

6

The left band edge worse case figure:

MultiView	Spectrum	l.							
Ref Level 35.	00 dBm Offse	t 63.40 dB 🖷 R	BW 1 MHz						
Att PA	10 dB SWT	1.6 ms 🖷 V	BW 3 MHz Mo	de Auto Sweep				С	ount 100/100
1 Frequency Sv	weep		Ť		T.				●1Rm Avg
30 dBm								M1[1]	-22,40 dBm
								M2[1]	-24.59 dBm
20 dBm								3	6.990 000 GHz
20 000									ĺ
10 dba									
10 dBm-			à						
			<u> </u>			8			
0 dBm-						1 II			
			100						
-10 dBm	ŝ.				5				
-20 dBm	113.01		M2 M1		6				
al man montan	an Munana	manutum	ensmout "	manner	- warment and a more marked	me manun	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	man man man	-
-30 dBm					-				
-40 dBm				2					
-50 dBm				-	-				
2.4050.004/0742.07									
-60 dBm									
CF 37.050 01 G	iHz	21	1001 pt	s	4	0.0 MHz/		Sp	an 400.0 MHz
							Measuring		07.11.2021

01:02:11 07.11.2021

The right band edge worse case figure:

ALL 1000 544	T 1.6 m s 👄 VBW 3 MHz Mo	de Auto Sweep		Count 100/1
Frequency Sweep		<u> </u>		o 1Rm A
dBm				M1[1] -19.78 d
				M2[1] -19.87 c
dBm				40.010 000
ubin,				
dDm				
ubin	Δ.			
Bm				
194775.23				
I dBm-				
			M1 M2	
dBarmen and man man	man man man and have	warman and a start	meren from a second	and
dBm-				
dBm				
dBm				
20129				

00:35:19 07.11.2021

Bandwidth	Modulation	RB size	Frequency	Beam	Peak (dBm)
			Range	ID	Limit: -5dBm	Limit: -13dBm
100MHz	PI/2 BPSK	100% RB	Low	148	-33.74	-34.21
+100MHz		100% RB	High	148	-29.38	-24.68
		1 RB	Low	148	-22.67	-24.68
		1 RB	High	148	-19.94	-20.68
	QPSK	100% RB	Low	148	-32.94	-33.47
		100% RB	High	148	-29.47	-29.60
		1 RB	Low	148	-22.54	24.64
		1 RB	High	148	-20.22	-20.39
	16QAM	1 RB	Low	148	-23.20	-24.63
		1 RB	High	148	-19.81	-20.43
	64QAM	1 RB	Low	148	-23.87	-24.92
		1 RB	High	148	-20.05	-20.51

Module1, Chain 1, DFT, 100MHz+100MHz

MultiView	Spectrur	n							
Ref Level 35	.00 dBm Offs	et 63.40 dB 🖷 F	BW 1 MHz	la Auto Curra				0	
PA	10 00 5001	1.6 ms 🖷 🕻		le Auto Sweep				ر د	ount 100/100
1 Frequency S	weep	Ť			1			M1[1]	●1Rm Avg
30 dBm								3	7.000 000 GHz
								M2[1]	-24.63 dBm
20 dBm								3	6.990 000 GHz
10 dBm									
						8			
0 dBm			-			<u> </u>			
			- Photo - Phot]			
-10 dBm				5					
						30			
-20 dBm		5	MO MI						
man man	and have been		manut 4	mouser	montone	have havened	man	man	
-30 dBm									
-40 dBm									
-50 dBm					-				
A 4640 ABANA 4700									
-60 dBm									
									100.01
CF 37.049 98 (GHz		1001 pt	5		0.0 MHz/		Sp	an 400.0 MHz
							Measuring		23:39:29

23:39:29 06.11.2021

The right band edge worse case figure:

			\$
MultiView Spectrum			
Ref Level 35.00 dBm Offset 68.03 dB F ● Att 10 dB SWT 1.6 ms N	RBW 1 MHz /BW 3 MHz Mode Auto Sweep		Count 100/100
PA			
1 Frequency Sweep		1 1 1	01Rm Avg
30 dBm-			40.000 000 GHz
			M2[1] -20.43 dBm
20 dBm			40.010 000 GHz
10 d8m	1		
10 dbm		Δ	
U dBm-			
-10 dBm			
		M1 M2	
-i20.dBm	and the second and th	warman warman have a second warman	man and the second and the second second
-30 dBm			
-40 dBm			
-F0 dam			
-50 dbin			
200 gat			
-60 dBm			
CF 39.949 94 GHz	1001 pts	40.0 MHz/	Span 400.0 MHz
		Measur	ng 06.11.2021

23:24:44 06.11.2021

N260, Module1, 2*2 SISO Tx Chain 0+1

Bandwidth	OFDM	Modulation	RB size	Frequency	Beam	Peak	(dBm)
				Range	ID	Limit:	Limit:
						-5dBm	-13dBm
100MHz	CP	QPSK	100% RB	Low	31+159	-27.94	-34.35
+100MHz	CP	16QAM	100% RB	High	31+159	-22.29	-29.13

Note: the set of modulation and RB size with higher power of Chain 0 were chose and measured on low channel and high channel of Chain 1.

_	-				
MultiView Spectrum					•
Ref Level 33.40 dBm Offset 63.40 dB RBW 1 MHz	the Current			Count	100/100
	ato sweep			count	01Dm /va
30 dBm-					M1[1] -27.94 dBm
					M2[1] -34.35 dBm
20 dBm-					38,990 000 6H2
10 dBm			0		
0 d8m-	A				
-10 dBm-					
-20 dBm					
-30 dBm-	Ma			A	
har	man have have	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	I have	 - When we have	
-40 dBm					
-50 dBm					
-60 dBm-					
CF 37.050 01 GHz	1001 pts		40.0 MHz/		Span 400.0 MHz 20.11.2021

20:59:18 20.11.2021

The left band edge worse case figure:

MultiView Spec	trum				
Ref Level 35.00 dBm Att 0 dB	Offset 68.03 dB ● RBW 1 MHz SWT 1.6 ms ● VBW 3 MHz Mode Auto Sweep			Count 100/100	
1 Frequency Sweep				01R	Rm Avg
30 dBm				M1[1] -22. 40.0000 M2[1] -29.	29 dBm 000 GHz 0.13 dBm
20 dBm				40.010 (000 GHz
10 dBm		A	Α		
0 d8m					
-10 dBm					
00 dbm			41		
20 000		M .	M2	Λ	
_30.d8m	When we wanted the second seco	and the second s		www.w	
-40 dBm					
-50 dBm					
-60 dBm					
CF 39.949 94 GHz		1001 pts	40.0 MHz/	Span 400	D.0 MHz

20:51:50 20.11.2021

n261 Module0, SCS=120kHz, Tx Chain 0, CP, 100MHz+100MHz

Bandwidth	Modulation	RB size	Frequency	Beam	Peak (dBm)	
			Range	ID	Limit: -5dBm	Limit: -13dBm
100MHz	QPSK	100% RB	Low	26	-35.29	-36.42
+100MHz		100% RB	High	26	-36.40	-37.02
		1 RB	Low	26	-30.72	-38.80
		1 RB	High	26	-32.50	-38.22
	16QAM	1 RB	Low	26	-31.15	-39.04
		1 RB	High	26	-32.94	-38.21
	64QAM	1 RB	Low	26	-30.05	-39.18
		1 RB	High	26	-33.64	-38.06

Note:The channel with the maximum Peak of QPSK was chose, and the band edge of 16QAM, 64QAM were measured on that mode.

