

# No. I19Z60613-SEM05 Page 172 of 216

#### Calibration Laboratory of Schmid & Partner Engineering AG

Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland



S Schweizerischer Kalibrierdienst Service suisse d'étalonnage Servizio svizzero di taratura S swiss Calibration Service

Accreditation No.: SCS 0108

Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Glossary:

TSL tissue simulating liquid ConvF sensitivity in TSL / NORM x,y,z N/A not applicable or not measured

#### Calibration is Performed According to the Following Standards:

- a) IEEE Std 1528-2013, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", June 2013
- b) IEC 62209-1, "Measurement procedure for the assessment of Specific Absorption Rate (SAR) from hand-held and body-mounted devices used next to the ear (frequency range of 300 MHz to 6 GHz)", July 2016
- c) IEC 62209-2, "Procedure to determine the Specific Absorption Rate (SAR) for wireless communication devices used in close proximity to the human body (frequency range of 30 MHz to 6 GHz)", March 2010
- d) KDB 865664, "SAR Measurement Requirements for 100 MHz to 6 GHz"

#### Additional Documentation:

e) DASY4/5 System Handbook

#### Methods Applied and Interpretation of Parameters:

- Measurement Conditions: Further details are available from the Validation Report at the end
  of the certificate. All figures stated in the certificate are valid at the frequency indicated.
- Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed point exactly below the center marking of the flat phantom section, with the arms oriented parallel to the body axis.
- Feed Point Impedance and Return Loss: These parameters are measured with the dipole
  positioned under the liquid filled phantom. The impedance stated is transformed from the
  measurement at the SMA connector to the feed point. The Return Loss ensures low
  reflected power. No uncertainty required.
- Electrical Delay: One-way delay between the SMA connector and the antenna feed point. No uncertainty required.
- SAR measured: SAR measured at the stated antenna input power.
- SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector.
- SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result.

The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%.

Certificate No: D750V3-1017\_Jul18

Page 2 of 8



### **Measurement Conditions**

DASY system configuration, as far as not given on page 1.

| DASY Version                 | DASY5                  | V52.10.1    |
|------------------------------|------------------------|-------------|
| Extrapolation                | Advanced Extrapolation |             |
| Phantom                      | Modular Flat Phantom   |             |
| Distance Dipole Center - TSL | 15 mm                  | with Spacer |
| Zoom Scan Resolution         | dx, dy, dz = 5 mm      |             |
| Frequency                    | 750 MHz ± 1 MHz        |             |

## **Head TSL parameters**

The following parameters and calculations were applied.

|                                         | Temperature     | Permittivity | Conductivity     |
|-----------------------------------------|-----------------|--------------|------------------|
| Nominal Head TSL parameters             | 22.0 °C         | 41.9         | 0.89 mho/m       |
| Measured Head TSL parameters            | (22.0 ± 0.2) °C | 40.9 ± 6 %   | 0.89 mho/m ± 6 % |
| Head TSL temperature change during test | < 0.5 °C        |              |                  |

# SAR result with Head TSL

| SAR averaged over 1 cm <sup>3</sup> (1 g) of Head TSL                   | Condition                       | 55                       |
|-------------------------------------------------------------------------|---------------------------------|--------------------------|
| SAR measured                                                            | 250 mW input power              | 2.06 W/kg                |
| SAR for nominal Head TSL parameters                                     | normalized to 1W                | 8.20 W/kg ± 17.0 % (k=2) |
|                                                                         |                                 |                          |
| SAR averaged over 10 cm <sup>3</sup> (10 g) of Head TSL                 | condition                       |                          |
| SAR averaged over 10 cm <sup>3</sup> (10 g) of Head TSL<br>SAR measured | condition<br>250 mW input power | 1.34 W/kg                |

### **Body TSL parameters**

The following parameters and calculations were applied.

|                                         | Temperature     | Permittivity | Conductivity     |
|-----------------------------------------|-----------------|--------------|------------------|
| Nominal Body TSL parameters             | 22.0 °C         | 55.5         | 0.96 mho/m       |
| Measured Body TSL parameters            | (22.0 ± 0.2) °C | 55.3 ± 6 %   | 0.96 mho/m ± 6 % |
| Body TSL temperature change during test | < 0.5 °C        |              | 20000.<br>Bana:  |

