



## Head TSL parameters at 5750 MHz

|                                         | Temperature     | Permittivity | Conductivity     |
|-----------------------------------------|-----------------|--------------|------------------|
| Nominal Head TSL parameters             | 22.0 °C         | 35.4         | 5.22 mho/m       |
| Measured Head TSL parameters            | (22.0 ± 0.2) °C | 34.8 ± 6 %   | 5.02 mho/m ± 6 % |
| Head TSL temperature change during test | < 0.5 °C        |              |                  |

#### SAR result with Head TSL at 5750 MHz

| SAR averaged over 1 cm <sup>3</sup> (1 g) of Head TSL   | Condition          |                          |
|---------------------------------------------------------|--------------------|--------------------------|
| SAR measured                                            | 100 mW input power | 8.08 W/kg                |
| SAR for nominal Head TSL parameters                     | normalized to 1W   | 80.4 W/kg ± 19.9 % (k=2) |
|                                                         |                    |                          |
| SAR averaged over 10 cm <sup>3</sup> (10 g) of Head TSL | condition          |                          |
|                                                         |                    |                          |
| SAR measured                                            | 100 mW input power | 2.31 W/kg                |

#### Head TSL parameters at 5800 MHz

The following parameters and calculations were applied.

|                                         | Temperature     | Permittivity | Conductivity     |
|-----------------------------------------|-----------------|--------------|------------------|
| Nominal Head TSL parameters             | 22.0 °C         | 35.3         | 5.27 mho/m       |
| Measured Head TSL parameters            | (22.0 ± 0.2) °C | 34.7 ± 6 %   | 5.07 mho/m ± 6 % |
| Head TSL temperature change during test | < 0.5 °C        |              |                  |

### SAR result with Head TSL at 5800 MHz

| SAR averaged over 1 cm <sup>3</sup> (1 g) of Head TSL | Condition          |                          |
|-------------------------------------------------------|--------------------|--------------------------|
| SAR measured                                          | 100 mW input power | 8.14 W/kg                |
| SAR for nominal Head TSL parameters                   | normalized to 1W   | 80.9 W/kg ± 19.9 % (k=2) |

| SAR averaged over 10 cm <sup>3</sup> (10 g) of Head TSL | condition          |                          |
|---------------------------------------------------------|--------------------|--------------------------|
| SAR measured                                            | 100 mW input power | 2.30 W/kg                |
| SAR for nominal Head TSL parameters                     | normalized to 1W   | 22.9 W/kg ± 19.5 % (k=2) |

Certificate No: D5GHzV2-1060\_Jul19

Page 6 of 23





## Body TSL parameters at 5200 MHz

| The following parameters and calculations were appli | ied.            |              |                  |
|------------------------------------------------------|-----------------|--------------|------------------|
| · · · · ·                                            | Temperature     | Permittivity | Conductivity     |
| Nominal Body TSL parameters                          | 22.0 °C         | 49.0         | 5.30 mho/m       |
| Measured Body TSL parameters                         | (22.0 ± 0.2) °C | 47.3 ± 6 %   | 5.43 mho/m ± 6 % |
| Body TSL temperature change during test              | < 0.5 °C        |              |                  |

#### SAR result with Body TSL at 5200 MHz

| SAR averaged over 1 cm <sup>3</sup> (1 g) of Body TSL                   | Condition                    |                          |
|-------------------------------------------------------------------------|------------------------------|--------------------------|
| SAR measured                                                            | 100 mW input power           | 7.41 W/kg                |
| SAR for nominal Body TSL parameters                                     | normalized to 1W             | 73.6 W/kg ± 19.9 % (k=2) |
|                                                                         |                              |                          |
|                                                                         |                              |                          |
| SAR averaged over 10 cm <sup>3</sup> (10 g) of Body TSL                 | condition                    |                          |
| SAR averaged over 10 cm <sup>3</sup> (10 g) of Body TSL<br>SAR measured | condition 100 mW input power | 2.08 W/kg                |

#### Body TSL parameters at 5250 MHz

The following parameters and calculations were applied.

|                                         | Temperature     | Permittivity | Conductivity     |
|-----------------------------------------|-----------------|--------------|------------------|
| Nominal Body TSL parameters             | 22.0 °C         | 48.9         | 5.36 mho/m       |
| Measured Body TSL parameters            | (22.0 ± 0.2) °C | 47.2 ± 6 %   | 5.49 mho/m ± 6 % |
| Body TSL temperature change during test | < 0.5 °C        |              |                  |

#### SAR result with Body TSL at 5250 MHz

| SAR averaged over 1 cm <sup>3</sup> (1 g) of Body TSL | Condition          |                          |
|-------------------------------------------------------|--------------------|--------------------------|
| SAR measured                                          | 100 mW input power | 7.67 W/kg                |
| SAR for nominal Body TSL parameters                   | normalized to 1W   | 76.2 W/kg ± 19.9 % (k=2) |

| SAR averaged over 10 cm <sup>3</sup> (10 g) of Body TSL | condition          |                          |
|---------------------------------------------------------|--------------------|--------------------------|
| SAR measured                                            | 100 mW input power | 2.15 W/kg                |
| SAR for nominal Body TSL parameters                     | normalized to 1W   | 21.3 W/kg ± 19.5 % (k=2) |