03:19:50 15.11.2021

The right band edge worse case figure:

			
MultiView Spectrum	n		
Ref Level 33.90 dBm Offse Att 0 dB SWT	et 63.90 dB ● RBW 1 MHz 1.6 ms ● VBW 3 MHz Mode Auto Sw	еер	Count 100/100
PA 1 Frequency Sweep	an an an		0 1Rm Avg
30. dBm			M1[1] -33.64 dBm
			28.350 000 GHz
00 d0			M2[1] -38.06 dBm 28.360.000 GHz
20 uBm			20,000 000 012
10 dBm-	1		
		6	
0 dBm		1	
-10 dBm			
-20 dBm			
h			
-30 dBm			1
		M2	
-40 dBm	for more thank		man when we we have the second
-50 dBm			
-60 dBm			
15.05 20165307			
CF 28.299 98 GHz	1001 pts	40.0 MHz/	Span 400.0 MHz
		- Mi	easuring 15.11.2021 02:52:09

02:52:09 15.11.2021

©Copyright. All rights reserved by CTTL.

n261 Module0, SCS=120kHz, Tx Chain 0, DFT, 100MHz+100MHz

Bandwidth	Modulation	RB size	Frequency	Beam	Peak (d	dBm)
			Range	ID	Limit: -5dBm	Limit: -13dBm
100MHz	Pi/2 BPSK	100% RB	Low	26	-33.25	-35.73
+100MHz		100% RB	High	26	-35.47	-36.54
		1 RB	Low	26	-29.49	-38.24
		1 RB	High	26	-36.59	-38.37
	QPSK	100% RB	Low	26	-33.45	-34.39
		100% RB	High	26	-35.63	-35.92
		1 RB	Low	26	-28.91	-38.63
		1 RB	High	26	-28.41	-28.37
	16QAM	1 RB	Low	26	-30.88	-38.62
		1 RB	High	26	-28.28	-28.42
	64QAM	1 RB	Low	26	-30.40	-38.55
		1 RB	High	26	-27.99	-28.62

Note:The channel with the maximum Peak of QPSK was chose, and the band edge of 16QAM, 64QAM were measured on that mode.

01:00:45 17.11.2021

The right band edge worse case figure:

MultiView	Spectrum								
Ref Level 35	.00 dBm Offse 10 dB SWT	t 63.90 dB 🖷 RE	SW 1 MHz SW 3 MHz Moo	le Auto Sween				с	ount 100/100
PA 1 English	10 40 0 111	110 110 - 10							
1 Frequency S	weep		2	×.	<u></u>			M1[1]	-27.99 dBm
30 dBm								2	8.350 000 GHz
								M2[1]	-28.62 dBm
20 dBm			·					2	8.360 000 GHz
10 dBm									
			A			8			
0 dBm					-				
-10 dBm									
			1963						
-20 dBm									ļ
	٨		-/1			M1 M2		0	
-30 dBm-	1 Curamanian	man man	min have	- warmen - warmen w	mannerson	Timetramoun		warman from	annon gradestan
-40 dBm									
-50 dBm			e		_				
-60 dBm-									
CF 28.299 98 0	GHz	g:	1001 pt	6	40	0.0 MHz/		Sp	an 400.0 MHz
							Measuring		17.11.2021 00:31:22

00:31:22 17.11.2021

©Copyright. All rights reserved by CTTL.

n261 Module0, SCS=120kHz, Tx Chain 1, CP, 100MHz+100MHz

Bandwidth	Modulation	RB size	Frequency	Beam	Peak (dBm)		
			Range	ID	Limit: -5dBm	Limit: -13dBm	
100MHz	QPSK	100% RB	Low	150	-33.88	-33.71	
+100MHz		100% RB	High	150	-35.53	-35.47	
		1 RB	Low	150	-28.75	-37.74	
		1 RB	High	150	-31.80	-38.23	
	16QAM	1 RB	Low	150	-29.35	-37.87	
		1 RB	High	150	-31.60	-38.25	
	64QAM	1 RB	Low	150	-30.88	-38.54	
		1 RB	High	150	-33.17	-38.60	

Note:The channel with the maximum Peak of QPSK was chose, and the band edge of 16QAM, 64QAM were measured on that mode.

01:26:01 17.11.2021

The right band edge worse case figure:

							\$
MultiView Spect	trum						
Ref Level 33.90 dBm (Att 0 dB :	Offset 63.90 dB ● RBW 1 MHz SWT 1.6 ms ● VBW 3 MHz Mo	le Auto Sweep				c	ount 100/100
1 Frequency Sweep				o			o1Rm Avg
30 dBm		2				M1[1]	-31.80 dBm
oo dom						2	8.350 000 GHz
00 JD						M2[1]	-38.23 dBm
20 dBm							0.300 000 0112-
10 dBm	Λ						
				Δ			
0 dBm							
-10 dBm							
-20 dBm							
Λ I							
-30 dBm	/					<u> </u>	
				M2	٨		ACCOUNT OF A DATA
-40 dBm	manual providences	man management	mound	nannan	manual margare	manyment have	
-50 dBm							
-60 dBm-							
CF 28.299 98 GHz	1001 pt	S	40).0 MHz/		St	an 400.0 MHz
					Measuring		17.11.2021 01:39:26

01:39:26 17.11.2021

©Copyright. All rights reserved by CTTL.

n261 Module0, SCS=120kHz, Tx Chain 1, DFT, 100MHz+100MHz

Bandwidth	Modulation	RB size	Frequency	Beam	Peak (dBm)		
			Range	ID	Limit: -5dBm	Limit: -13dBm	
100MHz	Pi/2 BPSK	100% RB	Low	150	-34.58	-33.46	
+100MHz		100% RB	High	150	-36.45	-34.67	
		1 RB	Low	150	-29.25	-37.98	
		1 RB	High	150	-36.25	-37.95	
	QPSK	100% RB	Low	150	-34.26	-33.05	
		100% RB	High	150	-35.48	-34.10	
		1 RB	Low	150	-28.26	-37.95	
		1 RB	High	150	-35.73	-38.10	
	16QAM	1 RB	Low	150	-31.07	-38.68	
		1 RB	High	150	-37.39	-36.79	
	64QAM	1 RB	Low	150	-31.48	-38.97	
		1 RB	High	150	-37.37	-37.12	

Note:The channel with the maximum Peak of QPSK was chose, and the band edge of 16QAM, 64QAM were measured on that mode.

