

## Head TSL parameters at 5750 MHz

The following parameters and calculations were applied.

|                                         | Temperature     | Permittivity | Conductivity     |
|-----------------------------------------|-----------------|--------------|------------------|
| Nominal Head TSL parameters             | 22.0 °C         | 35.4         | 5.22 mho/m       |
| Measured Head TSL parameters            | (22.0 ± 0.2) °C | 33.9 ± 6 %   | 5.10 mho/m ± 6 % |
| Head TSL temperature change during test | < 0.5 °C        |              |                  |

## SAR result with Head TSL at 5750 MHz

| SAR averaged over 1 cm <sup>3</sup> (1 g) of Head TSL | Condition          |                          |
|-------------------------------------------------------|--------------------|--------------------------|
| SAR measured                                          | 100 mW input power | 8.18 W/kg                |
| SAR for nominal Head TSL parameters                   | normalized to 1W   | 81.0 W/kg ± 19.9 % (k=2) |

| SAR averaged over 10 cm³ (10 g) of Head TSL | condition          |                          |
|---------------------------------------------|--------------------|--------------------------|
| SAR measured                                | 100 mW input power | 2.30 W/kg                |
| SAR for nominal Head TSL parameters         | normalized to 1W   | 22.7 W/kg ± 19.5 % (k=2) |

# Head TSL parameters at 5800 MHz The following parameters and calculations were applied.

|                                         | Temperature     | Permittivity | Conductivity     |
|-----------------------------------------|-----------------|--------------|------------------|
| Nominal Head TSL parameters             | 22.0 °C         | 35.3         | 5.27 mho/m       |
| Measured Head TSL parameters            | (22.0 ± 0.2) °C | 33.8 ± 6 %   | 5.15 mho/m ± 6 % |
| Head TSL temperature change during test | < 0.5 °C        |              |                  |

#### SAR result with Head TSL at 5800 MHz

| SAR averaged over 1 cm <sup>3</sup> (1 g) of Head TSL | Condition          |                          |
|-------------------------------------------------------|--------------------|--------------------------|
| SAR measured                                          | 100 mW input power | 8.19 W/kg                |
| SAR for nominal Head TSL parameters                   | normalized to 1W   | 81.1 W/kg ± 19.9 % (k=2) |

| SAR averaged over 10 cm <sup>3</sup> (10 g) of Head TSL | condition          |                          |
|---------------------------------------------------------|--------------------|--------------------------|
| SAR measured                                            | 100 mW input power | 2.31 W/kg                |
| SAR for nominal Head TSL parameters                     | normalized to 1W   | 22.8 W/kg ± 19.5 % (k=2) |

Certificate No: D5GHzV2-1060\_Jun21

Page 6 of 13





# Appendix (Additional assessments outside the scope of SCS 0108)

## Antenna Parameters with Head TSL at 5200 MHz

| Impedance, transformed to feed point | 47.6 Ω - 6.2 jΩ |
|--------------------------------------|-----------------|
| Return Loss                          | - 23.3 dB       |

# Antenna Parameters with Head TSL at 5250 MHz

| Impedance, transformed to feed point | 46.9 Ω - 4.8 jΩ |
|--------------------------------------|-----------------|
| Return Loss                          | - 24.5 dB       |

# Antenna Parameters with Head TSL at 5300 MHz

| Impedance, transformed to feed point | 46.2 Ω - 3.3 jΩ |  |
|--------------------------------------|-----------------|--|
| Return Loss                          | - 25.6 dB       |  |

#### Antenna Parameters with Head TSL at 5500 MHz

| Impedance, transformed to feed point | 49.1 Ω - 4.2 jΩ |
|--------------------------------------|-----------------|
| Return Loss                          | - 27.3 dB       |

#### Antenna Parameters with Head TSL at 5600 MHz

| Impedance, transformed to feed point | $53.9 \Omega + 0.4 j\Omega$ |  |
|--------------------------------------|-----------------------------|--|
| Return Loss                          | - 28.4 dB                   |  |

Certificate No: D5GHzV2-1060\_Jun21





#### Antenna Parameters with Head TSL at 5750 MHz

| Impedance, transformed to feed point | 51.8 Ω - 0.8 jΩ |
|--------------------------------------|-----------------|
| Return Loss                          | - 34.3 dB       |

#### Antenna Parameters with Head TSL at 5800 MHz

| Impedance, transformed to feed point | $50.9 \Omega - 2.7 j\Omega$ |  |
|--------------------------------------|-----------------------------|--|
| Return Loss                          | - 31.0 dB                   |  |

#### **General Antenna Parameters and Design**

| Electrical Delay (one direction) | 1.201 ns |
|----------------------------------|----------|

After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured.

The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard.

No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged.

#### **Additional EUT Data**

| Manufactured by | SPEAG |
|-----------------|-------|
|                 |       |

Certificate No: D5GHzV2-1060\_Jun21

Page 8 of 13





#### **DASY5 Validation Report for Head TSL**

Date: 22.06.2021

Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole D5GHzV2; Type: D5GHzV2; Serial: D5GHzV2 - SN:1060

Communication System: UID 0 - CW; Frequency: 5200 MHz, Frequency: 5250 MHz, Frequency: 5300 MHz, Frequency: 5500 MHz, Frequency: 5600 MHz, Frequency: 5750 MHz, Frequency: 5800 MHz

Medium parameters used: f = 5200 MHz;  $\sigma$  = 4.54 S/m;  $\epsilon_r$  = 34.7;  $\rho$  = 1000 kg/m³ ,

Medium parameters used: f = 5250 MHz;  $\sigma = 4.59$  S/m;  $\varepsilon_r = 34.6$ ;  $\rho = 1000$  kg/m<sup>3</sup>,

Medium parameters used: f = 5300 MHz;  $\sigma = 4.64$  S/m;  $\varepsilon_r = 34.6$ ;  $\rho = 1000$  kg/m<sup>3</sup>,

Medium parameters used: f = 5500 MHz;  $\sigma = 4.85$  S/m;  $\varepsilon_r = 34.3$ ;  $\rho = 1000$  kg/m<sup>3</sup>,

Medium parameters used: f = 5600 MHz;  $\sigma = 4.95$  S/m;  $\varepsilon_r = 34.1$ ;  $\rho = 1000$  kg/m<sup>3</sup>,

Medium parameters used: f = 5750 MHz;  $\sigma = 5.1$  S/m;  $\epsilon_r = 33.9$ ;  $\rho = 1000$  kg/m<sup>3</sup>,