## SAR result with Body TSL

| SAR averaged over 1 cm <sup>3</sup> (1 g) of Body TSL                   | Condition                       |                          |
|-------------------------------------------------------------------------|---------------------------------|--------------------------|
| SAR measured                                                            | 250 mW input power              | 2.16 W/kg                |
| SAR for nominal Body TSL parameters                                     | normalized to 1W                | 8.63 W/kg ± 17.0 % (k=2) |
|                                                                         |                                 |                          |
|                                                                         | a constitutions                 |                          |
| SAR averaged over 10 cm <sup>3</sup> (10 g) of Body TSL                 | condition                       |                          |
| SAR averaged over 10 cm <sup>3</sup> (10 g) of Body TSL<br>SAR measured | condition<br>250 mW input power | 1.42 W/kg                |

Certificate No: D750V3-1017\_Jul18



## Appendix (Additional assessments outside the scope of SCS 0108)

### Antenna Parameters with Head TSL

| Impedance, transformed to feed point | 53.3 Ω - 0.8 jΩ |
|--------------------------------------|-----------------|
| Return Loss                          | - 29.6 dB       |

## Antenna Parameters with Body TSL

| Impedance, transformed to feed point | 48.3 Ω - 3.6 jΩ |  |
|--------------------------------------|-----------------|--|
| Return Loss                          | - 27.9 dB       |  |

### General Antenna Parameters and Design

| Electrical Delay (one direction) | 1.037 ns |
|----------------------------------|----------|
|                                  |          |

After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured.

The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard.

No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged.

## **Additional EUT Data**

| Manufactured by | SPEAG          |
|-----------------|----------------|
| Manufactured on | March 22, 2010 |

Certificate No: D750V3-1017\_Jul18

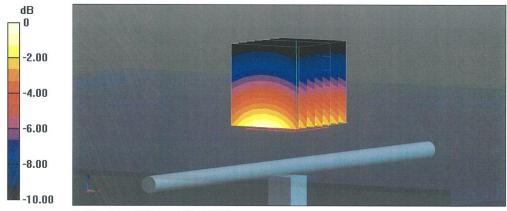
Page 4 of 8



# **DASY5 Validation Report for Head TSL**

Date: 16.07.2018

Test Laboratory: SPEAG, Zurich, Switzerland

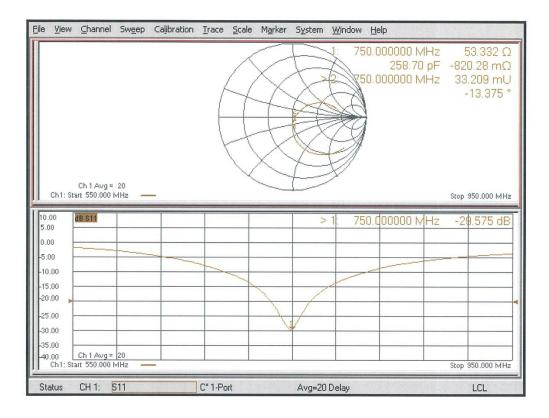

# DUT: Dipole 750 MHz; Type: D750V3; Serial: D750V3 - SN:1017

Communication System: UID 0 - CW; Frequency: 750 MHz Medium parameters used: f = 750 MHz;  $\sigma$  = 0.89 S/m;  $\epsilon_r$  = 40.9;  $\rho$  = 1000 kg/m<sup>3</sup> Phantom section: Flat Section Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)

DASY52 Configuration:

- Probe: EX3DV4 SN7349; ConvF(10.22, 10.22, 10.22) @ 750 MHz; Calibrated: 30.12.2017
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn601; Calibrated: 26.10.2017
- Phantom: Flat Phantom 4.9 (front); Type: QD 00L P49 AA; Serial: 1001
- DASY52 52.10.1(1476); SEMCAD X 14.6.11(7439)

Dipole Calibration for Head Tissue/Pin=250 mW, d=15mm/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 59.32 V/m; Power Drift = -0.03 dB Peak SAR (extrapolated) = 3.07 W/kg SAR(1 g) = 2.06 W/kg; SAR(10 g) = 1.34 W/kg Maximum value of SAR (measured) = 2.74 W/kg




