




Impedance Measurement Plot for Head TSL



Certificate No: D2600V2-1012\_Jul20

Page 6 of 8



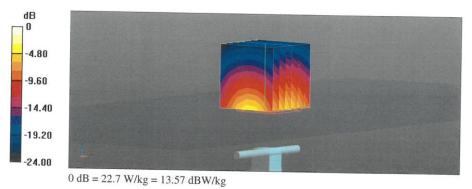


### DASY5 Validation Report for Body TSL

Date: 21.07.2020

Test Laboratory: SPEAG, Zurich, Switzerland

# DUT: Dipole 2600 MHz; Type: D2600V2; Serial: D2600V2 - SN:1012

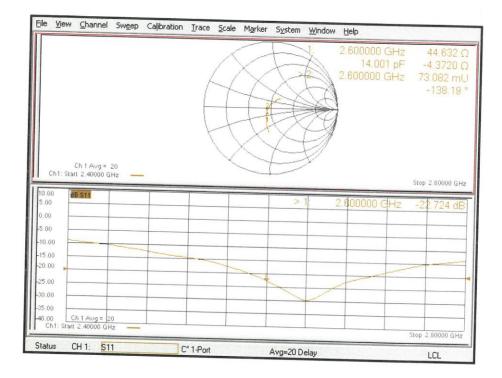

Communication System: UID 0 - CW; Frequency: 2600 MHz Medium parameters used: f = 2600 MHz;  $\sigma$  = 2.20 S/m;  $\epsilon_r$  = 51.0;  $\rho$  = 1000 kg/m<sup>3</sup> Phantom section: Flat Section Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)

DASY52 Configuration:

- Probe: EX3DV4 SN7349; ConvF(7.68, 7.68, 7.68) @ 2600 MHz; Calibrated: 29.06.2020
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn601; Calibrated: 27.12.2019
- Phantom: Flat Phantom 5.0 (back); Type: QD 000 P50 AA; Serial: 1002
- DASY52 52.10.4(1527); SEMCAD X 14.6.14(7483)

# Dipole Calibration for Body Tissue/Pin=250 mW, d=10mm/Zoom Scan (7x7x7)/Cube 0:

Measurement grid: dx=5mm, dy=5mm, dz=5mmReference Value = 110.5 V/m; Power Drift = -0.09 dB Peak SAR (extrapolated) = 28.0 W/kg **SAR(1 g) = 14.0 W/kg; SAR(10 g) = 6.20 W/kg** Smallest distance from peaks to all points 3 dB below = 8 mm Ratio of SAR at M2 to SAR at M1 = 50.8% Maximum value of SAR (measured) = 22.7 W/kg




Certificate No: D2600V2-1012\_Jul20

Page 7 of 8







Impedance Measurement Plot for Body TSL

Certificate No: D2600V2-1012\_Jul20

Page 8 of 8





### 3500 MHz Dipole Calibration Certificate

**Calibration Laboratory of** Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland



S Schweizerischer Kalibrierdienst Service suisse d'étalonnage Servizio svizzero di taratura Swiss Calibration Service

Accreditation No.: SCS 0108

Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

CTTL-BJ (Auden) Client

Certificate No: D3500V2-1016\_Jul20

С

S

| Dbject                                                                                                                                                            | D3500V2 - SN:10                                                                                          | 016                                                                                                                                                                                                                        |                                                                                                                                             |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------|
| Calibration procedure(s)                                                                                                                                          | QA CAL-22.v5<br>Calibration Proce                                                                        | dure for SAR Validation Sources                                                                                                                                                                                            | s between 3-10 GHz                                                                                                                          |
| Calibration date:                                                                                                                                                 | July 27, 2020                                                                                            |                                                                                                                                                                                                                            |                                                                                                                                             |
| The measurements and the uncert                                                                                                                                   | ainties with confidence p<br>ad in the closed laborator                                                  | onal standards, which realize the physical un<br>robability are given on the following pages an<br>ry facility: environment temperature $(22 \pm 3)^\circ$                                                                 | nd are part of the certificate.                                                                                                             |
| Primary Standards                                                                                                                                                 | ID #                                                                                                     | Cal Date (Certificate No.)                                                                                                                                                                                                 | Scheduled Calibration                                                                                                                       |
| Power meter NRP                                                                                                                                                   | SN: 104778                                                                                               | 01-Apr-20 (No. 217-03100/03101)                                                                                                                                                                                            | Apr-21                                                                                                                                      |
| Power sensor NRP-Z91                                                                                                                                              | SN: 103244                                                                                               | 01-Apr-20 (No. 217-03100)                                                                                                                                                                                                  | Apr-21                                                                                                                                      |
| Power sensor NRP-Z91                                                                                                                                              | SN: 103245                                                                                               | 01-Apr-20 (No. 217-03101)                                                                                                                                                                                                  | Apr-21                                                                                                                                      |
| Reference 20 dB Attenuator                                                                                                                                        | SN: BH9394 (20k)                                                                                         | 31-Mar-20 (No. 217-03106)                                                                                                                                                                                                  | Apr-21                                                                                                                                      |
| Type-N mismatch combination                                                                                                                                       | SN: 310982 / 06327                                                                                       | 31-Mar-20 (No. 217-03104)                                                                                                                                                                                                  | Apr-21                                                                                                                                      |
| Defense Della Eventur                                                                                                                                             | SN: 3503                                                                                                 | 31-Dec-19 (No. EX3-3503_Dec19)                                                                                                                                                                                             | Dec-20                                                                                                                                      |
|                                                                                                                                                                   | SN: 601                                                                                                  | 27-Dec-19 (No. DAE4-601_Dec19)                                                                                                                                                                                             | Dec-20                                                                                                                                      |
|                                                                                                                                                                   | 514: 601                                                                                                 | 27-Dec-19 (NO. DAL4-001_Dec19)                                                                                                                                                                                             |                                                                                                                                             |
| DAE4                                                                                                                                                              | ID #                                                                                                     | Check Date (in house)                                                                                                                                                                                                      | Scheduled Check                                                                                                                             |
| DAE4<br>Secondary Standards                                                                                                                                       | 1                                                                                                        |                                                                                                                                                                                                                            | Scheduled Check<br>In house check: Oct-20                                                                                                   |
| DAE4<br>Secondary Standards<br>Power meter E4419B                                                                                                                 | ID #                                                                                                     | Check Date (in house)                                                                                                                                                                                                      |                                                                                                                                             |
| Reference Probe EX3DV4<br>DAE4<br>Secondary Standards<br>Power meter E4419B<br>Power sensor HP 8481A<br>Power sensor HP 8481A                                     | ID #<br>SN: GB39512475                                                                                   | Check Date (in house)<br>30-Oct-14 (in house check Feb-19)                                                                                                                                                                 | In house check: Oct-20                                                                                                                      |
| DAE4<br>Secondary Standards<br>Power meter E4419B<br>Power sensor HP 8481A<br>Power sensor HP 8481A<br>RF generator R&S SMT-06                                    | ID #<br>SN: GB39512475<br>SN: US37292783                                                                 | Check Date (in house)<br>30-Oct-14 (in house check Feb-19)<br>07-Oct-15 (in house check Oct-18)                                                                                                                            | In house check: Oct-20<br>In house check: Oct-20                                                                                            |
| DAE4<br>Secondary Standards<br>Power meter E4419B<br>Power sensor HP 8481A<br>Power sensor HP 8481A                                                               | ID #<br>SN: GB39512475<br>SN: US37292783<br>SN: MY41092317                                               | Check Date (in house)<br>30-Oct-14 (in house check Feb-19)<br>07-Oct-15 (in house check Oct-18)<br>07-Oct-15 (in house check Oct-18)                                                                                       | In house check: Oct-20<br>In house check: Oct-20<br>In house check: Oct-20                                                                  |
| DAE4<br>Secondary Standards<br>Power meter E4419B<br>Power sensor HP 8481A<br>Power sensor HP 8481A<br>RF generator R&S SMT-06                                    | ID #<br>SN: GB39512475<br>SN: US37292783<br>SN: MY41092317<br>SN: 100972                                 | Check Date (in house)<br>30-Oct-14 (in house check Feb-19)<br>07-Oct-15 (in house check Oct-18)<br>07-Oct-15 (in house check Oct-18)<br>15-Jun-15 (in house check Oct-18)                                                  | In house check: Oct-20<br>In house check: Oct-20<br>In house check: Oct-20<br>In house check: Oct-20                                        |
| DAE4<br>Secondary Standards<br>Power meter E4419B<br>Power sensor HP 8481A<br>Power sensor HP 8481A<br>RF generator R&S SMT-06                                    | ID #<br>SN: GB39512475<br>SN: US37292783<br>SN: US37292783<br>SN: 100972<br>SN: 100972<br>SN: US41080477 | Check Date (in house)<br>30-Oct-14 (in house check Feb-19)<br>07-Oct-15 (in house check Oct-18)<br>07-Oct-15 (in house check Oct-18)<br>15-Jun-15 (in house check Oct-18)<br>31-Mar-14 (in house check Oct-19)             | In house check: Oct-20<br>In house check: Oct-20<br>In house check: Oct-20<br>In house check: Oct-20<br>In house check: Oct-20<br>Signature |
| DAE4<br>Secondary Standards<br>Power meter E4419B<br>Power sensor HP 8481A<br>Power sensor HP 8481A<br>RF generator R&S SMT-06<br>Network Analyzer Agilent E8358A | ID #<br>SN: GB39512475<br>SN: US37292783<br>SN: MY41092317<br>SN: 100972<br>SN: US41080477<br>Name       | Check Date (in house)<br>30-Oct-14 (in house check Feb-19)<br>07-Oct-15 (in house check Oct-18)<br>07-Oct-15 (in house check Oct-18)<br>15-Jun-15 (in house check Oct-18)<br>31-Mar-14 (in house check Oct-19)<br>Function | In house check: Oct-20<br>In house check: Oct-20<br>In house check: Oct-20<br>In house check: Oct-20<br>In house check: Oct-20              |





#### Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland



S Schweizerischer Kalibrierdienst
 Service suisse d'étalonnage
 Servizio svizzero di taratura
 S Swiss Calibration Service

Accreditation No.: SCS 0108

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates Glossary:

#### Glossa

| TSL   | tissue simulating liquid        |
|-------|---------------------------------|
| ConvF | sensitivity in TSL / NORM x,y,z |
| N/A   | not applicable or not measured  |

#### Calibration is Performed According to the Following Standards:

- a) IEEE Std 1528-2013, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", June 2013
- b) IEC 62209-1, "Measurement procedure for the assessment of Specific Absorption Rate (SAR) from hand-held and body-mounted devices used next to the ear (frequency range of 300 MHz to 6 GHz)", July 2016
- c) IEC 62209-2, "Procedure to determine the Specific Absorption Rate (SAR) for wireless communication devices used in close proximity to the human body (frequency range of 30 MHz to 6 GHz)", March 2010
- d) KDB 865664, "SAR Measurement Requirements for 100 MHz to 6 GHz"

#### Additional Documentation:

e) DASY4/5 System Handbook

#### Methods Applied and Interpretation of Parameters:

- Measurement Conditions: Further details are available from the Validation Report at the end of the certificate. All figures stated in the certificate are valid at the frequency indicated.
- Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed
  point exactly below the center marking of the flat phantom section, with the arms oriented
  parallel to the body axis.
- Feed Point Impedance and Return Loss: These parameters are measured with the dipole positioned under the liquid filled phantom. The impedance stated is transformed from the measurement at the SMA connector to the feed point. The Return Loss ensures low reflected power. No uncertainty required.
- *Electrical Delay:* One-way delay between the SMA connector and the antenna feed point. No uncertainty required.
- SAR measured: SAR measured at the stated antenna input power.
- SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector.
- SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result.

The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%.

Certificate No: D3500V2-1016\_Jul20

Page 2 of 13





#### **Measurement Conditions**

DASY system configuration, as far as not given on page 1.

| DASY Version                 | DASY5                                                    | V52.10.4                         |
|------------------------------|----------------------------------------------------------|----------------------------------|
| Extrapolation                | Advanced Extrapolation                                   |                                  |
| Phantom                      | Modular Flat Phantom V5.0                                |                                  |
| Distance Dipole Center - TSL | 10 mm                                                    | with Spacer                      |
| Zoom Scan Resolution         | dx, dy = 4.0 mm, dz = 1.4 mm                             | Graded Ratio = 1.4 (Z direction) |
| Frequency                    | 3400 MHz ± 1 MHz<br>3500 MHz ± 1 MHz<br>3600 MHz ± 1 MHz |                                  |

#### Head TSL parameters at 3400 MHz

|                                         | Temperature     | Permittivity | Conductivity     |
|-----------------------------------------|-----------------|--------------|------------------|
| Nominal Head TSL parameters             | 22.0 °C         | 38.0         | 2.81 mho/m       |
| Measured Head TSL parameters            | (22.0 ± 0.2) °C | 37.7 ± 6 %   | 2.82 mho/m ± 6 % |
| Head TSL temperature change during test | < 0.5 °C        |              |                  |

#### SAR result with Head TSL at 3400 MHz

| SAR averaged over 1 cm <sup>3</sup> (1 g) of Head TSL                   | Condition                       |                          |
|-------------------------------------------------------------------------|---------------------------------|--------------------------|
| SAR measured                                                            | 100 mW input power              | 6.83 W/kg                |
| SAR for nominal Head TSL parameters                                     | normalized to 1W                | 68.1 W/kg ± 19.9 % (k=2) |
|                                                                         |                                 |                          |
| SAR averaged over 10 cm <sup>3</sup> (10 g) of Head TSL                 | condition                       |                          |
| SAR averaged over 10 cm <sup>3</sup> (10 g) of Head TSL<br>SAR measured | condition<br>100 mW input power | 2.54 W/kg                |

Certificate No: D3500V2-1016\_Jul20

Page 3 of 13





#### Head TSL parameters at 3500 MHz

The following parameters and calculations were applied.

|                                         | Temperature     | Permittivity | Conductivity     |
|-----------------------------------------|-----------------|--------------|------------------|
| Nominal Head TSL parameters             | 22.0 °C         | 37.9         | 2.91 mho/m       |
| Measured Head TSL parameters            | (22.0 ± 0.2) °C | 37.6 ± 6 %   | 2.90 mho/m ± 6 % |
| Head TSL temperature change during test | < 0.5 °C        |              |                  |

#### SAR result with Head TSL at 3500 MHz

| SAR averaged over 1 cm <sup>3</sup> (1 g) of Head TSL                   | Condition                       |                          |
|-------------------------------------------------------------------------|---------------------------------|--------------------------|
| SAR measured                                                            | 100 mW input power              | 6.62 W/kg                |
| SAR for nominal Head TSL parameters                                     | normalized to 1W                | 66.1 W/kg ± 19.9 % (k=2) |
|                                                                         |                                 |                          |
| SAR averaged over 10 cm <sup>3</sup> (10 g) of Head TSL                 | condition                       |                          |
| SAR averaged over 10 cm <sup>3</sup> (10 g) of Head TSL<br>SAR measured | condition<br>100 mW input power | 2.48 W/kg                |

## Head TSL parameters at 3600 MHz

|                                         | Temperature     | Permittivity | Conductivity     |
|-----------------------------------------|-----------------|--------------|------------------|
| Nominal Head TSL parameters             | 22.0 °C         | 37.8         | 3.02 mho/m       |
| Measured Head TSL parameters            | (22.0 ± 0.2) °C | 37.5 ± 6 %   | 2.97 mho/m ± 6 % |
| Head TSL temperature change during test | < 0.5 °C        |              |                  |

#### SAR result with Head TSL at 3600 MHz

| SAR averaged over 1 cm <sup>3</sup> (1 g) of Head TSL                   | Condition                       |                          |
|-------------------------------------------------------------------------|---------------------------------|--------------------------|
| SAR measured                                                            | 100 mW input power              | 6.66 W/kg                |
| SAR for nominal Head TSL parameters                                     | normalized to 1W                | 66.7 W/kg ± 19.9 % (k=2) |
|                                                                         |                                 |                          |
| SAR averaged over 10 cm <sup>3</sup> (10 g) of Head TSL                 | condition                       |                          |
| SAR averaged over 10 cm <sup>3</sup> (10 g) of Head TSL<br>SAR measured | condition<br>100 mW input power | 2.47 W/kg                |

Certificate No: D3500V2-1016\_Jul20

Page 4 of 13





Body TSL parameters at 3400 MHz The following parameters and calculations were applied.