Medium parameters used: f = 5800 MHz;  $\sigma = 5.15$  S/m;  $\epsilon_r = 33.8$ ;  $\rho = 1000$  kg/m<sup>3</sup>

Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)

#### DASY52 Configuration:

- Probe: EX3DV4 SN3503; ConvF(5.8, 5.8, 5.8) @ 5200 MHz, ConvF(5.5, 5.5, 5.5) @ 5250 MHz, ConvF(5.49, 5.49, 5.49) @ 5300 MHz, ConvF(5.25, 5.25, 5.25) @ 5500 MHz, ConvF(5.1, 5.1, 5.1) @ 5600 MHz, ConvF(5.08, 5.08, 5.08) @ 5750 MHz, ConvF(5.01, 5.01, 5.01) @ 5800 MHz; Calibrated: 30,12,2020
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn601; Calibrated: 02.11.2020
- Phantom: Flat Phantom 5.0 (front); Type: QD 000 P50 AA; Serial: 1001
- DASY52 52.10.4(1527); SEMCAD X 14.6.14(7483)

# Dipole Calibration for Head Tissue/Pin=100mW, dist=10mm, f=5200 MHz/Zoom Scan,

dist=1.4mm (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm

Reference Value = 78.84 V/m; Power Drift = 0.03 dB

Peak SAR (extrapolated) = 28.2 W/kg

SAR(1 g) = 8.04 W/kg; SAR(10 g) = 2.29 W/kg

Smallest distance from peaks to all points 3 dB below = 7.2 mm

Ratio of SAR at M2 to SAR at M1 = 69.1%

Maximum value of SAR (measured) = 18.5 W/kg

# Dipole Calibration for Head Tissue/Pin=100mW, dist=10mm, f=5250 MHz/Zoom Scan,

dist=1.4mm (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm

Reference Value = 80.04 V/m; Power Drift = 0.01 dB

Peak SAR (extrapolated) = 27.2 W/kg

SAR(1 g) = 8.01 W/kg; SAR(10 g) = 2.29 W/kg

Smallest distance from peaks to all points 3 dB below = 7.2 mm

Ratio of SAR at M2 to SAR at M1 = 70.3%

Maximum value of SAR (measured) = 18.2 W/kg

Certificate No: D5GHzV2-1060\_Jun21

Page 9 of 13





#### Dipole Calibration for Head Tissue/Pin=100mW, dist=10mm, f=5300 MHz/Zoom Scan,

dist=1.4mm (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm

Reference Value = 80.15 V/m; Power Drift = -0.02 dB

Peak SAR (extrapolated) = 28.9 W/kg

SAR(1 g) = 8.25 W/kg; SAR(10 g) = 2.35 W/kg

Smallest distance from peaks to all points 3 dB below = 7.2 mm

Ratio of SAR at M2 to SAR at M1 = 69.1%

Maximum value of SAR (measured) = 19.1 W/kg

# Dipole Calibration for Head Tissue/Pin=100mW, dist=10mm, f=5500 MHz/Zoom Scan,

dist=1.4mm (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm

Reference Value = 80.07 V/m; Power Drift = -0.01 dB

Peak SAR (extrapolated) = 33.6 W/kg

SAR(1 g) = 8.80 W/kg; SAR(10 g) = 2.47 W/kg

Smallest distance from peaks to all points 3 dB below = 7.2 mm

Ratio of SAR at M2 to SAR at M1 = 66.4%

Maximum value of SAR (measured) = 20.9 W/kg

# Dipole Calibration for Head Tissue/Pin=100mW, dist=10mm, f=5600 MHz/Zoom Scan,

dist=1.4mm (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm

Reference Value = 80.82 V/m; Power Drift = -0.00 dB

Peak SAR (extrapolated) = 30.8 W/kg

SAR(1 g) = 8.45 W/kg; SAR(10 g) = 2.40 W/kg

Smallest distance from peaks to all points 3 dB below = 7.2 mm

Ratio of SAR at M2 to SAR at M1 = 67.5%

Maximum value of SAR (measured) = 19.9 W/kg

# Dipole Calibration for Head Tissue/Pin=100mW, dist=10mm, f=5750 MHz/Zoom Scan,

dist=1.4mm (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm

Reference Value = 78.22 V/m; Power Drift = 0.01 dB

Peak SAR (extrapolated) = 31.8 W/kg

SAR(1 g) = 8.18 W/kg; SAR(10 g) = 2.30 W/kg

Smallest distance from peaks to all points 3 dB below = 7.2 mm

Ratio of SAR at M2 to SAR at M1 = 65.8%

Maximum value of SAR (measured) = 19.5 W/kg

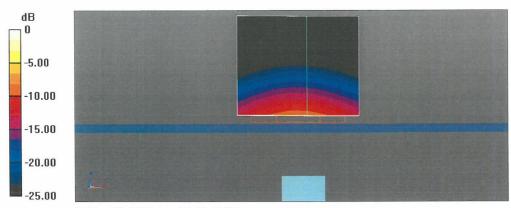
# Dipole Calibration for Head Tissue/Pin=100mW, dist=10mm, f=5800 MHz/Zoom Scan,