0 dB = 2.74 W/kg = 4.38 dBW/kg

Certificate No: D750V3-1017\_Jul18



# Impedance Measurement Plot for Head TSL



Certificate No: D750V3-1017\_Jul18

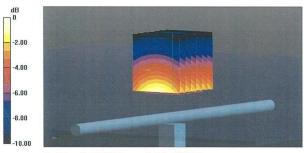
Page 6 of 8



# **DASY5 Validation Report for Body TSL**

Date: 23.07.2018

Test Laboratory: SPEAG, Zurich, Switzerland

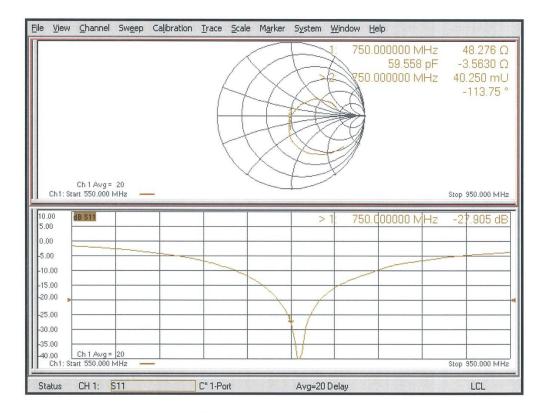

### DUT: Dipole 750 MHz; Type: D750V3; Serial: D750V3 - SN:1017

Communication System: UID 0 - CW; Frequency: 750 MHz Medium parameters used: f = 750 MHz;  $\sigma$  = 0.96 S/m;  $\epsilon_r$  = 55.3;  $\rho$  = 1000 kg/m<sup>3</sup> Phantom section: Flat Section Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)

DASY52 Configuration:

- Probe: EX3DV4 SN7349; ConvF(10.19, 10.19, 10.19) @ 750 MHz; Calibrated: 30.12.2017
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn601; Calibrated: 26.10.2017
- Phantom: Flat Phantom 4.9 (Back); Type: QD 00R P49 AA; Serial: 1005
- DASY52 52.10.1(1476); SEMCAD X 14.6.11(7439)

Dipole Calibration for Body Tissue/Pin=250 mW, d=15mm/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 58.02 V/m; Power Drift = -0.03 dB Peak SAR (extrapolated) = 3.20 W/kg SAR(1 g) = 2.16 W/kg; SAR(10 g) = 1.42 W/kg Maximum value of SAR (measured) = 2.87 W/kg




0 dB = 2.87 W/kg = 4.58 dBW/kg

Certificate No: D750V3-1017\_Jul18



# Impedance Measurement Plot for Body TSL



Certificate No: D750V3-1017\_Jul18

Page 8 of 8



# 835 MHz Dipole Calibration Certificate

| Calibration Laboratory<br>Schmid & Partner<br>Engineering AG<br>Zeughausstrasse 43, 8004 Zurich                  |                                   | ACCREDITION OF ACCREDITION                                                  | <ul> <li>S Schweizerischer Kalibrierdienst</li> <li>Service suisse d'étalonnage</li> <li>Servizio svizzero di taratura</li> <li>Swiss Calibration Service</li> </ul> |
|------------------------------------------------------------------------------------------------------------------|-----------------------------------|-----------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Accredited by the Swiss Accreditation<br>The Swiss Accreditation Service i<br>Multilateral Agreement for the rec | is one of the signatorie          | es to the EA<br>certificates                                                | Accreditation No.: SCS 0108                                                                                                                                          |
| Client CTTL (Auden)                                                                                              |                                   |                                                                             | No: CD835V3-1023_Aug18                                                                                                                                               |
| CALIBRATION C                                                                                                    | ERTIFICAT                         | E                                                                           |                                                                                                                                                                      |
| Object                                                                                                           | CD835V3 - SN:                     | 1023                                                                        |                                                                                                                                                                      |
| Calibration procedure(s)                                                                                         | QA CAL-20.v6<br>Calibration proce | edure for dipoles in air                                                    |                                                                                                                                                                      |
| Calibration date:                                                                                                | August 28, 2018                   |                                                                             |                                                                                                                                                                      |
| Calibration Equipment used (M&TE<br>Primary Standards                                                            | critical for calibration)         | ry facility: environment temperature (22 ± 3)<br>Cal Date (Certificate No.) | )°C and humidity < 70%.<br>Scheduled Calibration                                                                                                                     |
| Power meter NRP                                                                                                  | SN: 104778                        | 04-Apr-18 (No. 217-02672/02673)                                             | Apr-19                                                                                                                                                               |
| Power sensor NRP-Z91<br>Power sensor NRP-Z91                                                                     | SN: 103244                        | 04-Apr-18 (No. 217-02672)                                                   | Apr-19                                                                                                                                                               |
| Reference 20 dB Attenuator                                                                                       | SN: 103245                        | 04-Apr-18 (No. 217-02673)                                                   | Apr-19                                                                                                                                                               |
| ype-N mismatch combination                                                                                       | SN: 5058 (20k)                    | 04-Apr-18 (No. 217-02682)                                                   | Apr-19                                                                                                                                                               |
| Probe EF3DV3                                                                                                     | SN: 5047.2 / 06327<br>SN: 4013    | 04-Apr-18 (No. 217-02683)                                                   | Apr-19                                                                                                                                                               |
| DAE4                                                                                                             | SN: 781                           | 05-Mar-18 (No. EF3-4013_Mar18)<br>17-Jan-18 (No. DAE4-781_Jan18)            | Mar-19<br>Jan-19                                                                                                                                                     |
| Secondary Standards                                                                                              | ID #                              | Check Date (in house)                                                       | Scheduled Check                                                                                                                                                      |
| ower meter Agilent 4419B                                                                                         | SN: GB42420191                    | 09-Oct-09 (in house check Oct-17)                                           | In house check: Oct-20                                                                                                                                               |
| ower sensor HP E4412A                                                                                            | SN: US38485102                    | 05-Jan-10 (in house check Oct-17)                                           | In house check: Oct-20                                                                                                                                               |
| ower sensor HP 8482A                                                                                             | SN: US37295597                    | 09-Oct-09 (in house check Oct-17)                                           | In house check: Oct-20                                                                                                                                               |
| IF generator R&S SMT-06                                                                                          | SN: 832283/011                    | 27-Aug-12 (in house check Oct-17)                                           | In house check: Oct-20                                                                                                                                               |
| etwork Analyzer Agilent E8358A                                                                                   | SN: US41080477                    | 31-Mar-14 (in house check Oct-17)                                           | In house check: Oct-18                                                                                                                                               |
|                                                                                                                  | Name                              | Function                                                                    | Signature                                                                                                                                                            |
| alibrated by:                                                                                                    | Leif Klysner                      | Laboratory Technician                                                       | Sed Man                                                                                                                                                              |
| pproved by:                                                                                                      | Katja Pokovic                     | Technical Manager                                                           | flitte                                                                                                                                                               |
|                                                                                                                  |                                   |                                                                             |                                                                                                                                                                      |

