

SAR TEST REPORT

No. I19Z60716-SEM03

For

TCL Communication Ltd.

HSUPA/HSDPA/UMTS Tri Band/GSM Quad Band/LTE 5 Band Mobile Phone

Model Name: 4052R

With

Hardware Version: 04

Software Version: ZXXD

FCC ID: 2ACCJN031

Issued Date: 2019-6-24

R TESTING NVLAP LAB CODE 600118-0

Note:

The test results in this test report relate only to the devices specified in this report. This report shall not be reproduced except in full without the written approval of CTTL.

The report must not be used by the client to claim product certification, approval, or endorsement by NVLAP, NIST, or any agency of the U.S.Government.

Test Laboratory:

CTTL, Telecommunication Technology Labs, CAICT

No. 51, Huayuan North Road, Haidian District, Beijing, P. R. China 100191.

Tel:+86(0)10-62304633-2512, Fax:+86(0)10-62304633-2504

Email: <u>cttl_terminals@caict.ac.cn</u>, website: <u>www.caict.ac.cn</u>

©Copyright. All rights reserved by CTTL.

REPORT HISTORY

Report Number	Revision	Issue Date	Description
I19Z60716-SEM03	Rev.0	2019-6-24	Initial creation of test report
I19Z60716-SEM03	Rev.1	2019-7-3	Add result of BT on page 54.

TABLE OF CONTENT

1	TEST LABORATORY	5
1.	.1 TESTING LOCATION	5
1.	.2 Testing Environment	5
	.3 Project Data	
1.	.4 Signature	5
2	STATEMENT OF COMPLIANCE	6
3	CLIENT INFORMATION	8
3.	.1 Applicant Information	8
3.	.2 MANUFACTURER INFORMATION	8
4	EQUIPMENT UNDER TEST (EUT) AND ANCILLARY EQUIPMENT (AE)	9
4.	.1 About EUT	9
	.2 INTERNAL IDENTIFICATION OF EUT USED DURING THE TEST	
4.	.3 INTERNAL IDENTIFICATION OF AE USED DURING THE TEST	9
5	TEST METHODOLOGY	10
5	.1 APPLICABLE LIMIT REGULATIONS	10
	.2 Applicable Measurement Standards	
6	SPECIFIC ABSORPTION RATE (SAR)	
-	.1 Introduction	
	.1 INTRODUCTION	
7	TISSUE SIMULATING LIQUIDS	
7	.1 TARGETS FOR TISSUE SIMULATING LIQUID	12
	.2 DIELECTRIC PERFORMANCE	
8	SYSTEM VERIFICATION	
•	.1 System Setup	
	.1 SYSTEM SETUP	
9	MEASUREMENT PROCEDURES	20
	.1 Tests to be performed	
	.2 GENERAL MEASUREMENT PROCEDURE	
	.3 WCDMA MEASUREMENT PROCEDURES FOR SAR	
	.4 SAR MEASUREMENT FOR LTE	
	.5 Bluetooth & Wi-Fi Measurement Procedures for SAR	
10		
	0.1 REQUIREMENT OF KDB	
10	0.2 FAST SAR ALGORITHMS	25
11	CONDUCTED OUTPUT POWER©Copyright. All rights reserv	
		Sawy Oric

11.	1 GSM	MEASUREMENT RESULT	
11.	2 WCD	MA MEASUREMENT RESULT	
11.	3 LTE N	IEASUREMENT RESULT	
11.	4 WI-FI	AND BT MEASUREMENT RESULT	
12	SIM	ULTANEOUS TX SAR CONSIDERATIONS	42
12	1 Intro	DUCTION	
12	2 TRANS	SMIT ANTENNA SEPARATION DISTANCES	
12	3 Stani	DALONE SAR TEST EXCLUSION CONSIDERATIONS	
13	EVA	LUATION OF SIMULTANEOUS	44
14	SAF	R TEST RESULT	45
14	1 SAR F	RESULTS	
14	2 SAR F	RESULTS FOR STANDARD PROCEDURE	
14	3 WLAI	N EVALUATION	
15	SAF	R MEASUREMENT VARIABILITY	62
16	ME	ASUREMENT UNCERTAINTY	63
16	1 MEAS	UREMENT UNCERTAINTY FOR NORMAL SAR TESTS (300MHz~3GHz)	
16	2 MEAS	UREMENT UNCERTAINTY FOR NORMAL SAR TESTS (3~6GHz)	
16	3 Meas	UREMENT UNCERTAINTY FOR FAST SAR TESTS (300MHz~3GHz)	
16	4 MEAS	UREMENT UNCERTAINTY FOR FAST SAR TESTS (3~6GHz)	
17	MAI	N TEST INSTRUMENTS	68
ANI	NEX A	GRAPH RESULTS	69
ANI	NEX B	SYSTEM VERIFICATION RESULTS	113
ANI	NEX C	SAR MEASUREMENT SETUP	124
ANI	NEX D	POSITION OF THE WIRELESS DEVICE IN RELATION TO TH	E PHANTOM130
ANI	NEX E	EQUIVALENT MEDIA RECIPES	133
ANI	NEX F	SYSTEM VALIDATION	134
ANI	NEX G	PROBE CALIBRATION CERTIFICATE	135
ANI	NEX H	DIPOLE CALIBRATION CERTIFICATE	146
AN	NEX I	ACCREDITATION CERTIFICATE	186

1 Test Laboratory

1.1 Testing Location

Company Name:	CTTL(Shouxiang)
Address:	No. 51 Shouxiang Science Building, Xueyuan Road, Haidian District,
	Beijing, P. R. China100191

1.2 Testing Environment

Temperature:	18°C~25 °C,
Relative humidity:	30%~ 70%
Ground system resistance:	< 0.5 Ω
Ambient noise & Reflection:	< 0.012 W/kg

1.3 Project Data

Project Leader:	Qi Dianyuan
Test Engineer:	Lin Xiaojun
Testing Start Date:	June 14, 2019
Testing End Date:	June 19, 2019

1.4 Signature

Lin Xiaojun (Prepared this test report)

Qi Dianyuan (Reviewed this test report)

的好

Lu Bingsong Deputy Director of the laboratory (Approved this test report)

2 **Statement of Compliance**

The maximum results of SAR found during testing for TCL Communication Ltd. HSUPA/HSDPA/UMTS Tri Band/GSM Quad Band/LTE 5 Band Mobile Phone 4052R is as follows: Table 2.1: Highest Reported SAR (1g)

Exposure Configuration	Technology Band	Highest Reported SAR 1g (W/Kg)	Equipment Class
	C SM 950		
	GSM 850	0.47	
	PCS 1900	0.43	
	UMTS FDD 2	0.77	
	UMTS FDD 4	0.53	
Head	UMTS FDD 5	0.56	PCE
	LTE Band 2	0.49	FUL
(Separation Distance 0mm)	LTE Band 4	0.49	
	LTE Band 5	0.39	
	LTE Band 12	0.43	
	LTE Band 14	0.57	
	WLAN 2.4 GHz	0.61	DTS
	GSM 850	0.27	
	PCS 1900	0.53	
	UMTS FDD 2	0.90	
	UMTS FDD 4	1.06	
Body-worn	UMTS FDD 5	0.40	DOF
(Separation Distance	LTE Band 2	0.67	PCE
15mm)	LTE Band 4	0.76	
	LTE Band 5	0.36	
	LTE Band 12	0.49	
	LTE Band 14	0.54	
	WLAN 2.4 GHz	0.17	DTS

The SAR values found for the Mobile Phone are below the maximum recommended levels of 1.6 W/Kg as averaged over any 1g tissue according to the ANSI C95.1-1992.

For body worn operation, this device has been tested and meets FCC RF exposure guidelines when used with any accessory that contains no metal and which provides a minimum separation distance of 15 mm between this device and the body of the user. Use of other accessories may not ensure compliance with FCC RF exposure guidelines.

The EUT battery must be fully charged and checked periodically during the test to ascertain uniform power output.

The measurement together with the test system set-up is described in annex C of this test report. A detailed description of the equipment under test can be found in chapter 4 of this test report.

The highest reported SAR value is obtained at the case of (Table 2.1), and the values are: 1.06 W/kg (1g).

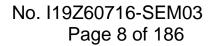

	Position	Main	WLAN	Sum
Maximum reported	Left hand, Touch cheek	0.77	0.32	1.09
SAR value for Head	Right hand, Touch cheek	0.56	0.61	1.17
Maximum reported SAR value for	Rear 15mm	1.06	0.10	1.16
Body	Rear unfold 15mm	0.57	0.17	0.74

Table 2.2: The sum of reported SAR values for main antenna and WLAN

Table 2.3: The sum of reported SAR values for main antenna and BT

	Position	Main antenna	BT	Sum	
Maximum reported	Left hand, Touch cheek	0.77	< 0.01	0.77	
SAR value for Head	Leit nanu, Touch cheek	0.77	< 0.01	0.77	
Maximum reported	Rear 15mm	1.06	< 0.01	1.06	
SAR value for Body	Real Iomm	1.00	< 0.01	1.00	

According to the above tables, the highest sum of reported SAR values is **1.17 W/kg (1g)**. The detail for simultaneous transmission consideration is described in chapter 13.

3 Client Information

3.1 Applicant Information

Company Name:	TCL Communication Ltd.	
Address /Post:	7/F, Block F4, TCL International E City, Zhong Shan Yuan Road,	
Address /Post.	Nanshan District, Shenzhen, Guangdong, P.R. China 518052	
Contact Person:	Gong Zhizhou	
E-mail:	zhizhou.gong@tcl.com	
Telephone:	0086-755-36611722	
Fax:	0086-755-36612000 ext: 81722	

3.2 Manufacturer Information

Company Name:	TCL Communication Ltd.	
Address /Post:	7/F, Block F4, TCL International E City, Zhong Shan Yuan Road,	
Address / Fost.	Nanshan District, Shenzhen, Guangdong, P.R. China 518052	
Contact Person:	Gong Zhizhou	
E-mail:	zhizhou.gong@tcl.com	
Telephone:	0086-755-36611722	
Fax:	0086-755-36612000 ext: 81722	

4 Equipment Under Test (EUT) and Ancillary Equipment (AE)

4.1 About EUT

Description:	HSUPA/HSDPA/UMTS Tri Band/GSM Quad Band/LTE 5 Band Mobile
	Phone
Model name:	4052R
Operating mode(s):	GSM 850/900/1800/1900 WCDMA850/1700/1900
Operating mode(3).	LTE B2/4/5/12/14, BT, WLAN
	825 – 848.8 MHz (GSM 850)
	1850.2 – 1910 MHz (GSM 1900)
	826.4–846.6 MHz (WCDMA 850 Band V)
	1712.4 – 1752.6 MHz (WCDMA 1700 Band IV)
	1852.4–1907.6 MHz (WCDMA1900 Band II)
Tested Tx Frequency:	1860 – 1900 MHz (LTE Band 2)
	1720 – 1745 MHz (LTE Band 4)
	824.7 – 848.3 MHz (LTE Band 5)
	699.7 – 715.3 MHz (LTE Band 12)
	790.5 –795.5 MHz (LTE Band 14)
	2412 – 2462 MHz (Wi-Fi 2.4G)
GPRS/EGPRS Multislot Class:	10
Test device Production information:	Production unit
Device type:	Portable device
Antenna type:	Integrated antenna

4.2 Internal Identification of EUT used during the test

EUTID	IMEI	HW Version	SW Version
EUT1	015455000008754	04	ZXXD
EUT2	015455000008978	04	ZXXD
EUT3	015455000008705	04	ZXXD

*EUT ID: is used to identify the test sample in the lab internally.

Note: It is performed to test SAR with the EUT1~2 and conducted power with the EUT3.

4.3 Internal Identification of AE used during the test

AE ID	Description	Model	SN	Manufactor
AE1	Battery	CAB1350001C1	/	BYD

*AE ID: is used to identify the test sample in the lab internally.

5 TEST METHODOLOGY

5.1 Applicable Limit Regulations

ANSI C95.1–1992: IEEE Standard for Safety Levels with Respect to Human Exposure to Radio Frequency Electromagnetic Fields, 3 kHz to 300 GHz.

It specifies the maximum exposure limit of **1.6 W/kg** as averaged over any 1 gram of tissue for portable devices being used within 20 cm of the user in the uncontrolled environment.

5.2 Applicable Measurement Standards

IEEE 1528–2013: Recommended Practice for Determining the Peak Spatial-Average Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques.

KDB447498 D01 General RF Exposure Guidance v06: Mobile and Portable Devices RF Exposure Procedures and Equipment Authorization Policies.

KDB648474 D04 Handset SAR v01r03: SAR Evaluation Considerations for Wireless Handsets.

KDB941225 D01 SAR test for 3G devices v03r01: SAR Measurement Procedures for 3G Devices

KDB941225 D05 SAR for LTE Devices v02r05: SAR Evaluation Considerations for LTE Devices

KDB248227 D01 802.11 Wi-Fi SAR v02r02: SAR GUIDANCE FOR IEEE 802.11 (Wi-Fi) TRANSMITTERS

KDB865664 D01SAR measurement 100 MHz to 6 GHz v01r04: SAR Measurement Requirements for 100 MHz to 6 GHz.

KDB865664 D02 RF Exposure Reporting v01r02: RF Exposure Compliance Reporting and Documentation Considerations

6 Specific Absorption Rate (SAR)

6.1 Introduction

SAR is related to the rate at which energy is absorbed per unit mass in an object exposed to a radio field. The SAR distribution in a biological body is complicated and is usually carried out by experimental techniques or numerical modeling. The standard recommends limits for two tiers of groups, occupational/controlled and general population/uncontrolled, based on a person's awareness and ability to exercise control over his or her exposure. In general, occupational/controlled exposure limits are higher than the limits for general population/uncontrolled.

6.2 SAR Definition

The SAR definition is the time derivative (rate) of the incremental energy (dW) absorbed by (dissipated in) an incremental mass (dm) contained in a volume element (dv) of a given density (ρ). The equation description is as below:

$$SAR = \frac{d}{dt}(\frac{dW}{dm}) = \frac{d}{dt}(\frac{dW}{\rho dv})$$

SAR is expressed in units of Watts per kilogram (W/kg) SAR measurement can be either related to the temperature elevation in tissue by

$$SAR = c(\frac{\delta T}{\delta t})$$

Where: C is the specific head capacity, δT is the temperature rise and δt is the exposure duration, or related to the electrical field in the tissue by

$$SAR = \frac{\sigma |E|^2}{\rho}$$

Where: σ is the conductivity of the tissue, ρ is the mass density of tissue and E is the RMS electrical field strength.

However for evaluating SAR of low power transmitter, electrical field measurement is typically applied.