dist=1.4mm (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm

Reference Value = 77.53 V/m; Power Drift = -0.02 dB

Peak SAR (extrapolated) = 31.9 W/kg

SAR(1 g) = 8.19 W/kg; SAR(10 g) = 2.31 W/kg


Smallest distance from peaks to all points 3 dB below = 7.4 mm

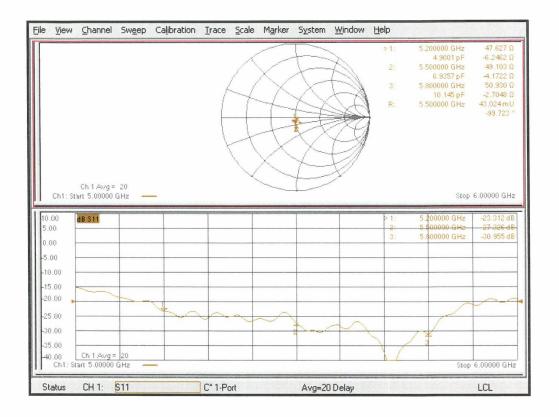
Ratio of SAR at M2 to SAR at M1 = 65.4%

Maximum value of SAR (measured) = 19.2 W/kg

Certificate No: D5GHzV2-1060\_Jun21 Page 10 of 13



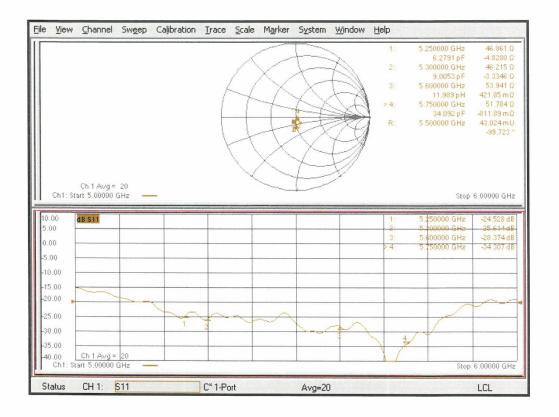



0 dB = 20.9 W/kg = 13.20 dBW/kg

Certificate No: D5GHzV2-1060\_Jun21

Page 11 of 13




#### Impedance Measurement Plot for Head TSL (5200, 5500, 5800 MHz)



Certificate No: D5GHzV2-1060\_Jun21 Page 12 of 13



#### Impedance Measurement Plot for Head TSL (5250, 5300, 5600, 5750 MHz)



Certificate No: D5GHzV2-1060\_Jun21

Page 13 of 13





## **ANNEX I SPOT CHECK**

#### I.1 Tissue and Verification

Table I.1-1: Dielectric Performance of Head Tissue Simulating Liquid

| Measurement Date | Typo | Frequency | Permittivity | Drift | Conductivity | Drift |
|------------------|------|-----------|--------------|-------|--------------|-------|
| (yyyy-mm-dd)     | Туре | Frequency | ε            | (%)   | σ (S/m)      | (%)   |
| 2023/8/30        | Head | 835 MHz   | 43.15        | 3.98  | 0.937        | 4.11  |
| 2023/8/30        | Head | 1900 MHz  | 40.76        | 1.90  | 1.466        | 4.71  |

Table I.1-2: System Validation of Head

| Measurement  |           | Target val | ue (W/kg) | Measured | value(W/kg) | Devi    | ation   |
|--------------|-----------|------------|-----------|----------|-------------|---------|---------|
| Date         | Frequency | 10 g       | 1 g       | 10 g     | 1 g         | 10 g    | 1 g     |
| (yyyy-mm-dd) |           | Average    | Average   | Average  | Average     | Average | Average |
| 2023/8/30    | 835 MHz   | 6.25       | 9.62      | 6.04     | 9.28        | -3.36%  | -3.53%  |
| 2023/8/30    | 1900 MHz  | 20.7       | 39.8      | 20.28    | 39.48       | -2.03%  | -0.80%  |

#### I.2 Measurement results

| Test<br>Position | Phantom<br>position<br>L/R/F | Frequency<br>Band | Channel<br>Number | Frequency<br>(MHz) | Test setup     | EUT<br>Measured<br>Power<br>(dBm) | Tune up<br>(dBm) | Measured<br>SAR 1g<br>(W/kg) | Calculated<br>SAR 1g<br>(W/kg) | Measured<br>SAR 10g<br>(W/kg) | Calculated<br>SAR 10g<br>(W/kg) | Power Drift |
|------------------|------------------------------|-------------------|-------------------|--------------------|----------------|-----------------------------------|------------------|------------------------------|--------------------------------|-------------------------------|---------------------------------|-------------|
| Cheek            | R                            | LTE Band5         | 20600             | 844                | 1RB-Mid        | 23.00                             | 24.00            | 0.528                        | 0.66                           | 0.337                         | 0.42                            | 0.05        |
| Body             | F                            | GSM1900           | 512               | 1850.2             | Rear GPRS 15mm | 24.92                             | 26.00            | 0.645                        | 0.83                           | 0.379                         | 0.49                            | -0.02       |

## I.3 Reported SAR Comparison

Table: Highest Reported SAR (1g)

Note: The spot check results marked blue are larger than the original result.

| note. The oper eneck recalls manked size are larger than the original recall. |            |        |             |              |            |  |  |  |  |
|-------------------------------------------------------------------------------|------------|--------|-------------|--------------|------------|--|--|--|--|
|                                                                               |            |        | Highest Rep | orted SAR (1 | g)         |  |  |  |  |
|                                                                               |            |        |             | Reported     | Reported   |  |  |  |  |
|                                                                               | Mode       | 1g SAR | 1g SAR      | SAR          | SAR        |  |  |  |  |
|                                                                               |            | Head   | 10mm        | Spot check   | spot check |  |  |  |  |
|                                                                               |            |        |             | Head         | Body       |  |  |  |  |
| GSM                                                                           | GSM850     | 0.48   | 0.77        | \            | \          |  |  |  |  |
| GSIVI                                                                         | GSM1900    | 0.28   | 1.12        | \            | 0.83       |  |  |  |  |
| WCDMA                                                                         | WCDMA1900  | 0.49   | 1.00        | \            | \          |  |  |  |  |
| WCDIVIA                                                                       | WCDMA 850  | 0.56   | 0.84        | \            | \          |  |  |  |  |
|                                                                               | LTE Band2  | 0.58   | 1.00        | \            | \          |  |  |  |  |
|                                                                               | LTE Band5  | 0.66   | 0.78        | 0.66         | \          |  |  |  |  |
| LTE                                                                           | LTE Band12 | 0.25   | 0.48        | \            | \          |  |  |  |  |
|                                                                               | LTE Band13 | 0.48   | 0.51        | \            | \          |  |  |  |  |
| LTE Band66                                                                    |            | 0.43   | 1.01        | \            | \          |  |  |  |  |
| W                                                                             | LAN 2.4GHz | 0.61   | 0.15        | \            | \          |  |  |  |  |
| V                                                                             | VLAN 5GHz  | 0.64   | 0.34        | \            | \          |  |  |  |  |





#### I.4 List of Main Instruments

**Table I.4-1: List of Main Instruments** 

| No. | Name                  | Туре         | Serial<br>Number     | Calibration Date   | Valid Period |
|-----|-----------------------|--------------|----------------------|--------------------|--------------|
| 01  | Network analyzer      | E5071C       | MY46110673           | January 10, 2023   | One year     |
| 02  | Power sensor          | NRP110T      | 101139               |                    | One year     |
| 03  | Power sensor          | NRP110T      | 101159               | January 13, 2023   | One year     |
| 04  | Signal Generator      | E4438C       | MY49071430 January 1 |                    | One year     |
| 05  | Amplifier             | 60S1G4       | 0331848              | No Calibration     | Requested    |
| 06  | BTS                   | CMW500       | 159890               | January 12, 2023   | One year     |
| 07  | E-field Probe         | SPEAG EX3DV4 | 7673                 | July 24, 2023      | One year     |
| 08  | DAE                   | SPEAG DAE4   | 1525                 | September 15, 2022 | One year     |
| 09  | Dipole Validation Kit | SPEAG D835V2 | 4d096                | July 14, 2023      | One year     |
| 10  | Dipole Validation Kit | SPEAG 1900V2 | 5d101                | July 17, 2023      | One year     |





