

Glossary:

Glossary.	
TSL	tissue simulating liquid
NORMx,y,z	sensitivity in free space
ConvF	sensitivity in TSL / NORMx,y,z
DCP	diode compression point
CF	crest factor (1/duty_cycle) of the RF signal
A,B,C,D	modulation dependent linearization parameters
Polarization Φ	Φ rotation around probe axis
Polarization θ	θ rotation around an axis that is in the plane normal to probe axis (at measurement center), i
	θ=0 is normal to probe axis

Connector Angle information used in DASY system to align probe sensor X to the robot coordinate system **Calibration is Performed According to the Following Standards:**

- a) IEEE Std 1528-2013, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", June 2013
- b) IEC 62209-1, "Measurement procedure for the assessment of Specific Absorption Rate (SAR) from hand-held and body-mounted devices used next to the ear (frequency range of 300 MHz to 6 GHz)", July 2016
- c) IEC 62209-2, "Procedure to determine the Specific Absorption Rate (SAR) for wireless communication devices used in close proximity to the human body (frequency range of 30 MHz to 6 GHz)", March 2010

d) KDB 865664, "SAR Measurement Requirements for 100 MHz to 6 GHz"

Methods Applied and Interpretation of Parameters:

- NORMx, y, z: Assessed for E-field polarization θ=0 (f≤900MHz in TEM-cell; f>1800MHz: waveguide). NORMx, y, z are only intermediate values, i.e., the uncertainties of NORMx, y, z does not effect the E²-field uncertainty inside TSL (see below ConvF).
- NORM(f)x, y,z = NORMx, y,z* frequency_response (see Frequency Response Chart). This
 linearization is implemented in DASY4 software versions later than 4.2. The uncertainty of the
 frequency response is included in the stated uncertainty of ConvF.
- DCPx, y, z: DCP are numerical linearization parameters assessed based on the data of power sweep (no uncertainty required). DCP does not depend on frequency nor media.
- PAR: PAR is the Peak to Average Ratio that is not calibrated but determined based on the signal characteristics.
- Ax, y, z; Bx, y, z; Cx, y, z; VRx, y, z:A,B,C are numerical linearization parameters assessed based on the data of power sweep for specific modulation signal. The parameters do not depend on frequency nor media. VR is the maximum calibration range expressed in RMS voltage across the diode.
- ConvF and Boundary Effect Parameters: Assessed in flat phantom using E-field (or Temperature Transfer Standard for f≤800MHz) and inside waveguide using analytical field distributions based on power measurements for f >800MHz. The same setups are used for assessment of the parameters applied for boundary compensation (alpha, depth) of which typical uncertainty valued are given. These parameters are used in DASY4 software to improve probe accuracy close to the boundary. The sensitivity in TSL corresponds to NORMx,y,z* ConvF whereby the uncertainty corresponds to that given for ConvF. A frequency dependent ConvF is used in DASY version 4.4 and higher which allows extending the validity from±50MHz to±100MHz.
- Spherical isotropy (3D deviation from isotropy): in a field of low gradients realized using a flat
 phantom exposed by a patch antenna.
- Sensor Offset: The sensor offset corresponds to the offset of virtual measurement center from the
 probe tip (on probe axis). No tolerance required.
- Connector Angle: The angle is assessed using the information gained by determining the NORMx (no uncertainty required).

Certificate No:Z20-60421

Page 2 of 9

DASY/EASY – Parameters of Probe: EX3DV4 – SN:7600

Basic Calibration Parameters

	Sensor X	Sensor Y	Sensor Z	Unc (<i>k</i> =2)
Norm(µV/(V/m) ²) ^A	0.70	0.65	0.67	±10.0%
DCP(mV) ^B	109.4	109.2	108.7	

Modulation Calibration Parameters

UID	Communication System Name		A dB	B dB√uV	С	D dB	VR mV	Unc ^E (<i>k</i> =2)
0	CW	x	0.0	0.0	1.0	0.00	225.0	±2.1%
		Y	0.0	0.0	1.0		206.5	
		z	0.0	0.0	1.0		212.8	

The reported uncertainty of measurement is stated as the standard uncertainty of Measurement multiplied by the coverage factor k=2, which for a normal distribution Corresponds to a coverage probability of approximately 95%.

^A The uncertainties of Norm X, Y, Z do not affect the E²-field uncertainty inside TSL (see Page 4).

^B Numerical linearization parameter: uncertainty not required.

^E Uncertainly is determined using the max. deviation from linear response applying rectangular distribution and is expressed for the square of the field value.

