

Measurement Conditions

DASY system configuration, as far as not	given on page 1.	
DASY Version	DASY5	V52.10.4
Extrapolation	Advanced Extrapolation	
Phantom	Modular Flat Phantom	
Distance Dipole Center - TSL	10 mm	with Spacer
Zoom Scan Resolution	dx, dy, dz = 5 mm	
Frequency	1900 MHz ± 1 MHz	

Head TSL parameters

	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	22.0 °C	40.0	1.40 mho/m
Measured Head TSL parameters	(22.0 ± 0.2) °C	41.0 ± 6 %	1.39 mho/m ± 6 %
Head TSL temperature change during test	< 0.5 °C		

SAR result with Head TSL

SAR averaged over 1 cm ³ (1 g) of Head TSL	Condition	
SAR measured	250 mW input power	9.80 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	39.6 W/kg ± 17.0 % (k=2)
SAR averaged over 10 cm ³ (10 g) of Head TSL	condition	
SAR measured	250 mW input power	5.13 W/kg

Body TSL parameters The following parameters and calculations were applied.

X !	Temperature	Permittivity	Conductivity
Nominal Body TSL parameters	22.0 °C	53.3	1.52 mho/m
Measured Body TSL parameters	(22.0 ± 0.2) °C	53.8 ± 6 %	1.49 mho/m ± 6 %
Body TSL temperature change during test	< 0.5 °C		

SAR result with Body TSL

SAR averaged over 1 cm ³ (1 g) of Body TSL	Condition	
SAR measured	250 mW input power	9.73 W/kg
SAR for nominal Body TSL parameters	normalized to 1W	39.5 W/kg ± 17.0 % (k=2)
SAR averaged over 10 cm ³ (10 g) of Body TSL	condition	
SAR averaged over 10 cm ³ (10 g) of Body TSL SAR measured	condition 250 mW input power	5.16 W/kg

Certificate No: D1900V2-5d101_Jul20

Page 3 of 8

Appendix (Additional assessments outside the scope of SCS 0108)

Antenna Parameters with Head TSL

Impedance, transformed to feed point	50.4 Ω + 5.6 jΩ	
Return Loss	- 25.0 dB	

Antenna Parameters with Body TSL

+ 5.7 jΩ
) dB
.3

General Antenna Parameters and Design

Electrical Delay (one direction)	1.202 ns

After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured.

The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard.

No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged.

Additional EUT Data

Manufactured by	SPEAG
Manufactured by	

Certificate No: D1900V2-5d101_Jul20

Page 4 of 8

DASY5 Validation Report for Head TSL

Date: 28.07.2020

Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole 1900 MHz; Type: D1900V2; Serial: D1900V2 - SN:5d101

Communication System: UID 0 - CW; Frequency: 1900 MHz Medium parameters used: f = 1900 MHz; $\sigma = 1.39$ S/m; $\varepsilon_r = 41.0$; $\rho = 1000$ kg/m³ Phantom section: Flat Section Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)

DASY52 Configuration:

- Probe: EX3DV4 SN7349; ConvF(8.26, 8.26, 8.26) @ 1900 MHz; Calibrated: 29.06.2020
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn601; Calibrated: 27.12.2019
- Phantom: Flat Phantom 5.0 (front); Type: QD 000 P50 AA; Serial: 1001
- DASY52 52.10.4(1527); SEMCAD X 14.6.14(7483)

Dipole Calibration for Head Tissue/Pin=250 mW, d=10mm/Zoom Scan (7x7x7)/Cube 0:

Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 108.9 V/m; Power Drift = -0.04 dB Peak SAR (extrapolated) = 18.2 W/kg SAR(1 g) = 9.80 W/kg; SAR(10 g) = 5.13 W/kg Smallest distance from peaks to all points 3 dB below = 10 mm Ratio of SAR at M2 to SAR at M1 = 54.5% Maximum value of SAR (measured) = 15.2 W/kg

Certificate No: D1900V2-5d101_Jul20

Page 5 of 8

Impedance Measurement Plot for Head TSL

Certificate No: D1900V2-5d101_Jul20

Page 6 of 8

DASY5 Validation Report for Body TSL

Date: 24.07.2020

Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole 1900 MHz; Type: D1900V2; Serial: D1900V2 - SN:5d101