## I.5 Graph Results

#### LTE Band5 Head

Date: 8/30/2023

Electronics: DAE4 Sn1525

Medium: H700-6000M

Medium parameters used (interpolated): f = 844 MHz;  $\sigma$  = 0.939 S/m;  $\epsilon_{\rm r}$  =

43.09;  $\rho = 1000 \text{ kg/m}^3$ 

Ambient Temperature: 23.3°C Liquid Temperature: 22.5°C

Communication System: UID 0, LTE Band5 (0) Frequency: 844 MHz Duty Cycle:

1:1

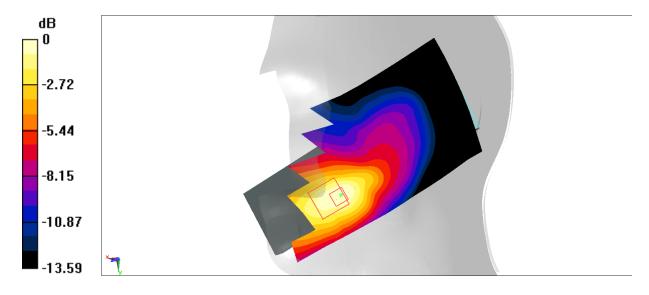
Probe: EX3DV4 - SN7673 ConvF(10.5, 10.5, 10.5)

Area Scan (61x131x1): Interpolated grid: dx=1.500 mm, dy=1.500 mm

Maximum value of SAR (interpolated) = 0.749 W/kg

Zoom Scan (6x6x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 5.056 V/m; Power Drift = 0.05 dB


Peak SAR (extrapolated) = 0.938 W/kg

SAR(1 g) = 0.528 W/kg; SAR(10 g) = 0.337 W/kg

Maximum value of SAR (measured) = 0.750 W/kg











# GSM 1900 Body

Date: 8/30/2023

Electronics: DAE4 Sn1525

Medium: H700-6000M

Medium parameters used (interpolated): f = 1850.2 MHz;  $\sigma$  = 1.442 S/m;  $\epsilon_{\rm r}$  =

40.815;  $\rho = 1000 \text{ kg/m}^3$ 

Ambient Temperature: 23.3°C Liquid Temperature: 22.5°C

Communication System: UID 0, GSM 1900 GPRS12 (0) Frequency: 1850.2 MHz Duty

Cycle: 1:1.99986

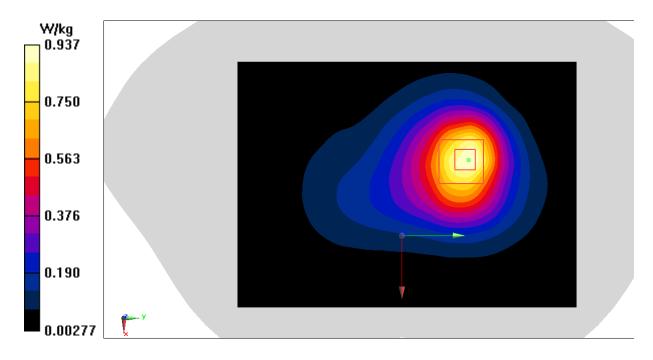
Probe: EX3DV4 - SN7673 ConvF(8.2, 8.2, 8.2)

Area Scan (81x111x1): Interpolated grid: dx=1.500 mm, dy=1.500 mm

Maximum value of SAR (interpolated) = 0.937 W/kg

Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 15.74 V/m; Power Drift = -0.02 dB


Peak SAR (extrapolated) = 1.10 W/kg

SAR(1 g) = 0.645 W/kg; SAR(10 g) = 0.379 W/kg

Maximum value of SAR (measured) = 0.927 W/kg











## I.6 System Verification Results

#### 835MHz

Date: 8/30/2023

Electronics: DAE4 Sn1525 Medium: H700-6000M

Medium parameters used: f = 835 MHz;  $\sigma = 0.937$  S/m;  $\epsilon r = 43.15$ ;  $\rho = 1000$  kg/m<sup>3</sup>

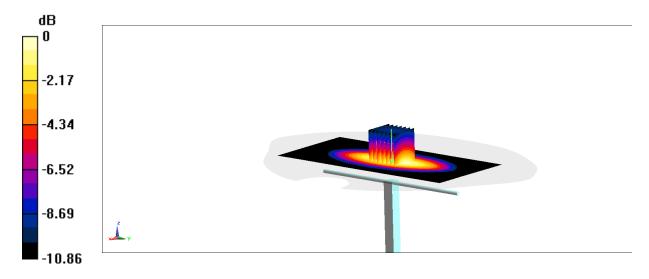
Ambient Temperature: 23.3oC Liquid Temperature: 22.5oC

Communication System: UID 0, CW (0) Frequency: 835 MHz Duty Cycle: 1:1

Probe: EX3DV4 - SN7673 ConvF(10.12, 10.12, 10.12)

Area Scan (51x131x1): Interpolated grid: dx=1.000 mm, dy=1.000 mm

Maximum value of SAR (interpolated) = 5.12 W/kg


Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 68.08 V/m; Power Drift = -0.04 dB

Peak SAR (extrapolated) = 6.08 W/kg

SAR(1 g) = 2.32 W/kg; SAR(10 g) = 1.51 W/kg

Maximum value of SAR (measured) = 5.18 W/kg



0 dB = 5.18 W/kg = 7.14 dBW/kg





#### 1900 MHz

Date: 8/30/2023

Electronics: DAE4 Sn1525 Medium: H700-6000M

Medium parameters used: f = 1900 MHz;  $\sigma = 1.466$  S/m;  $\epsilon r = 40.76$ ;  $\rho = 1000$  kg/m<sup>3</sup>

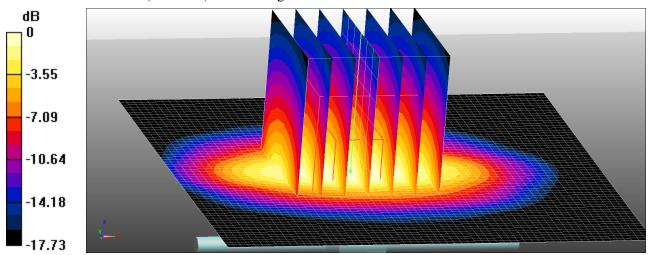
Ambient Temperature: 23.3°C Liquid Temperature: 22.5°C