Certificate No:Z20-60421

Page 3 of 9

Tel: +86-10-62304633-2512 Fax: +86-10-62304633-2504 E-mail: cttl@chinattl.com <u>Http://www.chinattl.cn</u>

DASY/EASY – Parameters of Probe: EX3DV4 – SN:7600

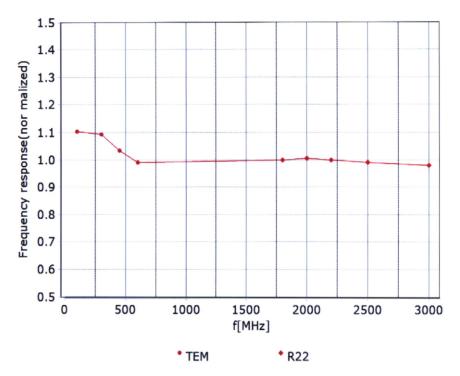
Calibration Parameter Determined in Head Tissue Simulating Media

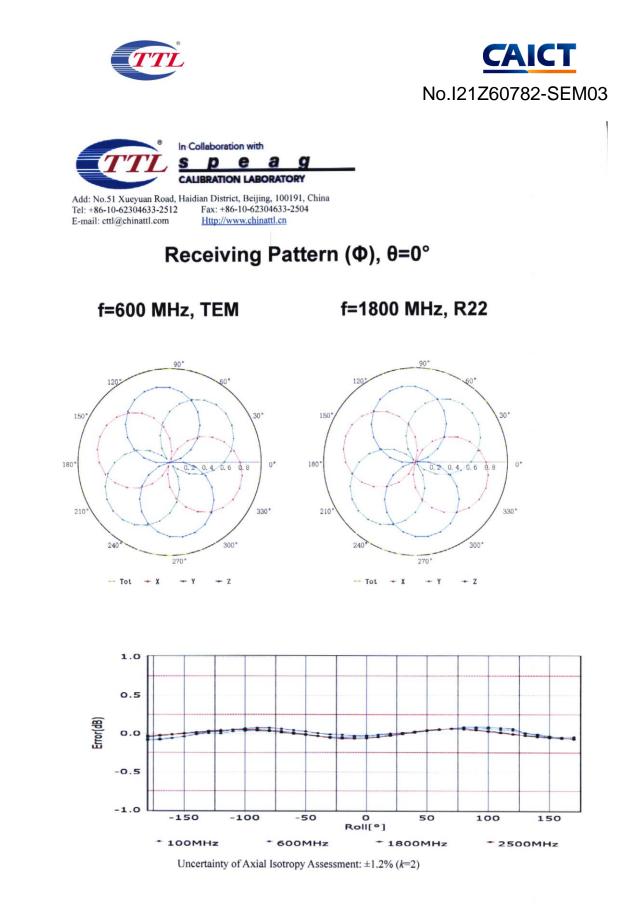
f [MHz] ^C	Relative Permittivity ^F	Conductivity (S/m) ^F	ConvF X	ConvF Y	ConvF Z	Alpha ^G	Depth ^G (mm)	Unct. (<i>k</i> =2)
750	41.9	0.89	10.88	10.88	10.88	0.40	0.77	±12.1%
900	41.5	0.97	10.45	10.45	10.45	0.17	1.31	±12.1%
1450	40.5	1.20	9.28	9.28	9.28	0.10	1.40	±12.1%
1640	40.3	1.29	9.10	9.10	9.10	0.21	1.03	±12.1%
1750	40.1	1.37	9.01	9.01	9.01	0.20	1.11	±12.1%
1900	40.0	1.40	8.70	8.70	8.70	0.26	1.03	±12.1%
2000	40.0	1.40	8.68	8.68	8.68	0.21	1.16	±12.1%
2300	39.5	1.67	8.19	8.19	8.19	0.37	0.88	±12.1%
2450	39.2	1.80	7.79	7.79	7.79	0.35	1.00	±12.1%
2600	39.0	1.96	7.67	7.67	7.67	0.46	0.80	±12.19
3300	38.2	2.71	7.35	7.35	7.35	0.43	0.95	±13.39
3500	37.9	2.91	7.01	7.01	7.01	0.44	0.94	±13.3%
3700	37.7	3.12	6.77	6.77	6.77	0.42	1.02	±13.3%
3900	37.5	3.32	6.85	6.85	6.85	0.35	1.30	±13.3%
4100	37.2	3.53	6.75	6.75	6.75	0.40	1.15	±13.3%
4200	37.1	3.63	6.65	6.65	6.65	0.35	1.35	±13.3%
4400	36.9	3.84	6.54	6.54	6.54	0.35	1.35	±13.3%
4600	36.7	4.04	6.39	6.39	6.39	0.45	1.25	±13.3%
4800	36.4	4.25	6.34	6.34	6.34	0.40	1.42	±13.3%
4950	36.3	4.40	6.01	6.01	6.01	0.45	1.30	±13.3%
5250	35.9	4.71	5.68	5.68	5.68	0.45	1.30	±13.3%
5600	35.5	5.07	5.11	5.11	5.11	0.50	1.25	±13.3%
5750	35.4	5.22	5.07	5.07	5.07	0.50	1.25	±13.39

^c Frequency validity above 300 MHz of ±100MHz only applies for DASY v4.4 and higher (Page 2), else it is restricted to ±50MHz. The uncertainty is the RSS of ConvF uncertainty at calibration frequency and the uncertainty for the indicated frequency band. Frequency validity below 300 MHz is ± 10, 25, 40, 50 and 70 MHz for ConvF assessments at 30, 64, 128, 150 and 220 MHz respectively. Above 5 GHz frequency validity can be extended to ± 110 MHz.

