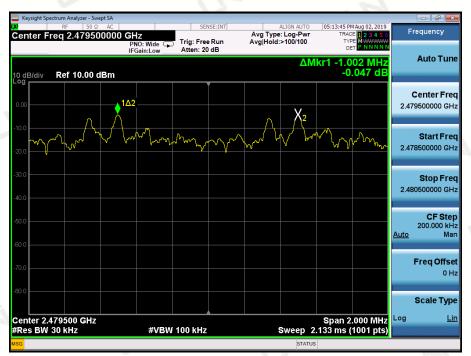
CH: 2402MHz

CH: 2441MHz


CH: 2480MHz

Type/Modulation	СН	CH Frequency (MHz)	CH Separation (MHz)	Limit (MHz)	Result
119	Low Channel	2402		224	
	Adjacency Channel	2403	1.006	0.917	pass
CH Separation	Mid Channel	2441	1 000	0.000	2000
π/4DQPSK	Adjacency Channel	2442	1.000	0.908	pass
	High Channel	2480	4.000	0.040	2000
	Adjacency Channel	2479	1.002	0.910	pass

CH: 2402MHz



CH: 2441MHz

CH: 2480MHz

9. CONDUCTED BANDEGE MEASUREMENT

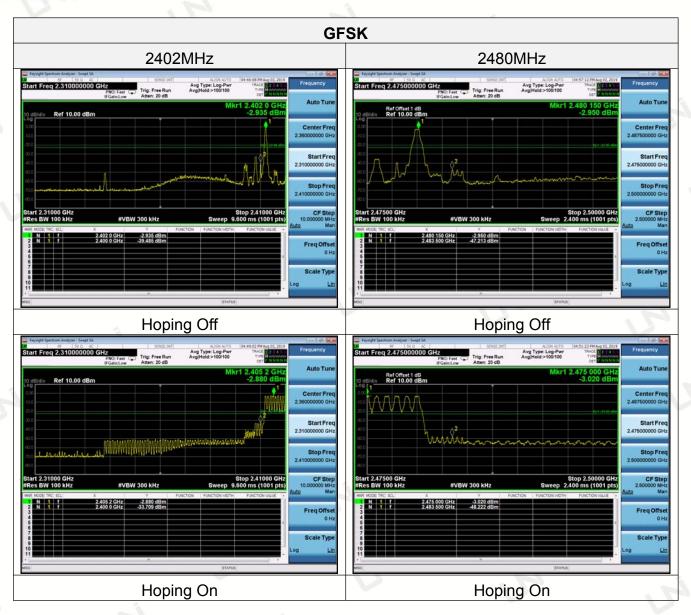
9.1 Test Setup

FUT	SPECTRUM
	ANALYZER

9.2 Test Procedure

- 1. The EUT was placed on a turn table which is 0.8m above ground plane.
- 2. Set EUT as TX operation and connect directly to the spectrum analyzer.
- 3. Based on FCC Part15 C Section 15.247: RBW=100KHz, VBW=300KHz.
- 4. Set detected by the spectrum analyzer with peak detector.

9.3 Limit


In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph (b)(3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20dB.

9.4 Test Result

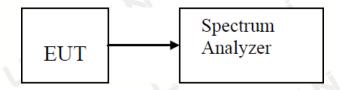
PASS

Modulation		Frequency Band	Delta Peak to band emission (dBc)	>Limit (dBc)	Result
Non-boundary		Left Band	36.55	20	Pass
0501	Non-hopping	Right Band	44.26	20	Pass
GFSK	hopping	Left Band	30.83	20	Pass
		Right Band	45.20	20	Pass
	Non-hopping	Left Band	36.39	20	Pass
π/4DQPSK -		Right Band	44.69	20	Pass
	honning	Left Band	30.92	20	Pass
	hopping	Right Band	45.88	20	Pass

Page 34 of 48

Report No.: UNIA19080123FR-01

10. SPURIOUS RF CONDUCTED EMISSION


10.1 Test Limit

- 1. Below -20dB of the highest emission level in operating band.
- 2. Fall in the restricted bands listed in section 15.205. The maximum permitted average field strength is listed in section 15.209.
- 3.For below 30MHz,For 9KHz-150kHz,150K-10MHz,We use the RBW 1KHz,10KHz, So the limit need to calculated by "10lg(BW1/BW2)". for example For9KHz-150kHz,RBW 1KHz, The Limit= the highest emission level-20-10log(100/1)= the highest emission level-40.