Certificate No: D5GHzV2-1060\_Jul19

Page 7 of 23





#### Body TSL parameters at 5300 MHz

The following parameters and calculations were applied.

|                                         | Temperature     | Permittivity | Conductivity     |
|-----------------------------------------|-----------------|--------------|------------------|
| Nominal Body TSL parameters             | 22.0 °C         | 48.9         | 5.42 mho/m       |
| Measured Body TSL parameters            | (22.0 ± 0.2) °C | 47.1 ± 6 %   | 5.56 mho/m ± 6 % |
| Body TSL temperature change during test | < 0.5 °C        |              |                  |

#### SAR result with Body TSL at 5300 MHz

| SAR averaged over 1 cm <sup>3</sup> (1 g) of Body TSL   | Condition          |                          |
|---------------------------------------------------------|--------------------|--------------------------|
| SAR measured                                            | 100 mW input power | 7.52 W/kg                |
| SAR for nominal Body TSL parameters                     | normalized to 1W   | 74.7 W/kg ± 19.9 % (k=2) |
|                                                         |                    |                          |
| SAR averaged over 10 cm <sup>3</sup> (10 g) of Body TSL | condition          |                          |
| SAR averaged over 10 cm (10 g) of body 13L              | condition          |                          |
| SAR averaged over 10 cm (10 g) of Body 13L              | 100 mW input power | 2.13 W/kg                |

Body TSL parameters at 5500 MHz The following parameters and calculations were applied.

|                                         | Temperature     | Permittivity | Conductivity     |
|-----------------------------------------|-----------------|--------------|------------------|
| Nominal Body TSL parameters             | 22.0 °C         | 48.6         | 5.65 mho/m       |
| Measured Body TSL parameters            | (22.0 ± 0.2) °C | 46.7 ± 6 %   | 5.83 mho/m ± 6 % |
| Body TSL temperature change during test | < 0.5 °C        |              |                  |

#### SAR result with Body TSL at 5500 MHz

| SAR averaged over 1 cm <sup>3</sup> (1 g) of Body TSL | Condition          |                          |
|-------------------------------------------------------|--------------------|--------------------------|
| SAR measured                                          | 100 mW input power | 8.00 W/kg                |
| SAR for nominal Body TSL parameters                   | normalized to 1W   | 79.5 W/kg ± 19.9 % (k=2) |

| SAR averaged over 10 $\mbox{cm}^3$ (10 g) of Body TSL | condition          |                          |
|-------------------------------------------------------|--------------------|--------------------------|
| SAR measured                                          | 100 mW input power | 2.23 W/kg                |
| SAR for nominal Body TSL parameters                   | normalized to 1W   | 22.1 W/kg ± 19.5 % (k=2) |

Certificate No: D5GHzV2-1060\_Jul19

Page 8 of 23





#### Body TSL parameters at 5600 MHz

The following parameters and calculations were applied.

|                                         | Temperature     | Permittivity | Conductivity     |
|-----------------------------------------|-----------------|--------------|------------------|
| Nominal Body TSL parameters             | 22.0 °C         | 48.5         | 5.77 mho/m       |
| Measured Body TSL parameters            | (22.0 ± 0.2) °C | 46.6 ± 6 %   | 5.97 mho/m ± 6 % |
| Body TSL temperature change during test | < 0.5 °C        |              |                  |

#### SAR result with Body TSL at 5600 MHz

| SAR averaged over 1 cm <sup>3</sup> (1 g) of Body TSL   | Condition                    |                          |
|---------------------------------------------------------|------------------------------|--------------------------|
| SAR measured                                            | 100 mW input power           | 7.87 W/kg                |
| SAR for nominal Body TSL parameters                     | normalized to 1W             | 78.2 W/kg ± 19.9 % (k=2) |
|                                                         |                              |                          |
| SAR overaged over 10 cm <sup>3</sup> (10 g) of Rody TSI | condition                    |                          |
| SAR averaged over 10 cm <sup>3</sup> (10 g) of Body TSL | condition 100 mW input power | 2.22 W/kg                |

#### Body TSL parameters at 5750 MHz

The following parameters and calculations were applied.

|                                         | Temperature     | Permittivity | Conductivity     |
|-----------------------------------------|-----------------|--------------|------------------|
| Nominal Body TSL parameters             | 22.0 °C         | 48.3         | 5.94 mho/m       |
| Measured Body TSL parameters            | (22.0 ± 0.2) °C | 46.3 ± 6 %   | 6.17 mho/m ± 6 % |
| Body TSL temperature change during test | < 0.5 °C        |              |                  |