Certificate No: CD835V3-1023\_Aug18

Page 1 of 5



# No. I19Z60613-SEM05 Page 180 of 216

#### Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland





S

C

S

Schweizerischer Kalibrierdienst Service suisse d'étalonnage Servizio svizzero di taratura Swiss Calibration Service

Accreditation No.: SCS 0108

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

### References

[1] ANSI-C63.19-2011

American National Standard, Methods of Measurement of Compatibility between Wireless Communications Devices and Hearing Aids.

### Methods Applied and Interpretation of Parameters:

- Coordinate System: y-axis is in the direction of the dipole arms. z-axis is from the basis of the antenna (mounted on the table) towards its feed point between the two dipole arms. x-axis is normal to the other axes. In coincidence with the standards [1], the measurement planes (probe sensor center) are selected to be at a distance of 15 mm above the top metal edge of the dipole arms.
- Measurement Conditions: Further details are available from the hardcopies at the end of the certificate. All
  figures stated in the certificate are valid at the frequency indicated. The forward power to the dipole connector
  is set with a calibrated power meter connected and monitored with an auxiliary power meter connected to a
  directional coupler. While the dipole under test is connected, the forward power is adjusted to the same level.
- Antenna Positioning: The dipole is mounted on a HAC Test Arch phantom using the matching dipole positioner with the arms horizontal and the feeding cable coming from the floor. The measurements are performed in a shielded room with absorbers around the setup to reduce the reflections. It is verified before the mounting of the dipole under the Test Arch phantom, that its arms are perfectly in a line. It is installed on the HAC dipole positioner with its arms parallel below the dielectric reference wire and able to move elastically in vertical direction without changing its relative position to the top center of the Test Arch phantom. The vertical distance to the probe is adjusted after dipole mounting with a DASY5 Surface Check job. Before the measurement, the distance between phantom surface and probe tip is verified. The proper measurement distance is selected by choosing the matching section of the HAC Test Arch phantom with the proper device reference point (upper surface of the dipole) and the matching grid reference point (tip of the probe) considering the probe sensor offset. The vertical distance to the probe is essential for the accuracy.
- Feed Point Impedance and Return Loss: These parameters are measured using a HP 8753E Vector Network Analyzer. The impedance is specified at the SMA connector of the dipole. The influence of reflections was eliminating by applying the averaging function while moving the dipole in the air, at least 70cm away from any obstacles.
- E-field distribution: E field is measured in the x-y-plane with an isotropic ER3D-field probe with 100 mW forward power to the antenna feed point. In accordance with [1], the scan area is 20mm wide, its length exceeds the dipole arm length (180 or 90mm). The sensor center is 15 mm (in z) above the metal top of the dipole arms. Two 3D maxima are available near the end of the dipole arms. Assuming the dipole arms are perfectly in one line, the average of these two maxima (in subgrid 2 and subgrid 8) is determined to compensate for any non-parallelity to the measurement plane as well as the sensor displacement. The E-field value stated as calibration value represents the maximum of the interpolated 3D-E-field, in the plane above the dipole surface.