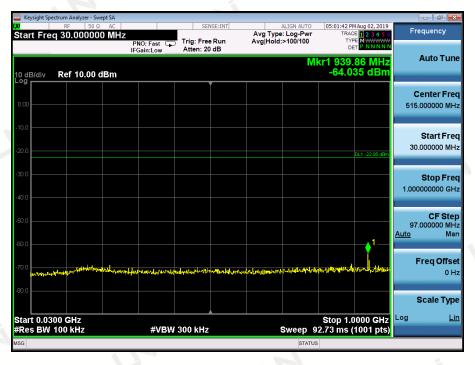
10.2 Test Procedure

The Spurious RF conducted emissions compliance of RF radiated emission should be measured by following the guidance in ANSI C63.10-2013, For 9KHz-150kHz, Set RBW=1kHz and VBW= 3KHz; For 150KHz-10MHz, Set RBW=10kHz and VBW= 30KHz:For 10MHz-25GHz, Set RBW=100kHz and VBW= 300KHz in order to measure the peak field strength, and mwasure frequeny range from 9KHz to 25GHz.

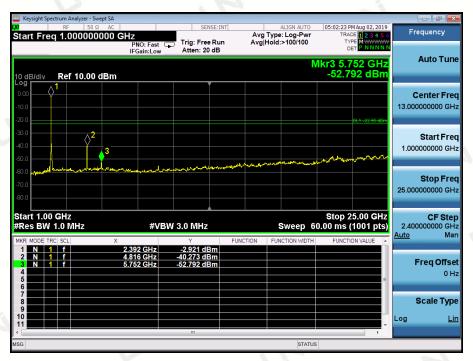
10.3 Test Setup

10.4 Test Result

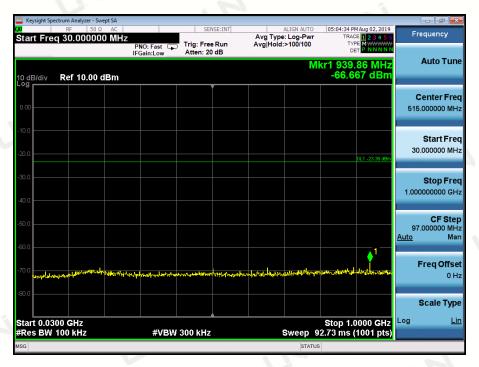
PASS


Remark: All modes of GFSK, $\pi/4$ DQPSK were tested, only the worst result of GFSK was reported as below:

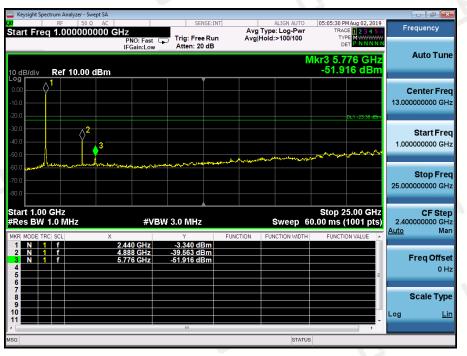
GFSK


CH: 2402MHz

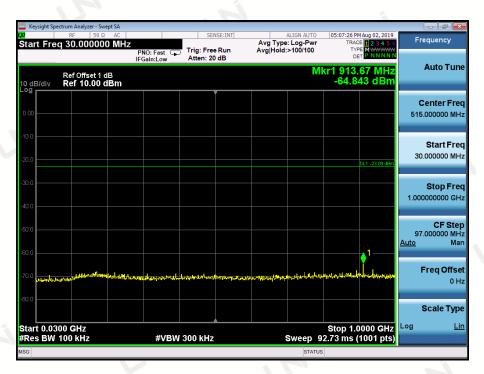
30MHz~1GHz


1GHz~25GHz

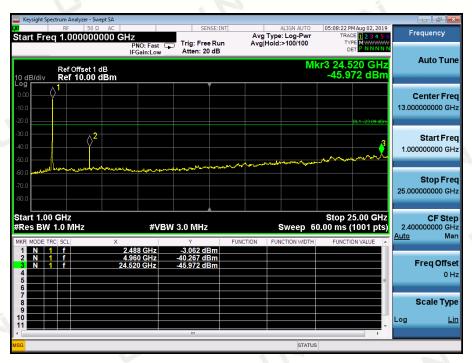
GFSK


CH: 2441MHz

30MHz~1GHz


1GHz~25GHz

GFSK


CH: 2480MHz

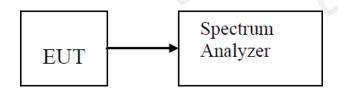
30MHz~1GHz

1GHz~25GHz

Page 40 of 48

Report No.: UNIA19080123FR-01

11. NUMBER OF HOPPING FREQUENCY

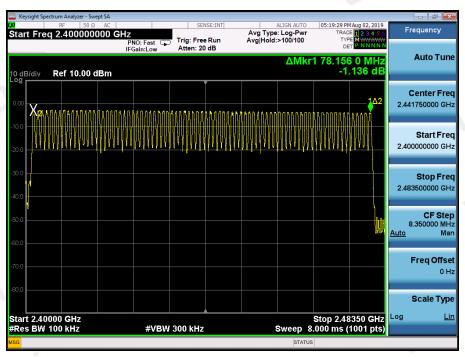

11.1 Test Limit

Frequency hopping systems in the 2400 - 2483.5MHz band shall use at least 15 channels.