Communication System: CW (0) Frequency: 1900 MHz Duty Cycle: 1:1

Probe: EX3DV4 – SN7673 ConvF(8.20, 8.20, 8.20)

Area Scan (61x61x1): Interpolated grid: dx=1.500 mm, dy=1.500 mm

Maximum value of SAR (interpolated) = 15.2 W/kg


Zoom Scan (7x7x7) (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 100.1 V/m; Power Drift = 0.03 dB

Peak SAR (extrapolated) = 18.8 W/kg

SAR(1 g) = 9.87 W/kg; SAR(10 g) = 5.07 W/kg

Maximum value of SAR (measured) = 15.7 W/kg



0 dB = 15.7 W/kg = 11.96 dBW/kg





#### 1.7 Probe Calibration Certificate

#### **Probe 7673 Calibration Certificate**





Add: No.52 HuaYuanBei Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2117

E-mail: emf@caict.ac.cn http://www.caict.ac.cn

Client CTTL

Certificate No: J23Z60316

#### **CALIBRATION CERTIFICATE**

Object EX3DV4 - SN : 7673

Calibration Procedure(s) FF-Z11-004-02

Calibration Procedures for Dosimetric E-field Probes

Calibration date: July 24, 2023

This calibration Certificate documents the traceability to national standards, which realize the physical units of measurements(SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate.

All calibrations have been conducted in the closed laboratory facility: environment temperature(22±3)°C and humidity<70%.

Calibration Equipment used (M&TE critical for calibration)

| Primary Standards        | ID# Cal     | Date(Calibrated by, Certificate No.) Scheduled | Calibration           |
|--------------------------|-------------|------------------------------------------------|-----------------------|
| Power Meter NRP2         | 101919      | 12-Jun-23(CTTL, No.J23X05435)                  | Jun-24                |
| Power sensor NRP-Z91     | 101547      | 12-Jun-23(CTTL, No.J23X05435)                  | Jun-24                |
| Power sensor NRP-Z91     | 101548      | 12-Jun-23(CTTL, No.J23X05435)                  | Jun-24                |
| Reference 10dBAttenuator | 18N50W-10dB | 19-Jan-23(CTTL, No.J23X00212)                  | Jan-25                |
| Reference 20dBAttenuator | 18N50W-20dB | 19-Jan-23(CTTL, No.J23X00211)                  | Jan-25                |
| Reference Probe EX3DV4   | SN 3846     | 31-May-23(SPEAG, No.EX-3846_May23)             | May-24                |
| Reference Probe EX3DV4   | SN 7517     | 27-Jan-23(SPEAG, No.EX-7517_Jan23)             | Jan-24                |
| DAE4                     | SN 1555     | 25-Aug-22(SPEAG, No.DAE4-1555_Aug22)           | Aug-23                |
| Secondary Standards      | ID#         | Cal Date(Calibrated by, Certificate No.)       | Scheduled Calibration |
| SignalGenerator MG3700A  | 6201052605  | 12-Jun-23(CTTL, No.J23X05434)                  | Jun-24                |
| Network Analyzer E5071C  | MY46110673  | 10-Jan-23(CTTL, No.J23X00104)                  | Jan-24                |
| Reference 10dBAttenuator | BT0520      | 11-May-23(CTTL, No.J23X04061)                  | May-25                |
| Reference 20dBAttenuator | BT0267      | 11-May-23(CTTL, No.J23X04062)                  | May-25                |
| OCP DAK-3.5              | SN 1040     | 18-Jan-23(SPEAG, No.OCP-DAK3.5-1040_Jan        | 23) Jan-24            |

Name Function Signature

Calibrated by: Yu Zongying SAR Test Engineer

Reviewed by: Lin Hao SAR Test Engineer

Approved by: Qi Dianyuan SAR Project Leader

Issued: July 31, 2023

This calibration certificate shall not be reproduced except in full without written approval of the laboratory.

Certificate No: J23Z60316









Add: No.52 HuaYuanBei Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2117

E-mail: emf@caict.ac.cn http://www.caict.ac.cn

Glossary:

TSL tissue simulating liquid
NORMx,y,z sensitivity in free space
ConvF sensitivity in TSL / NORMx,y,z
DCP diode compression point

CF crest factor (1/duty\_cycle) of the RF signal A,B,C,D modulation dependent linearization parameters

Polarization Φ rotation around probe axis

Polarization θ θ rotation around an axis that is in the plane normal to probe axis (at measurement center), i

 $\theta$ =0 is normal to probe axis

Connector Angle information used in DASY system to align probe sensor X to the robot coordinate system Calibration is Performed According to the Following Standards:

a) IEEE Std 1528-2013, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", June 2013

b) IEC 62209-1, "Measurement procedure for the assessment of Specific Absorption Rate (SAR) from hand-held and body-mounted devices used next to the ear (frequency range of 300 MHz to 6 GHz)", July 2016

c) IEC 62209-2, "Procedure to determine the Specific Absorption Rate (SAR) for wireless communication devices used in close proximity to the human body (frequency range of 30 MHz to 6 GHz)", March 2010

d) KDB 865664, "SAR Measurement Requirements for 100 MHz to 6 GHz"

#### Methods Applied and Interpretation of Parameters:

- NORMx,y,z: Assessed for E-field polarization θ=0 (f≤900MHz in TEM-cell; f>1800MHz: waveguide). NORMx,y,z are only intermediate values, i.e., the uncertainties of NORMx,y,z does not effect the E²-field uncertainty inside TSL (see below ConvF).
- NORM(f)x,y,z = NORMx,y,z\* frequency\_response (see Frequency Response Chart). This
  linearization is implemented in DASY4 software versions later than 4.2. The uncertainty of the
  frequency response is included in the stated uncertainty of ConvF.
- DCPx,y,z: DCP are numerical linearization parameters assessed based on the data of power sweep (no uncertainty required). DCP does not depend on frequency nor media.
- PAR: PAR is the Peak to Average Ratio that is not calibrated but determined based on the signal characteristics.
- Ax,y,z; Bx,y,z; Cx,y,z;VRx,y,z:A,B,C are numerical linearization parameters assessed based on the
  data of power sweep for specific modulation signal. The parameters do not depend on frequency nor
  media. VR is the maximum calibration range expressed in RMS voltage across the diode.
- ConvF and Boundary Effect Parameters: Assessed in flat phantom using E-field (or Temperature Transfer Standard for f≤800MHz) and inside waveguide using analytical field distributions based on power measurements for f >800MHz. The same setups are used for assessment of the parameters applied for boundary compensation (alpha, depth) of which typical uncertainty valued are given. These parameters are used in DASY4 software to improve probe accuracy close to the boundary. The sensitivity in TSL corresponds to NORMx,y,z\* ConvF whereby the uncertainty corresponds to that given for ConvF. A frequency dependent ConvF is used in DASY version 4.4 and higher which allows extending the validity from±50MHz to±100MHz.
- Spherical isotropy (3D deviation from isotropy): in a field of low gradients realized using a flat phantom exposed by a patch antenna.
- Sensor Offset: The sensor offset corresponds to the offset of virtual measurement center from the
  probe tip (on probe axis). No tolerance required.
- Connector Angle: The angle is assessed using the information gained by determining the NORMx (no uncertainty required).