|                                         | Temperature     | Permittivity | Conductivity     |
|-----------------------------------------|-----------------|--------------|------------------|
| Nominal Body TSL parameters             | 22.0 °C         | 51.5         | 3.20 mho/m       |
| Measured Body TSL parameters            | (22.0 ± 0.2) °C | 50.7 ± 6 %   | 3.23 mho/m ± 6 % |
| Body TSL temperature change during test | < 0.5 °C        |              |                  |

#### SAR result with Body TSL at 3400 MHz

| SAR averaged over 1 cm <sup>3</sup> (1 g) of Body TSL                   | Condition                       |                          |
|-------------------------------------------------------------------------|---------------------------------|--------------------------|
| SAR measured                                                            | 100 mW input power              | 6.40 W/kg                |
| SAR for nominal Body TSL parameters                                     | normalized to 1W                | 63.6 W/kg ± 19.9 % (k=2) |
|                                                                         |                                 |                          |
| SAR averaged over 10 cm <sup>3</sup> (10 g) of Body TSL                 | condition                       |                          |
| SAR averaged over 10 cm <sup>3</sup> (10 g) of Body TSL<br>SAR measured | condition<br>100 mW input power | 2.38 W/kg                |

#### Body TSL parameters at 3500 MHz

|                                         | Temperature     | Permittivity | Conductivity     |
|-----------------------------------------|-----------------|--------------|------------------|
| Nominal Body TSL parameters             | 22.0 °C         | 51.3         | 3.31 mho/m       |
| Measured Body TSL parameters            | (22.0 ± 0.2) °C | 50.6 ± 6 %   | 3.33 mho/m ± 6 % |
| Body TSL temperature change during test | < 0.5 °C        |              |                  |

and a secold secol

#### SAR result with Body TSL at 3500 MHz

| SAR averaged over 1 cm <sup>3</sup> (1 g) of Body TSL                   | Condition                       |                          |
|-------------------------------------------------------------------------|---------------------------------|--------------------------|
| SAR measured                                                            | 100 mW input power              | 6.40 W/kg                |
| SAR for nominal Body TSL parameters                                     | normalized to 1W                | 63.7 W/kg ± 19.9 % (k=2) |
|                                                                         |                                 |                          |
| SAR averaged over 10 cm <sup>3</sup> (10 g) of Body TSL                 | condition                       |                          |
| SAR averaged over 10 cm <sup>3</sup> (10 g) of Body TSL<br>SAR measured | condition<br>100 mW input power | 2.37 W/kg                |

Certificate No: D3500V2-1016\_Jul20

Page 5 of 13





Body TSL parameters at 3600 MHz The following parameters and calculations were applied.

|                                         | Temperature     | Permittivity | Conductivity     |
|-----------------------------------------|-----------------|--------------|------------------|
| Nominal Body TSL parameters             | 22.0 °C         | 51.2         | 3.43 mho/m       |
| Measured Body TSL parameters            | (22.0 ± 0.2) °C | 50.4 ± 6 %   | 3.43 mho/m ± 6 % |
| Body TSL temperature change during test | < 0.5 °C        |              |                  |

#### SAR result with Body TSL at 3600 MHz

| SAR averaged over 1 cm <sup>3</sup> (1 g) of Body TSL                   | Condition                       |                          |
|-------------------------------------------------------------------------|---------------------------------|--------------------------|
| SAR measured                                                            | 100 mW input power              | 6.17 W/kg                |
| SAR for nominal Body TSL parameters                                     | normalized to 1W                | 61.5 W/kg ± 19.9 % (k=2) |
|                                                                         |                                 |                          |
| SAR averaged over 10 cm <sup>3</sup> (10 g) of Body TSL                 | condition                       |                          |
| SAR averaged over 10 cm <sup>3</sup> (10 g) of Body TSL<br>SAR measured | condition<br>100 mW input power | 2.28 W/kg                |

Certificate No: D3500V2-1016\_Jul20

Page 6 of 13





# Appendix (Additional assessments outside the scope of SCS 0108)

# Antenna Parameters with Head TSL at 3400 MHz

| 45.4 Ω - 8.2 jΩ |
|-----------------|
| - 20.1 dB       |
|                 |

# Antenna Parameters with Head TSL at 3500 MHz

| Impedance, transformed to feed point |                 |
|--------------------------------------|-----------------|
| Return Loss                          | 55.3 Ω - 2.8 jΩ |
| Herdin Loss                          | - 24.9 dB       |

# Antenna Parameters with Head TSL at 3600 MHz

| 59.2 Ω - 0.1 jΩ |
|-----------------|
| - 21.5 dB       |
|                 |

# Antenna Parameters with Body TSL at 3400 MHz

| Impedance, transformed to feed point |                 |
|--------------------------------------|-----------------|
| Return Loss                          | 46.2 Ω - 6.4 jΩ |
|                                      | - 22.2 dB       |

# Antenna Parameters with Body TSL at 3500 MHz

| Impedance, transformed to feed point |                 |
|--------------------------------------|-----------------|
| Return Loss                          | 54.1 Ω + 0.6 jΩ |
|                                      | - 28.0 dB       |

# Antenna Parameters with Body TSL at 3600 MHz

| Impedance, transformed to feed point |                 |
|--------------------------------------|-----------------|
| Return Loss                          | 60.2 Ω + 2.4 jΩ |
|                                      | - 20.4 dB       |

# General Antenna Parameters and Design

| Electrical Delay (one direction) |           |
|----------------------------------|-----------|
| (One direction)                  |           |
|                                  | 1.137 ns  |
|                                  | 1.167 113 |

After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured.

The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still No excessive force must be applied to the dipole arms in equation.

No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged.

## Additional EUT Data

Manufactured by

SPEAG

Certificate No: D3500V2-1016\_Jul20

Page 7 of 13





## DASY5 Validation Report for Head TSL

Date: 23.07.2020

Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole 3500 MHz; Type: D3500V2; Serial: D3500V2 - SN:1016

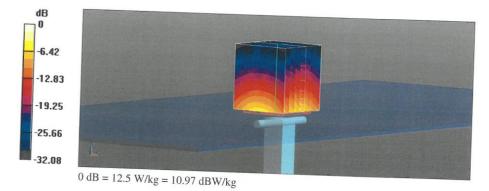
Communication System: UID 0 - CW; Frequency: 3500 MHz, Frequency: 3400 MHz, Frequency: 3600 MHz Medium parameters used: f = 3500 MHz;  $\sigma$  = 2.9 S/m;  $\varepsilon_r$  = 37.6;  $\rho$  = 1000 kg/m<sup>3</sup> Medium parameters used: f = 3400 MHz;  $\sigma = 2.82 \text{ S/m}$ ;  $\varepsilon_r = 37.7$ ;  $\rho = 1000 \text{ kg/m}^3$ , Medium parameters used: f = 3600 MHz;  $\sigma$  = 2.97 S/m;  $\epsilon_r$  = 37.5;  $\rho$  = 1000 kg/m<sup>3</sup> Phantom section: Flat Section Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)

DASY52 Configuration:

- Probe: EX3DV4 SN3503; ConvF(7.91, 7.91, 7.91) @ 3500 MHz, ConvF(7.91, 7.91, 7.91) @ 3400 MHz, ConvF(7.73, 7.73, 7.73) @ 3600 MHz; Calibrated: 31.12.2019
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn601; Calibrated: 27.12.2019
- Phantom: Flat Phantom 5.0 (front); Type: QD 000 P50 AA; Serial: 1001
- DASY52 52.10.4(1527); SEMCAD X 14.6.14(7483)

Dipole Calibration for Head Tissue/Pin=100 mW, d=10mm, f=3500MHz/Zoom Scan, dist=1.4mm (8x8x8)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm Reference Value = 71.33 V/m; Power Drift = -0.03 dB Peak SAR (extrapolated) = 18.1 W/kg SAR(1 g) = 6.62 W/kg; SAR(10 g) = 2.48 W/kg Smallest distance from peaks to all points 3 dB below = 8 mm Ratio of SAR at M2 to SAR at M1 = 74.8%Maximum value of SAR (measured) = 12.5 W/kg

Dipole Calibration for Head Tissue/Pin=100 mW, d=10mm, f=3400MHz/Zoom Scan, dist=1.4mm (8x8x8)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm Reference Value = 73.34 V/m; Power Drift = -0.03 dB Peak SAR (extrapolated) = 18.5 W/kg SAR(1 g) = 6.83 W/kg; SAR(10 g) = 2.54 W/kg Smallest distance from peaks to all points 3 dB below = 8 mm Ratio of SAR at M2 to SAR at M1 = 75.1% Maximum value of SAR (measured) = 12.9 W/kg