#### SAR result with Body TSL at 5750 MHz

| SAR averaged over 1 cm <sup>3</sup> (1 g) of Body TSL | Condition          |                          |
|-------------------------------------------------------|--------------------|--------------------------|
| SAR measured                                          | 100 mW input power | 7.79 W/kg                |
| SAR for nominal Body TSL parameters                   | normalized to 1W   | 77.4 W/kg ± 19.9 % (k=2) |

| SAR averaged over 10 cm <sup>3</sup> (10 g) of Body TSL | condition          |                          |
|---------------------------------------------------------|--------------------|--------------------------|
| SAR measured                                            | 100 mW input power | 2.18 W/kg                |
| SAR for nominal Body TSL parameters                     | normalized to 1W   | 21.5 W/kg ± 19.5 % (k=2) |

Certificate No: D5GHzV2-1060\_Jul19

Page 9 of 23



Body TSL parameters at 5800 MHz The following parameters and calculations were applied.

|                                         | Temperature     | Permittivity | Conductivity     |
|-----------------------------------------|-----------------|--------------|------------------|
| Nominal Body TSL parameters             | 22.0 °C         | 48.2         | 6.00 mho/m       |
| Measured Body TSL parameters            | (22.0 ± 0.2) °C | 46.2 ± 6 %   | 6.24 mho/m ± 6 % |
| Body TSL temperature change during test | < 0.5 °C        |              |                  |

#### SAR result with Body TSL at 5800 MHz

| SAR averaged over 1 cm <sup>3</sup> (1 g) of Body TSL                   | Condition                    |                          |
|-------------------------------------------------------------------------|------------------------------|--------------------------|
| SAR measured                                                            | 100 mW input power           | 7.51 W/kg                |
| SAR for nominal Body TSL parameters                                     | normalized to 1W             | 74.6 W/kg ± 19.9 % (k=2) |
|                                                                         |                              |                          |
|                                                                         |                              |                          |
| SAR averaged over 10 cm <sup>3</sup> (10 g) of Body TSL                 | condition                    |                          |
| SAR averaged over 10 cm <sup>3</sup> (10 g) of Body TSL<br>SAR measured | condition 100 mW input power | 2.09 W/kg                |

Certificate No: D5GHzV2-1060\_Jul19

Page 10 of 23





#### Appendix (Additional assessments outside the scope of SCS 0108)

#### Antenna Parameters with Head TSL at 5200 MHz

| Impedance, transformed to feed point | 48.7 Ω - 5.5 jΩ |
|--------------------------------------|-----------------|
| Return Loss                          | - 24.9 dB       |

#### Antenna Parameters with Head TSL at 5250 MHz

| Impedance, transformed to feed point | 48.6 Ω - 4.0 jΩ |  |
|--------------------------------------|-----------------|--|
| Return Loss                          | - 27.5 dB       |  |

#### Antenna Parameters with Head TSL at 5300 MHz

| Impedance, transformed to feed point | 47.7 Ω - 3.3 jΩ |  |
|--------------------------------------|-----------------|--|
| Return Loss                          | - 27.7 dB       |  |

#### Antenna Parameters with Head TSL at 5500 MHz

| Impedance, transformed to feed point | 50.9 Ω - 3.9 jΩ |  |
|--------------------------------------|-----------------|--|
| Return Loss                          | - 28.2 dB       |  |

#### Antenna Parameters with Head TSL at 5600 MHz

| Impedance, transformed to feed point | 54.2 Ω + 0.3 jΩ |
|--------------------------------------|-----------------|
| Return Loss                          | - 27.9 dB       |

#### Antenna Parameters with Head TSL at 5750 MHz

| Impedance, transformed to feed point | 51.7 Ω - 0.8 jΩ |
|--------------------------------------|-----------------|
| Return Loss                          | - 34.7 dB       |

#### Antenna Parameters with Head TSL at 5800 MHz

| Impedance, transformed to feed point | 52.1 Ω - 2.4 jΩ |
|--------------------------------------|-----------------|
| Return Loss                          | - 30.1 dB       |

Certificate No: D5GHzV2-1060\_Jul19

Page 11 of 23





## Antenna Parameters with Body TSL at 5200 MHz

| Impedance, transformed to feed point | 48.9 Ω - 5.6 jΩ |
|--------------------------------------|-----------------|
| Return Loss                          | - 24.8 dB       |
|                                      |                 |

## Antenna Parameters with Body TSL at 5250 MHz

| 48.0 Ω - 2.2 jΩ |
|-----------------|
| - 30.4 dB       |
|                 |

## Antenna Parameters with Body TSL at 5300 MHz

| Impedance, transformed to feed point | 48.3 Ω - 3.0 jΩ |
|--------------------------------------|-----------------|
| Return Loss                          | - 29.1 dB       |

## Antenna Parameters with Body TSL at 5500 MHz

| Impedance, transformed to feed point | 50.2 Ω - 2.2 jΩ |  |
|--------------------------------------|-----------------|--|
| Return Loss                          | - 33.1 dB       |  |