7 Tissue Simulating Liquids

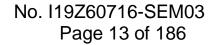
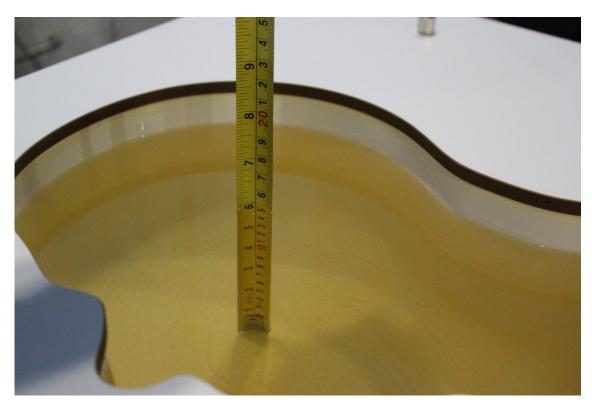
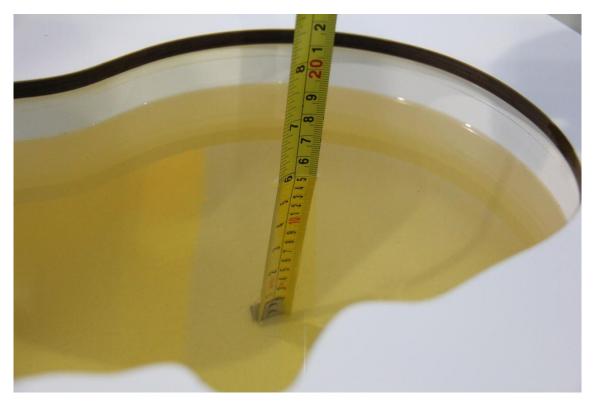

7.1 Targets for tissue simulating liquid

Table 7.1: Targets for tissue simulating liquid


Frequency(MHz)	Liquid Type	Conductivity(o)	± 5% Range	Permittivity(ε)	± 5% Range
750	Head	0.89	0.85~0.93	41.94	39.8~44.0
750	Body	0.96	0.91~1.01	55.5	52.7~58.3
835	Head	0.90	0.86~0.95	41.5	39.4~43.6
835	Body	0.97	0.92~1.02	55.2	52.4~58.0
1750	Head	1.37	1.30~1.44	40.08	38.1~42.1
1750	Body	1.49	1.42~1.56	53.4	50.7~56.1
1900	Head	1.40	1.33~1.47	40.0	38.0~42.0
1900	Body	1.52	1.44~1.60	53.3	50.6~56.0
2450	Head	1.80	1.71~1.89	39.2	37.2~41.2
2450	Body	1.95	1.85~2.05	52.7	50.1~55.3

7.2 Dielectric Performance

Table 7.2: Dielectric Performance of Tissue Simulating Liquid Conductivity Measurement Date Frequency Permittivity ε Drift (%) Drift (%) Type σ (S/m) yyyy/mm/dd Head 42.38 -1.69 1.05 0.875 2019-6-14 750 MHz Body 54.56 -1.69 0.976 1.67 41.83 Head 0.80 0.916 1.78 2019-6-18 835 MHz Body 55.9 1.27 0.995 2.58 Head 40.49 1.02 1.386 1.17 2019-6-15 1750 MHz Body 54.4 1.87 1.456 -2.28 Head 40.23 0.57 1.393 -0.50 2019-6-19 1900 MHz 52.24 1.78 Body -1.99 1.547 -0.79 1.798 Head 38.89 -0.11 2019-6-16 2450 MHz Body 51.88 -1.56 1.923 -1.38

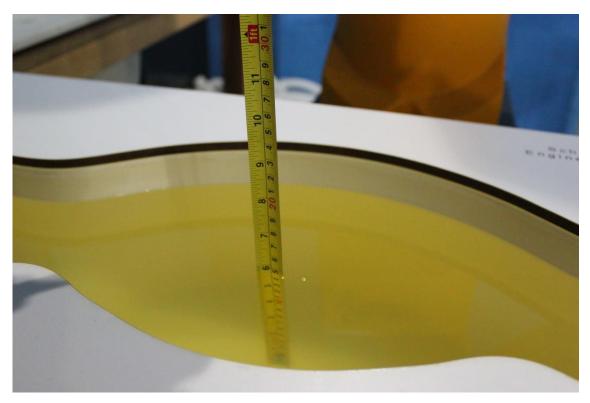


Picture 7-1 Liquid depth in the Head Phantom (750 MHz)

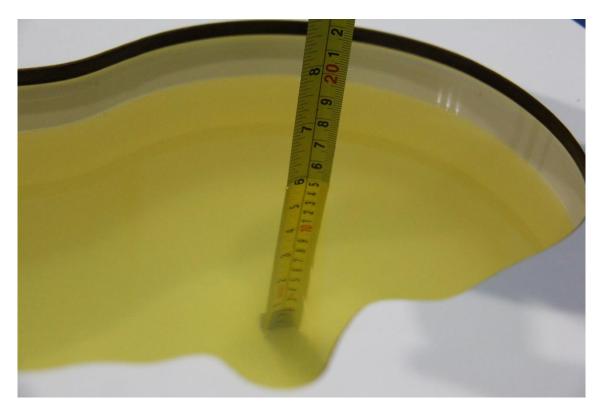
Picture 7-2 Liquid depth in the Flat Phantom (750 MHz)

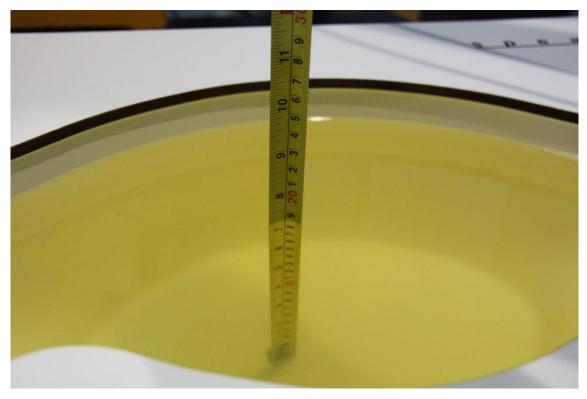


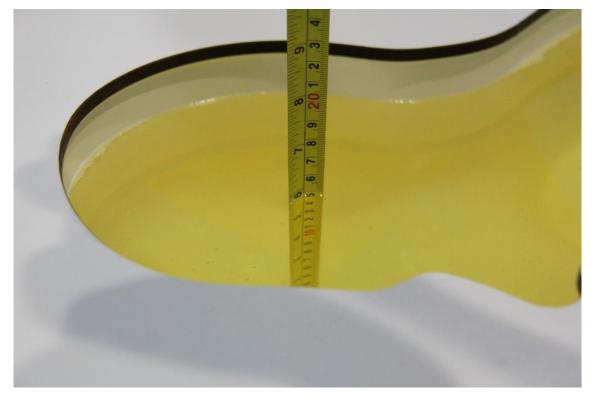
Picture 7-3 Liquid depth in the Head Phantom (835MHz)



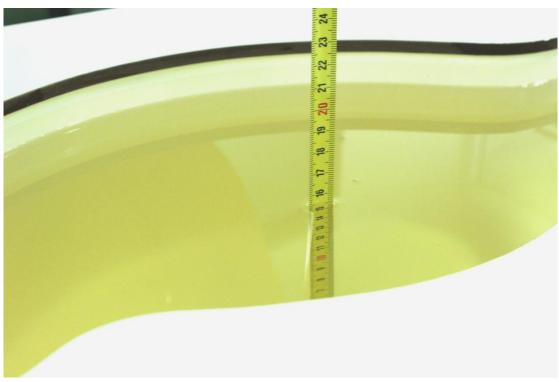
Picture 7-4 Liquid depth in the Flat Phantom (835MHz)


Picture 7-5 Liquid depth in the Head Phantom (1750 MHz)


Picture 7-6 Liquid depth in the Flat Phantom (1750MHz)

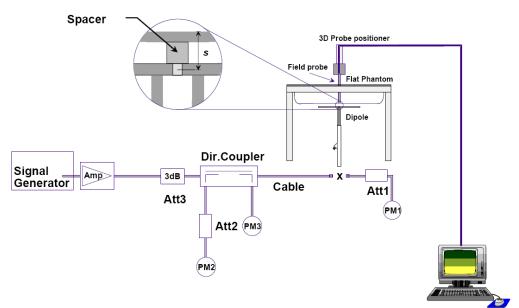


Picture 7-7 Liquid depth in the Head Phantom (1900 MHz)



Picture 7-8 Liquid depth in the Flat Phantom (1900MHz)

Picture 7-9 Liquid depth in the Head Phantom (2450MHz)


Picture 7-10 Liquid depth in the Flat Phantom (2450MHz)

8 System verification

8.1 System Setup

In the simplified setup for system evaluation, the DUT is replaced by a calibrated dipole and the power source is replaced by a continuous wave that comes from a signal generator. The calibrated dipole must be placed beneath the flat phantom section of the SAM twin phantom with the correct distance holder. The distance holder should touch the phantom surface with a light pressure at the reference marking and be oriented parallel to the long side of the phantom. The equipment setup is shown below:

Picture 8.1 System Setup for System Evaluation

Picture 8.2 Photo of Dipole Setup

8.2 System Verification

SAR system verification is required to confirm measurement accuracy, according to the tissue dielectric media, probe calibration points and other system operating parameters required for measuring the SAR of a test device. The system verification must be performed for each frequency band and within the valid range of each probe calibration point required for testing the device.

The system verification results are required that the area scan estimated 1-g SAR is within 3% of the zoom scan 1-g SAR. The details are presented in annex B.

Measurement Date		Target value (W/kg)) Measured value (W/kg)		Deviation				
(yyyy-mm-	Frequency	10 g	1 g	10 g	1 g	10 g	1 g			
dd)		Average	Average	Average	Average	Average	Average			
2019-6-14	750 MHz	5.34	8.20	5.4	8.3	1.87%	0.98%			
2019-6-18	835 MHz	6.06	9.40	5.92	9.24	-2.31%	-1.70%			
2019-6-15	1750 MHz	18.9	35.9	19.4	36.7	2.86%	2.28%			
2019-6-19	1900 MHz	21.3	40.4	21.8	41.2	2.16%	1.98%			
2019-6-16	2450 MHz	24.2	51.7	23.7	50.8	-2.15%	-1.74%			

Table 8.1: System Verification of Head

Table 8.2: System Verification of Body

Measurement Date		Target val	ue (W/kg)		ed value /kg)	Devia	ation
(yyyy-mm-	Frequency	10 g	1 g	10 g	1 g	10 g	1 g
dd)		Average	Average	Average	Average	Average	Average
2019-6-14	750 MHz	5.68	8.63	5.76	8.76	1.41%	1.51%
2019-6-18	835 MHz	6.28	9.53	6.36	9.68	1.27%	1.57%
2019-6-15	1750 MHz	19.3	36.4	19.92	37.68	3.21%	3.52%
2019-6-19	1900 MHz	21.4	40.4	21.96	41.60	2.62%	2.97%
2019-6-16	2450 MHz	24.1	51.3	23.56	50.40	-2.24%	-1.75%

9 Measurement Procedures

9.1 Tests to be performed

In order to determine the highest value of the peak spatial-average SAR of a handset, all device positions, configurations and operational modes shall be tested for each frequency band according to steps 1 to 3 below. A flowchart of the test process is shown in picture 9.1.

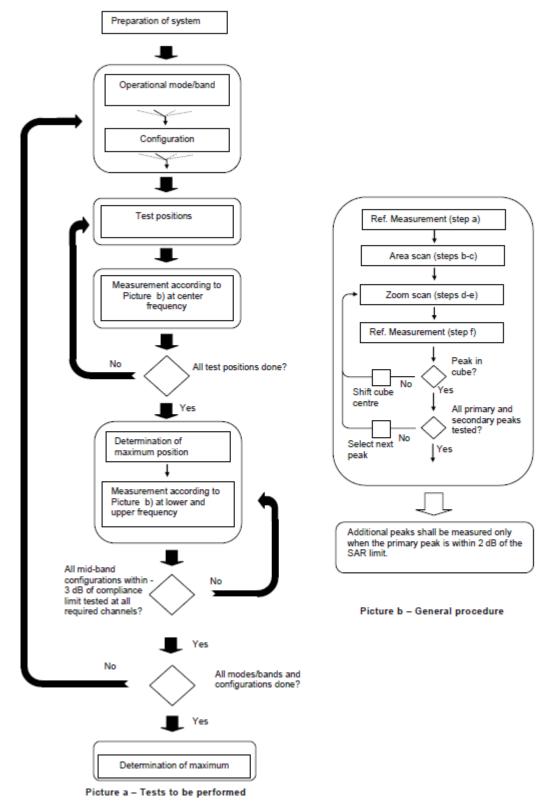
Step 1: The tests described in 9.2 shall be performed at the channel that is closest to the center of

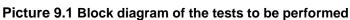
the transmit frequency band (f_c) for:

a) all device positions (cheek and tilt, for both left and right sides of the SAM phantom, as described in annex D),

b) all configurations for each device position in a), e.g., antenna extended and retracted, and

c) all operational modes, e.g., analogue and digital, for each device position in a) and configuration in b) in each frequency band.


If more than three frequencies need to be tested according to 11.1 (i.e., N_c > 3), then all


frequencies, configurations and modes shall be tested for all of the above test conditions.

Step 2: For the condition providing highest peak spatial-average SAR determined in Step 1, perform all tests described in 9.2 at all other test frequencies, i.e., lowest and highest frequencies. In addition, for all other conditions (device position, configuration and operational mode) where the peak spatial-average SAR value determined in Step 1 is within 3 dB of the applicable SAR limit, it is recommended that all other test frequencies shall be tested as well.

Step 3: Examine all data to determine the highest value of the peak spatial-average SAR found in Steps 1 to 2.

9.2 General Measurement Procedure

The area and zoom scan resolutions specified in the table below must be applied to the SAR measurements and fully documented in SAR reports to qualify for TCB approval. Probe boundary effect error compensation is required for measurements with the probe tip closer than half a probe tip diameter to the phantom surface. Both the probe tip diameter and sensor offset distance must satisfy measurement protocols; to ensure probe boundary effect errors are minimized and the higher fields closest to the phantom surface can be correctly measured and extrapolated to the phantom surface for computing 1-g SAR. Tolerances of the post-processing algorithms must be verified by the test laboratory for the scan resolutions used in the SAR measurements, according to the reference distribution functions specified in IEEE Std 1528-2013. The results should be documented as part of the system validation records and may be requested to support test results when all the measurement parameters in the following table are not satisfied.

		\leq 3 GHz	> 3 GHz
	-	$5 \pm 1 \text{ mm}$	¼·δ·ln(2) ± 0.5 mm
rom probe a ent location		30°±1°	20°±1°
		$\leq 2 \text{ GHz:} \leq 15 \text{ mm}$ 2 - 3 GHz: $\leq 12 \text{ mm}$	$\begin{array}{l} 3-4 \; \mathrm{GHz:} \leq 12 \; \mathrm{mm} \\ 4-6 \; \mathrm{GHz:} \leq 10 \; \mathrm{mm} \end{array}$
ial resolutio	m: Δx _{Area} , Δy _{Area}	When the x or y dimension of t measurement plane orientation measurement resolution must b dimension of the test device we point on the test device.	, is smaller than the above, the $e \leq $ the corresponding x or y
atial resolut	ion: Δx _{Zoom} , Δy _{Zoom}	$\leq 2 \text{ GHz}: \leq 8 \text{ mm}$ 2 - 3 GHz: $\leq 5 \text{ mm}^*$	$3 - 4 \text{ GHz} \le 5 \text{ mm}^*$ $4 - 6 \text{ GHz} \le 4 \text{ mm}^*$
uniform g	rid: ∆z _{Zoom} (n)	≤ 5 mm	$3 - 4 \text{ GHz} \le 4 \text{ mm}$ $4 - 5 \text{ GHz} \le 3 \text{ mm}$ $5 - 6 \text{ GHz} \le 2 \text{ mm}$
graded	$\Delta z_{Zoom}(1)$: between 1 st two points closest to phantom surface	≤ 4 mm	$\begin{array}{l} 3-4 \ \mathrm{GHz:} \leq 3 \ \mathrm{mm} \\ 4-5 \ \mathrm{GHz:} \leq 2.5 \ \mathrm{mm} \\ 5-6 \ \mathrm{GHz:} \leq 2 \ \mathrm{mm} \end{array}$
grid	∆z _{Zoom} (n>1): between subsequent points	$\leq 1.5 \cdot \Delta$	z _{Zcom} (n-1)
x, y, z	1	≥ 30 mm	$3 - 4 \text{ GHz}: \ge 28 \text{ mm}$ $4 - 5 \text{ GHz}: \ge 25 \text{ mm}$ 5 - 6 GHz: > 22 mm
	e sensors) from probe a ent location ial resolution attal resolution graded grid	$\frac{1}{2} = \frac{1}{2} \frac{\Delta x_{Area}}{\Delta x_{Zoom}} \frac{\Delta y_{Area}}{\Delta x_{Zoom}}$ $\frac{1}{2} = \frac{1}{2} \frac{\Delta x_{Zoom}}{\Delta x_{Zoom}} \Delta $	closest measurement point 5 ± 1 mm per sensors) to phantom surface $30^{\circ} \pm 1^{\circ}$ com probe axis to phantom surface $30^{\circ} \pm 1^{\circ}$ ial resolution: $\Delta x_{Area}, \Delta y_{Area}$ $\leq 2 \text{ GHz}: \leq 15 \text{ mm}$ ial resolution: $\Delta x_{Area}, \Delta y_{Area}$ When the x or y dimension of the measurement plane orientation measurement resolution must be dimension of the test device. atial resolution: $\Delta x_{Zoom}, \Delta y_{Zoom}$ $\leq 2 \text{ GHz}: \leq 8 \text{ mm}$ uniform grid: $\Delta z_{Zoom}(n)$ $\leq 5 \text{ mm}^*$ graded $\Delta z_{Zoom}(1)$: between 1^{st} grid $\Delta z_{Zoom}(n>1)$: between 1^{st} $\Delta z_{Zoom}(n>1)$: between 1^{st} $\leq 4 \text{ mm}$ $\Delta z_{Zoom}(n>1)$: between 1^{st} $\leq 1.5 \cdot \Delta z$

* When zoom scan is required and the <u>reported</u> SAR from the area scan based *l-g SAR estimation* procedures of KDB 447498 is ≤ 1.4 W/kg, ≤ 8 mm, ≤ 7 mm and ≤ 5 mm zoom scan resolution may be applied, respectively, for 2 GHz to 3 GHz, 3 GHz to 4 GHz and 4 GHz to 6 GHz.