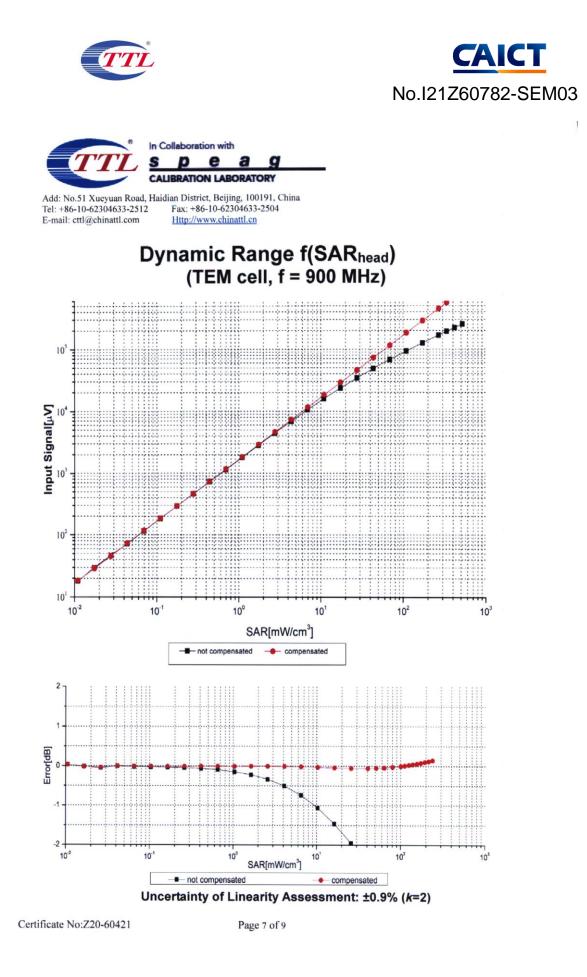
^F At frequency below 3 GHz, the validity of tissue parameters (ϵ and σ) can be relaxed to ±10% if liquid compensation formula is applied to measured SAR values. At frequencies above 3 GHz, the validity of tissue parameters (ϵ and σ) is restricted to ±5%. The uncertainty is the RSS of the ConvF uncertainty for indicated target tissue parameters. ^G Alpha/Depth are determined during calibration. SPEAG warrants that the remaining deviation due to the boundary effect after compensation is always less than ± 1% for frequencies below 3 GHz and below ± 2% for the frequencies between 3-6 GHz at any distance larger than half the probe tip diameter from the boundary.

Certificate No:Z20-60421


Page 4 of 9


Frequency Response of E-Field (TEM-Cell: ifi110 EXX, Waveguide: R22)

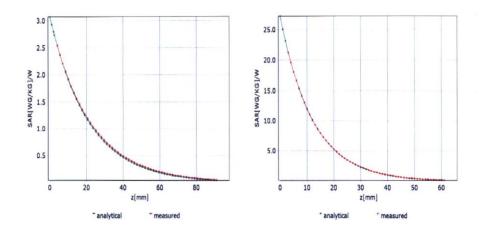
Uncertainty of Frequency Response of E-field: ±7.4% (k=2)

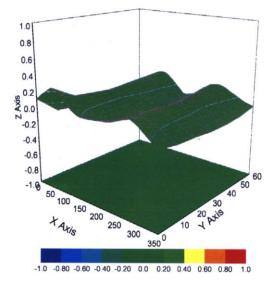

Certificate No:Z20-60421

Page 5 of 9

Certificate No:Z20-60421

Page 6 of 9




Conversion Factor Assessment

f=750 MHz,WGLS R9(H_convF)

f=1750 MHz,WGLS R22(H_convF)

Deviation from Isotropy in Liquid

Uncertainty of Spherical Isotropy Assessment: ±3.2% (k=2)

Certificate No:Z20-60421

Page 8 of 9

DASY/EASY – Parameters of Probe: EX3DV4 – SN:7600

Other Probe Parameters

Sensor Arrangement	Triangular
Connector Angle (°)	40.7
Mechanical Surface Detection Mode	enabled
Optical Surface Detection Mode	disable
Probe Overall Length	337mm
Probe Body Diameter	10mm
Tip Length	10mm
Tip Diameter	2.5mm
Probe Tip to Sensor X Calibration Point	1mm
Probe Tip to Sensor Y Calibration Point	1mm
Probe Tip to Sensor Z Calibration Point	1mm
Recommended Measurement Distance from Surface	1.4mm