Certificate No:J23Z60316

Page 2 of 9









# DASY/EASY - Parameters of Probe: EX3DV4 - SN:7673

#### **Basic Calibration Parameters**

|                      | Sensor X | Sensor Y | Sensor Z | Unc (k=2) |
|----------------------|----------|----------|----------|-----------|
| Norm(µV/(V/m)²)A     | 0.62     | 0.63     | 0.60     | ±10.0%    |
| DCP(mV) <sup>B</sup> | 111.4    | 112.4    | 110.2    |           |

# **Modulation Calibration Parameters**

| UID  | Communication<br>System Name |   | A<br>dB | B<br>dBõV | С   | D<br>dB | VR<br>mV | Unc <sup>E</sup><br>( <i>k</i> =2) |
|------|------------------------------|---|---------|-----------|-----|---------|----------|------------------------------------|
| 0 CW | cw                           | Х | 0.0     | 0.0       | 1.0 | 0.00    | 214.3    | ±2.2%                              |
|      |                              | Υ | 0.0     | 0.0       | 1.0 |         | 219.2    |                                    |
|      |                              | Z | 0.0     | 0.0       | 1.0 |         | 207.3    |                                    |

The reported uncertainty of measurement is stated as the standard uncertainty of Measurement multiplied by the coverage factor k=2, which for a normal distribution Corresponds to a coverage probability of approximately 95%.

Certificate No:J23Z60316

<sup>&</sup>lt;sup>A</sup> The uncertainties of Norm X, Y, Z do not affect the E<sup>2</sup>-field uncertainty inside TSL (see Page 4).

<sup>&</sup>lt;sup>B</sup> Numerical linearization parameter: uncertainty not required.

<sup>&</sup>lt;sup>E</sup> Uncertainly is determined using the max. deviation from linear response applying rectangular distribution and is expressed for the square of the field value.







# DASY/EASY - Parameters of Probe: EX3DV4 - SN:7673

#### Calibration Parameter Determined in Head Tissue Simulating Media

| f [MHz] <sup>C</sup> | Relative<br>Permittivity <sup>F</sup> | Conductivity<br>(S/m) F | ConvF X | ConvF Y | ConvF Z | Alpha <sup>G</sup> | Depth <sup>G</sup><br>(mm) | Unct.<br>( <i>k</i> =2) |
|----------------------|---------------------------------------|-------------------------|---------|---------|---------|--------------------|----------------------------|-------------------------|
| 750                  | 41.9                                  | 0.89                    | 10.50   | 10.50   | 10.50   | 0.18               | 1.24                       | ±12.7%                  |
| 900                  | 41.5                                  | 0.97                    | 10.12   | 10.12   | 10.12   | 0.17               | 1.34                       | ±12.7%                  |
| 1750                 | 40.1                                  | 1.37                    | 8.46    | 8.46    | 8.46    | 0.30               | 0.92                       | ±12.7%                  |
| 1900                 | 40.0                                  | 1.40                    | 8.20    | 8.20    | 8.20    | 0.30               | 0.90                       | ±12.7%                  |
| 2100                 | 39.8                                  | 1.49                    | 8.15    | 8.15    | 8.15    | 0.24               | 1.06                       | ±12.7%                  |
| 2300                 | 39.5                                  | 1.67                    | 7.90    | 7.90    | 7.90    | 0.60               | 0.68                       | ±12.7%                  |
| 2450                 | 39.2                                  | 1.80                    | 7.65    | 7.65    | 7.65    | 0.66               | 0.68                       | ±12.7%                  |
| 2600                 | 39.0                                  | 1.96                    | 7.45    | 7.45    | 7.45    | 0.65               | 0.68                       | ±12.7%                  |
| 3300                 | 38.2                                  | 2.71                    | 6.98    | 6.98    | 6.98    | 0.44               | 0.92                       | ±13.9%                  |
| 3500                 | 37.9                                  | 2.91                    | 6.78    | 6.78    | 6.78    | 0.41               | 1.04                       | ±13.9%                  |
| 3700                 | 37.7                                  | 3.12                    | 6.63    | 6.63    | 6.63    | 0.39               | 1.04                       | ±13.9%                  |
| 3900                 | 37.5                                  | 3.32                    | 6.51    | 6.51    | 6.51    | 0.30               | 1.52                       | ±13.9%                  |
| 4100                 | 37.2                                  | 3.53                    | 6.45    | 6.45    | 6.45    | 0.30               | 1.40                       | ±13.9%                  |
| 4200                 | 37.1                                  | 3.63                    | 6.35    | 6.35    | 6.35    | 0.30               | 1.52                       | ±13.9%                  |
| 4400                 | 36.9                                  | 3.84                    | 6.25    | 6.25    | 6.25    | 0.30               | 1.52                       | ±13.9%                  |
| 4600                 | 36.7                                  | 4.04                    | 6.14    | 6.14    | 6.14    | 0.35               | 1.42                       | ±13.9%                  |
| 4800                 | 36.4                                  | 4.25                    | 6.05    | 6.05    | 6.05    | 0.35               | 1.52                       | ±13.9%                  |
| 4950                 | 36.3                                  | 4.40                    | 5.71    | 5.71    | 5.71    | 0.35               | 1.55                       | ±13.9%                  |
| 5250                 | 35.9                                  | 4.71                    | 5.19    | 5.19    | 5.19    | 0.35               | 1.55                       | ±13.9%                  |
| 5600                 | 35.5                                  | 5.07                    | 4.69    | 4.69    | 4.69    | 0.40               | 1.52                       | ±13.9%                  |
| 5750                 | 35.4                                  | 5.22                    | 4.79    | 4.79    | 4.79    | 0.40               | 1.52                       | ±13.9%                  |