02:41:41 17.11.2021

The right band edge worse case figure:

									\$
MultiView	Spectrum								-
Ref Level 33 Att	.90 dBm Offse 0 dB SWT	t 63.90 dB 🖷 RE 1.6 ms 🖷 VE	3W 1 MHz 3W 3 MHz Moo	le Auto Sweep				c	ount 100/100
1 Frequency S	weep	8	41 · · · · ·						o1Rm Avg
30 dBm			1					M1[1]	-35.73 dBm
oo abiii								2	8.350 000 GHz
								M2[1]	-38.10 dBm
20 dBm				-				-	8.360 000 GHZ-
10 dBm			1		<i></i>				
			A			8			
0 dBm						β			
			L L			110			
175 M21									
-10 dBm									
-20 dBm	and the second								
	A								
-30 dBm	<u>}</u>							A	
	11				/	M1 M2			
-40 dBm	hannaman	molosom	manut m	mounder	monormound	manner	- marine frances	moned have	remained
-50 dBm									
-60 dBm									
05 00 000 00			1001						400.0 \
CF 28,299 98 (JHZ		IUUI pt	5	40	J.U MHZ/		St	Dan 400.0 MHz
	*						Measuring		03:14:46

03:14:47 17.11.2021

n261

Module0 , SCS=120kHz, Tx Chain 0 + Chain 1, CP, 100MHz+100MHz

Bandwidth	Modulation	RB size	Frequency	Beam	Peak (dBm)	
			Range	ID	Limit: -5dBm	Limit: -13dBm
100MHz	QPSK	1 RB	Low	23+151	-25.25	-36.17
+100MHz	16QAM	1 RB	High	23+151	-27.37	-36.83

Note:The channel with the maximum Peak of QPSK was chose, and the band edge of 16QAM, 64QAM were measured on that mode.

05:20:28 17.11.2021

The right band edge worse case figure:

			
MultiView Spectrum			
RefLevel 33.90 dBm Offset	: 63.90 dB ● RBW 1 MHz 1.6 ms ● VBW 3 MHz Mode Auto Swee	20	Count 100/100
PA 1 Erectuopor Sweep		-	o i Den Ave
Intequency sweep			M1[1] -27.37 dBm
30 dBm			28.350 000 GHz
			M2[1] -36.83 dBm
20 dBm			28,360.000 GHz
10 dBm			
0 dBm			
-10 dBm-			
-20 dBm			
		/ M1	A l
-30 dBm			
	A lower has		
-40 dBm	man harrow manager	man	- parameter and and a second and
-50 dBm			
-60 dBm			
CF 28.299 98 GHz	1001 pts	40.0 MHz/	Span 400.0 MHz
		- Me	asuring 17.11.2021 05:14:34

05:14:35 17.11.2021

©Copyright. All rights reserved by CTTL.

n261				
Module1,	SCS=120kHz,	Tx Chain 0	, CP,	100MHz+100MHz

Bandwidth	Modulation	RB size	Frequency	Beam	Peak (dBm)	
			Range	ID	Limit: -5dBm	Limit: -13dBm
100MHz	QPSK	100% RB	Low	18	-34.53	-36.87
+100MHz		100% RB	High	18	-35.90	-36.25
		1 RB	Low	18	-28.91	-38.76
		1 RB	High	18	-31.44	-38.34
	16QAM	1 RB	Low	18	-28.68	-39.35
		1 RB	High	18	-32.60	-38.36
	64QAM	1 RB	Low	18	-31.39	-39.59
		1 RB	High	18	-34.92	-38.54

Note:The channel with the maximum Peak of QPSK was chose, and the band edge of 16QAM, 64QAM were measured on that mode.

09:06:20 17.11.2021

The right band edge worse case figure:

MultiView • Spectru	m						
Ref Level 33.90 dBm Offs Att 0 dB SW	set 63.90 dB ● RBW 1 MHz T 1.6 ms ● VBW 3 MHz Mod	e Auto Sweep				c	ount 100/100
PA 1 Erectuoper Swoop							o 1 Day Avra
in the quericy Sweep				8		M1[1]	-32.60 dBm
30 dBm-						2	8.350 000 GHz
						M2[1]	-38.36 dBm
20 dBm						-	28.360 000 GHZ
	23						
10 dBm	Λ						
0.40ml				1			
U dBm							
-10 dBm-							
-20 dBm							
						A	
-30 aBm-				14			
manana Manana	manufacture the	and	mannen	M2		former long	announderstor
-40 dBm-							
-50 UBM							
60 d0m							
-ou usm							
CF 28.299 98 GHz	1001 pts		40	0.0 MHz/		S	ban 400.0 MHz
					Measuring		17.11.2021 09:21:48

09:21:49 17.11.2021

n261	
Module1, SCS=120kHz, Tx Chain 0, DFT, 100	MHz+100MHz

Bandwidth	Modulation	RB size	Frequency	Beam	Peak (dBm)
			Range	ID	Limit: -5dBm	Limit: -13dBm
100MHz	Pi/2 BPSK	100% RB	Low	18	-33.81	-35.48
+100MHz		100% RB	High	18	-35.33	-35.66
		1 RB	Low	18	-29.87	-39.36
		1 RB	High	18	-37.03	-38.37
	QPSK	100% RB	Low	18	-33.22	-34.34
		100% RB	High	18	-35.27	-35.42
		1 RB	Low	18	-30.33	-39.56
		1 RB	High	18	-36.61	-38.15
	16QAM	1 RB	Low	18	-30.45	-39.39
		1 RB	High	18	-36.02	-36.24
	64QAM	1 RB	Low	18	-30.44	-39.58
		1 RB	High	18	-36.84	-36.99

Note:The channel with the maximum Peak of QPSK was chose, and the band edge of 16QAM, 64QAM were measured on that mode.

10:39:31 17.11.2021

The right band edge worse case figure:

MultiView	Spectrum								
Ref Level 33.	.90 dBm Offse	t 63.90 dB • RE	W 1 MHz W 3 MHz Moo	le Auto Sween				ſ	oupt 100/100
PA	0 00 341	1.0 ms 🖷 🖬	WIND WINZ WINC	ie Auto Sweep				c	ount 100/100
1 Frequency S	weep	ľ				°	· · · · · · · · · · · · · · · · · · ·	M1[1]	01Rm Avg -37.03 dBm
30 dBm			1					2	8.350 000 GHz
								M2[1]	-38.37 dBm
20 dBm								2	8.360 000 GHz
10 dBm			۸		2				
						Δ			
0 dBm									
-10 dBm									
-20 dBm	6011								
	A							<u>.</u>	
-30 dBm	11		-+		50			<u> </u>	
traction Tractor and	11-A.	Contractory of the	λ			M1 M2		N	1
-40 dBm	I had have man	mon manage	minter of	man and a second second	har war and the second of the	Managengram	- Marriel Marriel Comment	ansame have	
-50 dBm									
-60 dBm									
Network - 19732297									
CF 28.299 98 C	GHz		1001 pts	5	40	0.0 MHz/	;	St	an 400.0 MHz
							Measuring		17.11.2021 10:34:05