9.3 WCDMA Measurement Procedures for SAR

The following procedures are applicable to WCDMA handsets operating under 3GPP Release99, Release 5 and Release 6. The default test configuration is to measure SAR with an established radio link between the DUT and a communication test set using a 12.2kbps RMC (reference measurement channel) configured in Test Loop Mode 1. SAR is selectively confirmed for other physical channel configurations (DPCCH & DPDCH_n), HSDPA and HSPA (HSUPA/HSDPA) modes according to output power, exposure conditions and device operating capabilities. Both uplink and downlink should be configured with the same RMC or AMR, when required. SAR for Release 5 HSDPA and Release 6 HSPA are measured using the applicable FRC (fixed reference channel) and E-DCH reference channel configurations. Maximum output power is verified according to applicable versions of 3GPP TS 34.121 and SAR must be measured according to these maximum output conditions. When Maximum Power Reduction (MPR) is not implemented according to Cubic Metric (CM) requirements for Release 6 HSPA, the following procedures do not apply.

Sub-test	eta_{c}	eta_{d}	eta_d (SF)	eta_c / eta_d	$eta_{\scriptscriptstyle hs}$	CM/dB
1	2/15	15/15	64	2/15	4/15	0.0
2	12/15	15/15	64	12/15	24/25	1.0
3	15/15	8/15	64	15/8	30/15	1.5
4	15/15	4/15	64	15/4	30/15	1.5

For Release 5 HSDPA Data Devices:

For Release 6 HSPA Data Devices

Sub- test	$eta_{_c}$	eta_d	eta_d	$eta_{_c}$ / $eta_{_d}$	$eta_{\scriptscriptstyle hs}$	$eta_{\scriptscriptstyle ec}$	$eta_{\scriptscriptstyle ed}$	eta_{ed}	eta_{ed}	CM (dB)	MPR (dB)	AG Index	E– TFCI
1	11/15	15/15	64	11/15	22/15	209/225	1039/225	4	1	1.5	1.5	20	75
2	6/15	15/15	64	6/15	12/15	12/15	12/15	4	1	1.5	1.5	12	67
3	15/15	9/15	64	15/9	30/15	30/15	$eta_{ed1}{}_{:47/15}$ $eta_{ed2}{}_{:47/15}$	4	2	1.5	1.5	15	92
4	2/15	15/15	64	2/15	4/15	4/15	56/75	4	1	1.5	1.5	17	71
5	15/15	15/15	64	15/15	24/15	30/15	134/15	4	1	1.5	1.5	21	81

Rel.8 DC-HSDPA (Cat 24)

SAR test exclusion for Rel.8 DC-HSDPA must satisfy the SAR test exclusion requirements of Rel.5 HSDPA. SAR test exclusion for DC-HSDPA devices is determined by power measurements according to the H-Set 12, Fixed Reference Channel (FRC) configuration in Table C.8.1.12 of 3GPP TS 34.121-1. A primary and a secondary serving HS-DSCH Cell are required to perform the power measurement and for the results to qualify for SAR test exclusion.

9.4 SAR Measurement for LTE

SAR tests for LTE are performed with a base station simulator, Rohde & Rchwarz CMW500. Closed loop power control was used so the UE transmits with maximum output power during SAR testing. All powers were measured with the CMW 500.

It is performed for conducted power and SAR based on the KDB941225 D05.

SAR is evaluated separately according to the following procedures for the different test positions in each exposure condition – head, body, body-worn accessories and other use conditions. The procedures in the following subsections are applied separately to test each LTE frequency band.

1) QPSK with 1 RB allocation

Start with the largest channel bandwidth and measure SAR for QPSK with 1 RB allocation, using the RB offset and required test channel combination with the highest maximum output power among RB offsets at the upper edge, middle and lower edge of each required test channel. When the reported SAR is ≤ 0.8 W/kg, testing of the remaining RB offset configurations and required test channels is not required for 1 RB allocation; otherwise, SAR is required for the remaining required test channels and only for the RB offset configuration with the highest output power for that channel. When the reported SAR of a required test channel is > 1.45 W/kg, SAR is required for all three RB offset configurations for that required test channel.

- QPSK with 50% RB allocation
 The procedures required for 1 RB allocation in 1) are applied to measure the SAR for QPSK with 50% RB allocation.
- 3) QPSK with 100% RB allocation

For QPSK with 100% RB allocation, SAR is not required when the highest maximum output power for 100 % RB allocation is less than the highest maximum output power in 50% and 1 RB allocations and the highest reported SAR for 1 RB and 50% RB allocation in 1) and 2) are \leq 0.8 W/kg. Otherwise, SAR is measured for the highest output power channel; and if the reported SAR is > 1.45 W/kg, the remaining required test channels must also be tested.

9.5 Bluetooth & Wi-Fi Measurement Procedures for SAR

Normal network operating configurations are not suitable for measuring the SAR of 802.11 transmitters in general. Unpredictable fluctuations in network traffic and antenna diversity conditions can introduce undesirable variations in SAR results. The SAR for these devices should be measured using chipset based test mode software to ensure that the results are consistent and reliable.

Chipset based test mode software is hardware dependent and generally varies among manufacturers. The device operating parameters established in a test mode for SAR measurements must be identical to those programmed in production units, including output power levels, amplifier gain settings and other RF performance tuning parameters. The test frequencies should correspond to actual channel frequencies defined for domestic use. SAR for devices with switched diversity should be measured with only one antenna transmitting at a time during each SAR measurement, according to a fixed modulation and data rate. The same data pattern should be used for all measurements.

9.6 Power Drift

To control the output power stability during the SAR test, DASY4 system calculates the power drift by measuring the E-field at the same location at the beginning and at the end of the measurement for each test position. These drift values can be found in section 14 labeled as: (Power Drift [dB]). This ensures that the power drift during one measurement is within 5%.

10 Area Scan Based 1-g SAR

10.1 Requirement of KDB

According to the KDB447498 D01 v05, when the implementation is based the specific polynomial fit

algorithm as presented at the 29th Bioelectromagnetics Society meeting (2007) and the estimated 1-g SAR is \leq 1.2 W/kg, a zoom scan measurement is not required provided it is also not needed for any other purpose; for example, if the peak SAR location required for simultaneous transmission SAR test exclusion can be determined accurately by the SAR system or manually to discriminate between distinctive peaks and scattered noisy SAR distributions from area scans.

There must not be any warning or alert messages due to various measurement concerns identified by the SAR system; for example, noise in measurements, peaks too close to scan boundary, peaks are too sharp, spatial resolution and uncertainty issues etc. The SAR system verification must also demonstrate that the area scan estimated 1-g SAR is within 3% of the zoom scan 1-g SAR (See Annex B). When all the SAR results for each exposure condition in a frequency band and wireless mode are based on estimated 1-g SAR, the 1-g SAR for the highest SAR configuration must be determined by a zoom scan.

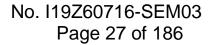
10.2 Fast SAR Algorithms

The approach is based on the area scan measurement applying a frequency dependent attenuation parameter. This attenuation parameter was empirically determined by analyzing a large number of phones. The MOTOROLA FAST SAR was developed and validated by the MOTOROLA Research Group in Ft. Lauderdale.

In the initial study, an approximation algorithm based on Linear fit was developed. The accuracy of the algorithm has been demonstrated across a broad frequency range (136-2450 MHz) and for both 1- and 10-g averaged SAR using a sample of 264 SAR measurements from 55 wireless handsets. For the sample size studied, the root-mean-squared errors of the algorithm are 1.2% and 5.8% for 1- and 10-g averaged SAR, respectively. The paper describing the algorithm in detail is expected to be published in August 2004 within the Special Issue of Transactions on MTT.

In the second step, the same research group optimized the fitting algorithm to an Polynomial fit whereby the frequency validity was extended to cover the range 30-6000MHz. Details of this study can be found in the BEMS 2007 Proceedings.

Both algorithms are implemented in DASY software.


11 Conducted Output Power

11.1 GSM Measurement result

During the process of testing, the EUT was controlled via Agilent Digital Radio Communication tester (E5515C) to ensure the maximum power transmission and proper modulation. This result contains conducted output power for the EUT. In all cases, the measured peak output power should be greater and within 5% than EMI measurement.

GSM 850			-		calculation			r (dBm)
		ed Power	· /	Tune up	calculation	0	ed Powe	、 ,
Speech (GMSK)	251	190	128	00.50	1	251	190	128
1 Txslot	32.95	32.85	32.72	33.50	/	/	/	
GSM 850		ed Power	· /		calculation	-	ed Powe	, ,
GPRS (GMSK)	251	190	128			251	190	128
1 Txslot	33.01	32.97	32.82	33.50	-9.03	23.98	23.94	23.79
2 Txslots	29.03	29.32	29.21	30.00	-6.02	23.01	23.30	23.19
GSM 850	Measur	ed Power	(dBm)		calculation	Averag	ed Powe	r (dBm)
EGPRS (GMSK)	251	190	128			251	190	128
1 Txslot	33.02	32.95	32.81	33.50	-9.03	23.99	23.92	23.78
2 Txslots	29.01	29.37	29.20	30.00	-6.02	22.99	23.35	23.18
GSM 850	Measur	ed Power	· (dBm)		calculation	Averag	ed Powe	r (dBm)
EGPRS (8PSK)	251	190	128			251	190	128
1 Txslot	26.65	26.76	26.63	28.00	-9.03	17.62	17.73	17.60
2 Txslots	26.34	26.51	26.38	27.00	-6.02	20.32	20.49	20.36
PCS1900	Measur	ed Power	r (dBm)	Tune up	calculation	Averaged Power (dBm)		r (dBm)
Speech (GMSK)	810	661	512			810	661	512
1 Txslot	29.81	29.69	29.98	31.00	/	/	/	/
PCS1900	Measur	ed Power	r (dBm)		calculation	Averag	Averaged Power (dBm)	
GPRS (GMSK)	810	661	512			810	661	512
1 Txslot	30.01	29.82	30.09	31.00	-9.03	20.98	20.79	21.06
2 Txslots	26.55	26.77	26.71	28.00	-6.02	20.53	20.75	20.69
PCS1900	Measur	ed Power	(dBm)		calculation	Averag	ed Power	r (dBm)
EGPRS (GMSK)	810	661	512			810	661	512
1 Txslot	29.84	29.73	30.00	31.00	-9.03	20.81	20.70	20.97
2 Txslots	26.79	26.70	26.53	28.00	-6.02	20.77	20.68	20.51
PCS1900	Measur	ed Power	r (dBm)		calculation	Averag	ed Power	r (dBm)
EGPRS (8PSK)	810	661	512			810	661	512
1 Txslot	26.26	26.10	26.09	27.00	-9.03	17.23	17.07	17.06
2 Txslots	25.11	25.03	25.07	26.00	-6.02	19.09	19.01	19.05

Table 11.1-1: The conducted power measurement results for 2G

NOTES:

Division Factors

To average the power, the division factor is as follows:

1TX-slot = 1 transmit time slot out of 8 time slots=> conducted power divided by (8/1) => -9.03dB

2TX-slots = 2 transmit time slots out of 8 time slots=> conducted power divided by (8/2) => -6.02dB

According to the conducted power as above, the body measurements are performed with 1Txslot for 850MHz and 1900MHz.

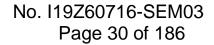
11.2 WCDMA Measurement result

		Table 11.2-1: The co	nducted Power for	WCDMA	
ltem	band		FDDV resu		
	ARFCN	4233 (846.6MHz)	4182 (836.4MHz)	4132 (826.4MHz)	Tune up
WCDMA	١	22.99	23.03	23.08	24
	1	21.67	21.52	21.42	23
	2	20.83	20.54	20.61	22
HSUPA	3	20.62	20.14	20.38	21
	4	21.17	20.94	21.21	22
	5	21.96	21.97	22.01	23.5
	band		FDDII resu	lt	
ltem	ARFCN	9538 (1907.6MHz)	9400 (1880MHz)	9262 (1852.4MHz)	Tune up
WCDMA	1	23.30	23.32	23.21	24
	1	21.71	21.58	21.56	23
	2	20.59	20.54	20.85	23
HSUPA	3	20.87	20.71	20.95	22
	4	21.29	21.06	21.01	22
	5	22.17	22.22	22.13	23
ltem	band		FDDIV resu	ult	
	ARFCN	1513 (1752.6MHz)	1412(1732.4MHz)	1312(1712.4MHz)	Tune up
WCDMA	۱	23.12	23.34	23.32	24
	1	21.68	21.84	21.33	23
	2	20.56	20.89	20.65	22
HSUPA	3	20.67	20.50	20.59	22
	4	21.03	21.20	21.26	22
	5	22.18	22.22	22.30	23.5

11.3 LTE Measurement result

Table 11.3-1: Tune up for LTE

Band	Tune up (dBm)
Band 2	23.5
Band 4	23.5
Band 5	23.5
Band 12	23.5
Band 14	23.5


	Channel b	oandwidth.	/ Transmis	sion bandwidt	h configurati	on [RB]	
Modulation	1.4	3	5	10	15	20	MPR (dB)
	MHz	MHz	MHz	MHz	MHz	MHz	
QPSK	> 5	> 4	> 8	> 12	> 16	> 18	1
16 QAM	≤ 5	≤ 4	≤ 8	≤ 12	≤ 16	≤ 18	1
16 QAM	> 5	> 4	> 8	> 12	> 16	> 18	2

No. I19Z60716-SEM03 Page 29 of 186

Table 11.3-3 LTE1900-FDD2

	RB allocation	_	QPSK	16QAM
Bandwidth (MHz)	RB offset (Start RB)	Frequency (MHz)	Actual output	Actual output
			power (dBm)	power (dBm)
		1909.3 (19193)	23.20	22.23
	1RB-High (5)	1880 (18900)	23.13	22.06
		1850.7 (18607)	22.90	22.44
		1909.3 (19193)	23.11	22.26
	1RB-Middle (3)	1880 (18900)	23.13	22.13
		1850.7 (18607)	23.17	22.46
		1909.3 (19193)	22.91	22.20
	1RB-Low (0)	1880 (18900)	22.84	22.09
		1850.7 (18607)	22.71	22.46
		1909.3 (19193)	23.13	22.47
1.4MHz	3RB-High (3)	1880 (18900)	22.87	22.08
		1850.7 (18607)	22.79	21.91
		1909.3 (19193)	23.15	22.43
	3RB-Middle (1)	1880 (18900)	22.94	22.08
		1850.7 (18607)	22.90	21.95
		1909.3 (19193)	23.15	22.44
	3RB-Low (0)	1880 (18900)	22.85	22.10
		1850.7 (18607)	22.91	21.94
		1909.3 (19193)	22.11	21.24
	6RB (0)	1880 (18900)	21.86	21.11
		1850.7 (18607)	21.95	20.87
		1908.5 (19185)	22.97	22.33
	1RB-High (14)	1880 (18900)	22.81	21.82
		1851.5 (18615)	22.55	21.95
		1908.5 (19185)	22.95	22.26
	1RB-Middle (7)	1880 (18900)	22.85	21.80
		1851.5 (18615)	22.00	22.28
		1908.5 (19185)	23.11	22.20
	1RB-Low (0)	1880 (18900)	22.09	21.41
		1851.5 (18615) 1908.5 (19185)	22.67 21.96	21.97
3MHz	8RB-High (7)			20.86
	orto-riigit (7)	1880 (18900)	21.93	20.83
		1851.5 (18615)	21.87	20.69
	ODD Middle (4)	1908.5 (19185)	21.77	20.83
	8RB-Middle (4)	1880 (18900)	21.92	20.86
		1851.5 (18615)	21.87	20.68
		1908.5 (19185)	22.00	21.11
	8RB-Low (0)	1880 (18900)	21.82	20.89
		1851.5 (18615)	21.83	20.68
		1908.5 (19185)	21.90	20.74
	15RB (0)	1880 (18900)	21.85	20.64
		1851.5 (18615)	21.93	20.72