The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%.

Certificate No: CD835V3-1023\_Aug18

Page 2 of 5



# **Measurement Conditions**

DASY system configuration, as far as not given on page 1.

| DASY Version                       | DASY5           | V52.10.1 |
|------------------------------------|-----------------|----------|
| Phantom                            | HAC Test Arch   |          |
| Distance Dipole Top - Probe Center | 15 mm           |          |
| Scan resolution                    | dx, dy = 5 mm   |          |
| Frequency                          | 835 MHz ± 1 MHz |          |
| Input power drift                  | < 0.05 dB       |          |

# Maximum Field values at 835 MHz

| E-field 15 mm above dipole surface | condition          | Interpolated maximum     |
|------------------------------------|--------------------|--------------------------|
| Maximum measured above high end    | 100 mW input power | 111.0 V/m = 40.91 dBV/m  |
| Maximum measured above low end     | 100 mW input power | 109.6 V/m = 40.80 dBV/m  |
| Averaged maximum above arm         | 100 mW input power | 110.3 V/m ± 12.8 % (k=2) |

# Appendix (Additional assessments outside the scope of SCS 0108)

### **Antenna Parameters**

| Frequency | Return Loss | Impedance        |
|-----------|-------------|------------------|
| 800 MHz   | 18.1 dB     | 42.6 Ω - 9.0 jΩ  |
| 835 MHz   | 23.3 dB     | 53.6 Ω + 6.1 jΩ  |
| 880 MHz   | 15.6 dB     | 65.0 Ω - 11.8 jΩ |
| 900 MHz   | 17.7 dB     | 53.6 Ω - 13.1 jΩ |
| 945 MHz   | 25.0 dB     | 46.5 Ω + 4.1 jΩ  |

### 3.2 Antenna Design and Handling

The calibration dipole has a symmetric geometry with a built-in two stub matching network, which leads to the enhanced bandwidth.

The dipole is built of standard semirigid coaxial cable. The internal matching line is open ended. The antenna is therefore open for DC signals.

Do not apply force to dipole arms, as they are liable to bend. The soldered connections near the feedpoint may be damaged. After excessive mechanical stress or overheating, check the impedance characteristics to ensure that the internal matching network is not affected.

After long term use with 40W radiated power, only a slight warming of the dipole near the feedpoint can be measured.