## Antenna Parameters with Body TSL at 5600 MHz

| Impedance, transformed to feed point | 55.5 Ω + 1.0 jΩ |  |
|--------------------------------------|-----------------|--|
| Return Loss                          | - 25.5 dB       |  |

## Antenna Parameters with Body TSL at 5750 MHz

| Impedance, transformed to feed point | 52.3 Ω + 0.8 jΩ |  |
|--------------------------------------|-----------------|--|
| Impedance, transformed to focd point |                 |  |
| Return Loss                          | - 32.3 dB       |  |

## Antenna Parameters with Body TSL at 5800 MHz

| Impedance, transformed to feed point | 52.9 Ω - 1.8 jΩ |  |
|--------------------------------------|-----------------|--|
| Return Loss                          | - 29.5 dB       |  |

Page 12 of 23





#### **General Antenna Parameters and Design**

| Electrical Delay (one direction) | 1.201 ns |
|----------------------------------|----------|
|----------------------------------|----------|

After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured.

The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard.

No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged.

#### Additional EUT Data

| Manufactured by | SPEAG |
|-----------------|-------|
|-----------------|-------|

Certificate No: D5GHzV2-1060\_Jul19

Page 13 of 23





#### DASY5 Validation Report for Head TSL

Date: 22.07.2019

Test Laboratory: SPEAG, Zurich, Switzerland

#### DUT: Dipole D5GHzV2; Type: D5GHzV2; Serial: D5GHzV2 - SN:1060

Communication System: UID 0 - CW; Frequency: 5200 MHz, Frequency: 5250 MHz, Frequency: 5300 MHz, Frequency: 5500 MHz, Frequency: 5600 MHz, Frequency: 5700 MHz, Frequency: 5800 MHz Medium parameters used: f = 5200 MHz;  $\sigma$  = 4.46 S/m;  $\epsilon_r$  = 35.5;  $\rho$  = 1000 kg/m<sup>3</sup>, Medium parameters used: f = 5250 MHz;  $\sigma$  = 4.51 S/m;  $\epsilon_r$  = 35.5;  $\rho$  = 1000 kg/m<sup>3</sup>, Medium parameters used: f = 5300 MHz;  $\sigma$  = 4.56 S/m;  $\epsilon_r$  = 35.4;  $\rho$  = 1000 kg/m<sup>3</sup>, Medium parameters used: f = 5500 MHz;  $\sigma$  = 4.76 S/m;  $\epsilon_r$  = 35.1;  $\rho$  = 1000 kg/m<sup>3</sup>, Medium parameters used: f = 5600 MHz;  $\sigma$  = 4.86 S/m;  $\epsilon_r$  = 35,  $\rho$  = 1000 kg/m<sup>3</sup>, Medium parameters used: f = 5600 MHz;  $\sigma$  = 5.02 S/m;  $\epsilon_r$  = 34.8;  $\rho$  = 1000 kg/m<sup>3</sup>, Medium parameters used: f = 5800 MHz;  $\sigma$  = 5.07 S/m;  $\epsilon_r$  = 34.7;  $\rho$  = 1000 kg/m<sup>3</sup> Phantom section: Flat Section Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)

DASY52 Configuration:

- Probe: EX3DV4 SN3503; ConvF(5.64, 5.64, 5.64) @ 5200 MHz, ConvF(5.4, 5.4, 5.4) @ 5250 MHz, ConvF(5.39, 5.39, 5.39) @ 5300 MHz, ConvF(5.1, 5.1, 5.1) @ 5500 MHz, ConvF(4.95, 4.95, 4.95) @ 5600 MHz, ConvF(4.98, 4.98, 4.98) @ 5750 MHz, ConvF(4.96, 4.96, 4.96) @ 5800 MHz; Calibrated: 25.03.2019
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn601; Calibrated: 30.04.2019
- Phantom: Flat Phantom 5.0 (front); Type: QD 000 P50 AA; Serial: 1001
- DASY52 52.10.2(1504); SEMCAD X 14.6.12(7470)

Dipole Calibration for Head Tissue/Pin=100mW, dist=10mm, f=5200 MHz/Zoom Scan, dist=1.4mm (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm Reference Value = 74.16 V/m; Power Drift = 0.09 dB Peak SAR (extrapolated) = 28.1 W/kg SAR(1 g) = 8.06 W/kg; SAR(10 g) = 2.32 W/kg Maximum value of SAR (measured) = 17.8 W/kg

Dipole Calibration for Head Tissue/Pin=100mW, dist=10mm, f=5250 MHz/Zoom Scan, dist=1.4mm (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm Reference Value = 74.71 V/m; Power Drift = 0.07 dB Peak SAR (extrapolated) = 27.3 W/kg SAR(1 g) = 8.07 W/kg; SAR(10 g) = 2.33 W/kg Maximum value of SAR (measured) = 17.8 W/kg