		1907.5 (19175)	22.87	21.31
	1RB-High (24)	1880 (18900)	22.70	21.44
		1852.5 (18625)	22.41	21.13
		1907.5 (19175)	23.06	21.37
	1RB-Middle (12)	1880 (18900)	22.81	21.08
		1852.5 (18625)	22.35	21.23
		1907.5 (19175)	22.85	21.02
	1RB-Low (0)	1880 (18900)	22.52	21.01
		1852.5 (18625)	22.23	21.15
		1907.5 (19175)	21.62	20.70
5MHz	12RB-High (13)	1880 (18900)	21.61	20.60
		1852.5 (18625)	21.53	20.48
		1907.5 (19175)	21.82	20.95
	12RB-Middle (6)	1880 (18900)	21.62	20.60
		1852.5 (18625)	21.60	20.56
		1907.5 (19175)	21.66	20.81
	12RB-Low (0)	1880 (18900)	21.53	20.61
		1852.5 (18625)	21.62	20.58
		1907.5 (19175)	21.68	20.83
	25RB (0)	1880 (18900)	21.57	20.64
	1	1852.5 (18625)	21.56	20.55
		1852.5 (18625)	21.56	20.55
		1852.5 (18625) 1905 (19150)	21.56 23.16	20.55 22.15
	1RB-High (49)			
	1RB-High (49)	1905 (19150)	23.16	22.15
	1RB-High (49)	1905 (19150) 1880 (18900)	23.16 22.72	22.15 21.99
	1RB-High (49) 1RB-Middle (24)	1905 (19150) 1880 (18900) 1855 (18650)	23.16 22.72 22.80	22.15 21.99 22.24
		1905 (19150) 1880 (18900) 1855 (18650) 1905 (19150)	23.16 22.72 22.80 23.44	22.15 21.99 22.24 22.39
		1905 (19150) 1880 (18900) 1855 (18650) 1905 (19150) 1880 (18900)	23.16 22.72 22.80 23.44 22.88	22.15 21.99 22.24 22.39 21.99
		1905 (19150) 1880 (18900) 1855 (18650) 1905 (19150) 1880 (18900) 1855 (18650)	23.16 22.72 22.80 23.44 22.88 22.60	22.15 21.99 22.24 22.39 21.99 21.91
	1RB-Middle (24)	1905 (19150) 1880 (18900) 1855 (18650) 1905 (19150) 1880 (18900) 1855 (18650) 1905 (19150)	23.16 22.72 22.80 23.44 22.88 22.60 22.19	22.15 21.99 22.24 22.39 21.99 21.91 22.12
	1RB-Middle (24)	1905 (19150) 1880 (18900) 1855 (18650) 1905 (19150) 1880 (18900) 1855 (18650) 1905 (19150) 1880 (18900)	23.16 22.72 22.80 23.44 22.88 22.60 22.19 22.77	22.15 21.99 22.24 22.39 21.99 21.91 22.12 21.66
10MHz	1RB-Middle (24)	1905 (19150) 1880 (18900) 1855 (18650) 1905 (19150) 1880 (18900) 1855 (18650) 1905 (19150) 1880 (18900) 1855 (18650)	23.16 22.72 22.80 23.44 22.88 22.60 22.19 22.77 22.64	22.15 21.99 22.24 22.39 21.99 21.91 22.12 21.66 22.11
10MHz	1RB-Middle (24) 1RB-Low (0)	1905 (19150) 1880 (18900) 1855 (18650) 1905 (19150) 1880 (18900) 1855 (18650) 1905 (19150) 1880 (18900) 1855 (18650) 1905 (19150)	23.16 22.72 22.80 23.44 22.88 22.60 22.19 22.77 22.64 22.20	22.15 21.99 22.24 22.39 21.99 21.91 22.12 21.66 22.11 21.04
10MHz	1RB-Middle (24) 1RB-Low (0)	1905 (19150) 1880 (18900) 1855 (18650) 1905 (19150) 1880 (18900) 1855 (18650) 1905 (19150) 1880 (18900) 1855 (18650) 1905 (19150) 1880 (18900)	23.16 22.72 22.80 23.44 22.88 22.60 22.19 22.77 22.64 22.20 22.00	22.15 21.99 22.24 22.39 21.99 21.91 22.12 21.66 22.11 21.04 20.85
10MHz	1RB-Middle (24) 1RB-Low (0)	1905 (19150) 1880 (18900) 1855 (18650) 1905 (19150) 1880 (18900) 1855 (18650) 1905 (19150) 1880 (18900) 1855 (18650) 1905 (19150) 1880 (18900) 1855 (18650)	23.16 22.72 22.80 23.44 22.88 22.60 22.19 22.77 22.64 22.20 22.00 21.75	22.15 21.99 22.24 22.39 21.99 21.91 22.12 21.66 22.11 21.04 20.85 20.93
10MHz	1RB-Middle (24) 1RB-Low (0) 25RB-High (25)	1905 (19150) 1880 (18900) 1855 (18650) 1905 (19150) 1880 (18900) 1855 (18650) 1905 (19150) 1855 (18650) 1905 (19150) 1880 (18900) 1855 (18650) 1905 (19150)	23.16 22.72 22.80 23.44 22.88 22.60 22.19 22.77 22.64 22.20 22.00 21.75 22.04	22.15 21.99 22.24 22.39 21.99 21.91 22.12 21.66 22.11 21.04 20.85 20.93 20.92
10MHz	1RB-Middle (24) 1RB-Low (0) 25RB-High (25)	1905 (19150) 1880 (18900) 1855 (18650) 1905 (19150) 1880 (18900) 1855 (18650) 1905 (19150) 1880 (18900) 1855 (18650) 1905 (19150) 1880 (18900) 1855 (18650) 1905 (19150) 1880 (18900)	23.16 22.72 22.80 23.44 22.88 22.60 22.19 22.77 22.64 22.20 22.00 21.75 22.04 21.99	22.15 21.99 22.24 22.39 21.99 21.91 22.12 21.66 22.11 21.04 20.85 20.93 20.92 20.83
10MHz	1RB-Middle (24) 1RB-Low (0) 25RB-High (25)	1905 (19150) 1880 (18900) 1855 (18650) 1905 (19150) 1880 (18900) 1855 (18650) 1905 (19150) 1880 (18900) 1855 (18650) 1905 (19150) 1880 (18900) 1855 (18650) 1905 (19150) 1880 (18900) 1855 (18650)	23.16 22.72 22.80 23.44 22.88 22.60 22.19 22.77 22.64 22.20 22.00 21.75 22.04 21.99 21.97	22.15 21.99 22.24 22.39 21.99 21.91 22.12 21.66 22.11 21.04 20.85 20.93 20.93 20.92 20.83 20.75
10MHz	1RB-Middle (24) 1RB-Low (0) 25RB-High (25) 25RB-Middle (12)	1905 (19150) 1880 (18900) 1855 (18650) 1905 (19150) 1880 (18900) 1855 (18650) 1905 (19150) 1855 (18650) 1905 (19150) 1855 (18650) 1905 (19150) 1855 (18650) 1905 (19150) 1855 (18650) 1905 (19150)	23.16 22.72 22.80 23.44 22.88 22.60 22.19 22.77 22.64 22.20 22.00 21.75 22.04 21.99 21.97 22.05	22.15 21.99 22.24 22.39 21.99 21.91 22.12 21.66 22.11 21.04 20.85 20.93 20.92 20.83 20.75 20.97
10MHz	1RB-Middle (24) 1RB-Low (0) 25RB-High (25) 25RB-Middle (12)	1905 (19150) 1880 (18900) 1855 (18650) 1905 (19150) 1880 (18900) 1855 (18650) 1905 (19150) 1880 (18900) 1855 (18650) 1905 (19150) 1880 (18900) 1855 (18650) 1905 (19150) 1880 (18900) 1855 (19150) 1905 (19150) 1880 (18900)	23.16 22.72 22.80 23.44 22.88 22.60 22.19 22.77 22.64 22.20 22.00 21.75 22.04 21.99 21.97 22.05 22.05	22.15 21.99 22.24 22.39 21.99 21.91 22.12 21.66 22.11 21.04 20.85 20.93 20.92 20.83 20.92 20.83 20.75 20.97 20.76
10MHz	1RB-Middle (24) 1RB-Low (0) 25RB-High (25) 25RB-Middle (12)	1905 (19150) 1880 (18900) 1855 (18650) 1905 (19150) 1880 (18900) 1855 (18650)	23.16 22.72 22.80 23.44 22.88 22.60 22.19 22.77 22.64 22.20 22.00 21.75 22.04 21.99 21.97 22.05 22.05 22.05 22.05 21.96	22.15 21.99 22.24 22.39 21.99 21.91 22.12 21.66 22.11 21.04 20.85 20.93 20.93 20.92 20.83 20.75 20.97 20.76 20.68

		1902.5 (19125)	23.42	22.22
	1RB-High (74)	1880 (18900)	22.87	21.65
		1857.5 (18675)	22.51	21.73
		1902.5 (19125)	23.37	22.15
	1RB-Middle (37)	1880 (18900)	23.07	21.22
		1857.5 (18675)	23.16	22.10
		1902.5 (19125)	23.11	22.46
	1RB-Low (0)	1880 (18900)	22.66	21.24
		1857.5 (18675)	22.62	21.55
		1902.5 (19125)	22.04	20.84
15MHz	36RB-High (38)	1880 (18900)	21.73	20.80
		1857.5 (18675)	21.63	20.59
		1902.5 (19125)	21.93	20.75
	36RB-Middle (19)	1880 (18900)	21.73	20.82
		1857.5 (18675)	21.79	20.54
		1902.5 (19125)	21.87	20.72
	36RB-Low (0)	1880 (18900)	21.63	20.77
		1857.5 (18675)	21.62	20.50
		1902.5 (19125)	21.99	20.75
	75RB (0)	1880 (18900)	21.73	20.72
	Т Г	1857.5 (18675)	21.71	20.59
	i i	1900 (19100)	23.12	22.07
	1RB-High (99)		23.24	21.89
	Into-High (33)	1880 (18900)	23.24	
		1860 (18700)		21.48
	1RB-Middle (50)	1900 (19100)	23.42	21.80
	TRD-IMIQUIE (50)	1880 (18900)	23.49 23.41	22.16
		1860 (18700)	23.41	21.69
	1RB-Low (0)	1900 (19100)		
	IKB-LOW (0)	1880 (18900)	22.94	21.95
		1860 (18700)	22.56	21.72
20MHz	50RB-High (50)	1900 (19100)	22.18	20.98
2010112	SUKE-High (SU)	1880 (18900)	22.14	20.84
		1860 (18700)	21.81	20.59
	50PR Middle (25)	1900 (19100)	22.24	21.13
	50RB-Middle (25)	1880 (18900)	22.16	20.87
		1860 (18700)	22.00	20.71
		1900 (19100)	22.19	21.08
	FODD Laws (0)		21.97	20.79
	50RB-Low (0)	1880 (18900)		
	50RB-Low (0)	1860 (18700)	21.96	20.65
		1860 (18700) 1900 (19100)	21.96 22.13	20.65 21.01
	50RB-Low (0) 100RB (0)	1860 (18700)	21.96	20.65

No. I19Z60716-SEM03 Page 32 of 186

Table 11.3-4 LTE1700-FDD4

Bandwidth	RB allocation		QPSK	16QAM
(MHz)	RB offset (Start	Frequency (MHz)	Actual output	Actual output
(m /	RB)		power (dBm)	power (dBm)
		1754.3 (20393)	22.91	21.89
	1RB-High (5)	1732.5 (20175)	22.92	21.92
		1710.7 (19957)	22.97	22.30
		1754.3 (20393)	22.88	21.74
	1RB-Middle (3)	1732.5 (20175)	22.98	21.98
		1710.7 (19957)	23.35	22.26
		1754.3 (20393)	22.91	21.61
	1RB-Low (0)	1732.5 (20175)	22.97	21.94
		1710.7 (19957)	22.91	22.15
		1754.3 (20393)	22.56	21.64
1.4MHz	3RB-High (3)	1732.5 (20175)	22.92	21.86
		1710.7 (19957)	22.93	21.89
		1754.3 (20393)	22.76	21.58
	3RB-Middle (1)	1732.5 (20175)	22.95	21.91
		1710.7 (19957)	23.13	21.93
		1754.3 (20393)	22.70	21.95
	3RB-Low (0)	1732.5 (20175)	22.91	21.47
		1710.7 (19957)	23.06	21.99
		1754.3 (20393)	21.82	21.00
	6RB (0)	1732.5 (20175)	21.89	21.45
		1710.7 (19957)	21.92	20.77
		1753.5 (20385)	23.04	21.66
	1RB-High (14)	1732.5 (20175)	23.31	21.24
		1711.5 (19965)	22.81	21.96
		1753.5 (20385)	22.99	21.69
	1RB-Middle (7)	1732.5 (20175)	23.40	21.44
		1711.5 (19965)	23.19	21.94
		1753.5 (20385)	23.03	21.69
	1RB-Low (0)	1732.5 (20175)	23.20	21.36
		1711.5 (19965)	23.11	21.85
		1753.5 (20385)	21.83	20.91
3MHz	8RB-High (7)	1732.5 (20175)	21.98	21.10
		1711.5 (19965)	21.96	20.77
		1753.5 (20385)	21.75	20.95
	8RB-Middle (4)	1732.5 (20175)	22.02	20.94
		1711.5 (19965)	21.93	20.95
		1753.5 (20385)	21.73	20.84
	8RB-Low (0)	1732.5 (20175)	22.05	21.06
		1711.5 (19965)	21.96	20.98
		1753.5 (20385)	21.84	20.77
	15RB (0)	1732.5 (20175)	22.02	21.22
		, /		20.84

		1752.5 (20375)	22.89	21.31
	1RB-High (24)	1732.5 (20175)	23.31	21.11
		1712.5 (19975)	22.98	21.58
		1752.5 (20375)	22.93	21.30
	1RB-Middle (12)	1732.5 (20175)	23.41	21.18
		1712.5 (19975)	23.11	21.33
		1752.5 (20375)	22.97	21.32
	1RB-Low (0)	1732.5 (20175)	23.29	21.29
		1712.5 (19975)	22.83	21.29
		1752.5 (20375)	21.99	20.90
5MHz	12RB-High (13)	1732.5 (20175)	22.18	20.96
		1712.5 (19975)	21.97	20.87
		1752.5 (20375)	21.99	20.93
	12RB-Middle (6)	1732.5 (20175)	22.28	21.17
		1712.5 (19975)	22.08	20.97
		1752.5 (20375)	21.97	21.01
	12RB-Low (0)	1732.5 (20175)	22.12	21.17
		1712.5 (19975)	21.95	21.03
		1752.5 (20375)	21.95	20.91
	25RB (0)	1732.5 (20175)	22.05	21.17
		1712.5 (19975)	21.94	20.99
		1750 (20350)	23.14	21.77
	1RB-High (49)	1732.5 (20175)	23.10	21.95
	1RB-High (49)	1732.5 (20175) 1715 (20000)	23.10 23.16	21.95 22.27
	1RB-High (49)			
	1RB-High (49) 1RB-Middle (24)	1715 (20000)	23.16	22.27
		1715 (20000) 1750 (20350)	23.16 22.99	22.27 21.94
		1715 (20000) 1750 (20350) 1732.5 (20175)	23.16 22.99 23.45	22.27 21.94 22.41
		1715 (20000) 1750 (20350) 1732.5 (20175) 1715 (20000)	23.16 22.99 23.45 23.40	22.27 21.94 22.41 21.82
	1RB-Middle (24)	1715 (20000) 1750 (20350) 1732.5 (20175) 1715 (20000) 1750 (20350)	23.16 22.99 23.45 23.40 23.28	22.27 21.94 22.41 21.82 21.49
	1RB-Middle (24)	1715 (20000) 1750 (20350) 1732.5 (20175) 1715 (20000) 1750 (20350) 1732.5 (20175)	23.16 22.99 23.45 23.40 23.28 23.17	22.27 21.94 22.41 21.82 21.49 21.94
10MHz	1RB-Middle (24)	1715 (20000) 1750 (20350) 1732.5 (20175) 1715 (20000) 1750 (20350) 1732.5 (20175) 1715 (20000)	23.16 22.99 23.45 23.40 23.28 23.17 22.92	22.27 21.94 22.41 21.82 21.49 21.94 22.21
10MHz	1RB-Middle (24) 1RB-Low (0)	1715 (20000) 1750 (20350) 1732.5 (20175) 1715 (20000) 1750 (20350) 1732.5 (20175) 1715 (20000) 1750 (20350)	23.16 22.99 23.45 23.40 23.28 23.17 22.92 21.85	22.27 21.94 22.41 21.82 21.49 21.94 22.21 20.88
10MHz	1RB-Middle (24) 1RB-Low (0)	1715 (20000) 1750 (20350) 1732.5 (20175) 1715 (20000) 1750 (20350) 1732.5 (20175) 1715 (20000) 1750 (20350) 1750 (20350) 1732.5 (20175)	23.16 22.99 23.45 23.40 23.28 23.17 22.92 21.85 21.87	22.27 21.94 22.41 21.82 21.49 21.94 22.21 20.88 20.89
10MHz	1RB-Middle (24) 1RB-Low (0)	1715 (20000) 1750 (20350) 1732.5 (20175) 1715 (20000) 1750 (20350) 1732.5 (20175) 1715 (20000) 1750 (20350) 1732.5 (20175) 1715 (20000)	23.16 22.99 23.45 23.40 23.28 23.17 22.92 21.85 21.87 21.87	22.27 21.94 22.41 21.82 21.49 21.94 22.21 20.88 20.89 21.05
10MHz	1RB-Middle (24) 1RB-Low (0) 25RB-High (25)	1715 (20000) 1750 (20350) 1732.5 (20175) 1715 (20000) 1750 (20350) 1732.5 (20175) 1715 (20000) 1750 (20350) 1732.5 (20175) 1715 (20000) 1750 (20350)	23.16 22.99 23.45 23.40 23.28 23.17 22.92 21.85 21.87 21.87 21.80	22.27 21.94 22.41 21.82 21.49 21.94 22.21 20.88 20.89 21.05 21.03
10MHz	1RB-Middle (24) 1RB-Low (0) 25RB-High (25)	1715 (20000) 1750 (20350) 1732.5 (20175) 1715 (20000) 1750 (20350) 1732.5 (20175) 1715 (20000) 1750 (20350) 1732.5 (20175) 1715 (20000) 1750 (20350) 1750 (20350) 1732.5 (20175)	23.16 22.99 23.45 23.40 23.28 23.17 22.92 21.85 21.87 21.87 21.87 21.80 22.04	22.27 21.94 22.41 21.82 21.49 21.94 22.21 20.88 20.89 21.05 21.03 20.96
10MHz	1RB-Middle (24) 1RB-Low (0) 25RB-High (25)	1715 (20000) 1750 (20350) 1732.5 (20175) 1715 (20000) 1750 (20350) 1732.5 (20175) 1715 (20000) 1750 (20350) 1732.5 (20175) 1715 (20000) 1732.5 (20175) 1732.5 (20175) 1715 (20000)	23.16 22.99 23.45 23.40 23.28 23.17 22.92 21.85 21.87 21.87 21.87 21.87 21.80 22.04 21.96	22.27 21.94 22.41 21.82 21.49 21.94 22.21 20.88 20.89 21.05 21.03 20.96 21.10
10MHz	1RB-Middle (24) 1RB-Low (0) 25RB-High (25) 25RB-Middle (12)	1715 (20000) 1750 (20350) 1732.5 (20175) 1715 (20000) 1750 (20350) 1732.5 (20175) 1715 (20000) 1750 (20350) 1732.5 (20175) 1715 (20000) 1732.5 (20175) 1715 (20000) 1732.5 (20175) 1715 (20000) 1750 (20350)	23.16 22.99 23.45 23.40 23.28 23.17 22.92 21.85 21.87 21.87 21.87 21.80 22.04 21.96	22.27 21.94 22.41 21.82 21.49 21.94 22.21 20.88 20.89 21.05 21.03 20.96 21.10 21.11
10MHz	1RB-Middle (24) 1RB-Low (0) 25RB-High (25) 25RB-Middle (12)	1715 (20000) 1750 (20350) 1732.5 (20175) 1715 (20000) 1750 (20350) 1732.5 (20175) 1715 (20000) 1750 (20350) 1732.5 (20175) 1715 (20000) 1732.5 (20175) 1715 (20000) 1750 (20350) 1732.5 (20175)	23.16 22.99 23.45 23.40 23.28 23.17 22.92 21.85 21.87 21.87 21.87 21.80 22.04 21.96 21.96 21.90	22.27 21.94 22.41 21.82 21.49 21.94 22.21 20.88 20.89 21.05 21.03 20.96 21.10 21.11 20.83
10MHz	1RB-Middle (24) 1RB-Low (0) 25RB-High (25) 25RB-Middle (12)	1715 (20000) 1750 (20350) 1732.5 (20175) 1715 (20000) 1750 (20350) 1732.5 (20175) 1715 (20000) 1750 (20350) 1732.5 (20175) 1715 (20000) 1750 (20350) 1732.5 (20175) 1715 (20000) 1732.5 (20175) 1715 (20000)	23.16 22.99 23.45 23.40 23.28 23.17 22.92 21.85 21.87 21.87 21.87 21.87 21.80 22.04 21.96 21.96 21.90 21.86	22.27 21.94 22.41 21.82 21.49 21.94 22.21 20.88 20.89 21.05 21.03 20.96 21.10 21.11 20.83 20.93