Page 3 of 5



# Impedance Measurement Plot

| ne  | nel            | Sv  | vee | p '              | Caļib | ratio | n <u>T</u> | race | <u>S</u> cal | e M | arker | Syste | em      | Wind | wob | He | lp                         |                      |                                                 |                                                                                     |                                        |                                           |                                                                                           |
|-----|----------------|-----|-----|------------------|-------|-------|------------|------|--------------|-----|-------|-------|---------|------|-----|----|----------------------------|----------------------|-------------------------------------------------|-------------------------------------------------------------------------------------|----------------------------------------|-------------------------------------------|-------------------------------------------------------------------------------------------|
|     |                |     |     |                  |       |       |            |      |              |     |       |       |         | 1    |     |    | 1:                         | 800                  | .000                                            | 000 N                                                                               | 1Hz                                    | -18                                       | .052 di                                                                                   |
|     |                |     |     |                  |       |       |            |      |              |     |       |       |         | +    |     |    | 3:                         |                      |                                                 | 900 h                                                                               |                                        |                                           | 283 di                                                                                    |
| -   |                |     | -   | -                |       |       |            |      |              |     |       |       |         | -    |     | -  | 4                          |                      |                                                 | 000 M                                                                               |                                        |                                           | .635 dl                                                                                   |
| _   |                | -   |     |                  | -     |       |            |      |              |     |       |       |         |      | ,(  |    | 5                          |                      |                                                 |                                                                                     |                                        |                                           | 031 d                                                                                     |
|     |                |     |     |                  | _     |       |            |      |              | 1   |       |       |         |      | /   |    |                            |                      |                                                 |                                                                                     |                                        |                                           |                                                                                           |
|     |                |     |     |                  |       |       |            |      |              | 1   | < l   |       |         |      | 1   |    |                            |                      |                                                 |                                                                                     |                                        |                                           |                                                                                           |
|     |                |     |     |                  |       |       |            |      |              |     | T     | 13    | A       | 1    |     |    |                            |                      | -                                               |                                                                                     |                                        | -                                         |                                                                                           |
|     |                |     |     |                  |       |       |            |      |              |     | 1 3   | V S   | 4       | 11   |     | -  |                            |                      | -                                               |                                                                                     |                                        |                                           |                                                                                           |
|     | -              | -   |     |                  | +     |       |            |      |              |     | - 11  |       |         | 1    |     | -  |                            |                      | -                                               |                                                                                     |                                        |                                           |                                                                                           |
|     | _              |     |     |                  |       |       |            |      |              |     |       |       |         | 5    |     |    |                            |                      |                                                 |                                                                                     |                                        |                                           |                                                                                           |
|     |                |     |     |                  |       |       |            |      |              |     |       |       |         |      |     |    |                            |                      |                                                 |                                                                                     |                                        |                                           |                                                                                           |
| va. | q =            | 20  |     |                  |       |       |            | 100  |              |     |       |       |         |      |     |    |                            |                      | -                                               |                                                                                     | -                                      |                                           |                                                                                           |
| 000 | 00 M           | Hz  | -   |                  |       |       |            |      |              |     |       | I     |         |      |     |    |                            |                      | -                                               |                                                                                     | Stop                                   | 1 335                                     | 00 GH                                                                                     |
|     |                |     |     |                  |       |       |            |      | 4            | X   | XIIX  |       | THE ALL |      |     |    | 1:<br>2:<br>3:<br>4:<br>5: | 835.<br>880.<br>900. | 2:<br>.0000<br>1.<br>.0000<br>15<br>.0000<br>10 | 100 M<br>2.098<br>100 M<br>1658<br>100 M<br>5.268<br>00 M<br>3.516<br>00 M<br>(9.85 | pF<br>Hz<br>nH<br>Hz<br>pF<br>Hz<br>Hz | -9.<br>53<br>64<br>-11<br>53<br>-13<br>46 | 614 (<br>0028 (<br>633 (<br>1164 (<br>993 (<br>846 (<br>610 (<br>084 (<br>466 (<br>0961 ( |
|     |                |     |     |                  |       |       |            |      | Mr.          | X   |       | K     |         |      | đ   |    |                            |                      |                                                 |                                                                                     |                                        | 1.3350                                    | 0 014-                                                                                    |
|     | g = (2<br>00 M | IHz | -   | and the state of |       |       |            |      |              |     |       |       |         |      |     |    |                            |                      |                                                 |                                                                                     |                                        |                                           |                                                                                           |

Certificate No: CD835V3-1023\_Aug18

Page 4 of 5



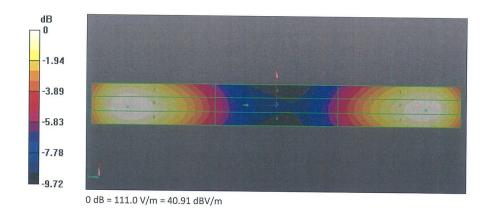
### **DASY5 E-field Result**

Date: 28.08.2018

Test Laboratory: SPEAG Lab2

# DUT: HAC-Dipole 835 MHz; Type: CD835V3; Serial: CD835V3 - SN: 1023

 $\begin{array}{l} \mbox{Communication System: UID 0 - CW ; Frequency: 835 MHz} \\ \mbox{Medium parameters used: } \sigma = 0 \mbox{ S/m, } \epsilon_r = 1; \mbox{ } \rho = 0 \mbox{ kg/m}^3 \\ \mbox{Phantom section: } RF \mbox{ Section} \\ \mbox{Measurement Standard: } DASY5 \mbox{(IEEE/IEC/ANSI C63.19-2011)} \\ \end{array}$ 


DASY52 Configuration:

- Probe: EF3DV3 SN4013; ConvF(1, 1, 1) @ 835 MHz; Calibrated: 05.03.2018
- Sensor-Surface: (Fix Surface)
- Electronics: DAE4 Sn781; Calibrated: 17.01.2018
- Phantom: HAC Test Arch with AMCC; Type: SD HAC P01 BA; Serial: 1070
- DASY52 52.10.1(1476); SEMCAD X 14.6.11(7439)

**Dipole E-Field measurement** @ **835MHz/E-Scan - 835MHz d=15mm/Hearing Aid Compatibility Test (41x361x1):** Interpolated grid: dx=0.5000 mm, dy=0.5000 mm Device Reference Point: 0, 0, -6.3 mm Reference Value = 132.3 V/m; Power Drift = -0.03 dB Applied MIF = 0.00 dB