Certificate No: D5GHzV2-1060\_Jul19

Page 14 of 23



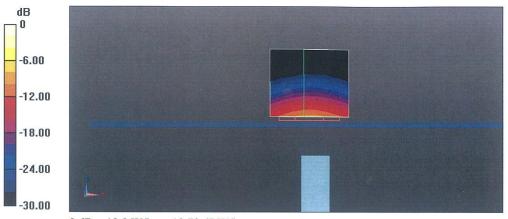


#### Dipole Calibration for Head Tissue/Pin=100mW, dist=10mm, f=5300 MHz/Zoom Scan, dist=1.4mm (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm Reference Value = 75.07 V/m; Power Drift = 0.08 dB Peak SAR (extrapolated) = 28.8 W/kg SAR(1 g) = 8.23 W/kg; SAR(10 g) = 2.37 W/kg Maximum value of SAR (measured) = 18.5 W/kg

Dipole Calibration for Head Tissue/Pin=100mW, dist=10mm, f=5500 MHz/Zoom Scan, dist=1.4mm (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm Reference Value = 74.21 V/m; Power Drift = 0.7 dB Peak SAR (extrapolated) = 32.1 W/kg SAR(1 g) = 8.51 W/kg; SAR(10 g) = 2.43 W/kg Maximum value of SAR (measured) = 19.6 W/kg

Dipole Calibration for Head Tissue/Pin=100mW, dist=10mm, f=5600 MHz/Zoom Scan, dist=1.4mm (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm Reference Value = 75.03 V/m; Power Drift = 0.06 dB Peak SAR (extrapolated) = 31.0 W/kg SAR(1 g) = 8.49 W/kg; SAR(10 g) = 2.43 W/kg Maximum value of SAR (measured) = 19.4 W/kg

Dipole Calibration for Head Tissue/Pin=100mW, dist=10mm, f=5750 MHz/Zoom Scan, dist=1.4mm (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm Reference Value = 71.89 V/m; Power Drift = 0.09 dB Peak SAR (extrapolated) = 31.1 W/kg SAR(1 g) = 8.08 W/kg; SAR(10 g) = 2.31 W/kg Maximum value of SAR (measured) = 18.8 W/kg


Dipole Calibration for Head Tissue/Pin=100mW, dist=10mm, f=5800 MHz/Zoom Scan, dist=1.4mm (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm Reference Value = 72.69 V/m; Power Drift = 0.09 dB Peak SAR (extrapolated) = 31.8 W/kg SAR(1 g) = 8.14 W/kg; SAR(10 g) = 2.30 W/kg Maximum value of SAR (measured) = 19.0 W/kg