		1747.5 (20325)	23.09	22.32
	1RB-High (74)	1732.5 (20175)	23.30	22.09
		1717.5 (20025)	23.34	21.31
		1747.5 (20325)	23.19	22.46
	1RB-Middle (37)	1732.5 (20175)	23.21	22.44
		1717.5 (20025)	22.94	21.46
		1747.5 (20325)	23.00	22.42
	1RB-Low (0)	1732.5 (20175)	23.22	22.02
		1717.5 (20025)	22.89	22.14
		1747.5 (20325)	22.03	21.02
15MHz	36RB-High (38)	1732.5 (20175)	22.07	21.14
		1717.5 (20025)	22.03	21.09
		1747.5 (20325)	22.24	21.09
	36RB-Middle (19)	1732.5 (20175)	22.15	21.12
		1717.5 (20025)	22.02	21.22
		1747.5 (20325)	22.01	21.10
	36RB-Low (0)	1732.5 (20175)	21.98	20.95
		1717.5 (20025)	22.02	21.12
		1747.5 (20325)	22.08	20.99
	75RB (0)	1732.5 (20175)	22.12	20.89
		1717.5 (20025)	22.08	21.15
			1	
		1745 (20300)	23.01	21.36
	1RB-High (99)	1732.5 (20175)	22.62	21.39
	I F	1700 (00050)	23.05	21.82
		1720 (20050)	20.00	
		1720 (20050) 1745 (20300)	23.46	21.97
	1RB-Middle (50)			
	1RB-Middle (50)	1745 (20300)	23.46	21.97
	1RB-Middle (50)	1745 (20300) 1732.5 (20175)	23.46 23.17	21.97 21.93
	1RB-Middle (50) 1RB-Low (0)	1745 (20300) 1732.5 (20175) 1720 (20050)	23.46 23.17 23.22	21.97 21.93 21.76
		1745 (20300) 1732.5 (20175) 1720 (20050) 1745 (20300)	23.46 23.17 23.22 23.06	21.97 21.93 21.76 21.96
		1745 (20300) 1732.5 (20175) 1720 (20050) 1745 (20300) 1732.5 (20175)	23.46 23.17 23.22 23.06 22.84	21.97 21.93 21.76 21.96 21.54
20MHz		1745 (20300) 1732.5 (20175) 1720 (20050) 1745 (20300) 1732.5 (20175) 1720 (20050)	23.46 23.17 23.22 23.06 22.84 22.93	21.97 21.93 21.76 21.96 21.54 21.78
20MHz	1RB-Low (0)	1745 (20300) 1732.5 (20175) 1720 (20050) 1745 (20300) 1732.5 (20175) 1720 (20050) 1745 (20300)	23.46 23.17 23.22 23.06 22.84 22.93 22.06	21.97 21.93 21.76 21.96 21.54 21.78 20.95
20MHz	1RB-Low (0)	1745 (20300) 1732.5 (20175) 1720 (20050) 1745 (20300) 1732.5 (20175) 1720 (20050) 1745 (20300) 1745 (20300) 1732.5 (20175)	23.46 23.17 23.22 23.06 22.84 22.93 22.06 22.00	21.97 21.93 21.76 21.96 21.54 21.78 20.95 21.05
20MHz	1RB-Low (0)	1745 (20300) 1732.5 (20175) 1720 (20050) 1745 (20300) 1732.5 (20175) 1720 (20050) 1745 (20300) 1745 (20300) 1732.5 (20175) 1720 (20050)	23.46 23.17 23.22 23.06 22.84 22.93 22.06 22.00 22.26	21.97 21.93 21.76 21.96 21.54 21.78 20.95 21.05 21.22
20MHz	1RB-Low (0) 50RB-High (50)	1745 (20300) 1732.5 (20175) 1720 (20050) 1745 (20300) 1732.5 (20175) 1720 (20050) 1745 (20300) 1732.5 (20175) 1720 (20050) 1745 (20300)	23.46 23.17 23.22 23.06 22.84 22.93 22.06 22.00 22.26 22.30	21.97 21.93 21.76 21.96 21.54 21.78 20.95 21.05 21.05 21.22 21.28
20MHz	1RB-Low (0) 50RB-High (50)	1745 (20300) 1732.5 (20175) 1720 (20050) 1745 (20300) 1745 (20300) 1732.5 (20175) 1720 (20050) 1745 (20300) 1732.5 (20175) 1725 (20300) 1732.5 (20175)	23.46 23.17 23.22 23.06 22.84 22.93 22.06 22.00 22.26 22.30 22.17	21.97 21.93 21.76 21.96 21.54 21.78 20.95 21.05 21.05 21.22 21.28 21.15
20MHz	1RB-Low (0) 50RB-High (50)	1745 (20300) 1732.5 (20175) 1720 (20050) 1745 (20300) 1745 (20300) 1732.5 (20175) 1720 (20050) 1745 (20300) 1732.5 (20175) 1720 (20050) 1732.5 (20175) 1720 (20050)	23.46 23.17 23.22 23.06 22.84 22.93 22.06 22.00 22.26 22.30 22.17 22.26	21.97 21.93 21.76 21.96 21.54 21.78 20.95 21.05 21.05 21.22 21.28 21.15 21.28
20MHz	1RB-Low (0) 50RB-High (50) 50RB-Middle (25)	1745 (20300) 1732.5 (20175) 1720 (20050) 1745 (20300) 1745 (20300) 1732.5 (20175) 1720 (20050) 1745 (20300) 1745 (20300) 1745 (20300) 1732.5 (20175) 1720 (20050) 1745 (20300)	23.46 23.17 23.22 23.06 22.84 22.93 22.06 22.00 22.26 22.30 22.17 22.26 22.26 22.26	21.97 21.93 21.76 21.96 21.54 21.78 20.95 21.05 21.05 21.22 21.28 21.15 21.28 21.25
20MHz	1RB-Low (0) 50RB-High (50) 50RB-Middle (25)	1745 (20300) 1732.5 (20175) 1720 (20050) 1745 (20300) 1745 (20300) 1732.5 (20175) 1720 (20050) 1745 (20300) 1745 (20300) 1732.5 (20175) 1720 (20050) 1745 (20300) 1745 (20300) 1732.5 (20175)	23.46 23.17 23.22 23.06 22.84 22.93 22.06 22.00 22.26 22.30 22.17 22.26 22.26 22.26 22.26 22.14	21.97 21.93 21.76 21.96 21.54 21.78 20.95 21.05 21.05 21.22 21.28 21.15 21.28 21.25 21.23
20MHz	1RB-Low (0) 50RB-High (50) 50RB-Middle (25)	1745 (20300) 1732.5 (20175) 1720 (20050) 1745 (20300) 1745 (20300) 1732.5 (20175) 1720 (20050) 1745 (20300) 1745 (20300) 1745 (20300) 1732.5 (20175) 1720 (20050) 1745 (20300) 1745 (20300) 1732.5 (20175) 1720 (20050)	23.46 23.17 23.22 23.06 22.84 22.93 22.06 22.00 22.26 22.30 22.17 22.26 22.26 22.26 22.26 22.26 22.14 22.07	21.97 21.93 21.76 21.96 21.54 21.78 20.95 21.05 21.05 21.22 21.28 21.15 21.28 21.25 21.13 20.88

No. I19Z60716-SEM03 Page 35 of 186

Table 11.3-5 LTE850-FDD5

	RB allocation		QPSK	16QAM
Bandwidth (MHz)	RB offset (Start RB)	Frequency (MHz)	Actual output	Actual output
	(clairing)		power (dBm)	power (dBm
		848.3 (20643)	23.01	22.01
	1RB-High (5)	836.5 (20525)	23.05	21.94
		824.7 (20407)	22.79	22.06
		848.3 (20643)	22.91	21.87
	1RB-Middle (3)	836.5 (20525)	23.09	21.93
		824.7 (20407)	22.99	22.04
		848.3 (20643)	22.88	21.76
	1RB-Low (0)	836.5 (20525)	23.01	21.89
		824.7 (20407)	22.85	22.01
		848.3 (20643)	22.95	22.10
1.4MHz	3RB-High (3)	836.5 (20525)	23.05	22.02
		824.7 (20407)	22.81	21.32
		848.3 (20643)	22.93	22.30
	3RB-Middle (1)	836.5 (20525)	22.97	22.01
		824.7 (20407)	22.81	21.70
		848.3 (20643)	23.06	22.21
	3RB-Low (0)	836.5 (20525)	22.90	21.93
		824.7 (20407)	22.86	21.63
		848.3 (20643)	22.13	21.04
	6RB (0)	836.5 (20525)	21.85	21.25
		824.7 (20407)	21.90	20.66
		847.5 (20635)	23.13	22.15
	1RB-High (14)	836.5 (20525)	22.87	22.04
	Г	825.5 (20415)	22.98	21.51
		847.5 (20635)	23.11	22.22
	1RB-Middle (7)	836.5 (20525)	22.92	22.20
		825.5 (20415)	22.98	21.65
		847.5 (20635)	22.99	22.10
	1RB-Low (0)	836.5 (20525)	22.89	22.07
		825.5 (20415)	22.94	22.30
			22.29	20.90
		847.5 (20635)		
3MHz	8RB-High (7)	836.5 (20525)	21.95	20.91
3MHz	8RB-High (7)	836.5 (20525)	21.95 21.89	
3MHz	8RB-High (7)	836.5 (20525) 825.5 (20415)	21.89	20.95
3MHz	8RB-High (7) 8RB-Middle (4)	836.5 (20525) 825.5 (20415) 847.5 (20635)	21.89 22.26	20.95 20.91
3MHz		836.5 (20525) 825.5 (20415) 847.5 (20635) 836.5 (20525)	21.89 22.26 22.19	20.95 20.91 21.26
3MHz		836.5 (20525) 825.5 (20415) 847.5 (20635) 836.5 (20525) 825.5 (20415)	21.89 22.26 22.19 22.02	20.95 20.91 21.26 21.04
3MHz	8RB-Middle (4)	836.5 (20525) 825.5 (20415) 847.5 (20635) 836.5 (20525) 825.5 (20415) 847.5 (20635)	21.89 22.26 22.19 22.02 22.23	20.95 20.91 21.26 21.04 20.88
3MHz		836.5 (20525) 825.5 (20415) 847.5 (20635) 836.5 (20525) 825.5 (20415) 847.5 (20635) 836.5 (20525)	21.89 22.26 22.19 22.02 22.23 22.00	20.95 20.91 21.26 21.04 20.88 21.30
3MHz	8RB-Middle (4)	836.5 (20525) 825.5 (20415) 847.5 (20635) 836.5 (20525) 825.5 (20415) 847.5 (20635) 836.5 (20525) 836.5 (20525) 825.5 (20415)	21.89 22.26 22.19 22.02 22.23 22.00 21.97	20.95 20.91 21.26 21.04 20.88 21.30 21.04
3MHz	8RB-Middle (4)	836.5 (20525) 825.5 (20415) 847.5 (20635) 836.5 (20525) 825.5 (20415) 847.5 (20635) 836.5 (20525)	21.89 22.26 22.19 22.02 22.23 22.00	20.95 20.91 21.26 21.04 20.88 21.30

		846.5 (20625)	23.03	21.57
	1RB-High (24)	836.5 (20525)	22.78	21.51
		826.5 (20425)	22.97	21.65
		846.5 (20625)	23.24	21.83
	1RB-Middle (12)	836.5 (20525)	23.18	21.47
		826.5 (20425)	23.09	21.68
		846.5 (20625)	22.93	21.62
	1RB-Low (0)	836.5 (20525)	22.92	21.35
		826.5 (20425)	22.96	21.50
		846.5 (20625)	22.13	21.18
5MHz	12RB-High (13)	836.5 (20525)	21.88	20.99
		826.5 (20425)	21.99	20.85
		846.5 (20625)	22.07	21.14
	12RB-Middle (6)	836.5 (20525)	22.00	21.10
		826.5 (20425)	21.91	20.79
	+	846.5 (20625)	21.98	21.06
	12RB-Low (0)	836.5 (20525)	21.94	21.04
		826.5 (20425)	21.90	20.65
	├─── ┼	846.5 (20625)	22.21	21.11
	25RB (0)	836.5 (20525)	21.91	21.16
	20102 (0)	826.5 (20425)	21.83	20.93
	ļ	020.0 (20120)	21.00	20.00
		844 (20600)	23.25	22.20
	1RB-High (49)	836.5 (20525)	22.96	22.18
		829 (20450)	22.79	21.58
		844 (20600)	23.28	22.39
	1RB-Middle (24)	836.5 (20525)	23.15	22.26
		829 (20450)	23.15	21.71
		844 (20600)	22.85	21.84
	1RB-Low (0)	836.5 (20525)	22.90	21.96
		829 (20450)	22.81	21.32
		844 (20600)	22.22	21.37
10MHz	25RB-High (25)	836.5 (20525)	22.03	21.05
		6Z9 (Z0450)	22.00	21.12
	├ ─── 	829 (20450) 844 (20600)	22.08 22.16	21.12 21.23
	25RB-Middle (12)	844 (20600)	22.16	21.23
	25RB-Middle (12)	844 (20600) 836.5 (20525)	22.16 22.13	21.23 21.26
	25RB-Middle (12)	844 (20600) 836.5 (20525) 829 (20450)	22.16 22.13 22.11	21.23 21.26 21.29
		844 (20600) 836.5 (20525) 829 (20450) 844 (20600)	22.16 22.13 22.11 22.06	21.23 21.26 21.29 21.13
	25RB-Middle (12) 25RB-Low (0)	844 (20600) 836.5 (20525) 829 (20450) 844 (20600) 836.5 (20525)	22.16 22.13 22.11 22.06 21.95	21.23 21.26 21.29 21.13 21.21
		844 (20600) 836.5 (20525) 829 (20450) 844 (20600) 836.5 (20525) 829 (20450)	22.16 22.13 22.11 22.06 21.95 21.91	21.23 21.26 21.29 21.13 21.21 21.21 21.13
		844 (20600) 836.5 (20525) 829 (20450) 844 (20600) 836.5 (20525)	22.16 22.13 22.11 22.06 21.95	21.23 21.26 21.29 21.13 21.21