RF audio interference level = 40.91 dBV/m Emission category: M3

| MIF scaled E-fi          | eld                             |                                 |
|--------------------------|---------------------------------|---------------------------------|
| Grid 1 M3<br>40.37 dBV/m |                                 | Grid 3 <b>M3</b><br>40.73 dBV/m |
|                          | Grid 5 M4<br>35.93 dBV/m        | Grid 6 <b>M4</b><br>35.91 dBV/m |
|                          | Grid 8 <b>M3</b><br>40.91 dBV/m | Grid 9 <b>M3</b><br>40.85 dBV/m |



Certificate No: CD835V3-1023\_Aug18

Page 5 of 5



# 1750 MHz Dipole Calibration Certificate

**Calibration Laboratory of** Schmid & Partner **Engineering AG** Zeughausstrasse 43, 8004 Zurich, Switzerland

Accredited by the Swiss Accreditation Service (SAS)

Multilateral Agreement for the recognition of calibration certificates



Schweizerischer Kalibrierdienst Service suisse d'étalonnage Servizio svizzero di taratura Swiss Calibration Service

Accreditation No.: SCS 0108 The Swiss Accreditation Service is one of the signatories to the EA

S

С

S

Client CTTL (Auden) Certificate No: D1750V2-1003 Jul18 **CALIBRATION CERTIFICATE** D1750V2 - SN:1003 Object Calibration procedure(s) QA CAL-05.v10 Calibration procedure for dipole validation kits above 700 MHz July 20, 2018 Calibration date: This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate. All calibrations have been conducted in the closed laboratory facility: environment temperature (22 ± 3)°C and humidity < 70%. Calibration Equipment used (M&TE critical for calibration) **Primary Standards** ID # Cal Date (Certificate No.) Scheduled Calibration Power meter NRP SN: 104778 04-Apr-18 (No. 217-02672/02673) Apr-19 Power sensor NRP-Z91 SN: 103244 04-Apr-18 (No. 217-02672) Apr-19 Power sensor NRP-Z91 SN: 103245 04-Apr-18 (No. 217-02673) Apr-19 Reference 20 dB Attenuator SN: 5058 (20k) 04-Apr-18 (No. 217-02682) Apr-19 Type-N mismatch combination SN: 5047.2 / 06327 04-Apr-18 (No. 217-02683) Apr-19 Reference Probe EX3DV4 SN: 7349 30-Dec-17 (No. EX3-7349\_Dec17) Dec-18 DAE4 SN: 601 26-Oct-17 (No. DAE4-601\_Oct17) Oct-18 Secondary Standards ID # Check Date (in house) Scheduled Check Power meter EPM-442A SN: GB37480704 07-Oct-15 (in house check Oct-16) In house check: Oct-18 Power sensor HP 8481A SN: US37292783 07-Oct-15 (in house check Oct-16) In house check: Oct-18 Power sensor HP 8481A SN: MY41092317 07-Oct-15 (in house check Oct-16) In house check: Oct-18 RF generator R&S SMT-06 SN: 100972 15-Jun-15 (in house check Oct-16) In house check: Oct-18 Network Analyzer Agilent E8358A SN: US41080477 31-Mar-14 (in house check Oct-17) In house check: Oct-18 Name Function Signature Calibrated by: Manu Seitz Laboratory Technician Approved by: Katja Pokovic Technical Manager Issued: July 20, 2018 This calibration certificate shall not be reproduced except in full without written approval of the laboratory.

Certificate No: D1750V2-1003\_Jul18

Page 1 of 8



# No. I19Z60613-SEM05 Page 185 of 216

#### Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland



S Schweizerischer Kalibrierdienst Service suisse d'étalonnage Servizio svizzero di taratura S swiss Calibration Service

Accreditation No.: SCS 0108

Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

### Glossary:

| TSL   | tissue simulating liquid        |
|-------|---------------------------------|
| ConvF | sensitivity in TSL / NORM x,y,z |
| N/A   | not applicable or not measured  |

# Calibration is Performed According to the Following Standards:

- a) IEEE Std 1528-2013, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", June 2013
- b) IEC 62209-1, "Measurement procedure for the assessment of Specific Absorption Rate (SAR) from hand-held and body-mounted devices used next to the ear (frequency range of 300 MHz to 6 GHz)", July 2016
- c) IEC 62209-2, "Procedure to determine the Specific Absorption Rate (SAR) for wireless communication devices used in close proximity to the human body (frequency range of 30 MHz to 6 GHz)", March 2010
- d) KDB 865664, "SAR Measurement Requirements for 100 MHz to 6 GHz"

# Additional Documentation:

e) DASY4/5 System Handbook

# Methods Applied and Interpretation of Parameters:

- *Measurement Conditions:* Further details are available from the Validation Report at the end of the certificate. All figures stated in the certificate are valid at the frequency indicated.
- Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed point exactly below the center marking of the flat phantom section, with the arms oriented parallel to the body axis.
- Feed Point Impedance and Return Loss: These parameters are measured with the dipole positioned under the liquid filled phantom. The impedance stated is transformed from the measurement at the SMA connector to the feed point. The Return Loss ensures low reflected power. No uncertainty required.
- *Electrical Delay:* One-way delay between the SMA connector and the antenna feed point. No uncertainty required.
- SAR measured: SAR measured at the stated antenna input power.
- SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector.
- SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result.