Certificate No:Z20-60421

Page 9 of 9

Probe 7548 Calibration Certificate

		TION LABORATORY	- Hac MRA	CNAS	国际互行校准
Add: No.51 Xuey Tel: +86-10-6230 E-mail: cttl@chir	04633-2512 Fax:	istrict, Beijing, 100191, China +86-10-62304633-2504 2://www.chinattl.cn	The Contraction		CALIBRA CNAS LO
Client CTT	۲L		Certificate No:	Z20-60201	
CALIBRATION	CERTIFICA	TE			
Object	EX3D	V4 - SN : 7548			
Calibration Procedure(s)	FF-Z1	1-004-01			
	Calibra	ation Procedures for Dosi	metric E-field Probes	3	
Calibration date:	June 1	16, 2020			
		the closed laboratory fa	acility: environment	temperature	\°0
All calibrations have bee numidity<70%.	en conducted in		acility: environment	temperature(22±3))℃ and
All calibrations have bee numidity<70%. Calibration Equipment use	en conducted in	or calibration)			3
All calibrations have bee numidity<70%. Calibration Equipment use	en conducted in d (M&TE critical f	or calibration) Cal Date(Calibrated	by, Certificate No.)	Scheduled Cali	4
All calibrations have bee numidity<70%. Calibration Equipment use Primary Standards Power Meter NRP2 Power sensor NRP-Z91	en conducted in d (M&TE critical f ID # 101919 101547	or calibration)	by, Certificate No.) No.J19X05125)		4
All calibrations have bee numidity<70%. Calibration Equipment user Primary Standards Power Meter NRP2 Power sensor NRP-Z91 Power sensor NRP-Z91	en conducted in d (M&TE critical f ID # 101919 101547 101548	or calibration) Cal Date(Calibrated 18-Jun-19(CTTL, N 18-Jun-19(CTTL, N 18-Jun-19(CTTL, N	d by, Certificate No.) No.J19X05125) No.J19X05125) No.J19X05125)	Scheduled Cali Jun-20	4
All calibrations have been numidity<70%. Calibration Equipment user Primary Standards Power Meter NRP2 Power sensor NRP-Z91 Power sensor NRP-Z91 Reference 10dBAttenua	en conducted in d (M&TE critical f ID # 101919 101547 101548 ttor 18N50W-1	or calibration) Cal Date(Calibrated 18-Jun-19(CTTL, N 18-Jun-19(CTTL, N 18-Jun-19(CTTL, N 0dB 10-Feb-20(CTTL, N	d by, Certificate No.) No.J19X05125) No.J19X05125) No.J19X05125) No.J20X00525)	Scheduled Cali Jun-20 Jun-20	4
All calibrations have been numidity<70%. Calibration Equipment user Primary Standards Power Meter NRP2 Power sensor NRP-Z91 Power sensor NRP-Z91 Reference 10dBAttenua Reference 20dBAttenua	en conducted in d (M&TE critical f ID # 101919 101547 101548 tor 18N50W-1 tor 18N50W-2	or calibration) Cal Date(Calibrated 18-Jun-19(CTTL, N 18-Jun-19(CTTL, N 18-Jun-19(CTTL, N 0dB 10-Feb-20(CTTL, N 0dB 10-Feb-20(CTTL, N	d by, Certificate No.) No.J19X05125) No.J19X05125) No.J19X05125) No.J20X00525) No.J20X00526)	Scheduled Cali Jun-20 Jun-20 Jun-20 Feb-22 Feb-22	3
All calibrations have been numidity<70%. Calibration Equipment user Primary Standards Power Meter NRP2 Power sensor NRP-Z91 Power sensor NRP-Z91 Reference 10dBAttenua Reference 20dBAttenua Reference Probe EX3D	en conducted in d (M&TE critical f ID # 101919 101547 101548 ttor 18N50W-1 ttor 18N50W-2 V4 SN 3617	for calibration) Cal Date(Calibrated 18-Jun-19(CTTL, N 18-Jun-19(CTTL, N 18-Jun-19(CTTL, N 0dB 10-Feb-20(CTTL, N 30-Jan-20(SPEAG,	d by, Certificate No.) No.J19X05125) No.J19X05125) No.J19X05125) No.J20X00525) No.J20X00526) No.EX3-3617_Jan2	Scheduled Cali Jun-20 Jun-20 Jun-20 Feb-22 Feb-22 0/2) Jan-21	3
All calibrations have been numidity<70%. Calibration Equipment user Primary Standards Power Meter NRP2 Power sensor NRP-Z91 Power sensor NRP-Z91 Reference 10dBAttenua Reference 20dBAttenua Reference Probe EX3D	en conducted in d (M&TE critical f ID # 101919 101547 101548 tor 18N50W-1 tor 18N50W-2	for calibration) Cal Date(Calibrated 18-Jun-19(CTTL, N 18-Jun-19(CTTL, N 18-Jun-19(CTTL, N 0dB 10-Feb-20(CTTL, N 30-Jan-20(SPEAG,	d by, Certificate No.) No.J19X05125) No.J19X05125) No.J19X05125) No.J20X00525) No.J20X00526)	Scheduled Cali Jun-20 Jun-20 Jun-20 Feb-22 Feb-22 0/2) Jan-21	3
All calibrations have been numidity<70%. Calibration Equipment user Primary Standards Power Meter NRP2 Power sensor NRP-Z91 Power sensor NRP-Z91 Reference 10dBAttenua Reference 20dBAttenua Reference Probe EX3DN DAE4 Secondary Standards	en conducted in d (M&TE critical f ID # 101919 101547 101548 tor 18N50W-1 tor 18N50W-2 V4 SN 3617 SN 1556 ID #	Cal Date(Calibrated) Cal Date(Calibrated) 18-Jun-19(CTTL, N) 18-Jun-19(CTTL, N) 18-Jun-19(CTTL, N) 0dB 10-Feb-20(CTTL, N) 10dB 10-Feb-20(CTTL, N) 30-Jan-20(SPEAG, N) 4-Feb-20(SPEAG, N)	d by, Certificate No.) No.J19X05125) No.J19X05125) No.J19X05125) No.J20X00525) No.J20X00526) No.EX3-3617_Jan2 No.DAE4-1556_Feb2	Scheduled Cali Jun-20 Jun-20 Feb-22 Feb-22 0/2) Jan-21 20) Feb-21	ibration