No. I19Z60716-SEM03 Page 37 of 186

Table 11.3-6 LTE700-FDD12

	RB allocation		QPSK	16QAM
Bandwidth (MHz)	RB offset (Start RB)	Frequency (MHz)	Actual output	Actual output
	no eneci (etairrio)	745.0	power (dBm)	power (dBm)
		715.3	22.93	22.11
	1RB-High (5)	707.5	22.95	21.73
		699.7	23.03	22.04
		715.3	23.18	22.10
	1RB-Middle (3)	707.5	22.84	21.56
		699.7	23.18	22.18
		715.3	23.06	22.15
	1RB-Low (0)	707.5	22.76	21.66
		699.7	22.97	22.22
		715.3	22.98	22.21
1.4MHz	3RB-High (3)	707.5	22.97	21.42
		699.7	23.04	21.76
		715.3	23.18	22.34
	3RB-Middle (1)	707.5	23.02	21.43
		699.7	23.28	21.94
		715.3	23.05	22.33
	3RB-Low (0)	707.5	22.98	21.51
		699.7	23.22	21.97
		715.3	22.04	21.46
	6RB (0)	707.5	21.78	20.91
		699.7	21.98	20.72
		714.5	22.83	21.98
	1RB-High (14)	707.5	23.16	22.31
		700.5	22.93	22.24
		714.5	23.22	22.06
	1RB-Middle (7)	707.5	22.96	21.93
		700.5	23.17	22.36
		714.5	23.14	22.20
	1RB-Low (0)	707.5	22.82	21.68
		700.5	23.00	21.61
	†	714.5	22.02	20.75
3MHz	8RB-High (7)	707.5	21.77	21.27
		700.5	21.86	21.07
		714.5	22.01	20.95
	8RB-Middle (4)	707.5	21.72	21.22
		700.5	21.98	21.12
	├─── ┤	714.5	22.11	20.99
	8RB-Low (0)	707.5	21.76	20.80
	0.12 2011 (0)	707.5	22.06	21.10
	┝────┼	714.5	22.00	20.91
	15RB (0)	707.5	22.03	20.91
		700.5	21.92	21.02

		713.5	22.79	21.24
	1RB-High (24)	707.5	23.22	21.90
		701.5	22.55	21.64
		713.5	23.04	21.82
	1RB-Middle (12)	707.5	23.17	21.31
		701.5	22.81	21.75
		713.5	22.81	21.69
	1RB-Low (0)	707.5	23.01	21.20
		701.5	22.79	22.00
		713.5	21.90	20.88
5MHz	12RB-High (13)	707.5	21.97	20.70
		701.5	22.02	20.85
		713.5	22.03	20.89
	12RB-Middle (6)	707.5	21.78	20.81
		701.5	22.00	20.93
		713.5	21.98	20.93
	12RB-Low (0)	707.5	21.71	20.93
		701.5	22.15	21.27
		713.5	21.89	21.02
	25RB (0)	707.5	21.97	21.13
		701.5	21.99	20.92
				·
		711	23.10	21.99
	1RB-High (49)	707.5	23.00	22.43
		704	23.17	22.32
		711	23.08	21.65
	1RB-Middle (24)	707.5	23.04	22.42
		704	23.33	22.44
		711	22.91	21.22
	1RB-Low (0)	707.5	23.00	21.86
		704	23.10	22.06
		711	22.04	21.10
10MHz	25RB-High (25)	707.5	21.88	21.08
		704	21.81	20.83
		711	21.98	21.11
	25RB-Middle (12)	707.5	21.70	20.89
		704	21.86	20.91
		711	21.80	20.93
	25RB-Low (0)	707.5	21.80	21.12
		704	21.93	21.04
			04.05	00.07
		711	21.85	20.97
	50RB (0)	711 707.5	21.85	20.97
	50RB (0)			

No. I19Z60716-SEM03 Page 39 of 186

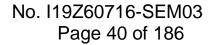
Table 11.3-7 LTE700-FDD14

	RB allocation		QPSK	16QAM
Bandwidth (MHz)	RB offset (Start RB)	Frequency (MHz)	Actual output power (dBm)	Actual output power (dBm)
		795.5 (23355)	23.10	22.01
	1RB-High (24)	793 (23330)	23.44	22.19
	RB offset (Start RB) 1RB-High (24) 1RB-Middle (12) 1RB-Low (0) 12RB-High (13) 12RB-Middle (6) 12RB-Low (0) 25RB (0) 1RB-High (49) 1RB-High (49) 1RB-Low (0)	790.5 (23305)	23.24	21.80
		795.5 (23355)	23.45	22.11
	1RB-Middle (12)	793 (23330)	23.43	22.05
		790.5 (23305)	23.44	22.10
		795.5 (23355)	23.44	22.06
	1RB-Low (0)	793 (23330)	23.35	21.99
		790.5 (23305)	23.14	22.08
		795.5 (23355)	22.49	21.45
5MHz	12RB-High (13)	793 (23330)	22.46	21.47
		790.5 (23305)	22.35	21.24
		795.5 (23355)	22.40	21.37
	12RB-Middle (6)	793 (23330)	22.44	21.34
		790.5 (23305)	22.38	21.26
		795.5 (23355)	22.44	21.27
	12RB-Low (0)	793 (23330)	22.35	21.47
		790.5 (23305)	22.20	21.16
		795.5 (23355)	22.31	21.47
	25RB (0)	793 (23330)	22.46	21.46
		790.5 (23305)	22.29	21.26
	1RB-High (49)	793 (23330)	23.47	22.07
		793 (23330)	23.45	22.49
		793 (23330)	23.23	21.95
10MHz	25RB-High (25)	793 (23330)	22.47	21.44
	25RB-Middle (12)	793 (23330)	22.41	21.43

793 (23330)

793 (23330)

22.36


22.48

21.41

21.49

25RB-Low (0)

50RB (0)

11.4 Wi-Fi and BT Measurement result

The maximum output power of BT antenna is 11.49dBm. The maximum tune up of BT antenna is 12dBm.

The average conducted power for Wi-Fi is as following:

Table 11.4-1 WLAN2450 –Low Power

802.11b (dBm)

Channel\data rate	1Mbps	2Mbps	5.5Mbps	11Mbps
11			15.72	
6	16.38	16.27	16.41	16.30
1			15.76	
Tune up	17.5	17.5	17.5	17.5

802.11g (dBm)

Channel\data rate	6Mbps	9Mbps	12Mbps	18Mbps	24Mbps	36Mbps	48Mbps	54Mbps
11	13.92							
6	14.34	14.29	14.26	14.24	14.19	14.16	14.13	14.12
1	14.12							
Tune up	15.5	15.5	15.5	15.5	15.5	15.5	15.5	15.5

802.11n (dBm) - HT20

Channel\data rate	MCS0	MCS1	MCS2	MCS3	MCS4	MCS5	MCS6	MCS7
11	13.96							
6	14.25	14.22	14.20	14.15	14.13	14.11	14.10	14.08
1	14.10							
Tune up	15.5	15.5	15.5	15.5	15.5	15.5	15.5	15.5

Table 11.4-3 WLAN2450 –Normal Power

802.11b (dBm)

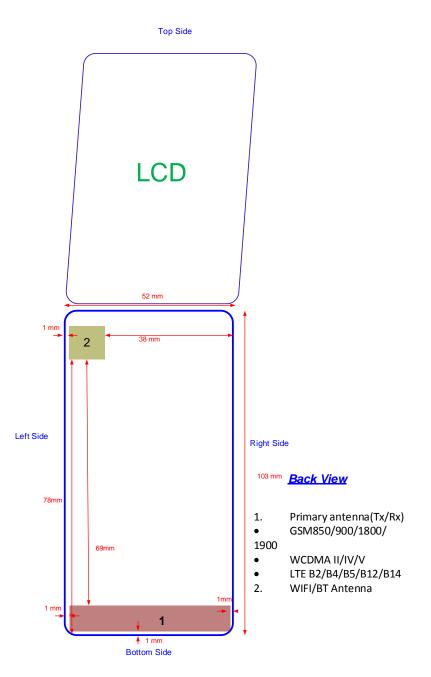
Channel\data rate	1Mbps	2Mbps	5.5Mbps	11Mbps
11			18.55	
6	18.80	18.75	18.99	18.96
1			18.94	
Tune up	19	19	19	19

802.11g (dBm)

Channel\data rate	6Mbps	9Mbps	12Mbps	18Mbps	24Mbps	36Mbps	48Mbps	54Mbps
11	16.80							
6	17.11	17.09	17.07	17.05	17.01	16.98	16.96	16.05
1	16.95							
Tune up	17.5	17.5	17.5	17.5	17.5	17.5	17.5	17.5

802.11n (dBm) - HT20

Channel\data rate	MCS0	MCS1	MCS2	MCS3	MCS4	MCS5	MCS6	MCS7
11	16.79							
6	17.02	17.00	16.99	16.96	16.93	16.46	15.58	14.19
1	16.89							
Tune up	17.5	17.5	17.5	17.5	17.5	17.5	16	16



12 Simultaneous TX SAR Considerations

12.1 Introduction

The following procedures adopted from "FCC SAR Considerations for Cell Phones with Multiple Transmitters" are applicable to handsets with built-in unlicensed transmitters such as 802.11 a/b/g and Bluetooth devices which may simultaneously transmit with the licensed transmitter. For this device, the BT and Wi-Fi can transmit simultaneous with other transmitters.

12.2 Transmit Antenna Separation Distances

Picture 12.1 Antenna Locations

12.3 Standalone SAR Test Exclusion Considerations

Standalone 1-g head or body SAR evaluation by measurement or numerical simulation is not required when the corresponding SAR Exclusion Threshold condition, listed below, is satisfied. The 1-g SAR test exclusion threshold for 100 MHz to 6 GHz at test separation distances \leq 50 mm are determined by:

[(max. power of channel, including tune-up tolerance, mW) / (min. test separation distance, mm)] \cdot [$\sqrt{f}(GHz)$] \leq 3.0 for 1-g SAR, where

- f(GHz) is the RF channel transmit frequency in GHz
- Power and distance are rounded to the nearest mW and mm before calculation
- The result is rounded to one decimal place for comparison

			SAR test	RF outpu	ut power	
Band/Mode	F(GHz)	Position	exclusion threshold (mW)	dBm	mW	SAR test exclusion
Bluetooth	2.441	Head	9.6	12	15.85	No
Diueloolii		Body	19.2	12	15.85	Yes
2.4GHz WLAN 802.11 b	2.45	Head	9.58	17.5	56.23	No
		Body	19.17	19	79.43	No

Table 12.1: Standalone SAR test exclusion considerations

The Bluetooth is tested with DASY system for head and body. Both head SAR and body SAR are less than 0.01W/kg.

13 Evaluation of Simultaneous

Table 13.1: The sum of reported SAR values for main antenna and WLAN

	Position	Main antenna	WLAN	Sum
Maximum reported SAR value for Head	Left hand, Touch cheek	0.77	0.32	1.09
	Right hand, Touch cheek	0.56	0.61	1.17
Maximum reported	Rear 15mm	1.06	0.10	1.16
SAR value for Body	Rear unfold 15mm	0.57	0.17	0.74

Table 13.2: The sum of reported SAR values for main antenna and BT

	Position	Main antenna	BT	Sum
Maximum reported SAR value for Head	Left hand, Touch cheek	0.77	< 0.01	0.77
Maximum reported SAR value for Body	Rear 15mm	1.06	< 0.01	1.06

Conclusion:

According to the above tables, the sum of reported SAR values is < 1.6W/kg, So the simultaneous transmission SAR with volume scans is not required.

14 SAR Test Result

It is determined by user manual for the distance between the EUT and the phantom bottom. The distance is 15mm and just applied to the condition of body worn accessory.

It is performed for all SAR measurements with area scan based 1-g SAR estimation (Fast SAR). A zoom scan measurement is added when the estimated 1-g SAR is the highest measured SAR in each exposure configuration, wireless mode and frequency band combination or more than 1.2W/kg.

The calculated SAR is obtained by the following formula:

Reported SAR = Measured SAR $\times 10^{(P_{Target} - P_{Measured})/10}$

Where P_{Target} is the power of manufacturing upper limit;

 P_{Measured} is the measured power in chapter 11.

Mode	Duty Cycle
Speech for GSM850/1900	1:8.3
GPRS&EGPRS for GSM850/1900	1:8.3
WCDMA<E	1:1

14.1 SAR results

	Table 14.1-1: SAR values (GSM 850 MHZ Band - Head)												
			Am	bient Temp	perature: 22	.9°C Lio	quid Tempera	ature: 22.5°	C				
Frec	luency	0.4	Test	Figure	Conducted	Max. tune-up	Measured SAR(10g)	Reported	Measured	Reported	Power		
Ch.	MHz	Side	Position	No./ Note	Power (dBm)	Power (dBm)		SAR(10g)(W/kg)	SAR(1g) (W/kg)	SAR(1g) (W/kg)	Drift (dB)		
190	836.6	Left	Touch	/	32.97	33.50	0.151	0.17	0.263	0.30	-0.12		
190	836.6	Left	Tilt	/	32.97	33.50	0.087	0.10	0.114	0.13	0.09		
251	848.8	Right	Touch	/	33.01	33.50	0.262	0.29	0.41	0.46	-0.09		
190	836.6	Right	Touch	Fig.1	32.97	33.50	0.270	0.31	0.420	0.47	0.01		
128	824.2	Right	Touch	/	32.82	33.50	0.239	0.28	0.366	0.43	0.04		
190	836.6	Right	Tilt	/	32.97	33.50	0.095	0.11	0.122	0.14	0.05		

Table 14 1-1: SAR Values (GSM 850 MHz Band - Head)

Table 14.1-2: SAR Values (GSM 850 MHz Band - Body)

			Ambien	t Temp	erature: 22.	9°C Liq	uid Tempera	ture: 22.5°C					
Fred	luency	Mode	Test	Figur e	Conducted	Max. tune-up	Measured	Reported	Measured	Reported	Power		
Ch.	MHz	(number of timeslots)	Position	No./ Note	Power (dBm)	Power (dBm)	SAR(10g) (W/kg)	SAR(10g)(W/kg)	SAR(1g) (W/kg)	SAR(1g) (W/kg)	Drift (dB)		
190	836.6	GPRS (1)	Front	/	32.97	33.50	0.047	0.05	0.061	0.07	0.10		
251	848.8	GPRS (1)	Rear	Fig.2	33.01	33.50	0.168	0.19	0.238	0.27	-0.01		
190	836.6	GPRS (1)	Rear	/	32.97	33.50	0.137	0.15	0.204	0.23	0.05		
128	824.2	GPRS (1)	Rear	/	32.82	33.50	0.101	0.12	0.151	0.18	-0.11		
190	836.6	GPRS (1)	Rear unfold	/	32.97	33.50	0.116	0.13	0.166	0.19	0.13		
251	848.8	EGPRS (1)	Rear	/	33.02	33.50	0.164	0.18	0.234	0.26	-0.05		

Table 14.1-3: SAR Values (GSM 1900 MHz Band - Head)

	Ambient Temperature: 22.9 °C Liquid Temperature: 22.5 °C													
Fre	equency	0.4	Test	Figure	Conducted	Max. tune-up	Measured	Reported	Measured	Reported	Power			
Ch.	MHz	Side	Position	No./ Note	Power (dBm)	Power (dBm)	SAR(10g) (W/kg)	SAR(10g)(W/kg)	SAR(1g) (W/kg)	SAR(1g) (W/kg)	Drift (dB)			
810	1909.8	Left	Touch	1	30.01	31.00	0.162	0.20	0.285	0.36	0.02			
661	1880	Left	Touch	Fig.3	29.82	31.00	0.199	0.26	0.331	0.43	0.05			
512	1850.2	Left	Touch	/	30.09	31.00	0.167	0.21	0.316	0.39	0.03			
661	1880	Left	Tilt	/	29.82	31.00	0.036	0.05	0.054	0.07	-0.05			
661	1880	Right	Touch	/	29.82	31.00	0.146	0.19	0.232	0.30	0.13			
661	661 1880 Right		Tilt	/	29.82	31.00	0.025	0.03	0.041	0.05	0.04			

No. I19Z60716-SEM03 Page 47 of 186

			Ambier	nt Tempe	erature: 22.9	°C Liqu	id Tempera	ture: 22.5°C	2				
Free	quency	Mode (number of	Test	Figure No./	Conducted Power	Max. tune-up	Measured SAR(10g)	Reported SAR(10g)	Measured SAR(1g)	Reported SAR(1g)	Power Drift		
Ch.	Ch. MHz timeslots)		Position	Note	(dBm)	Power (dBm)	(W/kg)	(W/kg)	(W/kg)	(W/kg)	(dB)		
661	1880	GPRS (1)	Front	/	29.82	31.00	0.081	0.11	0.131	0.17	-0.11		
810	1909.8	GPRS (1)	Rear	/	30.01	31.00	0.228	0.29	0.377	0.47	0.05		
661	1880	GPRS (1)	Rear	/	29.82	31.00	0.231	0.30	0.387	0.51	-0.03		
512	1850.2	GPRS (1)	Rear	Fig.4	30.09	31.00	0.261	0.32	0.432	0.53	-0.14		
661	1880	GPRS (1)	Rear unfold	/	29.82	31.00	0.153	0.20	0.225	0.30	-0.08		
512	1850.2	GPRS (1)	Rear	/	30.00	31.00	0.255	0.32	0.416	0.52	0.10		

Table 14.1-4: SAR Values (GSM 1900 MHz Band - Body)

Note: The distance between the EUT and the phantom bottom is 15mm.