10:34:05 17.11.2021

n261			
Module1, SCS=1	20kHz, Tx Chair	1, CP,	100MHz+100MHz

Bandwidth	Modulation	RB size	Frequency	Beam	Peak	(dBm)
			Range	ID	Limit: -5dBm	Limit: -13dBm
100MHz	QPSK	100% RB	Low	146	-29.49	-28.33
+100MHz		100% RB	High	146	-35.03	-34.41
		1 RB	Low	146	-30.65	-42.64
		1 RB	High	146	-31.50	-38.19
	16QAM	1 RB	Low	146	-31.08	-30.25
		1 RB	High	146	-36.54	-44.61
	64QAM	1 RB	Low	146	-34.82	-34.02
		1 RB	High	146	-39.05	-44.99

Note:The channel with the maximum Peak of QPSK was chose, and the band edge of 16QAM, 64QAM were measured on that mode.

15:01:15 17.11.2021

The right band edge worse case figure:

									\$
MultiView	Spectrum	1							-
Ref Level 33 Att	.90 dBm Offse 0 dB SWT	t 63.90 dB 🖷 RE 1.6 ms 🖷 VE	3WI1MHz 3WI3MHz Moo	le Auto Sweep				c	ount 100/100
PA 1 Erequency S	ween								O1Pm Ava
in requeries 3	меер					[M1[1]	-31.50 dBm
30 dBm-								2	8.350 000 GHz
1000 MOR								M2[1]	-38.19 dBm
20 dBm									8.360 000 GHZ-
10 dBm			ß	7 · · · ·	7	Ā			
			1						
0 dBm			- JÎ						
-10 dBm									
						4.			
-20 dBm	Λ								
	14							٨	
-30 dBm						1			
1	MA	٨		estatus en activador est		M2	٨		and the second second
-40 dBm-	and a province of	form production	and a	and the second s	man and a second	- manual	meneral prover	remark with	- management
-50 dBm			8	×			2		
-60 dBm									
CF 28.299 98 0	GHz		1001 pt	5	40	0.0 MHz/		St	an 400.0 MHz
	77.0						Measuring		17.11.2021

14:04:38 17.11.2021

n261				
Module1, SCS=120kHz	, Tx Chain 1	, DFT, 1	00MHz+100)MHz

Bandwidth	Modulation	RB size	Frequency	Beam	Peak (dBm)
			Range	ID	Limit: -5dBm	Limit: -13dBm
100MHz	Pi/2 BPSK	100% RB	Low	146	-35.52	-35.09
+100MHz		100% RB	High	146	-36.61	-35.21
		1 RB	Low	146	-30.93	-39.83
		1 RB	High	146	-36.90	-38.54
	QPSK	100% RB	Low	146	-34.83	-33.86
		100% RB	High	146	-36.71	-34.88
		1 RB	Low	146	-30.41	-39.73
		1 RB	High	146	-36.74	-37.86
	16QAM	1 RB	Low	146	-30.94	-39.82
		1 RB	High	146	-36.88	-38.43
	64QAM	1 RB	Low	146	-30.46	-39.96
		1 RB	High	146	-36.50	-38.05

Note:The channel with the maximum Peak of QPSK was chose, and the band edge of 16QAM, 64QAM were measured on that mode.

	-		-					
MultiView Sp	ectrum							•
Ref Level 32.00 dBr Att 0 d	n Offset 62.00 dB 🖷 F B SWT 1.6 ms 🖷 V	RBW 1 MHz NBW 3 MHz Mode Auto	Sweep				Count	100/100
PA 1 Frequency Sweep		8					<i></i>	O1Rm Avg
30 dBm								M1[1]
20 dBm								M2[1] -39.73 dBm 27.490 000 GHz
10 dBm-			0		4			
0 dBm								
-10 dBm-								
-20 dBm	٨						7	
-30 dBm	+			2			L A	
_40.d8m			man and a second	/		Λ		
-50 dBm								
-60 dBm								
CF 27.550 09 GHz			1001 pts		40.0 MHz/			Span 400.0 MHz
							Measuring	16:16:16

16:16:16 20.11.2021

The right band edge worse case figure:

-			-				
MultiView Sp	ectrum						
Ref Level 33.90 dBn Att 0 df PA	n Offset 63.90 dB = RI B SWT 1.6 ms = VI	BW 1 MHz BW 3 MHz Mode Auto) Sweep			Count	100/100
1 Frequency Sweep 30 dBm-							01Rm Avg M1[1] -36.74 dBm 28.350 000 GHz
20 dBm							M2[1] -37.86 dBm 28.360 000 GHz
10 dBm			Λ		۵		
0 dBm					1		
-10 dBm							
-20 dBm-	A					٨	
-JU dBm	Anna	·····		·······	 M1 M2	 man	-
-50 dBm							
-60 dBm-							
CF 28.299 98 GHz			1001 pts		 40.0 MHz/		Span 400.0 MHz
						Measuring	20.11.2021

16:56:04 20.11.2021

n261

Module0 , SCS=120kHz, Tx Chain 0 + Chain 1, CP, 100MHz+100MHz

Bandwidth	Modulation	RB size	Frequency	Beam	Peak (dBm)
			Range	ID	Limit: -5dBm	Limit: -13dBm
100MHz	16QAM	1 RB	Low	18+146	-30.41	-39.35
+100MHz	QPSK	1 RB	High	18+146	-30.90	-38.07

Note:The channel with the maximum Peak of QPSK was chose, and the band edge of 16QAM, 64QAM were measured on that mode.

MultiView Spe	ectrum								
Ref Level 32.00 dBm Att 0 dB	Offset 62.00 dB ● R SWT 1.6 ms ● V	BW 1 MHz BW 3 MHz Mode Auto	Sweep					Count	100/100
1 Frequency Sweep			(r	1	T	ŕ	O1Rm Avg
30 dBm-									M1[1]
20 dBm-									27.490 000 GHz
10 dBm									
D dBm			A			<u> </u>			
			1						
-10 dBm									
-20 dBm-									
-30 dBm-	A		MI					A	
-10 dBm			M2	Land.					
	and the man								
-50 dBm-									
-60 dBm									
			1001 ata			10.0 MUE (Caran 100 0 Mills
GF 27.550 09 GHZ			1001 pts			40.0 MI127		Moncuring	20.11.2021

19:01:58 20.11.2021

The right band edge worse case figure:

Annex B: Calibration Certificates List

批准人:国际 核验员:家会年 校准员: 式 簿

地址:北京海淀区花园北路 52 号通信计量中心 邮编: 100191 电话: +86-10-62301383 传真: +86-10-62304104 Email: cal@caict.ac.cn