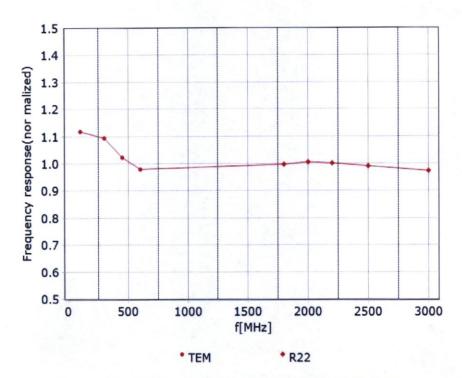
<sup>&</sup>lt;sup>c</sup> Frequency validity above 300 MHz of ±100MHz only applies for DASY v4.4 and higher (Page 2), else it is restricted to ±50MHz. The uncertainty is the RSS of ConvF uncertainty at calibration frequency and the uncertainty for the indicated frequency band. Frequency validity below 300 MHz is ± 10, 25, 40, 50 and 70 MHz for ConvF assessments at 30, 64, 128, 150 and 220 MHz respectively. Above 5 GHz frequency validity can be extended to ± 110 MHz.

Certificate No:J23Z60316

Page 4 of 9

<sup>&</sup>lt;sup>F</sup> At frequency up to 6 GHz, the validity of tissue parameters ( $\epsilon$  and  $\sigma$ ) can be relaxed to ±10% if liquid compensation formula is applied to measured SAR values. The uncertainty is the RSS of the ConvF uncertainty for indicated target tissue parameters.

<sup>&</sup>lt;sup>G</sup> Alpha/Depth are determined during calibration. SPEAG warrants that the remaining deviation due to the boundary effect after compensation is always less than ± 1% for frequencies below 3 GHz and below ± 2% for the frequencies between 3-6 GHz at any distance larger than half the probe tip diameter from the boundary.










# Frequency Response of E-Field (TEM-Cell: ifi110 EXX, Waveguide: R22)



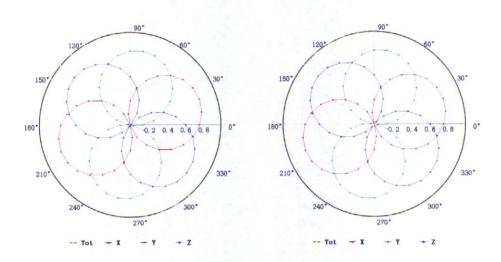
Uncertainty of Frequency Response of E-field: ±7.4% (k=2)

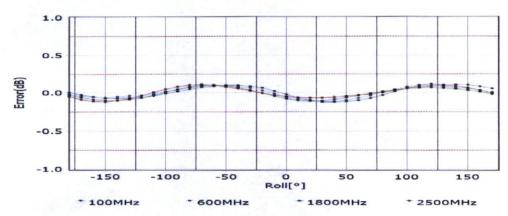
Certificate No:J23Z60316

Page 5 of 9








# Receiving Pattern (Φ), θ=0°

# f=600 MHz, TEM

# f=1800 MHz, R22

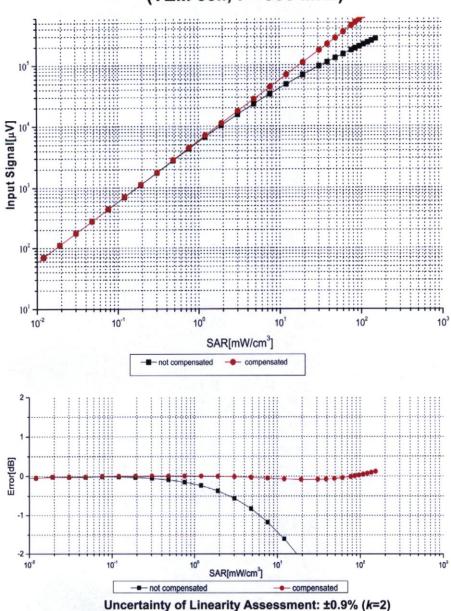




Uncertainty of Axial Isotropy Assessment: ±1.2% (k=2)

Certificate No:J23Z60316

Page 6 of 9









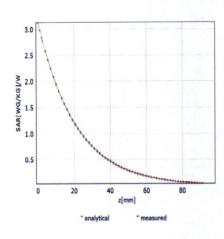

# Dynamic Range f(SAR<sub>head</sub>) (TEM cell, f = 900 MHz)

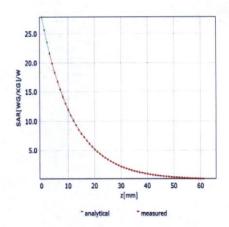


Certificate No:J23Z60316

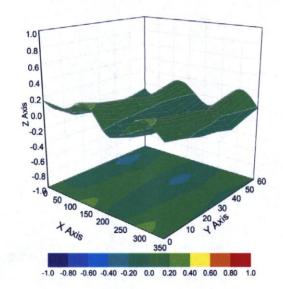
Page 7 of 9






# **Conversion Factor Assessment**


f=750 MHz,WGLS R9(H\_convF)

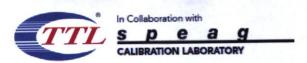
f=1750 MHz,WGLS R22(H\_convF)





# **Deviation from Isotropy in Liquid**




Uncertainty of Spherical Isotropy Assessment: ±3.2% (k=2)

Certificate No:J23Z60316

Page 8 of 9









# DASY/EASY - Parameters of Probe: EX3DV4 - SN:7673

#### **Other Probe Parameters**

| Sensor Arrangement                            | Triangular |
|-----------------------------------------------|------------|
| Connector Angle (°)                           | 146.2      |
| Mechanical Surface Detection Mode             | enabled    |
| Optical Surface Detection Mode                | disable    |
| Probe Overall Length                          | 337mm      |
| Probe Body Diameter                           | 10mm       |
| Tip Length                                    | 9mm        |
| Tip Diameter                                  | 2.5mm      |
| Probe Tip to Sensor X Calibration Point       | 1mm        |
| Probe Tip to Sensor Y Calibration Point       | 1mm        |
| Probe Tip to Sensor Z Calibration Point       | 1mm        |
| Recommended Measurement Distance from Surface | 1.4mm      |

Certificate No:J23Z60316

Page 9 of 9





## I.8 Dipole Calibration Certificate

#### 835 MHz Dipole Calibration Certificate

#### Calibration Laboratory of

Schmid & Partner **Engineering AG** Zeughausstrasse 43, 8004 Zurich, Switzerland



Schweizerischer Kalibrierdienst Service suisse d'étalonnage Servizio svizzero di taratura Swiss Calibration Service

Accreditation No.: SCS 0108

Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Client CTTL

Beijing

Certificate No. D835V2-4d069 Jul23

# **CALIBRATION CERTIFICATE**

Object D835V2 - SN:4d069

QA CAL-05.v12 Calibration procedure(s)

Calibration Procedure for SAR Validation Sources between 0.7-3 GHz

July 14, 2023 Calibration date:

This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate.