Table 14.1-5: SAR Values (WCDMA 1900 MHz Band - Head)

			Ambie	nt Tempe	erature: 22.9	9°C Liq	uid Temper	ature: 22.5	5°C		
Freq	luency	0.1	Test	Figure	Conducted	Max. tune-up	Measured	Reported	Measured	Reported	Power
Ch.	MHz	Side	Position	tion No./ Power Note (dBm)		Power (dBm)	SAR(10g) (W/kg)	SAR(10g)(W/kg)	SAR(1g) (W/kg)	SAR(1g) (W/kg)	Drift (dB)
9538	1907.6	Left	Touch	/	23.30	24.00	0.360	0.42	0.574	0.67	0.07
9400	1880	Left	Touch	Fig.5	23.32	24.00	0.398	0.47	0.656	0.77	0.04
9262	1852.4	Left	Touch	/	23.21	24.00	0.372	0.45	0.604	0.72	0.01
9400	1880	Left	Tilt	/	23.32	24.00	0.074	0.09	0.110	0.13	0.13
9400	1880	Right	Touch	/	23.32	24.00	0.245	0.29	0.402	0.47	0.06
9400	9400 1880 Right Tilt /		23.32	24.00	0.044	0.05	0.072	0.08	-0.13		

Table 14.1-6: SAR Values (WCDMA 1900 MHz Band - Body)

		А	perature: 2	2.5°C						
Frequ	uency	Test	Figure No./	Conducted Power	Max. tune-up	Measured SAR(10g)	Reported SAR(10g)	Measured SAR(1g)	Reported SAR(1g)	Power Drift
Ch.	MHz	Position	Note	(dBm)	Power (dBm)	(W/kg)	(W/kg)	(W/kg)	(W/kg)	(dB)
9400	1880	Front	/	23.32	24.00	0.160	0.19	0.258	0.30	-0.10
9538	1907.6	Rear	1	23.30	24.00	0.438	0.51	0.732	0.86	0.10
9400	1880	Rear	/	23.32	24.00	0.443	0.52	0.739	0.86	-0.10
9262	1852.4	Rear	Fig.6	23.21	24.00	0.455	0.55	0.753	0.90	0.03
9400	1880	Rear unfold	/	23.32	24.00	0.283	0.33	0.422	0.49	0.11

			Ambien	t Temperat	ure: 22.9 °C	Lic	uid Tempe	rature: 22.5	5°C		
Frec	quency				Conducted	Max.	Measured	Reported	Measured	Reported	Power
Ch.	MHz	Side	Test Position	Figure No./Note	Power (dBm)	tune-up Power (dBm)	SAR(10g) (W/kg)	SAR(10g)(W/kg)	SAR(1g) (W/kg)	SAR(1g) (W/kg)	Drift (dB)
1513	1752.6	Left	Touch	/	23.12	24.00	0.151	0.18	0.405	0.50	-0.03
1412	1732.4	Left	Touch	Fig.7	23.34	24.00	0.164	0.19	0.454	0.53	-0.09
1312	1712.4	Left	Touch	/	23.32	24.00	0.157	0.18	0.425	0.50	0.08
1412	1732.4	Left	Tilt	/	23.34	24.00	0.025	0.03	0.063	0.07	-0.09
1412	1732.4	Right	Touch	/	23.34	24.00	0.134	0.16	0.341	0.40	-0.05
1412	1732.4	Right	Tilt	/	23.34	24.00	0.022	0.03	0.051	0.06	0.08

Table 14.1-7: SAR Values (WCDMA 1700 MHz Band - Head)

Table 14.1-8: SAR Values (WCDMA 1700 MHz Band - Body)

		A	mbient T	emperature:	22.9 °C	Liquid Temperature: 22.5°C				
Frequ	uency	Test	Figure	Conducted	Max. tune-up	Measured	Reported	Measured	Reported	Power
			No./	Power	•	SAR(10g)	SAR(10g)	SAR(1g)	SAR(1g)	Drift
Ch.	MHz	Position	Note	(dBm)	Power (dBm)	(W/kg)	(W/kg)	(W/kg)	(W/kg)	(dB)
1412	1732.4	Front	/	23.34	24.00	0.130	0.15	0.20	0.23	-0.05
1513	1752.6	Rear	Fig.8	23.12	24.00	0.528	0.65	0.863	1.06	0.10
1412	1732.4	Rear	/	23.34	24.00	0.478	0.56	0.783	0.91	-0.06
1312	1712.4	Rear	/	23.32	24.00	0.435	0.51	0.705	0.82	-0.13
1412	1412 1732.4 Rear unfold		/	23.34	24.00	0.321	0.37	0.489	0.57	-0.12

Note: The distance between the EUT and the phantom bottom is 15mm.

Table 14.1-9: SAR Values (WCDMA 850 MHz Band - Head)

			Ambien	t Temperat	ure: 22.9 °C	Lic	quid Tempe	rature: 22.5	5°C		
Freq	quency		Test	Ĺ	Conducted	Max.	Measured	Reported	Measured	Reported	Power
Ch.	MHz	Side	Test Position	Figure No./Note	Power (dBm)	tune-up Power (dBm)	SAR(10g) (W/kg)	SAR(10g)(W/kg)	SAR(1g) (W/kg)	SAR(1g) (W/kg)	Drift (dB)
4182	836.4	Left	Touch	/	23.03	24.00	0.166	0.21	0.282	0.35	-0.04
4182	836.4	Left	Tilt	/	23.03	24.00	0.101	0.13	0.129	0.16	0.11
4233	846.6	Right	Touch	Fig.9	22.99	24.00	0.289	0.36	0.441	0.56	0.00
4182	836.4	Right	Touch	/	23.03	24.00	0.281	0.35	0.416	0.52	-0.08
4132	826.4	Right	Touch	/	23.08	24.00	0.275	0.34	0.414	0.51	0.06
4182	836.4	Right	Tilt	/	23.03	24.00	0.105	0.13	0.131	0.16	0.09

	Ambient Temperature: 22.9 °C Liquid Temperature: 22.5°C												
Frequ	uency	Test	Figure	Conducted	Max. tune-up	Measured	Reported	Measured	Reported	Power			
· · ·	,		No./	Power	•	SAR(10g)	SAR(10g)	SAR(1g)	SAR(1g)	Drift			
Ch.	MHz	Position	Note	(dBm)	Power (dBm)	(W/kg)	(W/kg)	(W/kg)	(W/kg)	(dB)			
4183	836.6	Front	/	23.03	24.00	0.068	0.09	0.090	0.11	-0.03			
4233	846.6	Rear	Fig.10	22.99	24.00	0.225	0.28	0.317	0.40	0.11			
4183	836.6	Rear	/	23.03	24.00	0.200	0.25	0.283	0.35	0.13			
4132	826.4	Rear	/	23.08	24.00	0.172	0.21	0.251	0.31	-0.04			
4183	836.6	Rear unfold	/	23.03	24.00	0.176	0.22	0.245	0.31	0.05			

Table 14.1-10: SAR Values (WCDMA 850 MHz Band - Body)

Note: The distance between the EUT and the phantom bottom is 15mm.

				la	DIE 14.1	-11: SAR V	alues (L	IE Bandz	- пеаа)			
			Ambi	ent Temp	erature:	22.9 °C	Liquid	Temperatu	ure: 22.5°C			
Frequ	ency			Test	Figure	Conducted	Max.	Measured	Reported	Measured	Reported	Power
Ch.	MHz	Mode	Side	Test Position	No./ Note	Power (dBm)	tune-up Power (dBm)	SAR(10g) (W/kg)	SAR(10g)(W/kg)	SAR(1g) (W/kg)	SAR(1g) (W/kg)	Drift (dB)
18900	1880	1RB_Mid	Left	Touch	Fig.11	23.49	23.50	0.295	0.30	0.489	0.49	0.12
18900	1880	1RB_Mid	Left	Tilt	/	23.49	23.50	0.059	0.06	0.091	0.09	-0.01
18900	1880	1RB_Mid	Right	Touch	/	23.49	23.50	0.224	0.22	0.398	0.40	0.12
18900	1880	1RB_Mid	Right	Tilt	/	23.49	23.50	0.035	0.04	0.056	0.06	-0.06
19100	1900	50RB_Mid	Left	Touch	/	22.24	22.50	0.218	0.23	0.360	0.38	0.00
19100	1900	50RB_Mid	Left	Tilt	1	22.24	22.50	0.041	0.04	0.063	0.07	-0.08
19100	1900	50RB_Mid	Right	Touch	1	22.24	22.50	0.152	0.16	0.270	0.29	0.02
19100	1900	50RB_Mid	Right	Tilt	/	22.24	22.50	0.027	0.03	0.044	0.05	0.05

Table 14.1-11: SAR Values (LTE Band2 - Head)

Note1: The LTE mode is QPSK_20MHz.

Table 14.1-12: SAR Values (LTE Band2 - Body)

			Ambient	Tempera	ture: 22.9 °C	Liqui	d Temperat	ure: 22.5°C			
Frequ	lency	Mode	Test	Figure No./	Conducted Power	Max. tune- up Power	Measured SAR(10q)	Reported SAR(10g)(Measured SAR(1g)	Reported SAR(1g)	Power Drift
Ch.	MHz	Mode	Position Front	Note	(dBm)	(dBm)	(W/kg)	W/kg)	(W/kg)	(W/kg)	(dB)
18900	1880	1RB_Mid	Front	/	23.49	23.50	0.150	0.15	0.238	0.24	-0.06
18900	1880	1RB_Mid	Rear	Fig.12	23.49	23.50	0.401	0.40	0.664	0.67	0.03
18900	1880	1RB_Mid	Rear unfold	/	23.49	23.50	0.252	0.25	0.381	0.38	-0.07
19100	1900	50RB_Mid	Front	/	22.24	22.50	0.109	0.12	0.173	0.18	0.11
19100	1900	50RB_Mid	Rear	/	22.24	22.50	0.185	0.20	0.346	0.37	0.13
19100	1900	50RB_Mid	Rear unfold	Note2	22.24	22.50	0.111	0.12	0.209	0.22	0.00

No. I19Z60716-SEM03 Page 50 of 186

			Ambi	ent Temp	erature:	22.9 °C	Liquid	Temperatu	ure: 22.5°C					
Frequ	ency			Test	Figure	Conducted	Max. tune-up	Measured	Reported	Measured	Reported	Power		
Ch.	MHz	Mode	Side	Position	No./ Note	Power (dBm)	Power (dBm)	SAR(10g) (W/kg)	SAR(10g)(W/kg)	SAR(1g) (W/kg)	SAR(1g) (W/kg)	Drift (dB)		
20300	1745	1RB_Mid	Left	Touch	Fig.13	23.46	23.50	0.306	0.31	0.489	0.49	0.03		
20300	1745	1RB_Mid	Left	Tilt	/	23.46	23.50	0.072	0.07	0.112	0.11	-0.12		
20300	1745	1RB_Mid	Right	Touch	/	23.46	23.50	0.296	0.30	0.475	0.48	0.10		
20300	1745	1RB_Mid	Right	Tilt	/	23.46	23.50	0.064	0.06	0.093	0.09	-0.01		
20300	1745	50RB_Mid	Left	Touch	/	22.30	22.50	0.236	0.25	0.375	0.39	-0.06		
20300	1745	50RB_Mid	Left	Tilt	1	22.30	22.50	0.056	0.06	0.087	0.09	-0.12		
20300	1745	50RB_Mid	Right	Touch	1	22.30	22.50	0.111	0.12	0.221	0.23	0.01		
20300	1745	50RB_Mid	Right	Tilt	1	22.30	22.50	0.050	0.05	0.073	0.08	-0.07		

Table 14.1-13: SAR Values (LTE Band4 - Head)

Note1: The LTE mode is QPSK_20MHz.

			Ambient	Tempera	ture: 22.9 °C	C Liqui	d Temperat	ure: 22.5°C						
Frequ	uency	Mada	Test	Figure	Conducted	Max. tune-	Measured	Reported	Measured	Reported	Power			
Ch.	MHz	Mode	Position	No./ Note	Power (dBm)	up Power (dBm)	SAR(10g) (W/kg)	SAR(10g)(W/kg)	SAR(1g) (W/kg)	SAR(1g) (W/kg)	Drift (dB)			
20300	1745	1RB_Mid	Front	/	23.46	23.50	0.146	0.15	0.225	0.23	0.04			
20300	1745	1RB_Mid	Rear	Fig.14	23.46	23.50	0.462	0.47	0.753	0.76	-0.03			
20300	1745	1RB_Mid	Rear unfold	/	23.46	23.50	0.323	0.33	0.563	0.57	0.06			
20300	1745	50RB_Mid	Front	/	22.30	22.50	0.118	0.12	0.183	0.19	0.08			
20300	1745	50RB_Mid	Rear	/	22.30	22.50	0.438	0.46	0.700	0.73	-0.02			
20300	1745	50RB_Mid	Rear unfold	Note2	22.30	22.50	0.256	0.27	0.392	0.41	0.13			

Table 14.1-14: SAR Values (LTE Band4 - Body)

No. I19Z60716-SEM03 Page 51 of 186

			Ambi	ent Temp	erature:	22.9 °C	Liquid	l Temperati	ure: 22.5°C			
Frequ	ency			Teet	Figure	Conducted	Max.	Measured	Reported	Measured	Reported	Power
Ch.	MHz	Mode	Side	Test Position	No./ Note	Power (dBm)	tune-up Power (dBm)	SAR(10g) (W/kg)	SAR(10g)(W/kg)	SAR(1g) (W/kg)	SAR(1g) (W/kg)	Drift (dB)
20600	844	1RB_Mid	Left	Touch	/	23.28	23.50	0.135	0.14	0.223	0.23	0.07
20600	844	1RB_Mid	Left	Tilt	/	23.28	23.50	0.085	0.09	0.109	0.11	-0.06
20600	844	1RB_Mid	Right	Touch	Fig.15	23.28	23.50	0.243	0.26	0.366	0.39	-0.03
20600	844	1RB_Mid	Right	Tilt	/	23.28	23.50	0.122	0.13	0.089	0.09	-0.10
20600	844	25RB_High	Left	Touch	/	22.22	22.50	0.106	0.11	0.175	0.19	0.08
20600	844	25RB_High	Left	Tilt	/	22.22	22.50	0.066	0.07	0.085	0.09	-0.04
20600	844	25RB_High	Right	Touch	/	22.22	22.50	0.179	0.19	0.273	0.29	0.12
20600	844	25RB_High	Right	Tilt	/	22.22	22.50	0.069	0.07	0.086	0.09	-0.01

Table 14.1-15: SAR Values (LTE Band5 - Head)

Note1: The LTE mode is QPSK_20MHz.