Communication System: UID 0 - CW; Frequency: 1900 MHz Medium parameters used: f = 1900 MHz; σ = 1.49 S/m; ε_r = 53.8; ρ = 1000 kg/m³ Phantom section: Flat Section Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)

DASY52 Configuration:

- Probe: EX3DV4 SN7349; ConvF(8.21, 8.21, 8.21) @ 1900 MHz; Calibrated: 29.06.2020
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn601; Calibrated: 27.12.2019
- Phantom: Flat Phantom 5.0 (back); Type: QD 000 P50 AA; Serial: 1002
- DASY52 52.10.4(1527); SEMCAD X 14.6.14(7483)

Dipole Calibration for Body Tissue/Pin=250 mW, d=10mm/Zoom Scan (7x7x7)/Cube 0:

Measurement grid: dx=5mm, dy=5mm, dz=5mmReference Value = 103.4 V/m; Power Drift = -0.09 dB Peak SAR (extrapolated) = 16.8 W/kg **SAR(1 g) = 9.73 W/kg; SAR(10 g) = 5.16 W/kg** Smallest distance from peaks to all points 3 dB below = 9 mm Ratio of SAR at M2 to SAR at M1 = 59.5% Maximum value of SAR (measured) = 14.2 W/kg

0 dB = 14.2 W/kg = 11.52 dBW/kg

Certificate No: D1900V2-5d101_Jul20

Page 7 of 8

Impedance Measurement Plot for Body TSL

Certificate No: D1900V2-5d101_Jul20

Page 8 of 8

2600 MHz Dipole Calibration Certificate

Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

 S
 Schweizerischer Kalibrierdienst

 C
 Service suisse d'étalonnage

 Servizio svizzero di taratura

 S
 Swiss Calibration Service

Accreditation No.: SCS 0108

Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Client CTTL-BJ (Auden)