Certificate No: D3500V2-1016\_Jul20

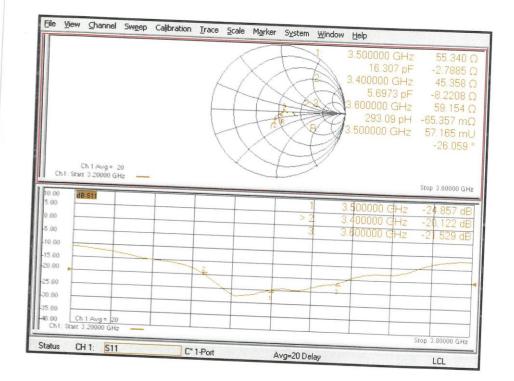
Page 8 of 13





Dipole Calibration for Head Tissue/Pin=100 mW, d=10mm, f=3600MHz/Zoom Scan, dist=1.4mm (8x8x8)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm Reference Value = 70.82 V/m; Power Drift = -0.03 dB Peak SAR (extrapolated) = 18.6 W/kg SAR(1 g) = 6.66 W/kg; SAR(10 g) = 2.47 W/kg Smallest distance from peaks to all points 3 dB below = 8 mm Ratio of SAR at M2 to SAR at M1 = 74.1% Maximum value of SAR (measured) = 12.7 W/kg




Certificate No: D3500V2-1016\_Jul20

Page 9 of 13





Impedance Measurement Plot for Head TSL



Certificate No: D3500V2-1016\_Jul20

Page 10 of 13





# DASY5 Validation Report for Body TSL

Date: 27.07.2020

Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole 3500 MHz; Type: D3500V2; Serial: D3500V2 - SN: 1016

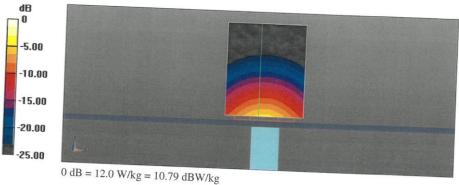
Communication System: UID 0 - CW; Frequency: 3500 MHz, Frequency: 3400 MHz, Frequency: 3600 MHz Medium parameters used: f = 3500 MHz;  $\sigma$  = 3.33 S/m;  $\varepsilon_r$  = 50.6;  $\rho$  = 1000 kg/m<sup>3</sup>, Medium parameters used: f = 3400 MHz;  $\sigma$  = 3.23 S/m;  $\varepsilon_r$  = 50.7;  $\rho$  = 1000 kg/m<sup>3</sup>, Medium parameters used: f = 3600 MHz;  $\sigma$  = 3.43 S/m;  $\varepsilon_r$  = 50.4;  $\rho$  = 1000 kg/m<sup>3</sup> Phantom section: Flat Section Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)

DASY52 Configuration:

- Probe: EX3DV4 SN3503; ConvF(7.46, 7.46, 7.46) @ 3500 MHz, ConvF(7.46, 7.46, 7.46) @ 3400 MHz, ConvF(7.31, 7.31, 7.31) @ 3600 MHz; Calibrated: 31.12.2019
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn601; Calibrated: 27.12.2019
- Phantom: Flat Phantom 5.0 (back); Type: QD 000 P50 AA; Serial: 1002
- DASY52 52.10.4(1527); SEMCAD X 14.6.14(7483)

Dipole Calibration for Body Tissue/Pin=100 mW, d=10mm, f=3500MHz/Zoom Scan , dist=1.4mm (8x8x8)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm Reference Value = 65.24 V/m; Power Drift = -0.07 dB Peak SAR (extrapolated) = 17.2 W/kg SAR(1 g) = 6.4 W/kg; SAR(10 g) = 2.37 W/kg Smallest distance from peaks to all points 3 dB below = 8 mm Ratio of SAR at M2 to SAR at M1 = 74.9% Maximum value of SAR (measured) = 12.0 W/kg

Dipole Calibration for Body Tissue/Pin=100 mW, d=10mm, f=3400MHz/Zoom Scan , dist=1.4mm (8x8x8)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm Reference Value = 65.85 V/m; Power Drift = -0.05 dB Peak SAR (extrapolated) = 17.0 W/kg SAR(1 g) = 6.4 W/kg; SAR(10 g) = 2.38 W/kg Smallest distance from peaks to all points 3 dB below = 8 mm Ratio of SAR at M2 to SAR at M1 = 75.3% Maximum value of SAR (measured) = 12.0 W/kg


Certificate No: D3500V2-1016\_Jul20

Page 11 of 13





Dipole Calibration for Body Tissue/Pin=100 mW, d=10mm, f=3600MHz/Zoom Scan, dist=1.4mm (8x8x8)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm Reference Value = 64.04 V/m; Power Drift = -0.07 dB Peak SAR (extrapolated) = 16.5 W/kg SAR(1 g) = 6.17 W/kg; SAR(10 g) = 2.28 W/kgSmallest distance from peaks to all points 3 dB below = 8 mm Ratio of SAR at M2 to SAR at M1 = 75.4%Maximum value of SAR (measured) = 11.6 W/kg



Certificate No: D3500V2-1016\_Jul20

Page 12 of 13





Impedance Measurement Plot for Body TSL Eile Yiew Channel Sweep Calibration Irace Scale Marker System Window Help 3.500000 GHz 54.076 Ω 27.897 pH 613.48 mΩ 3.400000 GHz 46.202 Ω 7.3048 pF -6.4083 Ω 3.600000 GHz 60.243 Ω 2.3921 Ω 105.75 pH 3.500000 GHz 8.2218° Ch 1 Awg = 20 Ch1: Start 3.20000 GHz Stop 3.80000 GHz dB S11 .00 500000 GHz 0.00 3.400000 GHz -22.241 dB -20.411 dB 5.00 3.600000 GHz 10.00 -15.00 20.00 -25.00 30.00 35.00 40.00 Ch 1 Awg = 20 Ch1: Start 3.20000 GHz Stop 3.80000 GHz Status CH 1: S11 C\* 1-Port Avg=20 Delay LCL

Certificate No: D3500V2-1016\_Jul20

Page 13 of 13





### **5G Dipole Calibration Certificate**

Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland



Schweizerischer Kalibrierdienst Service suisse d'étalonnage Servizio svizzero di taratura Swiss Calibration Service

Accreditation No.: SCS 0108

Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Client CTTL-BJ (Auden)