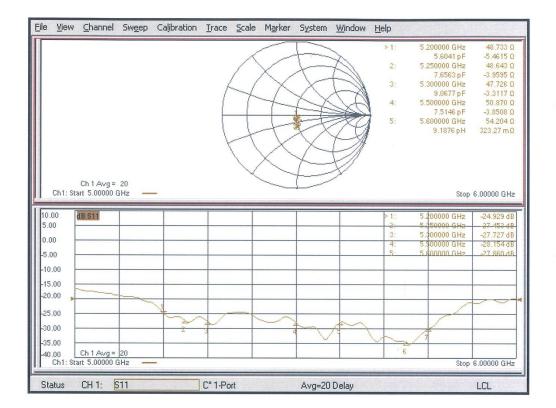
Certificate No: D5GHzV2-1060\_Jul19

Page 15 of 23








0 dB = 19.0 W/kg = 12.79 dBW/kg

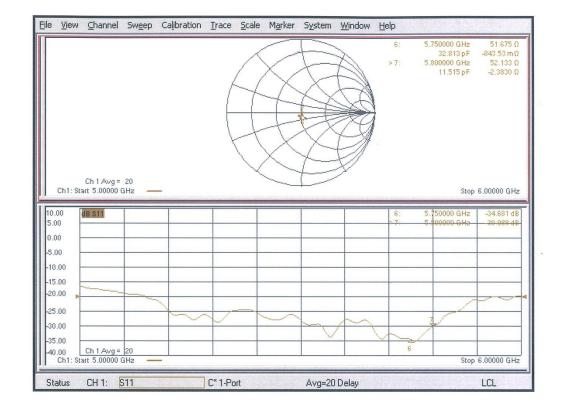
Certificate No: D5GHzV2-1060\_Jul19

Page 16 of 23








## Impedance Measurement Plot for Head TSL (5200, 5250, 5300, 5500, 5600 MHz)

Certificate No: D5GHzV2-1060\_Jul19

Page 17 of 23







## Impedance Measurement Plot for Head TSL (5750, 5800 MHz)

Certificate No: D5GHzV2-1060\_Jul19

Page 18 of 23





#### **DASY5 Validation Report for Body TSL**

Date: 22.07.2019

Test Laboratory: SPEAG, Zurich, Switzerland

#### DUT: Dipole D5GHzV2; Type: D5GHzV2; Serial: D5GHzV2 - SN:1060

Communication System: UID 0 - CW; Frequency: 5200 MHz, Frequency: 5250 MHz, Frequency: 5300 MHz, Frequency: 5500 MHz, Frequency: 5600 MHz, Frequency: 5700 MHz, Frequency: 5800 MHz Medium parameters used: f = 5200 MHz;  $\sigma$  = 5.43 S/m;  $\epsilon_r$  = 47.3;  $\rho$  = 1000 kg/m<sup>3</sup>, Medium parameters used: f = 5250 MHz;  $\sigma$  = 5.49 S/m;  $\epsilon_r$  = 47.2;  $\rho$  = 1000 kg/m<sup>3</sup>, Medium parameters used: f = 5300 MHz;  $\sigma$  = 5.56 S/m;  $\epsilon_r$  = 47.1;  $\rho$  = 1000 kg/m<sup>3</sup>, Medium parameters used: f = 5500 MHz;  $\sigma$  = 5.83 S/m;  $\epsilon_r$  = 46.7;  $\rho$  = 1000 kg/m<sup>3</sup>, Medium parameters used: f = 5600 MHz;  $\sigma$  = 5.97 S/m;  $\epsilon_r$  = 46.6;  $\rho$  = 1000 kg/m<sup>3</sup>, Medium parameters used: f = 5750 MHz;  $\sigma$  = 6.17 S/m;  $\epsilon_r$  = 46.2;  $\rho$  = 1000 kg/m<sup>3</sup> Phantom section: Flat Section Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)

DASY52 Configuration:

- Probe: EX3DV4 SN3503; ConvF(5.14, 5.14, 5.14) @ 5200 MHz, ConvF(5.26, 5.26, 5.26) @ 5250 MHz, ConvF(5.25, 5.25, 5.25) @ 5300 MHz, ConvF(4.79, 4.79, 4.79) @ 5500 MHz, ConvF(4.74, 4.74, 4.74) @ 5600 MHz, ConvF(4.62, 4.62, 4.62) @ 5750 MHz, ConvF(4.62, 4.62, 4.62) @ 5800 MHz; Calibrated: 25.03.2019
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn601; Calibrated: 30.04.2019
- Phantom: Flat Phantom 5.0 (back); Type: QD 000 P50 AA; Serial: 1002
- DASY52 52.10.2(1504); SEMCAD X 14.6.12(7470)

Dipole Calibration for Body Tissue/Pin=100mW, dist=10mm, f=5200 MHz/Zoom Scan, dist=1.4mm (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm Reference Value = 68.89 V/m; Power Drift = -0.00 dB Peak SAR (extrapolated) = 27.5 W/kg SAR(1 g) = 7.41 W/kg; SAR(10 g) = 2.08 W/kg Maximum value of SAR (measured) = 17.2 W/kg

Dipole Calibration for Body Tissue/Pin=100mW, dist=10mm, f=5250 MHz/Zoom Scan, dist=1.4mm (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm Reference Value = 69.26 V/m; Power Drift = 0.00 dB Peak SAR (extrapolated) = 29.2 W/kg SAR(1 g) = 7.67 W/kg; SAR(10 g) = 2.15 W/kg Maximum value of SAR (measured) = 17.9 W/kg

Certificate No: D5GHzV2-1060\_Jul19

Page 19 of 23





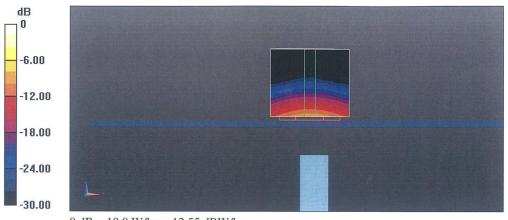
# **Dipole Calibration for Body Tissue/Pin=100mW, dist=10mm, f=5300 MHz/Zoom Scan, dist=1.4mm (8x8x7)/Cube 0:** Measurement grid: dx=4mm, dy=4mm, dz=1.4mm Reference Value = 68.18 V/m; Power Drift = 0.01 dB

Peak SAR (extrapolated) = 29.0 W/kgSAR(1 g) = 7.52 W/kg; SAR(10 g) = 2.13 W/kgMaximum value of SAR (measured) = 17.4 W/kg

Dipole Calibration for Body Tissue/Pin=100mW, dist=10mm, f=5500 MHz/Zoom Scan, dist=1.4mm (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm Reference Value = 69.45 V/m; Power Drift = 0.00 dB Peak SAR (extrapolated) = 32.7 W/kg SAR(1 g) = 8 W/kg; SAR(10 g) = 2.23 W/kg Maximum value of SAR (measured) = 19.1 W/kg

Dipole Calibration for Body Tissue/Pin=100mW, dist=10mm, f=5600 MHz/Zoom Scan, dist=1.4mm (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm Reference Value = 68.13 V/m; Power Drift = 0.01 dB Peak SAR (extrapolated) = 32.9 W/kg SAR(1 g) = 7.87 W/kg; SAR(10 g) = 2.22 W/kg Maximum value of SAR (measured) = 18.8 W/kg