All calibrations have been numidity<70%. Calibration Equipment user Primary Standards Power Meter NRP2 Power sensor NRP-Z91 Power sensor NRP-Z91 Reference 10dBAttenua Reference 20dBAttenua Reference Probe EX3DN DAE4 Secondary Standards SignalGenerator MG370	en conducted in d (M&TE critical f ID # 101919 101547 101548 tor 18N50W-1 tor 18N50W-2 V4 SN 3617 SN 1556 ID # 10 # 10 #	Tor calibration) Cal Date(Calibrated) 18-Jun-19(CTTL, N) 18-Jun-19(CTTL, N) 18-Jun-19(CTTL, N) 0dB 10-Feb-20(CTTL, N) 10dB 10-Feb-20(CTTL, N) 30-Jan-20(SPEAG, I) 4-Feb-20(SPEAG, I) Cal Date(Calibrated by) 05 18-Jun-19(CTTL, N)	d by, Certificate No.) No.J19X05125) No.J19X05125) No.J19X05125) No.J20X00525) No.J20X00526) No.EX3-3617_Jan2 No.DAE4-1556_Feb2	Scheduled Cali Jun-20 Jun-20 Jun-20 Feb-22 Feb-22 0/2) Jan-21	ibration
Power sensor NRP-Z91 Power sensor NRP-Z91 Reference 10dBAttenua Reference 20dBAttenua Reference Probe EX3D	en conducted in d (M&TE critical f ID # 101919 101547 101548 ttor 18N50W-2 V4 SN 3617 SN 1556 ID # 10A 620105260 IC MY461106	Tor calibration) Cal Date(Calibrated) 18-Jun-19(CTTL, N) 18-Jun-19(CTTL, N) 18-Jun-19(CTTL, N) 0dB 10-Feb-20(CTTL, N) 10dB 10-Feb-20(CTTL, N) 30-Jan-20(SPEAG, I) 4-Feb-20(SPEAG, I) Cal Date(Calibrated by) 05 18-Jun-19(CTTL, N)	d by, Certificate No.) No.J19X05125) No.J19X05125) No.J20X00525) No.J20X00526) No.EX3-3617_Jan2 No.DAE4-1556_Feb2 , Certificate No.) Io.J19X05127)	Scheduled Cali Jun-20 Jun-20 Feb-22 Feb-22 0/2) Jan-21 20) Feb-21 Scheduled Calibr	ibration
All calibrations have been numidity<70%. Calibration Equipment user Primary Standards Power Meter NRP2 Power sensor NRP-Z91 Power sensor NRP-Z91 Reference 10dBAttenua Reference 20dBAttenua Reference Probe EX3DN DAE4 Secondary Standards SignalGenerator MG370 Network Analyzer E5071	en conducted in d (M&TE critical f ID # 101919 101547 101548 tor 18N50W-1 tor 18N50W-2 V4 SN 3617 SN 1556 ID # 10 # 10 #	for calibration) Cal Date(Calibrated 18-Jun-19(CTTL, N 18-Jun-19(CTTL, N 18-Jun-19(CTTL, N 0dB 10-Feb-20(CTTL, N 30-Jan-20(SPEAG, I Cal Date(Calibrated by 05 18-Jun-19(CTTL, N	d by, Certificate No.) No.J19X05125) No.J19X05125) No.J20X00525) No.J20X00526) No.EX3-3617_Jan2 No.DAE4-1556_Feb2 , Certificate No.) Io.J19X05127)	Scheduled Cali Jun-20 Jun-20 Feb-22 Feb-22 0/2) Jan-21 20) Feb-21 Scheduled Calibr Jun-20	ibration
All calibrations have been numidity<70%. Calibration Equipment user Primary Standards Power Meter NRP2 Power sensor NRP-Z91 Power sensor NRP-Z91 Reference 10dBAttenua Reference 20dBAttenua Reference Probe EX3DN DAE4 Secondary Standards SignalGenerator MG370	en conducted in d (M&TE critical f ID # 101919 101547 101548 ttor 18N50W-1 ttor 18N50W-2 V4 SN 3617 SN 1556 ID # 10A 620105260 IC MY461106	for calibration) Cal Date(Calibrated 18-Jun-19(CTTL, N 18-Jun-19(CTTL, N 18-Jun-19(CTTL, N 10dB 10-Feb-20(CTTL, N 30-Jan-20(SPEAG, I Cal Date(Calibrated by 18-Jun-19(CTTL, N 73 10-Feb-20(CTTL, N	d by, Certificate No.) No.J19X05125) No.J19X05125) No.J19X05125) No.J20X00525) No.EX3-3617_Jan2 No.DAE4-1556_Feb2 , Certificate No.) Io.J19X05127) Io.J20X00515)	Scheduled Cali Jun-20 Jun-20 Feb-22 Feb-22 0/2) Jan-21 20) Feb-21 Scheduled Calibr Jun-20 Feb-21	ibration
All calibrations have been numidity<70%. Calibration Equipment user Primary Standards Power Meter NRP2 Power sensor NRP-Z91 Power sensor NRP-Z91 Reference 10dBAttenua Reference 20dBAttenua Reference Probe EX3DN DAE4 Secondary Standards SignalGenerator MG370 Network Analyzer E5071	en conducted in d (M&TE critical f ID # 101919 101547 101548 tor 18N50W-2 V4 SN 3617 SN 1556 ID # 10A 620105260 IC MY461106 Name	for calibration) Cal Date(Calibrated 18-Jun-19(CTTL, N 18-Jun-19(CTTL, N 18-Jun-19(CTTL, N 10-Feb-20(CTTL, N 30-Jan-20(SPEAG, I Cal Date(Calibrated by 05 18-Jun-19(CTTL, N 73 10-Feb-20(CTTL, N Function	d by, Certificate No.) No.J19X05125) No.J19X05125) No.J20X00525) No.J20X00526) No.EX3-3617_Jan2 No.DAE4-1556_Feb2 A, Certificate No.) No.J19X05127) No.J20X00515)	Scheduled Cali Jun-20 Jun-20 Feb-22 Feb-22 0/2) Jan-21 20) Feb-21 Scheduled Calibr Jun-20 Feb-21	ibration