第1页 共8页

网址: www.chinattl.com

	Signal Generator	E8257D (60GHz)	MY59140557	Keysight	2022-01-19	1 year
		E.	- al			
1	No. RAG202101178	1	第 Page 1 This co	1页共 ertificate include	8 页 8 Pages	
*	北京	无线电计量	量测试研究	所		0
C	Beijin 中国认可 中 校准 中 CALIBRATION F CNAS L1665	g Institute of Radio Metr 国航天科工集团第二 国防科技工业第二计	rology and Measureme 二研究院二〇三所 量测试研究中心	nt	Sel	
	校	准	证十	ち	· · · ·	0
		Certificate of	Calibration			
	6				0	
	委托单位: 中国泰尔实验 Customer	室				~
	地址: 海淀区花园北路 52 Address 被测样品: 信号发生器 EUT/DUT	号			.0	20
	编号: MY59140557 No. 型号: E8257D				2	ter to
	fype 制造商: 是德 Manufacturer					美 专
	校准人: Sherry	接收日期 Acceptant	期: 2021 年 ce date Year	1月 Month	18 日 Day	
	核验人: 约定山	校准日非 Calibratio	期: 2021年 on date Year	1月 Month	20 日 Day	
	批准人: 吴远伍 Approver	发证单f Issued by	立: (stamp) 機械	准章		
	本实验室地址(Add):北京市海嶺 No.50 Yongding Road, Haidian Di 通信地址:北京 142 信箱 408 分 P.O. Boy: 3930 Beiling China	記区永定路 50 号 istrict ,Beijing 箱	「专門	章		
5	服务电话(Tel): 010-68385358 館政编码(Post Code): 100854	监督电话(Tel): 010- 传真(Fax): 86-10-6	68387448 8385470			S ³
			50		30	

Page 118 of 144

中国	十量科学	研究	:院	
	^{批判} 校 准	ìF	土	1
	LIBRATION AS LOSS2 正书编号 XDxh2(21-10059	aland be	
	ar 1760 A YOARS	10005		
客户名称	中国泰尔实验室	Valla	a hallan	
器具名称	SMZ75 倍频源	Jan G	million (m	10-
型号/规格	SMZ75	1 have	in andrew	1 hr
出厂编号	101309			
生产厂商	Rohde & Schwarz			
联络信息	北京市海淀区花园北	:路 52 号	a composition	6
校准日期	2021-01-15	1.1.2	N. N. 7.	
接收日期	2021-01-08			
批准人:	rg with	秋国计量科学 校准专用		
发布日期:	2021年03月16			1mg
地址:北京北三环	东路 18 号	邮编:	100029	in
电话: 010-645255 网址: http://www	69/74 .nim.ac.cn	传真: 电子曲	010-64271948 『箱:kehufuwu@nim.ac	e.cn
			2010 1. 20	1520

中国	计量科学	研究院
	Will Will Will Will Will Will Will Will	证 书
1 million 1 million	证书编号 XDxh202	1-10060
客户名称	中国泰尔实验室	and and a
器具名称	SMZ110 倍频源	In and the
型号/规格	SMZ110	and and the
出厂编号	101357	
生产厂商	Rohde & Schwarz	
联络信息	北京市海淀区花园北路	格 52 号
校准日期	2021-01-15	hand (alm) (alm)
接收日期	2021-01-08	
批准人;	rg me	■計量科学研究 校准专用意
发布日期:	2021年03月16日	
地址:北京北三环	不东路 18 号	邮编: 100029
电话: 010-64525	569/74	传真: 010-64271948

中国	计量科学	研究院	(m)m
	^{開設新} 校 准	证书	
	TERATION IA FE NAS L0502 证书编号 XDgp202	1-10237	
客户名称	中国泰尔实验室		
器具名称	信号源倍频器	in intr	N Serlina
型号/规格	82406B	and to	Smill (m)
出厂编号	ZEI00141		
生产厂商	中电科仪器仪表有限公	2回	" "mirro"
联络信息	北京市海淀区花园北路	各52号	
校准日期	2021年02月05日		S. Caland
接收日期	2021年01月08日		
批准人:	赵升住 (国计量科学研究 校准专用章	
发布日期:	2021年 02月 08日	NOTE VERY	and and
地址:北京北三环	东路 18 号	邮编: 100029	
电话: 010-64525: 网址: http://www	i69/74 7.nim.ac.cn	传真: 010-642719 电子邮箱: kehufu	48 vu@nim.ac.cn
		a transfer Kendlur	

中国	计量科学	研究院	
IDE HIRA ENAS	Mail And	证 书	
"Andread and a second	TRANS LOSOZ 证书编号 XDgp202	1-10238	
客户名称	中国泰尔实验室		
器具名称	信号源倍频器	mar (m)m	(m)m
型号/规格	82406C	CASE.	5.7.6
上 厂 绝 早	ZE100164		
		m (m)m	Mr. Trend
生产厂商		<u>न</u>]	<u>x x x</u>
联络信息	北京市海淀区花园北路	52 号	and the
校准日期	2021年02月05日	mi and	1 Galan
接收日期	2021年01月08日		
批准人:	赵升住 (*	国计量科学研究学校准专用章	
发布日期:	2021年02月08日	and the second	
地址:北京北三环	东路 18 号	邮编: 100029	(m)m
电话: 010-64525:	569/74	传真: 010-6427194	8
网址: http://www	/.nim.ac.en	电子邮箱: kehufuw	u@nim.ac.cn

CoV.	C
No. RSA202101150	第 1 页 共 11 页 Page 1 This certificate include 11 Pages
北京无	线由计量测试研究所
Beijing Instit 中国航	Tute of Radio Metrology and Measurement
国防科	技工业第二计量测试研究中心
林	准证业
中国认可了入	
CALIBRATIONCert	ificate of Calibration
CNAS L1665	
委托单位: 中国泰尔实验室	
Customer	
地址: 海淀区化园北路 52 号 Address	
被测样品:频谱分析仪	
EUT/DUT 编号: 103290	
No.	
型号: FSW67 Type	
制造商: R/S	
Manufacturer	
校准人: 武 工平	接收日期: 2021年 1月 18日
Operator > C + 1	Acceptance date Year Month Day
核验人: 吴远伍 Inspector	校准日期: 2021 年 1 月 20 日 Calibration date Very Month Day
HL VH- I	th man and the neur month Day
Approver 15. 2 20	发证单位: Issued by (stamp)
本实验室地址(Add):北京市海淀区永定B	B 50 4 (低 校准)
No.50 Yongding Road, Haidian District, Be 通信协社, 北京142 信節 408 公約	rijing
P. O. Box: 3930 ,Beijing China	マル単
服务电话(Tel): 010-68385358 监	督电话(Tel): 010-68387448
邮政编码(Post Code): 100854 传	真(Fax): 86-10-68385470