11.2 Test Procedure

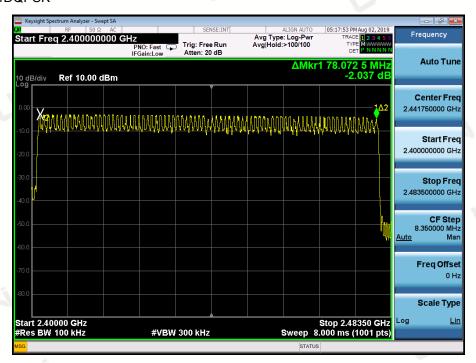
The transmitter output was connected to the spectrum analyzer through an attenuator. Set spectrum analyzer start 2400MHz to 2483.5MHz with RBW=1MHz and VBW=3MHz.

11.3 Test Setup



11.4 Test Result

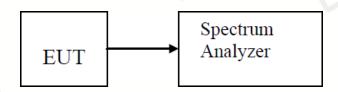
PASS


Modulation	Number of Hopping Channel	Limit	Result	
GFSK	79	>15	Door	
π/4DQPSK	79	210	Pass	

GFSK

π/4DQPSK

12. TIME OF OCCUPANCY(DWELL TIME)


12.1 Test Limit

The average time of occupancy on any channel shall not be greater than 0.4 seconds within a pe-riod of 0.4 seconds multiplied by the number of hopping channels employed.

12.2 Test Procedure

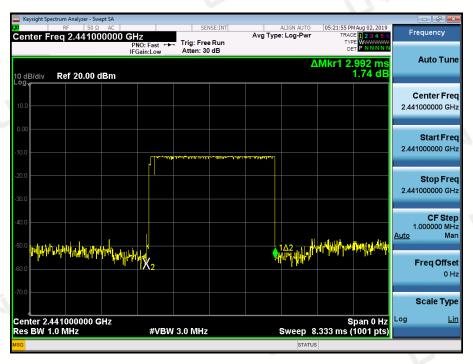
The transmitter output was connected to the spectrum analyzer through an attenuator. Set center frequency of spectrum analyzer=operating frequency with RBW=1MHz and VBW=3MHz,Span=0Hz.

12.3 Test Setup

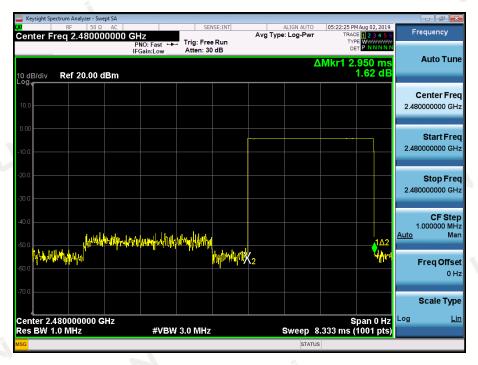


12.4 Test Result

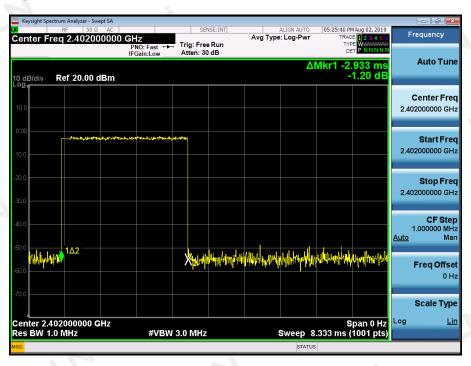
PASS

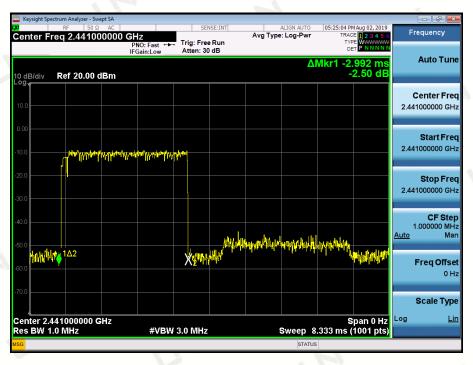

Туре	Modulation	СН	Pulse time(ms)	Dwell Time(ms)	Limit(ms)	Result
Dwell Time	GFSK	Low	2.96	315.73	400	Pass
		Mid	2.99	318.92	400	Pass
		High	2.95	314.67	400	Pass