Certificate No: D5GHzV2-1060\_Jul20

S

С

S

|                                                                                                                                                                                             | ERTIFICATE                                                                                                              |                                                                                                                                                                                                                                                              | And a sub-                                                                                                                                                            |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Dbject                                                                                                                                                                                      | D5GHzV2 - SN:1                                                                                                          | 060                                                                                                                                                                                                                                                          |                                                                                                                                                                       |
| Calibration procedure(s)                                                                                                                                                                    | QA CAL-22.v5<br>Calibration Proce                                                                                       | dure for SAR Validation Sources                                                                                                                                                                                                                              | between 3-10 GHz                                                                                                                                                      |
| Calibration date:                                                                                                                                                                           | July 27, 2020                                                                                                           |                                                                                                                                                                                                                                                              |                                                                                                                                                                       |
| The measurements and the uncerta                                                                                                                                                            | ainties with confidence p<br>ed in the closed laborato                                                                  | onal standards, which realize the physical un robability are given on the following pages an<br>ry facility: environment temperature $(22 \pm 3)^{\circ}($                                                                                                   | d are part of the certificate.                                                                                                                                        |
| Primary Standards                                                                                                                                                                           | ID #                                                                                                                    | Cal Date (Certificate No.)                                                                                                                                                                                                                                   | Scheduled Calibration                                                                                                                                                 |
| Power meter NRP                                                                                                                                                                             | SN: 104778                                                                                                              | 01-Apr-20 (No. 217-03100/03101)                                                                                                                                                                                                                              | Apr-21                                                                                                                                                                |
| Power sensor NRP-Z91                                                                                                                                                                        | SN: 103244                                                                                                              | 01-Apr-20 (No. 217-03100)                                                                                                                                                                                                                                    | Apr-21                                                                                                                                                                |
| Power sensor NRP-Z91                                                                                                                                                                        | SN: 103245                                                                                                              | 01-Apr-20 (No. 217-03101)                                                                                                                                                                                                                                    | Apr-21                                                                                                                                                                |
| Reference 20 dB Attenuator                                                                                                                                                                  | SN: BH9394 (20k)                                                                                                        | 31-Mar-20 (No. 217-03106)                                                                                                                                                                                                                                    | Apr-21                                                                                                                                                                |
| vpe-N mismatch combination                                                                                                                                                                  | SN: 310982 / 06327                                                                                                      | 31-Mar-20 (No. 217-03104)                                                                                                                                                                                                                                    | Apr-21                                                                                                                                                                |
|                                                                                                                                                                                             | 014. 010002 / 0002/                                                                                                     |                                                                                                                                                                                                                                                              |                                                                                                                                                                       |
| , , , , , , , , , , , , , , , , , , ,                                                                                                                                                       | SN: 3503                                                                                                                | 31-Dec-19 (No. EX3-3503 Dec19)                                                                                                                                                                                                                               |                                                                                                                                                                       |
| Reference Probe EX3DV4                                                                                                                                                                      | SN: 3503<br>SN: 601                                                                                                     | 31-Dec-19 (No. EX3-3503_Dec19)<br>27-Dec-19 (No. DAE4-601_Dec19)                                                                                                                                                                                             | Dec-20<br>Dec-20                                                                                                                                                      |
| Reference Probe EX3DV4<br>DAE4                                                                                                                                                              | SN: 601                                                                                                                 | 27-Dec-19 (No. DAE4-601_Dec19)                                                                                                                                                                                                                               | Dec-20<br>Dec-20                                                                                                                                                      |
| Afeference Probe EX3DV4<br>DAE4<br>Secondary Standards                                                                                                                                      | SN: 601                                                                                                                 | 27-Dec-19 (No. DAE4-601_Dec19)<br>Check Date (in house)                                                                                                                                                                                                      | Dec-20<br>Dec-20<br>Scheduled Check                                                                                                                                   |
| Reference Probe EX3DV4<br>DAE4<br>Secondary Standards<br>Power meter E4419B                                                                                                                 | SN: 601<br>ID #<br>SN: GB39512475                                                                                       | 27-Dec-19 (No. DAE4-601_Dec19)<br>Check Date (in house)<br>30-Oct-14 (in house check Feb-19)                                                                                                                                                                 | Dec-20<br>Dec-20<br>Scheduled Check<br>In house check: Oct-20                                                                                                         |
| Peference Probe EX3DV4<br>DAE4<br>Secondary Standards<br>Power meter E4419B<br>Power sensor HP 8481A                                                                                        | SN: 601<br>ID #<br>SN: GB39512475<br>SN: US37292783                                                                     | 27-Dec-19 (No. DAE4-601_Dec19)<br>Check Date (in house)<br>30-Oct-14 (in house check Feb-19)<br>07-Oct-15 (in house check Oct-18)                                                                                                                            | Dec-20<br>Dec-20<br>Scheduled Check<br>In house check: Oct-20<br>In house check: Oct-20                                                                               |
| Reference Probe EX3DV4<br>DAE4<br>Secondary Standards<br>Power meter E4419B<br>Power sensor HP 8481A<br>Power sensor HP 8481A                                                               | SN: 601<br>ID #<br>SN: GB39512475<br>SN: US37292783<br>SN: MY41092317                                                   | 27-Dec-19 (No. DAE4-601_Dec19)<br>Check Date (in house)<br>30-Oct-14 (in house check Feb-19)<br>07-Oct-15 (in house check Oct-18)<br>07-Oct-15 (in house check Oct-18)                                                                                       | Dec-20<br>Dec-20<br>Scheduled Check<br>In house check: Oct-20<br>In house check: Oct-20<br>In house check: Oct-20                                                     |
| Adference Probe EX3DV4<br>DAE4<br>Secondary Standards<br>Power meter E4419B<br>Power sensor HP 8481A<br>Power sensor HP 8481A<br>RF generator R&S SMT-06                                    | SN: 601<br>ID #<br>SN: GB39512475<br>SN: US37292783                                                                     | 27-Dec-19 (No. DAE4-601_Dec19)<br>Check Date (in house)<br>30-Oct-14 (in house check Feb-19)<br>07-Oct-15 (in house check Oct-18)                                                                                                                            | Dec-20<br>Dec-20<br>Scheduled Check<br>In house check: Oct-20<br>In house check: Oct-20                                                                               |
| Reference Probe EX3DV4<br>DAE4<br>Secondary Standards<br>Power meter E4419B<br>Power sensor HP 8481A<br>Power sensor HP 8481A<br>RF generator R&S SMT-06                                    | SN: 601<br>ID #<br>SN: GB39512475<br>SN: US37292783<br>SN: US37292783<br>SN: MY41092317<br>SN: 100972<br>SN: US41080477 | 27-Dec-19 (No. DAE4-601_Dec19)<br>Check Date (in house)<br>30-Oct-14 (in house check Feb-19)<br>07-Oct-15 (in house check Oct-18)<br>07-Oct-15 (in house check Oct-18)<br>15-Jun-15 (in house check Oct-18)<br>31-Mar-14 (in house check Oct-19)             | Dec-20<br>Dec-20<br>Scheduled Check<br>In house check: Oct-20<br>In house check: Oct-20<br>In house check: Oct-20<br>In house check: Oct-20<br>In house check: Oct-20 |
| Reference Probe EX3DV4<br>DAE4<br>Secondary Standards<br>Power meter E4419B<br>Power sensor HP 8481A<br>Power sensor HP 8481A<br>RF generator R&S SMT-06<br>Network Analyzer Agilent E8358A | SN: 601<br>ID #<br>SN: GB39512475<br>SN: US37292783<br>SN: WY41092317<br>SN: 100972<br>SN: US41080477<br>Name           | 27-Dec-19 (No. DAE4-601_Dec19)<br>Check Date (in house)<br>30-Oct-14 (in house check Feb-19)<br>07-Oct-15 (in house check Oct-18)<br>07-Oct-15 (in house check Oct-18)<br>15-Jun-15 (in house check Oct-18)<br>31-Mar-14 (in house check Oct-19)<br>Function | Dec-20<br>Dec-20<br>Scheduled Check<br>In house check: Oct-20<br>In house check: Oct-20<br>In house check: Oct-20<br>In house check: Oct-20                           |
| Reference Probe EX3DV4<br>DAE4<br>Secondary Standards<br>Power meter E4419B<br>Power sensor HP 8481A<br>Power sensor HP 8481A<br>RF generator R&S SMT-06<br>Network Analyzer Agilent E8358A | SN: 601<br>ID #<br>SN: GB39512475<br>SN: US37292783<br>SN: US37292783<br>SN: MY41092317<br>SN: 100972<br>SN: US41080477 | 27-Dec-19 (No. DAE4-601_Dec19)<br>Check Date (in house)<br>30-Oct-14 (in house check Feb-19)<br>07-Oct-15 (in house check Oct-18)<br>07-Oct-15 (in house check Oct-18)<br>15-Jun-15 (in house check Oct-18)<br>31-Mar-14 (in house check Oct-19)             | Dec-20<br>Dec-20<br>Scheduled Check<br>In house check: Oct-20<br>In house check: Oct-20<br>In house check: Oct-20<br>In house check: Oct-20<br>In house check: Oct-20 |
| Approved by:                                                                                                                                                                                | SN: 601<br>ID #<br>SN: GB39512475<br>SN: US37292783<br>SN: WY41092317<br>SN: 100972<br>SN: US41080477<br>Name           | 27-Dec-19 (No. DAE4-601_Dec19)<br>Check Date (in house)<br>30-Oct-14 (in house check Feb-19)<br>07-Oct-15 (in house check Oct-18)<br>07-Oct-15 (in house check Oct-18)<br>15-Jun-15 (in house check Oct-18)<br>31-Mar-14 (in house check Oct-19)<br>Function | Dec-20<br>Dec-20<br>Scheduled Check<br>In house check: Oct-20<br>In house check: Oct-20<br>In house check: Oct-20<br>In house check: Oct-20<br>In house check: Oct-20 |

Certificate No: D5GHzV2-1060\_Jul20

Page 1 of 23





#### Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland



Schweizerischer Kalibrierdienst S Service suisse d'étalonnage С Servizio svizzero di taratura Swiss Calibration Service

Accreditation No.: SCS 0108

S

Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

#### Glossary

| anoodany. |                                 |
|-----------|---------------------------------|
| TSL       | tissue simulating liquid        |
| ConvF     | sensitivity in TSL / NORM x,y,z |
| N/A       | not applicable or not measured  |
|           |                                 |