Page 125 of 144

Mixer(6	60GHz	-90GHz)	lic	FS-2	Z90	101655	R&S	2022-02-	04 1 yea
	ाल	11	E.	Tel.	204	¢11	-	10th	5
.4.	西	म	里	个十	子	IJt	死	死 🗸	MAR
		校	2	准		证	书	i	
			١Ē.	书编号	XDxh20	21-10057			
客	户名称	<u>中国</u>	泰尔纳	实验室	[
器	具名称	FS-2	290 混	频器	80	in	171	m y	1m
型	号/规格	FS-2	Z90	à	5	-	and a	and	A Gan
#	厂编号	1010	555						
-) - 		. D.l	1.0.0		17-	mon.	12-1	1-2.17	Time)
±.	/~) (e	Kon	de & S	schwai	Z		1	6. 3.	57.3
联	络信息	<u>北京</u>	(市海)	定区花	园北	路 52 号	<u> </u>	Y 10	
校	准日期	202	1-01-1:	5	6	had	(-)	-	1 miles
接	收日期	202	1-01-0	8				1)
			-			-	AL IN		1. C
批	准人,	2.1	ry w	en	1	中国计重	中字研究		
					1	校准	专用章		elen:
发衣	布日期	: 20	21年	01月	20 E	E	No.		
地址	:北京北	三环东路 18	号	n.H.	4	h	3编:10003	29	-mart
电话	: 010-645	25569/74				f	专真: 010-0	54271948	
网址	: http://w	ww.nim.ac.	cn			ţ	8子邮箱:]	kehufuwu@nim	.ac.cn
								2019-jz-	R0520
				第	1页共4页	ĩ			

Mixer(75GHz-110)GHz) FS-Z ²	10146	B R&S	2022-01-19	1 ye
中国计	十量科学	斧研 3	克 院		2
*	さい)住	-ite	士		
1.	X /E	MIL	प		
	证书编号 XDx	n2021-10058			
客户名称	中国泰尔实验室				
器具名称	FS-Z110 混频器				
型号/规格	FS-Z110	a second	al ly	a) months	
出厂编号	101463		14		
生产厂商	Rohde & Schwarz		1.12	" "rim	
 群	北方市海淀区龙园	北路 59 是			
	10.30 (10 H4 IC EX 10 E9	1010 02 9			
校准日期	2021-01-15	min	m) (m)r	
接收日期	2021-01-08			S	
		V 1/1	Y Y		
批准人:	Ty the	科国计量科	学研究会		
		校准去	田音		
供大口地	2021年01日2		山阜		
友巾口期:	2021年01月20				
地址:北京北三环	东路 18 号	邮编	: 100029	048	
电话: 010-6452556	9/74 aim as sn	1年少 由子	+: 010-042/1	948 www@nim.ac.cn	
trasht http://www.l	innae An	13-	Meter Kenun	iwologinini.ac.ch	
				2019-jz-R0520	
	第1页5	共4页			