Dipole Calibration for Body Tissue/Pin=100mW, dist=10mm, f=5750 MHz/Zoom Scan, dist=1.4mm (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm Reference Value = 67.49 V/m; Power Drift = 0.04 dB Peak SAR (extrapolated) = 34.1 W/kg SAR(1 g) = 7.79 W/kg; SAR(10 g) = 2.18 W/kg Maximum value of SAR (measured) = 19.0 W/kg


Dipole Calibration for Body Tissue/Pin=100mW, dist=10mm, f=5800 MHz/Zoom Scan, dist=1.4mm (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm Reference Value = 66.59 V/m; Power Drift = 0.01 dB Peak SAR (extrapolated) = 32.0 W/kg SAR(1 g) = 7.51 W/kg; SAR(10 g) = 2.09 W/kg Maximum value of SAR (measured) = 18.0 W/kg

Certificate No: D5GHzV2-1060\_Jul19

Page 20 of 23







0 dB = 18.0 W/kg = 12.55 dBW/kg

Certificate No: D5GHzV2-1060\_Jul19

Page 21 of 23





| ile                                                                                  | View | Channel               | Sw <u>e</u> ep | Calibration | Trace | <u>S</u> cale | Marker   | System | Window | Help           |                                                                                                          |                                                      |
|--------------------------------------------------------------------------------------|------|-----------------------|----------------|-------------|-------|---------------|----------|--------|--------|----------------|----------------------------------------------------------------------------------------------------------|------------------------------------------------------|
|                                                                                      |      |                       |                |             |       |               |          | 1      | _      | 1:             | 5.200000 GHz                                                                                             | 48.886 Ω                                             |
|                                                                                      |      |                       |                |             |       | X             |          | 1      | X      |                | 5.4607 pF                                                                                                | -5.6049 Ω                                            |
|                                                                                      |      |                       |                |             |       | 1             |          | 1-     | X      | 2:             | 5.250000 GHz                                                                                             | 47.977 Ω                                             |
|                                                                                      |      |                       |                |             | /     | ( /           | $\frown$ | 1-     | 11-1   | 3:             | 14.071 pF<br>5.300000 GHz                                                                                | -2.1544 Ω<br>48.326 Ω                                |
|                                                                                      |      |                       |                |             | F     | ~1            | X        | X      | 1K-1   | 3:             | 9.9366 pF                                                                                                | -3.0221 Ω                                            |
|                                                                                      |      |                       |                |             | 1     | 7             | -h       | XX     | A D    | 4:             | 5.500000 GHz                                                                                             | -5.0221 Ω<br>50.168 Ω                                |
|                                                                                      |      |                       |                |             | 1     | 1             |          | 5      | 280    | <b>T</b> .     | 13.131 pF                                                                                                | -2.2038 Ω                                            |
|                                                                                      |      |                       |                |             |       | l             |          | 5-t    | 201    | >5:            | 5.600000 GHz                                                                                             | 55.522 Ω                                             |
|                                                                                      |      |                       |                |             | f     | T             | X        | Ě      | Ì      |                | 27.781 pH                                                                                                | 977.51mΩ                                             |
|                                                                                      |      | Ch 1 Avg =            |                |             |       |               |          | 1      |        |                |                                                                                                          |                                                      |
| 10.00                                                                                | 0 0  | rt 5.00000 (<br>B S11 | 3Hz            | -           |       |               |          |        |        | >1:            | 5.200000 GHz                                                                                             | 6.00000 GHz<br>-24.777 dB                            |