CH: 2402MHz



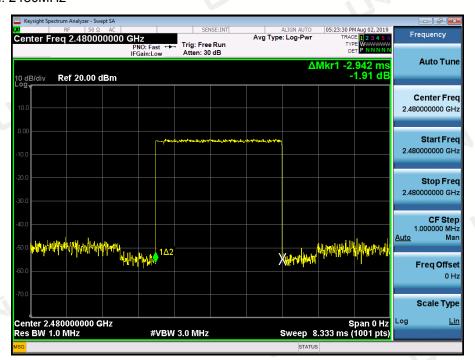
CH: 2441MHz


CH: 2480MHz



Туре	Modulation	СН	Pulse time(ms)	Dwell Time(ms)	Limit(ms)	Result
Dwell Time	π/4DQPSK	Low	2.93	312.53	400	Pass
		Mid	2.99	318.93	400	Pass
		High	2.94	313.60	400	Pass

CH: 2402MHz



CH: 2441MHz

CH: 2480MHz

13. PSEUDORANDOM FREQUENCY HPPPING SEQUENCE

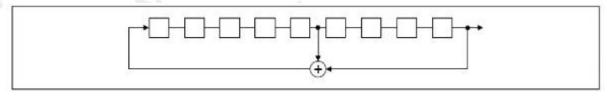
For 47 CFR Part 15C section 15.247 (a)(1) requirement

Frequency hopping systems shall have hopping channel carrier fre-quencies separated by a minimum of 25 kHz or the 20 dB bandwidth of the hop-ping channel, whichever is greater. Al-ternatively, frequency hopping systems operating in the 2400 – 2483.5 MHz band may have hopping channel carrier fre-quencies

that are separated by 25 kHz or two-thirds of the 20 dB bandwidth of the hopping channel, whichever is greater, provided the systems operate with an output power no greater than 125 mW. The system shall hop

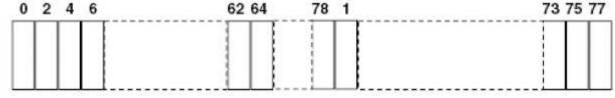
to chan-nel frequencies that are selected at the system hopping rate from a pseudo ran-domly ordered list of hopping fre-quencies. Each frequency must be used equally on the average by each trans-mitter. The system receivers shall have input bandwidths that match the hop-ping channel bandwidths of their cor-responding transmitters and shall shift frequencies in synchronization with the transmitted signals.

TEUT Pseudorandom Frequency Hopping Sequence Requirement


The pseudorandom frequency hopping sequence may be generated in a nice-stage shift register whose 5th and 9th stage outputs are added in a modulo-two addition stage. And the result is fed back to the input of the frist stage. The sequence begins with the frist one of 9 consecutive ones, for example: the shift register

initialized with nine ones.

Number of shift register stages:9


Length of pseudo-random sequence:29-1=511 bits

Longest sequence of zeros:8(non-inverted signal)

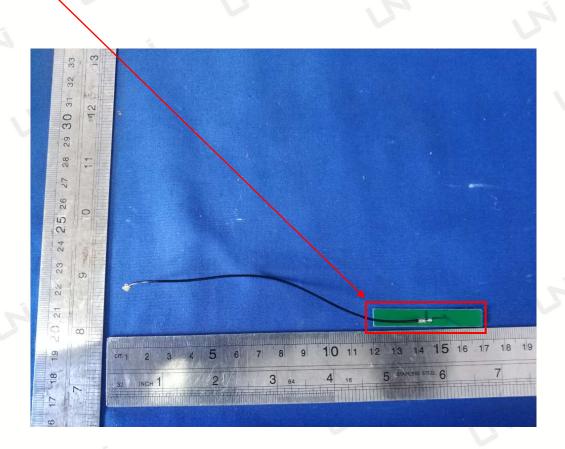
Linear Feedback Shift Register for Generation of the PRBS sequence

An explame of pseudorandom frequency hopping sequence as follows:

Each frequency used equally one the average by each transmitter.

The system receiver have input bandwidths that match the hopping channel bandwidths of their corresponding transmitter and shift frequencies in synchronization with the transmitted signals.

14. ANTENNA REQUIREMENT


Standard Applicable:

For intentional device, according to FCC 47 CFR Section 15.203, an intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device.

Antenna Connected Construction

The antenna used in this product is an Internal Antenna, The directional gains of antenna used for transmitting is 3dBi.

ANTENNA:

Page 48 of 48

Report No.: UNIA19080123FR-01

Radiated Emission (Below 1G)

Radiated Emission
(Above 1G)

Conducted Emission

End of Report