#### Calibration is Performed According to the Following Standards:

- a) IEEE Std 1528-2013, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", June 2013
- b) IEC 62209-1, "Measurement procedure for the assessment of Specific Absorption Rate (SAR) from hand-held and body-mounted devices used next to the ear (frequency range of 300 MHz to 6 GHz)", July 2016
- c) IEC 62209-2, "Procedure to determine the Specific Absorption Rate (SAR) for wireless communication devices used in close proximity to the human body (frequency range of 30 MHz to 6 GHz)", March 2010
- d) KDB 865664, "SAR Measurement Requirements for 100 MHz to 6 GHz"

#### Additional Documentation:

e) DASY4/5 System Handbook

#### Methods Applied and Interpretation of Parameters:

- Measurement Conditions: Further details are available from the Validation Report at the end of the certificate. All figures stated in the certificate are valid at the frequency indicated.
- Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed point exactly below the center marking of the flat phantom section, with the arms oriented parallel to the body axis.
- Feed Point Impedance and Return Loss: These parameters are measured with the dipole positioned under the liquid filled phantom. The impedance stated is transformed from the measurement at the SMA connector to the feed point. The Return Loss ensures low reflected power. No uncertainty required.
- Electrical Delay: One-way delay between the SMA connector and the antenna feed point. No uncertainty required.
- SAR measured: SAR measured at the stated antenna input power.
- SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector.
- SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result.

The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%.

Certificate No: D5GHzV2-1060\_Jul20

Page 2 of 23





#### **Measurement Conditions**

DASY system configuration, as far as not given on page 1.

| DASY Version                 | DASY5                                                                                                                                    | V52.10.4                         |
|------------------------------|------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------|
| Extrapolation                | Advanced Extrapolation                                                                                                                   |                                  |
| Phantom                      | Modular Flat Phantom V5.0                                                                                                                |                                  |
| Distance Dipole Center - TSL | 10 mm                                                                                                                                    | with Spacer                      |
| Zoom Scan Resolution         | dx, dy = 4.0 mm, dz = 1.4 mm                                                                                                             | Graded Ratio = 1.4 (Z direction) |
| Frequency                    | 5200 MHz ± 1 MHz<br>5250 MHz ± 1 MHz<br>5300 MHz ± 1 MHz<br>5500 MHz ± 1 MHz<br>5600 MHz ± 1 MHz<br>5750 MHz ± 1 MHz<br>5800 MHz ± 1 MHz |                                  |

#### Head TSL parameters at 5200 MHz

The following parameters and calculations were applied.

|                                         | Temperature     | Permittivity | Conductivity     |
|-----------------------------------------|-----------------|--------------|------------------|
| Nominal Head TSL parameters             | 22.0 °C         | 36.0         | 4.66 mho/m       |
| Measured Head TSL parameters            | (22.0 ± 0.2) °C | 35.4 ± 6 %   | 4.47 mho/m ± 6 % |
| Head TSL temperature change during test | < 0.5 °C        |              |                  |

#### SAR result with Head TSL at 5200 MHz

| SAR averaged over 1 cm <sup>3</sup> (1 g) of Head TSL                   | Condition                       |                          |
|-------------------------------------------------------------------------|---------------------------------|--------------------------|
| SAR measured                                                            | 100 mW input power              | 7.94 W/kg                |
| SAR for nominal Head TSL parameters                                     | normalized to 1W                | 79.1 W/kg ± 19.9 % (k=2) |
|                                                                         |                                 |                          |
| SAR averaged over 10 cm <sup>3</sup> (10 g) of Head TSL                 | condition                       |                          |
| SAR averaged over 10 cm <sup>3</sup> (10 g) of Head TSL<br>SAR measured | condition<br>100 mW input power | 2.26 W/kg                |

Certificate No: D5GHzV2-1060\_Jul20

Page 3 of 23





#### Head TSL parameters at 5250 MHz

The following parameters and calculations were applied.

|                                         | Temperature     | Permittivity | Conductivity     |
|-----------------------------------------|-----------------|--------------|------------------|
| Nominal Head TSL parameters             | 22.0 °C         | 35.9         | 4.71 mho/m       |
| Measured Head TSL parameters            | (22.0 ± 0.2) °C | 35.4 ± 6 %   | 4.52 mho/m ± 6 % |
| Head TSL temperature change during test | < 0.5 °C        |              |                  |

#### SAR result with Head TSL at 5250 MHz

| SAR averaged over 1 cm <sup>3</sup> (1 g) of Head TSL                   | Condition                       |                          |
|-------------------------------------------------------------------------|---------------------------------|--------------------------|
| SAR measured                                                            | 100 mW input power              | 8.08 W/kg                |
| SAR for nominal Head TSL parameters                                     | normalized to 1W                | 80.5 W/kg ± 19.9 % (k=2) |
|                                                                         |                                 |                          |
| SAR averaged over 10 cm <sup>3</sup> (10 g) of Head TSL                 | condition                       |                          |
| SAR averaged over 10 cm <sup>3</sup> (10 g) of Head TSL<br>SAR measured | condition<br>100 mW input power | 2.30 W/kg                |

#### Head TSL parameters at 5300 MHz

The following parameters and calculations were applied.

|                                         | Temperature     | Permittivity | Conductivity     |
|-----------------------------------------|-----------------|--------------|------------------|
| Nominal Head TSL parameters             | 22.0 °C         | 35.9         | 4.76 mho/m       |
| Measured Head TSL parameters            | (22.0 ± 0.2) °C | 35.3 ± 6 %   | 4.57 mho/m ± 6 % |
| Head TSL temperature change during test | < 0.5 °C        |              |                  |

#### SAR result with Head TSL at 5300 MHz

| SAR averaged over 1 cm <sup>3</sup> (1 g) of Head TSL                   | Condition                       |                          |
|-------------------------------------------------------------------------|---------------------------------|--------------------------|
| SAR measured                                                            | 100 mW input power              | 8.22 W/kg                |
| SAR for nominal Head TSL parameters                                     | normalized to 1W                | 81.8 W/kg ± 19.9 % (k=2) |
|                                                                         |                                 |                          |
| SAR averaged over 10 cm <sup>3</sup> (10 g) of Head TSL                 | condition                       |                          |
| SAR averaged over 10 cm <sup>3</sup> (10 g) of Head TSL<br>SAR measured | condition<br>100 mW input power | 2.33 W/kg                |

Certificate No: D5GHzV2-1060\_Jul20

Page 4 of 23





#### Head TSL parameters at 5500 MHz

|                                         | Temperature     | Permittivity | Conductivity     |
|-----------------------------------------|-----------------|--------------|------------------|
| Nominal Head TSL parameters             | 22.0 °C         | 35.6         | 4.96 mho/m       |
| Measured Head TSL parameters            | (22.0 ± 0.2) °C | 35.0 ± 6 %   | 4.77 mho/m ± 6 % |
| Head TSL temperature change during test | < 0.5 °C        |              |                  |

#### SAR result with Head TSL at 5500 MHz

| SAR averaged over 1 cm <sup>3</sup> (1 g) of Head TSL                   | Condition                       |                          |
|-------------------------------------------------------------------------|---------------------------------|--------------------------|
| SAR measured                                                            | 100 mW input power              | 8.66 W/kg                |
| SAR for nominal Head TSL parameters                                     | normalized to 1W                | 86.2 W/kg ± 19.9 % (k=2) |
|                                                                         |                                 |                          |
| SAD every set aver 10 cm <sup>3</sup> (10 c) of Hood TSI                | condition                       |                          |
| SAR averaged over 10 cm <sup>3</sup> (10 g) of Head TSL                 | condition                       | 0.40 W/kg                |
| SAR averaged over 10 cm <sup>3</sup> (10 g) of Head TSL<br>SAR measured | condition<br>100 mW input power | 2.42 W/kg                |

Head TSL parameters at 5600 MHz The following parameters and calculations were applied.

|                                         | Temperature     | Permittivity | Conductivity     |
|-----------------------------------------|-----------------|--------------|------------------|
| Nominal Head TSL parameters             | 22.0 °C         | 35.5         | 5.07 mho/m       |
| Measured Head TSL parameters            | (22.0 ± 0.2) °C | 34.9 ± 6 %   | 4.88 mho/m ± 6 % |
| Head TSL temperature change during test | < 0.5 °C        |              |                  |