| 10.00                                                                                | 0 0  |                       | 3Hz            | _           |       |               |          |        |        | 2:             | 5.200000 GHz<br>5.250000 GHz                                                                             | -24.777 dB<br>-28.412 dB                             |
| 10.00<br>5.00                                                                        |      |                       | 3Hz            |             |       |               |          |        |        | 2:<br>3:       | 5.200000 GHz<br>5.250000 GHz<br>5.300000 GHz                                                             | -24.777 dB<br>-29.412 dB<br>-29.089 dB               |
| 10.00<br>5.00<br>0.00                                                                |      |                       | 3Hz            |             |       |               |          |        |        | 2:             | 5.200000 GHz<br>5.250000 GHz<br>5.300000 GHz<br>5.300000 GHz<br>5.300000 GHz                             | -24.777 dB<br>-29.412 dB<br>-29.089 dB<br>-33.128 dB |
| 10.00<br>5.00<br>0.00<br>-5.00                                                       |      |                       | 3Hz            |             |       |               |          |        |        | 2:<br>3:<br>4: | 5.200000 GHz<br>5.250000 GHz<br>5.300000 GHz                                                             | -24.777 dB<br>-29.412 dB<br>-29.089 dB<br>-33.128 dB |
| 10.00<br>5.00<br>0.00<br>-5.00                                                       |      |                       | 3Hz            |             |       |               |          |        |        | 2:<br>3:<br>4: | 5.200000 GHz<br>5.250000 GHz<br>5.300000 GHz<br>5.300000 GHz<br>5.300000 GHz                             | -24.777 dB<br>-29.412 dB<br>-29.089 dB<br>-33.128 dB |
| 10.00<br>5.00<br>0.00<br>-5.00<br>-10.0                                              |      |                       | 3Hz            |             |       |               |          |        |        | 2:<br>3:<br>4: | 5.200000 GHz<br>5.250000 GHz<br>5.300000 GHz<br>5.300000 GHz<br>5.300000 GHz                             | -24.777 dB<br>-29.412 dB<br>-29.089 dB               |
| 10.00<br>5.00<br>0.00<br>-5.00<br>-10.0<br>-15.0                                     |      |                       | 3Hz            |             |       |               |          |        |        | 2:<br>3:<br>4: | 5.200000 GHz<br>5.250000 GHz<br>5.300000 GHz<br>5.300000 GHz<br>5.300000 GHz                             | -24.777 dB<br>-29.412 dB<br>-29.089 dB<br>-33.128 dB |
| 10.00<br>5.00<br>-5.00<br>-10.0<br>-15.0<br>-20.0                                    |      |                       | 3Hz            |             |       |               |          |        |        | 2:<br>3:<br>4: | 5.200000 GHz<br>5.250000 GHz<br>5.300000 GHz<br>5.300000 GHz<br>5.300000 GHz                             | -24.777 dB<br>-29.412 dB<br>-29.089 dB<br>-33.128 dB |
| 10.00<br>5.00<br>-5.00<br>-10.0<br>-15.0<br>-20.0                                    |      |                       | 3Hz            |             |       |               |          |        |        | 2:<br>3:<br>4: | 5.200000 GHz<br>5.250000 GHz<br>5.300000 GHz<br>5.300000 GHz<br>5.300000 GHz                             | -24.777 dB<br>-29.412 dB<br>-29.089 dB<br>-33.128 dB |
| 10.00<br>5.00<br>-5.00<br>-10.0<br>-15.0<br>-25.0                                    |      |                       |                |             |       |               |          |        |        | 2:<br>3:<br>4: | 5.200000 GHz<br>5.250000 GHz<br>5.300000 GHz<br>5.300000 GHz<br>5.300000 GHz                             | -24.777 dB<br>-29.412 dB<br>-29.089 dB<br>-33.128 dB |
| 10.00<br>5.00<br>-5.00<br>-10.0<br>-15.0<br>-20.0<br>-25.0<br>-30.0                  |      |                       |                |             | 3     |               |          |        |        | 2:<br>3:<br>4: | 5.200000 GHz<br>5.250000 GHz<br>5.300000 GHz<br>5.300000 GHz<br>5.300000 GHz                             | -24.777 dB<br>-29.412 dB<br>-29.089 dB<br>-33.128 dB |
| 10.00<br>5.00<br>-5.00<br>-10.0<br>-15.0<br>-25.0<br>-25.0<br>-30.0                  |      | BSII                  |                |             | 3     |               |          |        |        | 2:<br>3:<br>4: | 5.200000 GHz<br>5.250000 GHz<br>5.300000 GHz<br>5.300000 GHz<br>5.300000 GHz                             | -24.777 dB<br>-29.412 dB<br>-29.089 dB<br>-33.128 dB |
| 10.00<br>5.00<br>-5.00<br>-10.0<br>-15.0<br>-20.0<br>-25.0<br>-30.0<br>-35.0<br>40.0 |      |                       | 20             |             | 3     |               |          |        |        | 2:<br>3:<br>4: | 5,200000 GHz<br>5,50000 GHz<br>5,20000 GHz<br>5,50000 GHz<br>5,50000 GHz<br>5,500000 GHz<br>5,500000 GHz | -24.777 dB<br>-29.412 dB<br>-29.089 dB<br>-33.128 dB |

## Impedance Measurement Plot for Body TSL (5200, 5250, 5300, 5500, 5600 MHz)

Certificate No: D5GHzV2-1060\_Jul19

Page 22 of 23





#### System File View Channel Sweep Calibration Trace Scale Marker Window Help 5.750000 GHz 22.141 pH 5.800000 GHz 14.931 pF 52.337 Ω 799.92 mΩ 52.894 Ω -1.8378 Ω 6 >7: Ch 1 Avg = 20 Ch1: Start 5.00000 GHz Stop 6.00000 GHz 10.00 5.00 dB S11 -32.346 dB -28.548 dB 0000 GH: 0.00 -5.00 10.00 -15.00 -20.00 25.00 30.00 × -35.00 40.00 Ch 1 Avg = 20 Ch1: Start 5.00000 GHz Stop 6.00000 GHz Status CH 1: S11 C\* 1-Port Avg=20 LCL

## Impedance Measurement Plot for Body TSL (5750, 5800 MHz)

Certificate No: D5GHzV2-1060\_Jul19

Page 23 of 23





# ANNEX I Accreditation Certificate