All calibrations have been conducted in the closed laboratory facility: environment temperature (22 ± 3)°C and humidity < 70%.

Calibration Equipment used (M&TE critical for calibration)

| Primary Standards               | ID#                | Cal Date (Certificate No.)        | Scheduled Calibration  |
|---------------------------------|--------------------|-----------------------------------|------------------------|
| Power meter NRP2                | SN: 104778         | 30-Mar-23 (No. 217-03804/03805)   | Mar-24                 |
| Power sensor NRP-Z91            | SN: 103244         | 30-Mar-23 (No. 217-03804)         | Mar-24                 |
| Power sensor NRP-Z91            | SN: 103245         | 30-Mar-23 (No. 217-03805)         | Mar-24                 |
| Reference 20 dB Attenuator      | SN: BH9394 (20k)   | 30-Mar-23 (No. 217-03809)         | Mar-24                 |
| Type-N mismatch combination     | SN: 310982 / 06327 | 30-Mar-23 (No. 217-03810)         | Mar-24                 |
| Reference Probe EX3DV4          | SN: 7349           | 10-Jan-23 (No. EX3-7349_Jan23)    | Jan-24                 |
| DAE4                            | SN: 601            | 19-Dec-22 (No. DAE4-601_Dec22)    | Dec-23                 |
| Secondary Standards             | ID#                | Check Date (in house)             | Scheduled Check        |
| Power meter E4419B              | SN: GB39512475     | 30-Oct-14 (in house check Oct-22) | In house check: Oct-24 |
| Power sensor HP 8481A           | SN: US37292783     | 07-Oct-15 (in house check Oct-22) | In house check: Oct-24 |
| Power sensor HP 8481A           | SN: MY41093315     | 07-Oct-15 (in house check Oct-22) | In house check: Oct-24 |
| RF generator R&S SMT-06         | SN: 100972         | 15-Jun-15 (in house check Oct-22) | In house check: Oct-24 |
| Network Analyzer Agilent E8358A | SN: US41080477     | 31-Mar-14 (in house check Oct-22) | In house check: Oct-24 |
|                                 | Name               | Function                          | Signature              |
| Calibrated by:                  | Michael Weber      | Laboratory Technician             | MUGET                  |
| Approved by:                    | Sven Kühn          | Technical Manager                 | St                     |

Issued: July 18, 2023

This calibration certificate shall not be reproduced except in full without written approval of the laboratory.

Certificate No: D835V2-4d069 Jul23

Page 1 of 6





#### Calibration Laboratory of

Schmid & Partner **Engineering AG** Zeughausstrasse 43, 8004 Zurich, Switzerland





Schweizerischer Kalibrierdienst Service suisse d'étalonnage Servizio svizzero di taratura **Swiss Calibration Service** 

Accreditation No.: SCS 0108

Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

#### Glossary:

TSL tissue simulating liquid

sensitivity in TSL / NORM x,y,z ConvF not applicable or not measured N/A

#### Calibration is Performed According to the Following Standards:

- a) IEC/IEEE 62209-1528, "Measurement Procedure For The Assessment Of Specific Absorption Rate Of Human Exposure To Radio Frequency Fields From Hand-Held And Body-Worn Wireless Communication Devices - Part 1528: Human Models, Instrumentation And Procedures (Frequency Range of 4 MHz to 10 GHz)", October 2020.
- b) KDB 865664, "SAR Measurement Requirements for 100 MHz to 6 GHz"

#### **Additional Documentation:**

c) DASY System Handbook

#### Methods Applied and Interpretation of Parameters:

- Measurement Conditions: Further details are available from the Validation Report at the end of the certificate. All figures stated in the certificate are valid at the frequency indicated.
- Antenna Parameters with TSL: The source is mounted in a touch configuration below the center marking of the flat phantom.
- Return Loss: This parameter is measured with the source positioned under the liquid filled phantom (as described in the measurement condition clause). The Return Loss ensures low reflected power. No uncertainty required.
- SAR measured: SAR measured at the stated antenna input power.
- SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector.
- SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result.

The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%.

Certificate No: D835V2-4d069 Jul23 Page 2 of 6



#### **Measurement Conditions**

DASY system configuration, as far as not given on page 1.

| DASY Version                 | DASY52                 | V52.10.4    |
|------------------------------|------------------------|-------------|
| Extrapolation                | Advanced Extrapolation |             |
| Phantom                      | Modular Flat Phantom   |             |
| Distance Dipole Center - TSL | 15 mm                  | with Spacer |
| Zoom Scan Resolution         | dx, $dy$ , $dz = 5 mm$ |             |
| Frequency                    | 835 MHz ± 1 MHz        |             |

#### **Head TSL parameters**

The following parameters and calculations were applied.

|                                         | Temperature     | Permittivity | Conductivity     |
|-----------------------------------------|-----------------|--------------|------------------|
| Nominal Head TSL parameters             | 22.0 °C         | 41.5         | 0.90 mho/m       |
| Measured Head TSL parameters            | (22.0 ± 0.2) °C | 41.9 ± 6 %   | 0.92 mho/m ± 6 % |
| Head TSL temperature change during test | < 0.5 °C        |              |                  |

#### SAR result with Head TSL

| SAR averaged over 1 cm <sup>3</sup> (1 g) of Head TSL | Condition          |                          |
|-------------------------------------------------------|--------------------|--------------------------|
| SAR measured                                          | 250 mW input power | 2.44 W/kg                |
| SAR for nominal Head TSL parameters                   | normalized to 1W   | 9.62 W/kg ± 17.0 % (k=2) |

| SAR averaged over 10 cm <sup>3</sup> (10 g) of Head TSL | condition          |                          |
|---------------------------------------------------------|--------------------|--------------------------|
| SAR measured                                            | 250 mW input power | 1.58 W/kg                |
| SAR for nominal Head TSL parameters                     | normalized to 1W   | 6.25 W/kg ± 16.5 % (k=2) |

Certificate No: D835V2-4d069\_Jul23