#### SAR result with Head TSL at 5600 MHz

| SAR averaged over 1 cm <sup>3</sup> (1 g) of Head TSL   | Condition          |                          |
|---------------------------------------------------------|--------------------|--------------------------|
| SAR measured                                            | 100 mW input power | 8.37 W/kg                |
| SAR for nominal Head TSL parameters                     | normalized to 1W   | 83.3 W/kg ± 19.9 % (k=2) |
|                                                         |                    |                          |
| SAR averaged over 10 cm <sup>3</sup> (10 g) of Head TSL | condition          |                          |
|                                                         |                    | 0.0714//                 |

| SAR measured                        | 100 mW input power | 2.37 W/kg                |
|-------------------------------------|--------------------|--------------------------|
| SAR for nominal Head TSL parameters | normalized to 1W   | 23.6 W/kg ± 19.5 % (k=2) |

Certificate No: D5GHzV2-1060\_Jul20

Page 5 of 23





#### Head TSL parameters at 5750 MHz

|                                         | Temperature     | Permittivity | Conductivity     |
|-----------------------------------------|-----------------|--------------|------------------|
| Nominal Head TSL parameters             | 22.0 °C         | 35.4         | 5.22 mho/m       |
| Measured Head TSL parameters            | (22.0 ± 0.2) °C | 34.7 ± 6 %   | 5.03 mho/m ± 6 % |
| Head TSL temperature change during test | < 0.5 °C        |              |                  |

### SAR result with Head TSL at 5750 MHz

| SAR averaged over 1 cm <sup>3</sup> (1 g) of Head TSL                   | Condition                       |                          |
|-------------------------------------------------------------------------|---------------------------------|--------------------------|
| SAR measured                                                            | 100 mW input power              | 8.09 W/kg                |
| SAR for nominal Head TSL parameters                                     | normalized to 1W                | 80.4 W/kg ± 19.9 % (k=2) |
|                                                                         |                                 |                          |
|                                                                         | condition                       |                          |
| SAR averaged over 10 cm <sup>3</sup> (10 g) of Head TSL<br>SAR measured | condition<br>100 mW input power | 2.29 W/kg                |

#### Head TSL parameters at 5800 MHz

The following parameters and calculations were applied.

|                                         | Temperature     | Permittivity | Conductivity     |
|-----------------------------------------|-----------------|--------------|------------------|
| Nominal Head TSL parameters             | 22.0 °C         | 35.3         | 5.27 mho/m       |
| Measured Head TSL parameters            | (22.0 ± 0.2) °C | 34.6 ± 6 %   | 5.09 mho/m ± 6 % |
| Head TSL temperature change during test | < 0.5 °C        |              |                  |

## SAR result with Head TSL at 5800 MHz

| SAR averaged over 1 cm <sup>3</sup> (1 g) of Head TSL | Condition          |                          |
|-------------------------------------------------------|--------------------|--------------------------|
| SAR measured                                          | 100 mW input power | 8.16 W/kg                |
| SAR for nominal Head TSL parameters                   | normalized to 1W   | 81.1 W/kg ± 19.9 % (k=2) |

| SAR averaged over 10 cm <sup>3</sup> (10 g) of Head TSL | condition          |                          |
|---------------------------------------------------------|--------------------|--------------------------|
| SAR measured                                            | 100 mW input power | 2.28 W/kg                |
| SAR for nominal Head TSL parameters                     | normalized to 1W   | 22.7 W/kg ± 19.5 % (k=2) |

Certificate No: D5GHzV2-1060\_Jul20

Page 6 of 23





#### Body TSL parameters at 5200 MHz

|                                         | Temperature     | Permittivity | Conductivity     |
|-----------------------------------------|-----------------|--------------|------------------|
| Nominal Body TSL parameters             | 22.0 °C         | 49.0         | 5.30 mho/m       |
| Measured Body TSL parameters            | (22.0 ± 0.2) °C | 47.8 ± 6 %   | 5.46 mho/m ± 6 % |
| Body TSL temperature change during test | < 0.5 °C        |              |                  |

#### SAR result with Body TSL at 5200 MHz

| SAR averaged over 1 cm <sup>3</sup> (1 g) of Body TSL   | Condition                       |                          |
|---------------------------------------------------------|---------------------------------|--------------------------|
| SAR measured                                            | 100 mW input power              | 7.30 W/kg                |
| SAR for nominal Body TSL parameters                     | normalized to 1W                | 72.7 W/kg ± 19.9 % (k=2) |
|                                                         |                                 |                          |
| SAR averaged over 10 cm <sup>3</sup> (10 g) of Body TSL | condition                       |                          |
|                                                         | condition<br>100 mW input power | 2.04 W/kg                |

Body TSL parameters at 5250 MHz The following parameters and calculations were applied.

| 51                                      | Temperature     | Permittivity | Conductivity     |
|-----------------------------------------|-----------------|--------------|------------------|
| Nominal Body TSL parameters             | 22.0 °C         | 48.9         | 5.36 mho/m       |
| Measured Body TSL parameters            | (22.0 ± 0.2) °C | 47.7 ± 6 %   | 5.53 mho/m ± 6 % |
| Body TSL temperature change during test | < 0.5 °C        |              |                  |

#### SAR result with Body TSL at 5250 MHz

| SAR averaged over 1 cm <sup>3</sup> (1 g) of Body TSL | Condition          |                          |
|-------------------------------------------------------|--------------------|--------------------------|
| SAR measured                                          | 100 mW input power | 7.45 W/kg                |
| SAR for nominal Body TSL parameters                   | normalized to 1W   | 74.2 W/kg ± 19.9 % (k=2) |

| SAR averaged over 10 cm <sup>3</sup> (10 g) of Body TSL | condition          |                          |
|---------------------------------------------------------|--------------------|--------------------------|
| SAR measured                                            | 100 mW input power | 2.09 W/kg                |
| SAR for nominal Body TSL parameters                     | normalized to 1W   | 20.8 W/kg ± 19.5 % (k=2) |

Certificate No: D5GHzV2-1060\_Jul20

Page 7 of 23





# Body TSL parameters at 5300 MHz

|                                         | Temperature     | Permittivity | Conductivity     |
|-----------------------------------------|-----------------|--------------|------------------|
| Nominal Body TSL parameters             | 22.0 °C         | 48.9         | 5.42 mho/m       |
| Measured Body TSL parameters            | (22.0 ± 0.2) °C | 47.6 ± 6 %   | 5.60 mho/m ± 6 % |
| Body TSL temperature change during test | < 0.5 °C        |              |                  |

#### SAR result with Body TSL at 5300 MHz

| SAR averaged over 1 cm <sup>3</sup> (1 g) of Body TSL                   | Condition                       |                          |
|-------------------------------------------------------------------------|---------------------------------|--------------------------|
| SAR measured                                                            | 100 mW input power              | 7.36 W/kg                |
| SAR for nominal Body TSL parameters                                     | normalized to 1W                | 73.3 W/kg ± 19.9 % (k=2) |
|                                                                         |                                 |                          |
| 24.D 1 10 3 (10 ) (D 1 TOI                                              | a a se allal a se               |                          |
| SAR averaged over 10 cm <sup>3</sup> (10 g) of Body TSL                 | condition                       |                          |
| SAR averaged over 10 cm <sup>3</sup> (10 g) of Body TSL<br>SAR measured | condition<br>100 mW input power | 2.06 W/kg                |

#### Body TSL parameters at 5500 MHz

| The following parameters at 5500 MHZ    | ed.             |              |                  |
|-----------------------------------------|-----------------|--------------|------------------|
|                                         | Temperature     | Permittivity | Conductivity     |
| Nominal Body TSL parameters             | 22.0 °C         | 48.6         | 5.65 mho/m       |
| Measured Body TSL parameters            | (22.0 ± 0.2) °C | 47.2 ± 6 %   | 5.87 mho/m ± 6 % |
| Body TSL temperature change during test | < 0.5 °C        |              |                  |

## SAR result with Body TSL at 5500 MHz

| SAR averaged over 1 cm <sup>3</sup> (1 g) of Body TSL                   | Condition                       |                          |
|-------------------------------------------------------------------------|---------------------------------|--------------------------|
| SAR measured                                                            | 100 mW input power              | 7.86 W/kg                |
| SAR for nominal Body TSL parameters                                     | normalized to 1W                | 78.3 W/kg ± 19.9 % (k=2) |
|                                                                         |                                 |                          |
|                                                                         | andition                        |                          |
| SAR averaged over 10 cm <sup>3</sup> (10 g) of Body TSL                 | condition                       |                          |
| SAR averaged over 10 cm <sup>3</sup> (10 g) of Body TSL<br>SAR measured | condition<br>100 mW input power | 2.17 W/kg                |