wixer(110Gr	Hz-170GH	Hz)/	10-2170		1.03	2022-02-17	i year
Radiomet A Rohde & Sci	ter Physics hwarz Company						
Calibration	n Certifi	cate		Certifi	cate Nu	mber 24-0170-	101008-01
Unit Data	2011			Zerunka	usnumme	This calibration certif	licate documents, that
Item Ha Gegenstand	rmonic Mixe	er, 110 GHz	to 170 GHz			the named item is tes against defined speci results are located us	ited and measured ifications. Measureme sually in the
Manufacturer RP Hersteller	G Radiome	ter-Physics	GmbH			corresponding interv approx. 95% (coverag	al with a probability o ge factor k = 2).
туре RP Тур	G FS-Z170					Calibration is perform and standards directl by means of approve	ned with test equipme ly or indirectly traceat d calibration techniqu
Material Number 362 Materialnummer	22.0714.02	Serial Number Seriennummer	101008			to the PTB/DKD or ot national/international	her I standards, which
Asset Number Inventarnummer						realize the physical u according to the Inter Units (SI). In all cases	nits of measurement mational System of s where no standards
Order Data						available, measureme standards of the R&S and methods of calib	ents are referenced to Laboratories. Princip ration correspond wit
Customer Auftraggeber						EN ISO/IEC 17025. Th may not be reproduce Calibration certificate not valid. The user is	is calibration certifica ed other than in full. is without signatures obliged to have the
Order Number Bestellnummer						Dieser Kalibrierschein genannte Gegenstand	dokumentiert, dass der nach festgelegten
Order Number Bestellnummer Date of Receipt Eingangsdatum Performance Place and Date of Calibr	ration	Meckenhe	9im, 2021-02-1	8		Dieser Kalibrierschein genannte Gegenstand Vorgaben geprüft und ; Messwerte lagen im R Wahrscheinlichtek von zugeordneben Werteint Messunsicherheit mit k	dokumentiert, dass der nach festgelegten gemessen wurde. Die egelfalt mit einer annäherne 95% im lerval (Erweiterte = 2), Die Kalbrierung und Normenge die di
Order Number Bestellnummer Date of Receipt Eingangsdatum Performance Place and Date of Calibr Ort und Datum der Kalibri Scope of Calibration	ration	Meckenhe Standard	eim, 2021-02-1 Calibration	8		Disser Kalibrierschein genannte Gegenstand Vorgaben geprüft und s Messwerte legen im R Wahrscheinlichkeit von zugeordneben Werbint Messunsicherheit mit k enfolgte mit Messmibel oder indrekt durch Abb Kalibriertechniken rück	dokumantiert, dass der nach festgelegten gemessen wurde. Die egelfäll mit einer ansbhemd 95% im lerval (Erweiterte = 2). Die Kaltbrierung n und Normalen, die di eitung mittels amerkann geführt sind auf Norma
Order Number Bestellnummer Date of Receipt Eingangsdatum Porformance Place and Date of Calibr Ort und Date of Calibr Ort und Date of Calibrierung Statement of Compliance (Incoming) Statement of Compliance (Anlieferung)	ration lerung 59	Meckenhe Standard New devie	tim, 2021-02-1 Calibration Ce	8		Dieser Kalibrierschein genannte Gegenstand Vorgaben geprüft und s Messwerte lagen im Ro Wahrscheinlichket von zugeordneben Wersleint Messunsicherheit mit k enfolgte mit Messmibbe oder indirekt durch Abb Kalibriertechniken rück der PTB/DKD oder and nationaler/international Darstellung der physik Oberinssimmung mit d Einheitensystem (SI). V existieren, erfolgt die R	dokumentilert, dass der nach festgelegten gemessen wurde. Die egelfall mit einer annähernd 95% im terval (Erweitertre = 2). Die Kalbrierung n und Normalen, die di elung mittels anerkann geführt sind auf Norma leer Ier Standards zur alischen Einheiten in dem Infernationalen Nern keine Normale Goldfürung auf
Order Number Bestellnummer Date of Receipt Eingangsdatum Performance Place and Date of Calibr Ort und Datum der Kalibrierung Statement of Compliance (Incoming) Konformitalsaussage (Aritieferung) Statement of Compliance (Outgoing) Konformitalsaussage	ration ierung se	Meckenhe Standard New devic All measu <u>specificat</u>	eim, 2021-02-1 Calibration ce red values ar <u>ions.</u>	8 e <u>within the c</u>	lata shee	Disser Kalibrierschein genannte Gegenstand Vorgaben geprüft und s Messwerte legen im R Wahrscheinlichkeit von zugeordneben Werbird Messunsicherheit mit k enfolgte mit Messmible oder indrekt durch Abl Kalibriertechniken nück der PTB/DCND oder and nationaler/international Dorstellung der physik Obereinsämmung mit d Einheitensystem (31), V existieren, enfolgt die R Bezuganormale der Rat Grundsätze und Verfah beziehen sich auf Rut	dokumentiert, dass der nach festgelegten gemessen wurde. Die egelfäll mit einer e annähemd 95% im lervall (Erweiterte ei 2). Die Kaltbrierung n und Narmalen, die di eitung mittels anerkann geführt sind auf Narma deser standards zur äschen Einheiten in deschen Einheiten in dem Internationalen Nerre beine Normale blackführung auf Sculleto (17025. Dieser
Order Number Bestellnummer Date of Receipt Eingangsdatum Performance Place and Date of Calibr Ort und Datum der Kalibr Ort und Datum der Kalibrierung Statement of Compliance (Ardieferung) Statement of Compliance (Outgoing) Konformitistaussage (Auslieferung) Extend of Calibration Do Umfang des Kalibrierdoka	ration ierung se se se ocuments uments	Meckenhe Standard New devic All measu <u>specificat</u> 2 pages C 4 pages C	eim, 2021-02-1 Calibration ce red values ar <u>ions.</u> calibration Cer butgoing Resu	8 e <u>within the c</u> rtificate Ilts	lata shee	Disser Kalibrierschein genannte Gegenstand Vorgaben geprüft und s Messwerfe legen im R Wahrscheinlichkeit von zugeordneben Werbird Messunsicherheit mit k enfolgte mit Messmible oder indirekt durch Abl Kalibriertechnikan rück der PTB/DCND oder and national er/informational Dorsteilung der physiki Obereinsämmung mit d Einheitensystem (31), V existieren, enfolgt die FB Bezugsnormale der R4 Grundsätze und Verfal beziehen sich auf EN I Kalibrierschein darf nu umverändert weiterweit Kalibrierscheine ohne L ungüftig. Für die Einhal Frist zur Wiederholung Benutzer verantwordict	dokumentiert, dass der nach festgelegten gemessen wurde. Die egelfalt mit einer e annähemd 95% im lervall (Erweiterte ei 2). Die Kalibrierung n und Narmalen, die di eitung mittels anerkann geführt sind auf Narma kerer fastgeführt sind auf Narma kerer er Standards zur ästschen Einheiten al dischen Einheiten in der kalibrierung auf Scüllet (17025: Dieser r vollständig und unterschritten sind ftung einer angemesse der Kalibrierung ist de h.
Order Number Bestellnummer Date of Receipt Eingangsdatum Porformance Place and Date of Calibr Ort und Datum der Kalibr Scope of Calibration Umfang der Kalibrierung Statement of Compliance (Auslieferung) Statement of Compliance (Outgoing) Konformitätsaussage (Auslieferung) Extend of Calibration Do Umfang des Kalibrierdoka	ration ierung se ce ocuments uments	Meckenhe Standard New devie All measu <u>specificat</u> 2 pages C 4 pages C	eim, 2021-02-1 Calibration Ce red values ar ions. calibration Cer utgoing Resu	8 e <u>within the c</u> rtificate llts	lata shee	Dieser Kalibrierschein genannte Gegenstand Vorgaben geprüft und i Messwerte lagen im Ro Wahrscheinklichket von zugeordneben Werteint Messunsicherheit mit k erfolgte mit Messmibbe oder indirekt durch Abb Kalibriertachnikan rück der PTB/DKD oder and nationaler/international Darstellung der physik Oberinssimmung mit d Einheitensystem (SI). V existieren, erfolgt die R Bezugenormale der Rb Grundsitze und Verfah beziehen sich auf EN I Kalibrierschein ohne I ungötig. Für die Einhal Frist zur Wiederholung Benutzer verantworflich	dokumentilert, dass der nich festgelegten gemessen wurde. Die egelfalt mit einer annähernd 95% im ervalt (Erweiterte = 2). Die Kalbrierung in und Normalen, die di eitung mittels anerkann geführt sind auf Norma jeer ier Standards zur alischen Einheiten in dem Internationalen Nern keine Normale North keine Normale North keine Normale Northeinen Normale SOUEC 17025. Dieser r vollständig und reatter werden. Unterschriften sind fung einer angemesses der Kalbrierung ist deh h.
Order Number Bestellnummer Date of Receipt Eingangsdatum Porformance Place and Date of Calibr Ort und Datum der Kalibr Scope of Calibration Umfang der Kalibrierung Statement of Compliance (Arileferung) Statement of Compliance (Auslieferung) Statement of Compliance (Outgoing) Konformitätsaussage (Auslieferung) Extend of Calibration Do Umfang des Kalibrierdoka	ration ierung se ce occuments uments Physics Gmbł	Meckenhe Standard New devic All measu <u>specificat</u> 2 pages C 4 pages C 4 pages C	eim, 2021-02-1 Calibration Ce rred values ar ions. calibration Cer outgoing Resu	8 e <u>within the c</u> rtificate llts Persor	lata shee	Disser Kalibrierschein genannte Gegenstand Vorgaben geprüft und s Messwerte lagen im K Wahrscheinlichtek von zugeordneben Werbind Messunsicherheit mit k enfolgte mit Messmitel oder indirekt durch Abl- Kalibriertachnikan rück der PTB/DKD oder and nationalen/international Dorstellung der physik Obeneinstimmung mit d Einheitensystem (SI). V existieren, erfolgt die R Bezugsnormale der R4 Grundsätze und Verfah beziehen sich auf EN I Kalibrierschein der nu unverändert weiterverb Kalibrierscheine öhne I ungötig. Für die Einhal Finst zur Wiederholung Benutzer verantwortlich	dokumentiert, dass der nach festgelegten gemessen wurde. Die egeffall mit einer anabhemd 95% im iervall (Erweiterte = 2). Die Katibrierung n und Normalen, die di eitung mittes amerkann geführt sind auf Normal eiter Standards zur alsischen Einheiten in dem Internationalen Nerre keine Normale übdrührung auf IS-Laboratorien. tren der Katibrierung SO/EC 17025. Dieschriften sind fung einer angemessei der Katibrierung ist der h.
Order Number Bestellnummer Date of Receipt Eingangsdatum Performance Place and Date of Calibr Ort und Datum der Kalibri Scope of Calibration Umfang der Kalibrierung Statement of Compliance (Ardieferung) Statement of Compliance (Outgoing) Konformitistaussage (Auslieferung) Extend of Calibration Do Umfang des Kalibrierdoks PRG Radiometer-F Date of Issue Ausstellungsdatum	ration ierung se ce couments uments	Meckenhe Standard New devic All measu <u>specificat</u> 2 pages C 4 pages C 4 pages C 4 pages C	eim, 2021-02-1 Calibration ce red values ar ions. calibration Cer butgoing Resu	e <u>within the c</u> rtificate llts Persor Bearbe	lata shee	Disser Kalibrierschein genannte Gegenstand Vorgaben geprüft und s Messwerte legen im R Wahrscheinlichkeit vom zugeordneben Werbird Messunsicherheit mit k enfolgte mit Messmible oder indrekt durch Abl Kalibriertachnikan nück der PTB/DCND oder and nationaler/international Dorstellung der physik Obereinsämmung mit d Einheitensystem (31), V existieren, enfolgt die R Bezuganormale der R& Grundsätze und Verfah beziehen sich auf CN I Kalibrierschein darf nu unverändert weiterveb Kalibrierscheine ohne L ungütig. Für die Einhal Frist zur Wiederholung Benutzer verantwordlich	dokumentiert, dass der nach festgelegten gemessen wurde. Die egelfalt mit einer e annähemd 95% im iervall (Erweiterte ei 2). Die Kalibrierung n und Normalen, die di eilung mittels anerkann geführt sind auf Norma einer Frandards zur äschene Einheiten al deschen Einheiten in der Einheiten Normale kläckführung auf Scullec 17025. Dieser r vollständig und sculter schlibrierung ist der h.