Certificate No: Z20-60201

Page 1 of 9

Glossary:

TSL tissue simulating liquid NORMx,y,z sensitivity in free space sensitivity in TSL / NORMx,y,z ConvF DCP diode compression point CF crest factor (1/duty_cycle) of the RF signal A,B,C,D modulation dependent linearization parameters Polarization Φ Φ rotation around probe axis Polarization θ θ rotation around an axis that is in the plane normal to probe axis (at measurement center), i θ =0 is normal to probe axis

Connector Angle information used in DASY system to align probe sensor X to the robot coordinate system Calibration is Performed According to the Following Standards:

- a) IEEE Std 1528-2013, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", June 2013
- b) IEC 62209-1, "Measurement procedure for the assessment of Specific Absorption Rate (SAR) from hand-held and body-mounted devices used next to the ear (frequency range of 300 MHz to 6 GHz)", July 2016
- c) IEC 62209-2, "Procedure to determine the Specific Absorption Rate (SAR) for wireless communication devices used in close proximity to the human body (frequency range of 30 MHz to 6 GHz)", March 2010

d) KDB 865664, "SAR Measurement Requirements for 100 MHz to 6 GHz"

Methods Applied and Interpretation of Parameters:

- NORMx,y,z: Assessed for E-field polarization θ=0 (f≤900MHz in TEM-cell; f>1800MHz: waveguide). NORMx,y,z are only intermediate values, i.e., the uncertainties of NORMx,y,z does not effect the E²-field uncertainty inside TSL (see below ConvF).
- NORM(f)x, y, z = NORMx, y, z* frequency_response (see Frequency Response Chart). This linearization is implemented in DASY4 software versions later than 4.2. The uncertainty of the frequency response is included in the stated uncertainty of ConvF.
- DCPx, y, z: DCP are numerical linearization parameters assessed based on the data of power sweep (no uncertainty required). DCP does not depend on frequency nor media.
- PAR: PAR is the Peak to Average Ratio that is not calibrated but determined based on the signal characteristics.
- *Ax,y,z; Bx,y,z; Cx,y,z; VRx,y,z:* A,B,C are numerical linearization parameters assessed based on the data of power sweep for specific modulation signal. The parameters do not depend on frequency nor media. VR is the maximum calibration range expressed in RMS voltage across the diode.
- ConvF and Boundary Effect Parameters: Assessed in flat phantom using E-field (or Temperature Transfer Standard for f≤800MHz) and inside waveguide using analytical field distributions based on power measurements for f >800MHz. The same setups are used for assessment of the parameters applied for boundary compensation (alpha, depth) of which typical uncertainty valued are given. These parameters are used in DASY4 software to improve probe accuracy close to the boundary. The sensitivity in TSL corresponds to NORMx,y,z* ConvF whereby the uncertainty corresponds to that given for ConvF. A frequency dependent ConvF is used in DASY version 4.4 and higher which allows extending the validity from±50MHz to±100MHz.
- Spherical isotropy (3D deviation from isotropy): in a field of low gradients realized using a flat phantom exposed by a patch antenna.
- Sensor Offset: The sensor offset corresponds to the offset of virtual measurement center from the probe tip (on probe axis). No tolerance required.
- Connector Angle: The angle is assessed using the information gained by determining the NORMx (no uncertainty required).