Certificate No: D5GHzV2-1060\_Jul20

Page 8 of 23





#### Body TSL parameters at 5600 MHz

|                                         | Temperature     | Permittivity | Conductivity     |
|-----------------------------------------|-----------------|--------------|------------------|
| Nominal Body TSL parameters             | 22.0 °C         | 48.5         | 5.77 mho/m       |
| Measured Body TSL parameters            | (22.0 ± 0.2) °C | 47.0 ± 6 %   | 6.01 mho/m ± 6 % |
| Body TSL temperature change during test | < 0.5 °C        |              |                  |

### SAR result with Body TSL at 5600 MHz

| SAR averaged over 1 cm <sup>3</sup> (1 g) of Body TSL                   | Condition                       |                          |
|-------------------------------------------------------------------------|---------------------------------|--------------------------|
| SAR measured                                                            | 100 mW input power              | 7.72 W/kg                |
| SAR for nominal Body TSL parameters                                     | normalized to 1W                | 76.8 W/kg ± 19.9 % (k=2) |
|                                                                         |                                 |                          |
| SAR averaged over 10 cm <sup>3</sup> (10 g) of Body TSL                 | condition                       |                          |
| SAR averaged over 10 cm <sup>3</sup> (10 g) of Body TSL<br>SAR measured | condition<br>100 mW input power | 2.15 W/kg                |

Body TSL parameters at 5750 MHz The following parameters and calculations were applied.

| <u>.</u>                                | Temperature     | Permittivity | Conductivity     |
|-----------------------------------------|-----------------|--------------|------------------|
| Nominal Body TSL parameters             | 22.0 °C         | 48.3         | 5.94 mho/m       |
| Measured Body TSL parameters            | (22.0 ± 0.2) °C | 46.8 ± 6 %   | 6.22 mho/m ± 6 % |
| Body TSL temperature change during test | < 0.5 °C        |              |                  |

#### SAR result with Body TSL at 5750 MHz

| SAR averaged over 1 cm <sup>3</sup> (1 g) of Body TSL | Condition          |                          |
|-------------------------------------------------------|--------------------|--------------------------|
| SAR measured                                          | 100 mW input power | 7.61 W/kg                |
| SAR for nominal Body TSL parameters                   | normalized to 1W   | 75.7 W/kg ± 19.9 % (k=2) |

| SAR averaged over 10 cm <sup>3</sup> (10 g) of Body TSL | condition          |                          |
|---------------------------------------------------------|--------------------|--------------------------|
| SAR measured                                            | 100 mW input power | 2.11 W/kg                |
| SAR for nominal Body TSL parameters                     | normalized to 1W   | 21.0 W/kg ± 19.5 % (k=2) |

Certificate No: D5GHzV2-1060\_Jul20

Page 9 of 23





# Body TSL parameters at 5800 MHz

|                                         | Temperature     | Permittivity | Conductivity     |
|-----------------------------------------|-----------------|--------------|------------------|
| Nominal Body TSL parameters             | 22.0 °C         | 48.2         | 6.00 mho/m       |
| Measured Body TSL parameters            | (22.0 ± 0.2) °C | 46.7 ± 6 %   | 6.29 mho/m ± 6 % |
| Body TSL temperature change during test | < 0.5 °C        |              |                  |

#### SAR result with Body TSL at 5800 MHz

| SAR averaged over 1 cm <sup>3</sup> (1 g) of Body TSL                   | Condition                       |                          |
|-------------------------------------------------------------------------|---------------------------------|--------------------------|
| SAR measured                                                            | 100 mW input power              | 7.42 W/kg                |
| SAR for nominal Body TSL parameters                                     | normalized to 1W                | 73.9 W/kg ± 19.9 % (k=2) |
|                                                                         |                                 |                          |
| SAR averaged over 10 cm <sup>3</sup> (10 g) of Body TSL                 | condition                       |                          |
| SAR averaged over 10 cm <sup>3</sup> (10 g) of Body TSL<br>SAR measured | condition<br>100 mW input power | 2.04 W/kg                |

Certificate No: D5GHzV2-1060\_Jul20

Page 10 of 23





#### Appendix (Additional assessments outside the scope of SCS 0108)

#### Antenna Parameters with Head TSL at 5200 MHz

| Impedance, transformed to feed point | 48.8 Ω - 6.5 jΩ |  |
|--------------------------------------|-----------------|--|
| Return Loss                          | - 23.6 dB       |  |

#### Antenna Parameters with Head TSL at 5250 MHz

| Impedance, transformed to feed point | 48.0 Ω - 4.6 jΩ |  |
|--------------------------------------|-----------------|--|
| Return Loss                          | - 25.7 dB       |  |

#### Antenna Parameters with Head TSL at 5300 MHz

| Impedance, transformed to feed point | 47.2 Ω - 3.5 jΩ |  |
|--------------------------------------|-----------------|--|
| Return Loss                          | - 26.7 dB       |  |

#### Antenna Parameters with Head TSL at 5500 MHz

| Impedance, transformed to feed point | 49.8 Ω - 3.6 jΩ |  |
|--------------------------------------|-----------------|--|
| Return Loss                          | - 28.8 dB       |  |

#### Antenna Parameters with Head TSL at 5600 MHz

| Impedance, transformed to feed point | 54.4 Ω + 0.4 jΩ |
|--------------------------------------|-----------------|
| Return Loss                          | - 27.5 dB       |

#### Antenna Parameters with Head TSL at 5750 MHz

| Impedance, transformed to feed point | 52.1 Ω - 1.3 jΩ |  |
|--------------------------------------|-----------------|--|
| Return Loss                          | - 32.3 dB       |  |

#### Antenna Parameters with Head TSL at 5800 MHz

| Impedance, transformed to feed point | 51.2 Ω - 3.1 jΩ |
|--------------------------------------|-----------------|
| Return Loss                          | - 29.6 dB       |

Certificate No: D5GHzV2-1060\_Jul20

Page 11 of 23





#### Antenna Parameters with Body TSL at 5200 MHz

| Impedance, transformed to feed point | 48.4 Ω - 5.5 jΩ |  |
|--------------------------------------|-----------------|--|
| Return Loss                          | - 24.6 dB       |  |

#### Antenna Parameters with Body TSL at 5250 MHz

| Impedance, transformed to feed point | 47.2 Ω - 3.2 jΩ |  |
|--------------------------------------|-----------------|--|
| Return Loss                          | - 27.1 dB       |  |

#### Antenna Parameters with Body TSL at 5300 MHz

| Impedance, transformed to feed point | 47.0 Ω - 2.0 jΩ |
|--------------------------------------|-----------------|
| Return Loss                          | - 28.5 dB       |

#### Antenna Parameters with Body TSL at 5500 MHz

| Impedance, transformed to feed point | 50.6 Ω - 2.4 jΩ |  |
|--------------------------------------|-----------------|--|
| Return Loss                          | - 32.3 dB       |  |

Certificate No: D5GHzV2-1060\_Jul20

Page 12 of 23





#### Antenna Parameters with Body TSL at 5600 MHz

| Impedance, transformed to feed point | 54.5 Ω + 0.4 jΩ |  |
|--------------------------------------|-----------------|--|
| Return Loss                          | - 27.3 dB       |  |

#### Antenna Parameters with Body TSL at 5750 MHz

| Impedance, transformed to feed point | 52.5 Ω - 0.8 jΩ |
|--------------------------------------|-----------------|
| Return Loss                          | - 32.0 dB       |

#### Antenna Parameters with Body TSL at 5800 MHz

| Impedance, transformed to feed point | 52.1 Ω - 2.4 jΩ |  |
|--------------------------------------|-----------------|--|
| Return Loss                          | - 30.0 dB       |  |

#### General Antenna Parameters and Design

| Electrical Delay (one direction) | 1.200 ns |
|----------------------------------|----------|
| Electrical Belay (one another)   |          |

After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured.

The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard.

No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged.

#### Additional EUT Data

| Manufactured by | SPEAG |
|-----------------|-------|

Certificate No: D5GHzV2-1060\_Jul20

Page 13 of 23