Units (SI). In all cases where no standards are available, measurements are referenced to standards of the R&S laboratories. Principles

and methods of calibration correspond with EN ISO/IEC 17025. This calibration certificate

may not be reproduced other than in full. Calibration certificates without signatures are not valid. The user is obliged to have the

(downcon Mixer(170	verter)Harm)GHz-220Gł	onic Hz)/	FS-Z220	101054	R&S	2021-12-14	1 year
Radic A Rohd	ometer Physics • & Schwarz Company tion Certifi	cate		Certifi	icate Nu	ımber 24-0220-	-101054-0 ⁻
K OUDRIORC	choin			To shiftle	a firm in a stream start.	22	
Kalibriers	chein			Zertifika	atsnumm	Cr This calibration certi	ficate documents, t
Kalibriers Unit Data Item Gegenstand	chein Harmonic Mixe	er, 140 GHz	to 220 GHz	Zertifika	atsnumm	EF This calibration certil the named item is tes against defined spec results are located up	ficate documents, t sted and measured ifications. Measure sually in the
Kallbriers Unit Data Item Gegenstand Manufacturer Hersteller	chein Harmonic Mixe RPG Radiome	er, 140 GHz ter-Physics	to 220 GHz GmbH	Zertifika	atsnumm	Ef This calibration certil the named item is ter against defined spec results are located up corresponding interv approx. 95% (coveraj	ficate documents, t sted and measured ifications. Measure sually in the sually in the with a probabilit ge factor k = 2).
Kalibriers Unit Data Item Gegenstand Manufacturer Hersteller Type	chein Harmonic Mixe RPG Radiome RPG FS-Z220	er, 140 GHz ter-Physics	to 220 GHz GmbH	Zertifika	atsnumm	EF This calibration certil the named item is ter against defined spec results are located us corresponding interv approx. 95% (coveraj Calibration is perfor and standards direct	ficate documents, t sted and measured ifications. Measure sually in the ad with a probabilit ge factor k = 2). med with test equip ly or indirectly trac
Kalibriers Unit Data Item Gegenstand Manufacturer Hersteller Type Type Material Number Material Number	chein Harmonic Mixe RPG Radiome RPG FS-Z220 3593.3250.02	er, 140 GHz ter-Physics Serial Number Seriennummer	to 220 GHz GmbH 101054	Zertifika	atsnumm	EF This calibration certil the named item is ter against defined spec results are located up corresponding interv approx. 55% (covera) Calibration is perform and standards direct by means of approve to the PTB/DKD or ot national/international	ficate documents, fi sted and measured ifications. Measures sually in the rail with a probabilit with as probability of factor k = 2), med with task equip by or indirectly trac- ther i standards, which

Order Data

Customer Auftraggeber

		object recalibrated at appropriate intervals.
Order Number Bestellnummer		Dieser Kalibrierschein dokumentiert, dass der genannte Gegenstand nach festgelegten
Date of Receipt Eingangsdatum		Vorgaben geprüft und gemessen wurde. Die Messwerte lagen im Regelfall mit einer Wahrscheinlichkeit von annähemd 95% im
Performance		zugeordneten Werteintervall (Erweiterte
Place and Date of Calibration Ort und Datum der Kalibrierung	Meckenheim, 2020-12-15	Messunsicherheit mit k = 2). Die Kalibrierung erfolgte mit Messmitteln und Normalen, die direkt
Scope of Calibration Umfang der Kalibrierung	Standard Calibration	oder indirekt durch Ableitung mittels anerkanmer Kalibriertechniken rückgeführt sind auf Normale der PTR/DKD oder anderer
Statement of Compliance (Incoming) Konformitätsaussage (Antieferung)	New device	nationalerinformationaler Standards zur Darstellung der physikalischen Einheiten in Obereinsämmung mit dem Internationalen Einheitensystem (SI). Wenn keine Normatie existieren, erfolgt die Rückführung auf Bezugenormale der RAS-Laboratorien.
Statement of Compliance (Outgoing) Konformitätsaussage (Auslieferung)	All measured values are <u>within the data sheet</u> <u>specifications.</u>	Grundsätze und Verfahren der Kalibrierung beziehen sich auf EN ISO/IEC 17025. Dieser Kalibrierschein darf nur vollständig und userröhdet underschröftet unders
Extend of Calibration Documents Umfang des Kalibrierdokuments	2 pages Calibration Certificate 4 pages Outgoing Results	Kallbrierscheine ohne Unterschnitten sind ungültig. Für die Einhaltung einer angemessenen Frist zur Wiederholung der Kallbrierung ist der Benutzer varantworlich.

RPG Radiometer-Physics GmbH; Meckenheim

Date of Issue Ausstellungsdatum

Head of Laboratory Laborleitung -4/4/

Schulze

Person Responsible Bearbeiter C. D.A.

Dick

2020-12-17

Page (Seite) 1/2 Vers2010-05-05/ RPG2014-02-28

RPG Radiometer-Physics GmbH - Wemer-von-Siemens-Str. 4 • 53340 Meckenheim • Telephone national: 0222590981-0 international: 0049 2225-99981-0 Fac: 02225/99981-99 • Managing Director: Achim Walter • Company's Place of Business: Meckenheim Commercial Register No: Bonn, HRB 10291 • VAT Identification No: DE 123 377 395

Page 141 of 144

©Copyright. All rights reserved by CTTL.

Page 143 of 144

END OF REPORT