Certificate No: D2600V2-1012_Jul20

	D2600V2 - SN:1	1012	
Calibration procedure(s)	QA CAL-05.v11 Calibration Procedure for SAR Validation Sources between 0.7-3 GHz		
Calibration date:	July 21, 2020		
This calibration certificate docum The measurements and the unce All calibrations have been conduc Calibration Equipment used (M&T	ents the traceability to na rtainties with confidence p sted in the closed laborato 'E critical for calibration)	tional standards, which realize the physical u probability are given on the following pages a pry facility: environment temperature (22 ± 3)	inits of measurements (SI). Ind are part of the certificate. °C and humidity < 70%.
Primary Standards	ID #	Cal Date (Certificate No.)	Colored by the second
ower meter NRP	SN: 104778	01-Apr-20 (No. 217-03100/03101)	Scrieduled Calibration
ower sensor NRP-Z91	SN: 103244	01-Apr-20 (No. 217-03100)	Apr-21
ower sensor NRP-Z91	SN: 103245	01-Apr-20 (No. 217-03101)	Apr-21
eference 20 dB Attenuator	SN: BH9394 (20k)	31-Mar-20 (No. 217-03106)	Apr-21
/pe-N mismatch combination	SN: 310982 / 06327	31-Mar-20 (No. 217-03104)	Apr-21
eference Probe EX3DV4	SN: 7349	29-Jun-20 (No. EX3-7349 Jun20)	hup-21
AE4	SN: 601	27-Dec-19 (No. DAE4-601_Dec19)	Dec-20
	×		
econdary Standards	ID #	Check Date (in house)	Cabadulad Obsul
econdary Standards wer meter E4419B	ID # SN: GB39512475	Check Date (in house) 30-Oct-14 (in house check Feb-19)	Scheduled Check
econdary Standards ower meter E4419B ower sensor HP 8481A	ID # SN: GB39512475 SN: US37292783	Check Date (in house) 30-Oct-14 (in house check Feb-19) 07-Oct-15 (in house check Oct-18)	Scheduled Check In house check: Oct-20
econdary Standards wer meter E4419B wer sensor HP 8481A wer sensor HP 8481A	ID # SN: GB39512475 SN: US37292783 SN: MY41092317	Check Date (in house) 30-Oct-14 (in house check Feb-19) 07-Oct-15 (in house check Oct-18) 07-Oct-15 (in house check Oct-18)	Scheduled Check In house check: Oct-20 In house check: Oct-20
econdary Standards ower meter E4419B ower sensor HP 8481A ower sensor HP 8481A F generator R&S SMT-06	ID # SN: GB39512475 SN: US37292783 SN: MY41092317 SN: 100972	Check Date (in house) 30-Oct-14 (in house check Feb-19) 07-Oct-15 (in house check Oct-18) 07-Oct-15 (in house check Oct-18) 15-Jun-15 (in house check Oct-18)	Scheduled Check In house check: Oct-20 In house check: Oct-20 In house check: Oct-20
econdary Standards ower meter E4419B ower sensor HP 8481A ower sensor HP 8481A ^E generator R&S SMT-06 etwork Analyzer Agilent E8358A	ID # SN: GB39512475 SN: US37292783 SN: MY41092317 SN: 100972 SN: US41080477	Check Date (in house) 30-Oct-14 (in house check Feb-19) 07-Oct-15 (in house check Oct-18) 07-Oct-15 (in house check Oct-18) 15-Jun-15 (in house check Oct-18) 31-Mar-14 (in house check Oct-19)	Scheduled Check In house check: Oct-20 In house check: Oct-20 In house check: Oct-20 In house check: Oct-20 In house check: Oct-20
econdary Standards ower meter E4419B ower sensor HP 8481A ower sensor HP 8481A F generator R&S SMT-06 etwork Analyzer Agilent E8358A	ID # SN: GB39512475 SN: US37292783 SN: MY41092317 SN: 100972 SN: US41080477 Name	Check Date (in house) 30-Oct-14 (in house check Feb-19) 07-Oct-15 (in house check Oct-18) 07-Oct-15 (in house check Oct-18) 15-Jun-15 (in house check Oct-18) 31-Mar-14 (in house check Oct-19) Euroction	Scheduled Check In house check: Oct-20 In house check: Oct-20 In house check: Oct-20 In house check: Oct-20 In house check: Oct-20
acondary Standards wer meter E4419B wer sensor HP 8481A ² generator R&S SMT-06 twork Analyzer Agilent E8358A librated by:	ID # SN: GB39512475 SN: US37292783 SN: MY41092317 SN: 100972 SN: US41080477 Name Jeffrey Katzman	Check Date (in house) 30-Oct-14 (in house check Feb-19) 07-Oct-15 (in house check Oct-18) 07-Oct-15 (in house check Oct-18) 15-Jun-15 (in house check Oct-18) 31-Mar-14 (in house check Oct-19) Function Laboratory Technician	Scheduled Check In house check: Oct-20 In house check: Oct-20 In house check: Oct-20 In house check: Oct-20 In house check: Oct-20 Signature
econdary Standards ower meter E4419B ower sensor HP 8481A ower sensor HP 8481A F generator R&S SMT-06 etwork Analyzer Agilent E8358A alibrated by:	ID # SN: GB39512475 SN: US37292783 SN: MY41092317 SN: 100972 SN: US41080477 Name Jeffrey Katzman	Check Date (in house) 30-Oct-14 (in house check Feb-19) 07-Oct-15 (in house check Oct-18) 07-Oct-15 (in house check Oct-18) 15-Jun-15 (in house check Oct-19) 31-Mar-14 (in house check Oct-19) Function Laboratory Technician	Scheduled Check In house check: Oct-20 In house check: Oct-20 In house check: Oct-20 In house check: Oct-20 Signature

Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

- Schweizerischer Kalibrierdienst Service suisse d'étalonnage С Servizio svizzero di taratura
- S Swiss Calibration Service

Accreditation No.: SCS 0108

S

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Glossary:

TSL	tissue simulating liquid
ConvF	sensitivity in TSL / NORM x,y,z
N/A	not applicable or not measured

Calibration is Performed According to the Following Standards:

- a) IEEE Std 1528-2013, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", June 2013
- b) IEC 62209-1, "Measurement procedure for the assessment of Specific Absorption Rate (SAR) from hand-held and body-mounted devices used next to the ear (frequency range of 300 MHz to 6 GHz)", July 2016
- c) IEC 62209-2, "Procedure to determine the Specific Absorption Rate (SAR) for wireless communication devices used in close proximity to the human body (frequency range of 30 MHz to 6 GHz)", March 2010
- d) KDB 865664, "SAR Measurement Requirements for 100 MHz to 6 GHz"