The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%.

Certificate No: D1750V2-1003\_Jul18

Page 2 of 8



# Measurement Conditions

DASY system configuration, as far as not given on page 1.

| DASY Version                 | DASY5                  | V52.10.1    |
|------------------------------|------------------------|-------------|
| Extrapolation                | Advanced Extrapolation |             |
| Phantom                      | Modular Flat Phantom   |             |
| Distance Dipole Center - TSL | 10 mm                  | with Spacer |
| Zoom Scan Resolution         | dx, dy, dz = 5 mm      |             |
| Frequency                    | 1750 MHz ± 1 MHz       |             |

## **Head TSL parameters**

The following parameters and calculations were applied.

|                                         | Temperature     | Permittivity | Conductivity     |
|-----------------------------------------|-----------------|--------------|------------------|
| Nominal Head TSL parameters             | 22.0 °C         | 40.1         | 1.37 mho/m       |
| Measured Head TSL parameters            | (22.0 ± 0.2) °C | 39.0 ± 6 %   | 1.34 mho/m ± 6 % |
| Head TSL temperature change during test | < 0.5 °C        |              |                  |

# SAR result with Head TSL

| SAR averaged over 1 cm <sup>3</sup> (1 g) of Head TSL                   | Condition                       |                          |
|-------------------------------------------------------------------------|---------------------------------|--------------------------|
| SAR measured                                                            | 250 mW input power              | 8.91 W/kg                |
| SAR for nominal Head TSL parameters                                     | normalized to 1W                | 35.9 W/kg ± 17.0 % (k=2) |
|                                                                         |                                 | 104 CMM0                 |
| SAR averaged over 10 cm <sup>3</sup> (10 g) of Head TSL                 | condition                       |                          |
| SAR averaged over 10 cm <sup>3</sup> (10 g) of Head TSL<br>SAR measured | condition<br>250 mW input power | 4.71 W/kg                |

# **Body TSL parameters**

The following parameters and calculations were applied.

|                                         | Temperature     | Permittivity | Conductivity     |
|-----------------------------------------|-----------------|--------------|------------------|
| Nominal Body TSL parameters             | 22.0 °C         | 53.4         | 1.49 mho/m       |
| Measured Body TSL parameters            | (22.0 ± 0.2) °C | 53.7 ± 6 %   | 1.46 mho/m ± 6 % |
| Body TSL temperature change during test | < 0.5 °C        |              |                  |

# SAR result with Body TSL

| SAR averaged over 1 cm <sup>3</sup> (1 g) of Body TSL | Condition          |                          |
|-------------------------------------------------------|--------------------|--------------------------|
| SAR measured                                          | 250 mW input power | 8.97 W/kg                |
| SAR for nominal Body TSL parameters                   | normalized to 1W   | 36.4 W/kg ± 17.0 % (k=2) |

| SAR averaged over 10 $\text{cm}^3$ (10 g) of Body TSL | condition          |                          |
|-------------------------------------------------------|--------------------|--------------------------|
| SAR measured                                          | 250 mW input power | 4.79 W/kg                |
| SAR for nominal Body TSL parameters                   | normalized to 1W   | 19.3 W/kg ± 16.5 % (k=2) |

Certificate No: D1750V2-1003\_Jul18



# Appendix (Additional assessments outside the scope of SCS 0108)

### Antenna Parameters with Head TSL

| Impedance, transformed to feed point | 51.6 Ω + 1.3 jΩ |
|--------------------------------------|-----------------|
| Return Loss                          | - 33.7 dB       |

### Antenna Parameters with Body TSL

| Impedance, transformed to feed point | 47.3 Ω + 1.2 jΩ |  |
|--------------------------------------|-----------------|--|
| Return Loss                          | - 30.4 dB       |  |

# General Antenna Parameters and Design

| Electrical Delay (one direction) | 1.215 ns |
|----------------------------------|----------|
|----------------------------------|----------|

After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured.

The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard.

No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged.

## **Additional EUT Data**

| Manufactured by | SPEAG         |
|-----------------|---------------|
| Manufactured on | July 30, 2008 |

Certificate No: D1750V2-1003\_Jul18

Page 4 of 8