Certificate No:Z20-60201

Page 2 of 9

DASY/EASY – Parameters of Probe: EX3DV4 – SN:7548

Basic Calibration Parameters

	Sensor X	Sensor Y	Sensor Z	Unc (<i>k</i> =2)
Norm(µV/(V/m) ²) ^A	0.60	0.69	0.62	±10.0%
DCP(mV) ^B	100.0	100.5	101.7	

Modulation Calibration Parameters

UID	Communication		Α	в	С	D	VR	Unc ^E
	System Name		dB	dBõV		dB	mV	(<i>k</i> =2)
0	CW	X	0.0	0.0	1.0	0.00	202.1	±2.7%
		Y	0.0	0.0	1.0		212.7	
		Ζ	0.0	0.0	1.0		205.3	

The reported uncertainty of measurement is stated as the standard uncertainty of Measurement multiplied by the coverage factor k=2, which for a normal distribution Corresponds to a coverage probability of approximately 95%.

^A The uncertainties of Norm X, Y, Z do not affect the E²-field uncertainty inside TSL (see Page 4).

^B Numerical linearization parameter: uncertainty not required.

^E Uncertainly is determined using the max. deviation from linear response applying rectangular distribution and is expressed for the square of the field value.

Certificate No:Z20-60201

Page 3 of 9

DASY/EASY – Parameters of Probe: EX3DV4 – SN:7548

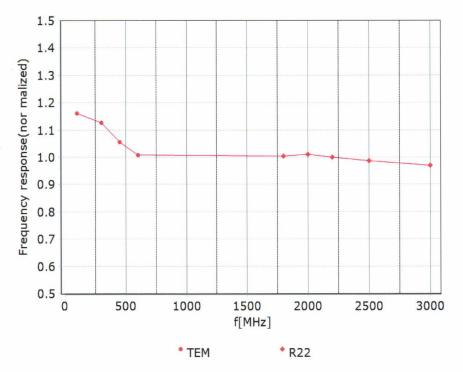
Calibration Parameter Determined in Head Tissue Simulating Media

f [MHz] ^C	Relative Permittivity ^F	Conductivity (S/m) [⊦]	ConvF X	ConvF Y	ConvF Z	Alpha ^G	Depth ^G (mm)	Unct. (<i>k</i> =2)
750	41.9	0.89	10.17	10.17	10.17	0.40	0.75	±12.1%
900	41.5	0.97	9.73	9.73	9.73	0.17	1.29	±12.1%
1450	40.5	1.20	8.60	8.60	8.60	0.22	1.00	±12.1%
1750	40.1	1.37	8.24	8.24	8.24	0.25	1.06	±12.1%
1900	40.0	1.40	7.85	7.85	7.85	0.29	0.99	±12.1%
2000	40.0	1.40	8.00	8.00	8.00	0.23	1.14	±12.1%
2300	39.5	1.67	7.61	7.61	7.61	0.62	0.67	±12.1%
2450	39.2	1.80	7.40	7.40	7.40	0.55	0.72	±12.1%
2600	39.0	1.96	7.17	7.17	7.17	0.61	0.68	±12.1%
3300	38.2	2.71	6.80	6.80	6.80	0.41	0.96	±13.3%
3500	37.9	2.91	6.75	6.75	6.75	0.45	0.90	±13.3%
3700	37.7	3.12	6.50	6.50	6.50	0.44	0.97	±13.3%
3900	37.5	3.32	6.40	6.40	6.40	0.40	1.15	±13.3%
4100	37.2	3.53	6.32	6.32	6.32	0.35	1.30	±13.3%
4200	37.1	3.63	6.25	6.25	6.25	0.35	1.25	±13.3%
4400	36.9	3.84	6.11	6.11	6.11	0.35	1.23	±13.3%
4600	36.7	4.04	5.99	5.99	5.99	0.40	1.30	±13.3%
4800	36.4	4.25	5.94	5.94	5.94	0.40	1.35	±13.3%
4950	36.3	4.40	5.81	5.81	5.81	0.40	1.35	±13.3%
5250	35.9	4.71	5.08	5.08	5.08	0.45	1.30	±13.3%
5600	35.5	5.07	4.70	4.70	4.70	0.45	1.42	±13.3%
5750	35.4	5.22	4.77	4.77	4.77	0.45	1.40	±13.3%

^c Frequency validity above 300 MHz of ±100MHz only applies for DASY v4.4 and higher (Page 2), else it is restricted to ±50MHz. The uncertainty is the RSS of ConvF uncertainty at calibration frequency and the uncertainty for the indicated frequency band. Frequency validity below 300 MHz is ± 10, 25, 40, 50 and 70 MHz for ConvF assessments at 30, 64, 128, 150 and 220 MHz respectively. Above 5 GHz frequency validity can be extended to ± 110 MHz.