Additional Documentation:

e) DASY4/5 System Handbook

Methods Applied and Interpretation of Parameters:

- Measurement Conditions: Further details are available from the Validation Report at the end of the certificate. All figures stated in the certificate are valid at the frequency indicated.
- Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed point exactly below the center marking of the flat phantom section, with the arms oriented parallel to the body axis.
- Feed Point Impedance and Return Loss: These parameters are measured with the dipole positioned under the liquid filled phantom. The impedance stated is transformed from the measurement at the SMA connector to the feed point. The Return Loss ensures low reflected power. No uncertainty required.
- Electrical Delay: One-way delay between the SMA connector and the antenna feed point. No uncertainty required.
- SAR measured: SAR measured at the stated antenna input power.
- SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector.
- SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result.

The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%.

Certificate No: D2600V2-1012_Jul20

Page 2 of 8

Measurement Conditions

DASY system configuration, as far as not given on page 1.

DASY5	V52.10.4
Advanced Extrapolation	
Modular Flat Phantom	
10 mm	with Spacer
dx, dy, dz = 5 mm	
2600 MHz ± 1 MHz	
	DASY5 Advanced Extrapolation Modular Flat Phantom 10 mm dx, dy, dz = 5 mm 2600 MHz ± 1 MHz

Head TSL parameters

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity	
Nominal Head TSL parameters	22.0 °C	39.0	1.96 mho/m	
Measured Head TSL parameters	(22.0 ± 0.2) °C	37.9 ± 6 %	2.01 mho/m ± 6 %	
Head TSL temperature change during test	< 0.5 °C			

SAR result with Head TSL

SAR averaged over 1 cm ³ (1 g) of Head TSL	Condition		
SAR measured	250 mW input power	14.5 W/kg 57.0 W/kg ± 17.0 % (k=2)	
SAR for nominal Head TSL parameters	normalized to 1W		
SAR averaged over 10 cm ³ (10 g) of Head TSL	condition		
SAR averaged over 10 cm ³ (10 g) of Head TSL SAR measured	condition 250 mW input power	6.40 W/kg	

Body TSL parameters

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity	
Nominal Body TSL parameters	22.0 °C	52.5	2.16 mho/m	
Measured Body TSL parameters	(22.0 ± 0.2) °C	51.0 ± 6 %	2.20 mho/m ± 6 %	
Body TSL temperature change during test	< 0.5 °C			

SAR result with Body TSL

SAR averaged over 1 cm ³ (1 g) of Body TSL	Condition		
SAR measured	250 mW input power	14.0 W/kg	
SAR for nominal Body TSL parameters	normalized to 1W	55.1 W/kg ± 17.0 % (k=2)	
SAR averaged over 10 cm ³ (10 g) of Body TSL	condition		
SAR averaged over 10 cm ³ (10 g) of Body TSL SAR measured	condition 250 mW input power	6.20 W/kg	

Certificate No: D2600V2-1012_Jul20

Page 3 of 8

Appendix (Additional assessments outside the scope of SCS 0108)

Antenna Parameters with Head TSL

Impedance, transformed to feed point	47.0 Ω - 5.6 ϳΩ		
Return Loss	- 23.7 dB		

Antenna Parameters with Body TSL

Impedance, transformed to feed point	44.6 Ω - 4.4 jΩ
Return Loss	- 22.7 dB

General Antenna Parameters and Design

Electrical Delay (one direction)	1.152 ns

After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured.

The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard.

No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged.

Additional EUT Data

Monufactured by	
Manufactured by	SPEAG
	0.11.00

Certificate No: D2600V2-1012_Jul20

Page 4 of 8

DASY5 Validation Report for Head TSL

Date: 21.07.2020

Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole 2600 MHz; Type: D2600V2; Serial: D2600V2 - SN:1012

Communication System: UID 0 - CW; Frequency: 2600 MHz Medium parameters used: f = 2600 MHz; σ = 2.01 S/m; ϵ_r = 37.9; ρ = 1000 kg/m³ Phantom section: Flat Section Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)

DASY52 Configuration:

- Probe: EX3DV4 SN7349; ConvF(7.54, 7.54, 7.54) @ 2600 MHz; Calibrated: 29.06.2020
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn601; Calibrated: 27.12.2019
- Phantom: Flat Phantom 5.0 (front); Type: QD 000 P50 AA; Serial: 1001
- DASY52 52.10.4(1527); SEMCAD X 14.6.14(7483)

Dipole Calibration for Head Tissue/Pin=250 mW, d=10mm/Zoom Scan (7x7x7)/Cube 0:

Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 121.2 V/m; Power Drift = -0.04 dB Peak SAR (extrapolated) = 29.3 W/kg SAR(1 g) = 14.5 W/kg; SAR(10 g) = 6.40 W/kg Smallest distance from peaks to all points 3 dB below = 8.9 mm Ratio of SAR at M2 to SAR at M1 = 49.4% Maximum value of SAR (measured) = 24.4 W/kg

0 dB = 24.4 W/kg = 13.87 dBW/kg

Certificate No: D2600V2-1012_Jul20

Page 5 of 8

Impedance Measurement Plot for Head TSL

Certificate No: D2600V2-1012_Jul20

Page 6 of 8

©Copyright. All rights reserved by CTTL.

DASY5 Validation Report for Body TSL

Date: 21.07.2020

Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole 2600 MHz; Type: D2600V2; Serial: D2600V2 - SN:1012

Communication System: UID 0 - CW; Frequency: 2600 MHz Medium parameters used: f = 2600 MHz; σ = 2.20 S/m; ϵ_r = 51.0; ρ = 1000 kg/m³ Phantom section: Flat Section Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)

DASY52 Configuration:

- Probe: EX3DV4 SN7349; ConvF(7.68, 7.68, 7.68) @ 2600 MHz; Calibrated: 29.06.2020
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn601; Calibrated: 27.12.2019
- Phantom: Flat Phantom 5.0 (back); Type: QD 000 P50 AA; Serial: 1002
- DASY52 52.10.4(1527); SEMCAD X 14.6.14(7483)

Dipole Calibration for Body Tissue/Pin=250 mW, d=10mm/Zoom Scan (7x7x7)/Cube 0:

Measurement grid: dx=5mm, dy=5mm, dz=5mmReference Value = 110.5 V/m; Power Drift = -0.09 dB Peak SAR (extrapolated) = 28.0 W/kg **SAR(1 g) = 14.0 W/kg; SAR(10 g) = 6.20 W/kg** Smallest distance from peaks to all points 3 dB below = 8 mm Ratio of SAR at M2 to SAR at M1 = 50.8% Maximum value of SAR (measured) = 22.7 W/kg

Certificate No: D2600V2-1012_Jul20

Page 7 of 8

Impedance Measurement Plot for Body TSL

Certificate No: D2600V2-1012_Jul20

Page 8 of 8

I.9 SAR Measurement Variability

SAR measurement variability must be assessed for each frequency band, which is determined by the SAR probe calibration point and tissue-equivalent medium used for the device measurements. When both head and body tissue-equivalent media are required for SAR measurements in a frequency band, the variability measurement procedures should be applied to the tissue medium with the highest measured SAR, using the highest measured SAR configuration for that tissue-equivalent medium.

The following procedures are applied to determine if repeated measurements are required. 1) Repeated measurement is not required when the original highest measured SAR is < 0.80 W/kg; steps2) through 4) do not apply.

2) When the original highest measured SAR is \geq 0.80 W/kg, repeat that measurement once.

3) Perform a second repeated measurement only if the ratio of largest to smallest SAR for the original and first repeated measurements is > 1.20 or when the original or repeated measurement is \geq 1.45W/kg (~ 10% from the 1-g SAR limit).

4) Perform a third repeated measurement only if the original, first or second repeated measurement is ≥1.5 W/kg and the ratio of largest to smallest SAR for the original, first and second repeated measurements is > 1.20.

Freque	ency		Toot		First	The	Second
Ch.	MHz	Side	Position	Original SAR (W/kg)	Repeated SAR (W/kg)	Ratio	Repeated SAR (W/kg)
372000	1860	Right	Cheek	0.885	0.847	1.04	I

Table 15.1: SAR Measurement Variability for Head NR5G n25 (1g)

ANNEX J Accreditation Certificate