^F At frequency below 3 GHz, the validity of tissue parameters (ϵ and σ) can be relaxed to ±10% if liquid compensation formula is applied to measured SAR values. At frequencies above 3 GHz, the validity of tissue parameters (ϵ and σ) is restricted to ±5%. The uncertainty is the RSS of the ConvF uncertainty for indicated target tissue parameters. ^G Alpha/Depth are determined during calibration. SPEAG warrants that the remaining deviation due to the boundary effect after compensation is always less than ± 1% for frequencies below 3 GHz and below ± 2% for the frequencies between 3-6 GHz at any distance larger than half the probe tip diameter from the boundary.

Certificate No:Z20-60201

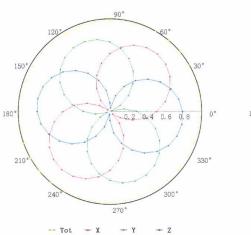

Page 4 of 9

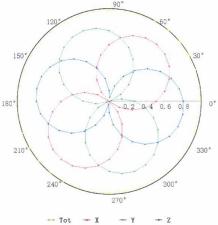
Frequency Response of E-Field (TEM-Cell: ifi110 EXX, Waveguide: R22)

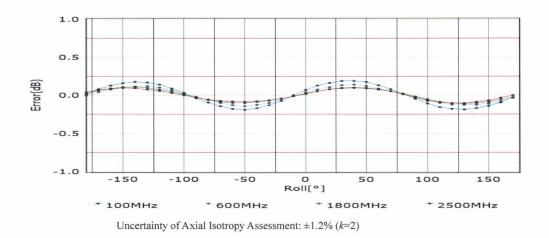
Uncertainty of Frequency Response of E-field: ±7.4% (k=2)

Certificate No:Z20-60201

Page 5 of 9

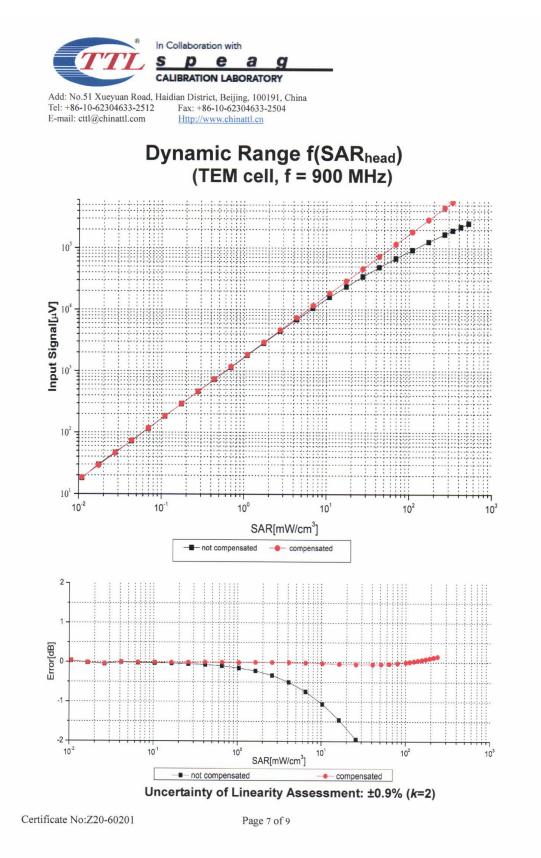





Receiving Pattern (Φ), θ=0°

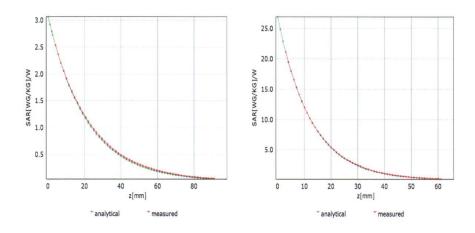
f=600 MHz, TEM

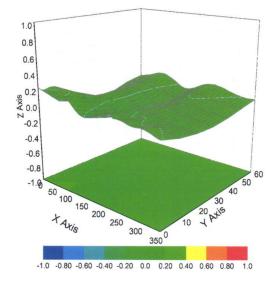
f=1800 MHz, R22



Certificate No:Z20-60201

Page 6 of 9




Conversion Factor Assessment

f=750 MHz,WGLS R9(H_convF)

f=1750 MHz,WGLS R22(H_convF)

Deviation from Isotropy in Liquid

Uncertainty of Spherical Isotropy Assessment: ±3.2% (k=2)

Certificate No:Z20-60201

Page 8 of 9

DASY/EASY – Parameters of Probe: EX3DV4 – SN:7548

Other Probe Parameters

Sensor Arrangement	Triangular
Connector Angle (°)	150.8
Mechanical Surface Detection Mode	enabled
Optical Surface Detection Mode	disable
Probe Overall Length	337mm
Probe Body Diameter	10mm
Tip Length	10mm
Tip Diameter	2.5mm
Probe Tip to Sensor X Calibration Point	1mm
Probe Tip to Sensor Y Calibration Point	1mm
Probe Tip to Sensor Z Calibration Point	1mm
Recommended Measurement Distance from Surface	1.4mm

Certificate No:Z20-60201

Page 9 of 9

ANNEX J Accreditation Certificate