Table 14.1-16: SAR Values (LTE Band5 - Body)

						<u> </u>								
	Ambient Temperature: 22.9 °C Liquid Temperature: 22.5°C													
Freque	ency		Test	Figure	Conducted	Max. tune-	Measured	Reported	Measured	Reported	Power			
		Mode	Position	No./	Power	up Power	SAR(10g)	SAR(10g)(SAR(1g)	SAR(1g)	Drift			
Ch.	MHz		FOSILION	Note	(dBm)	(dBm)	(W/kg)	W/kg)	(W/kg)	(W/kg)	(dB)			
20600	844	1RB_Mid	Front	/	23.28	23.50	0.086	0.09	0.111	0.12	-0.10			
20600	844	1RB_Mid	Rear	Fig.16	23.28	23.50	0.243	0.26	0.341	0.36	-0.05			
20600	844	1RB_Mid	Rear unfold	/	23.28	23.50	0.177	0.19	0.242	0.25	0.09			
20600	844	25RB_High	Front	/	22.22	22.50	0.064	0.07	0.084	0.09	0.13			
20600	844	25RB_High	Rear	/	22.22	22.50	0.194	0.21	0.271	0.29	0.02			
20600	844	25RB_High	Rear unfold	Note2	22.22	22.50	0.126	0.13	0.173	0.18	0.02			

No. I19Z60716-SEM03 Page 52 of 186

			Ambi	ent Temp	erature:	22.9 °C	Liquid	Temperatu	ure: 22.5°C				
Frequ	ency			Test	Figure	Conducted	Max.	Measured	Reported	Measured	Reported	Power	
Ch.	MHz	Mode	Side	Position	No./ Note	Power (dBm)	tune-up Power (dBm)	SAR(10g) (W/kg)	SAR(10g)(W/kg)	SAR(1g) (W/kg)	SAR(1g) (W/kg)	Drift (dB)	
23060	704	1RB_Mid	Left	Touch	/	23.33	23.50	0.242	0.25	0.394	0.41	-0.10	
23060	704	1RB_Mid	Left	Tilt	/	23.33	23.50	0.070	0.07	0.093	0.10	0.01	
23060	704	1RB_Mid	Right	Touch	Fig.17	23.33	23.50	0.257	0.27	0.417	0.43	0.04	
23060	704	1RB_Mid	Right	Tilt	/	23.33	23.50	0.071	0.07	0.093	0.10	0.07	
23130	711	25RB_High	Left	Touch	/	22.04	22.50	0.198	0.22	0.320	0.36	0.03	
23130	711	25RB_High	Left	Tilt	/	22.04	22.50	0.048	0.05	0.061	0.07	0.03	
23130	711	25RB_High	Right	Touch	/	22.04	22.50	0.205	0.23	0.316	0.35	-0.10	
23130	711	25RB_High	Right	Tilt	/	22.04	22.50	0.056	0.06	0.073	0.08	0.11	
	Noto1: The LTE mode in ODSK 20MHz												

Table 14.1-17: SAR Values (LTE Band12 - Head)

Note1: The LTE mode is QPSK_20MHz.

Table 14.1-18: SAR Values (LTE Band12 - Body)

			Ambient ⁻	Tempera	ture: 22.9 °C	C Liqui	d Temperat	ure: 22.5°C	2				
Freque	ency		Test	Figure	Conducted	Max. tune-	Measured	Reported	Measured	Reported	Power		
	1	Mode		No./	Power	up Power	SAR(10g)	SAR(10g)(SAR(1g)	SAR(1g)	Drift		
Ch.	MHz	1RB Mid	Position	Note	(dBm)	(dBm)	(W/kg)	W/kg)	(W/kg)	(W/kg)	(dB)		
23060	704	1RB_Mid	Front	/	23.33	23.50	0.092	0.10	0.126	0.13	-0.11		
23060	704	1RB_Mid	Rear	Fig.18	23.33	23.50	0.331	0.34	0.474	0.49	0.02		
23060	704	1RB_Mid	Rear unfold	/	23.33	23.50	0.317	0.33	0.432	0.45	-0.05		
23130	711	25RB_High	Front	/	22.04	22.50	0.075	0.08	0.103	0.11	0.03		
23130	711	25RB_High	Rear	/	22.04	22.50	0.283	0.31	0.406	0.45	-0.08		
23130	711	25RB_High	Rear unfold	Note2	22.04	22.50	0.266	0.30	0.371	0.41	0.12		

No. I19Z60716-SEM03 Page 53 of 186

				1.01		13. 0/11 1			nead)			
			Ambi	ent Temp	erature:	22.9 °C	Liquid	Temperatu	ure: 22.5°C			
Frequ	ency			Test	Figure	Conducted	Max.	Measured	Reported	Measured	Reported	Power
Ch.	MHz	Mode	Side	Position	No./ Note	Power (dBm)	tune-up Power (dBm)	SAR(10g) (W/kg)	SAR(10g)(W/kg)	SAR(1g) (W/kg)	SAR(1g) (W/kg)	Drift (dB)
23330	793	1RB_High	Left	Touch	Fig.19	23.47	23.50	0.340	0.34	0.564	0.57	-0.04
23330	793	1RB_High	Left	Tilt	/	23.47	23.50	0.134	0.13	0.180	0.18	0.05
23330	793	1RB_High	Right	Touch	/	23.47	23.50	0.338	0.34	0.538	0.54	0.00
23330	793	1RB_High	Right	Tilt	/	23.47	23.50	0.139	0.14	0.185	0.19	-0.12
23330	793	25RB_High	Left	Touch	/	22.47	22.50	0.278	0.28	0.461	0.46	0.00
23330	793	25RB_High	Left	Tilt	/	22.47	22.50	0.110	0.11	0.149	0.15	-0.08
23330	793	25RB_High	Right	Touch	/	22.47	22.50	0.275	0.28	0.439	0.44	-0.04
23330	793	25RB_High	Right	Tilt	/	22.47	22.50	0.116	0.12	0.155	0.16	-0.07
	Notati The LTE made is ODSK 20MHz											

Table 14.1-19: SAR Values (LTE Band14 - Head)

Note1: The LTE mode is QPSK_20MHz.

Table 14.1-20: SAR Values (LTE Band14 - Body)

			Ambient	Tempera	ture: 22.9 °C	C Liqui	d Temperat	ure: 22.5°C	1				
Freque	ency		Test	Figure	Conducted	Max. tune-	Measured	Reported	Measured	Reported	Power		
	1	Mode	Desilier	No./	Power	up Power	SAR(10g)	SAR(10g)(SAR(1g)	SAR(1g)	Drift		
Ch.	MHz 793 1PB High	Position	Note	(dBm)	(dBm)	(W/kg)	W/kg)	(W/kg)	(W/kg)	(dB)			
23330	793	1RB_High	Front	/	23.47	23.50	0.116	0.12	0.160	0.16	-0.02		
23330	793	1RB_High	Rear	Fig.20	23.47	23.50	0.365	0.37	0.532	0.54	0.19		
23330	793	1RB_High	Rear unfold	/	23.47	23.50	0.272	0.27	0.394	0.40	0.01		
23330	793	25RB_High	Front	/	22.47	22.50	0.093	0.09	0.127	0.13	-0.10		
23330	793	25RB_High	Rear	/	22.47	22.50	0.299	0.30	0.433	0.44	0.00		
23330	793	25RB_High	Rear unfold	Note2	22.47	22.50	0.234	0.24	0.338	0.34	-0.11		

No. I19Z60716-SEM03 Page 54 of 186

				Tun				,			
			Ambie	ent Temper	ature: 22.9 °	C Li	quid Temp	erature: 22.	5°C		
Freq	uency		Teet	Figure	Conducted	Max.	Measure	Reported	Measured	Reporte	Power
Ch.	MHz	Side	Test Position	Figure No./Note /	Power (dBm)	tune-up Power (dBm)	d SAR(10g) (W/kg)	SAR(10g) (W/kg)	SAR(1g) (W/kg)	d SAR(1g) (W/kg)	Drift (dB)
39	2441	Left	Cheek	/	11.49	12	<0.01	<0.01	<0.01	<0.01	/
78	2441	Left	Cheek	/	11.49	12	<0.01	<0.01	<0.01	<0.01	/
0	2441	Left	Cheek	/	11.49	12	<0.01	<0.01	<0.01	<0.01	/
78	2480	Left	Tilt	/	11.49	12	<0.01	<0.01	<0.01	<0.01	/
39	2402	Right	Cheek	/	11.49	12	<0.01	<0.01	<0.01	<0.01	/
39	2441	Right	Tilt	/	11.49	12	<0.01	<0.01	<0.01	<0.01	/

Table 14.1-21: SAR Values (BT - Head)

Table 14.1-22: SAR Values (BT - Body)

		A	mbient Ter	nperature: 2	2.9°C	Liquid Tem	perature: 2	2.5°C		
Freq Ch.	uency MHz	Test Position	Figure No./ Note	Conducted Power (dBm)	Max. tune-up Power	Measured SAR(10g) (W/kg)	Reported SAR(10g) (W/kg)	Measured SAR(1g) (W/kg)	Reported SAR(1g) (W/kg)	Power Drift (dB)
			Note	. ,	(dBm)		(W/Kg)		(W/Kg)	(UD)
39	2441	Front	/	11.49	12	<0.01	<0.01	<0.01	<0.01	/
0	2402	Front	/	11.49	12	<0.01	<0.01	<0.01	<0.01	/
78	2480	Front	/	11.49	12	<0.01	<0.01	<0.01	<0.01	/
39	2441	Rear	/	11.49	12	<0.01	<0.01	<0.01	<0.01	/
39	2441	Left	/	11.49	12	<0.01	<0.01	<0.01	<0.01	/
39	2441	Right	/	11.49	12	<0.01	<0.01	<0.01	<0.01	/
39	2441	Bottom	/	11.49	12	<0.01	<0.01	<0.01	<0.01	/
39	2441	Rear unfold	/	11.49	12	<0.01	<0.01	<0.01	<0.01	/

14.2 SAR results for Standard procedure

There is zoom scan measurement to be added for the highest measured SAR in each exposure configuration/band.

	Ambient Temperature: 22.9 °C Liquid Temperature: 22.5 °C														
Freq	luency		Test	Figure	Conducte	Max. tune-	Measured	Reporte	Measure	Reporte	Powe				
Ch.	MHz	Side	Positi on	No./ Note	d Power (dBm)	up Power (dBm)	SAR(10g) (W/kg)	a SAR(10g)(W/kg)	u SAR(1g) (W/kg)	u SAR(1g) (W/kg)	r Drift (dB)				
190	836.6	Right	Touch	Fig.1	32.97	33.50	0.270	0.31	0.420	0.47	0.01				

Table 14.2-1: SAR Values (GSM 850 MHz Band - Head)

	Ambient Temperature: 22.9 °C Liquid Temperature: 22.5°C														
Frec Ch.	quency MHz	Mode (number of timeslots)	Test Position	Figur e No./ Note	Conducted Power (dBm)	Max. tune-up Power (dBm)	Measured SAR(10g) (W/kg)	Reported SAR(10g)(W/kg)	Measured SAR(1g) (W/kg)	Reported SAR(1g) (W/kg)	Power Drift (dB)				
251	848.8	GPRS (1)	Rear	Fig.2	33.01	33.50	0.168	0.19	0.238	0.27	-0.01				

Note: The distance between the EUT and the phantom bottom is 15mm.

Table 14.2-3: SAR Values (GSM 1900 MHz Band - Head)

			Ambie	nt Temp	erature: 22	.9°C Lio	quid Tempe	rature: 22.	5°C		
Fre	equency		Test	Figure Conducted		Max. tune-up	Measured	Reported	Measured	Reported	Power
Ch.	MHz	Side	Position	No./ Note	Power (dBm)	SAR(10g) (W/kg)	SAR(10g)(W/kg)	SAR(1g) (W/kg)	SAR(1g) (W/kg)	Drift (dB)	
661	1880	Left	Touch	Fig.3	29.82	31.00	0.199	0.26	0.331	0.43	0.05

Table 14.2-4: SAR Values (GSM 1900 MHz Band - Body)

	Ambient Temperature: 22.9 °C Liquid Temperature: 22.5 °C												
Frec	quency	Mode	Test	Figure	Conducted	Max tuna un	Measured	Reported	Measured	Reported	Power		
		(number of		No./	Power	Max. tune-up	SAR(10g)	SAR(10g)	SAR(1g)	SAR(1g)	Drift		
Ch.	MHz	timeslots)	Position	Note	(dBm)	Power (dBm)	(W/kg)	(W/kg)	(W/kg)	(W/kg)	(dB)		
512	1850.2	GPRS (1)	Rear	Fig.4	30.09	31.00	0.261	0.32	0.432	0.53	-0.14		

			Ambier	nt Tempe	erature: 22.9	9°C Liq	uid Temper	ature: 22.5	ö°C		
Free	Frequency		Test		Conducted	Conducted Max. tune-up		Reported	Measured	Reported	Power
		Side		No./	Power		SAR(10g)	SAR(10g)(SAR(1g)	SAR(1g)	Drift
Ch.	MHz		FUSILION	Position Note (dB		Power (dBm)	(W/kg)	W/kg)	(W/kg)	(W/kg)	(dB)
9400	1880	Left	Touch	Fig.5	23.32	24.00	0.398	0.47	0.656	0.77	0.04

		A	mbient Te	emperature:	22.9 °C	Liquid Temperature: 22.5°C								
Freau	uency	Test	Figure	Conducted	Max tune un	Measured	Reported	Measured	Reported	Power				
	1		No./	Power	Max. tune-up	SAR(10g)	SAR(10g)	SAR(1g)	SAR(1g)	Drift				
Ch.	MHz	Position	Note	(dBm)	Power (dBm)	(W/kg)	(W/kg)	(W/kg)	(W/kg)	(dB)				
9262	1852.4	Rear	Fig.6	23.21	24.00	0.455	0.55	0.753	0.90	0.03				

Table 14.2-6: SAR Values (WCDMA 1900 MHz Band - Body)

Note: The distance between the EUT and the phantom bottom is 15mm.

Table 14.2-7: SAR Values (WCDMA 1700 MHz Band - Head)

	Ambient Temperature: 22.9 °C Liquid Temperature: 22.5 °C												
	Freq	quency		Test	Figure	Conducted	Max.	Measured	Reported	Measured	Reported	Power	
C	Ch.	MHz	Side	Position	No./Note	Power (dBm)	tune-up Power (dBm)	SAR(10g) (W/kg)	SAR(10g)(W/kg)	SAR(1g) (W/kg)	SAR(1g) (W/kg)	Drift (dB)	
14	412	1732.4	Left	Touch	Fig.7	23.34	24.00	0.164	0.19	0.454	0.53	-0.09	

Table 14.2-8: SAR Values (WCDMA 1700 MHz Band - Body)

		Amplent I	emperature	: 22.9 °C	Liquid Temperature: 22.5°C					
Frequency	/ Test	Figure	Conducted	Max tupo up	Measured	Reported	Measured	Reported	Power	
Trequency	1031	No./	Power	Max. tune-up	SAR(10g)	SAR(10g)	SAR(1g)	SAR(1g)	Drift	
Ch. M⊦	Hz Position	Note	(dBm)	Power (dBm)	(W/kg)	(W/kg)	(W/kg)	(W/kg)	(dB)	
1513 175	2.6 Rear	Fig.8	23.12	24.00	0.528	0.65	0.863	1.06	0.10	

Note: The distance between the EUT and the phantom bottom is 15mm.

Table 14.2-9: SAR Values (WCDMA 850 MHz Band - Head)

	Ambient Temperature: 22.9 °C Liquid Temperature: 22.5°C													
Fre	equency		Test	F :	Conducted	Max.	Measured	Reported	Measured	Reported	Power			
Ch.	MHz	Side	Test Position	Figure No./Note	Power (dBm)	tune-up Power (dBm)	SAR(10g) (W/kg)	SAR(10g)(W/kg)	SAR(1g) (W/kg)	SAR(1g) (W/kg)	Drift (dB)			
4233	846.6	Right	Touch	Fig.9	22.99	24.00	0.289	0.36	0.441	0.56	0.00			

Table 14.2-10: SAR Values (WCDMA 850 MHz Band - Body)

		A	mbient T	emperature:	: 22.9 °C	Liquid Terr	perature: 2	2.5°C		
Freat	uency	Test	Figure	Conducted	Max tupo up	Measured	Reported	Measured	Reported	Power
			No./	Power	Max. tune-up	SAR(10g)	SAR(10g)	SAR(1g)	SAR(1g)	Drift
Ch.	MHz	Position	Note	(dBm)	Power (dBm)	(W/kg)	(W/kg)	(W/kg)	(W/kg)	(dB)
4233	846.6	Rear	Fig.10	22.99	24.00	0.225	0.28	0.317	0.40	0.11

No. I19Z60716-SEM03 Page 57 of 186

Table 14.2-11: SAR Values (LTE Band2 - Head)

			Ambi	ent Temp	erature:	22.9 °C	Liquid	l Temperatu	ure: 22.5°C			
Frequ	ency			- .	Figure	Conducted	Max.	Measured	Reported	Measured	Reported	Power
Ch.	MHz	Mode	Side	Test Position	No./ Note	Power (dBm)	tune-up Power (dBm)	SAR(10g) (W/kg)	SAR(10g)(W/kg)	SAR(1g) (W/kg)	SAR(1g) (W/kg)	Drift (dB)
18900	1880	1RB_Mid	Left	Touch	Fig.11	23.49	23.50	0.295	0.30	0.489	0.49	0.12

Note1: The LTE mode is QPSK_20MHz.

Table 14.2-12: SAR Values (LTE Band2 - Body)

					-									
	Ambient Temperature: 22.9 °C Liquid Temperature: 22.5°C													
Frequency		Mode	Test	Figure	Conducted	Max. tune-	Measured	Reported	Measured	Reported	Power			
				No./	Power	up Power	SAR(10g)	SAR(10g)(SAR(1g)	SAR(1g)	Drift			
Ch.	MHz		Position	Note	(dBm)	(dBm)	(W/kg)	W/kg)	(W/kg)	(W/kg)	(dB)			
18900	1880	1RB_Mid	Rear	Fig.12	23.49	23.50	0.401	0.40	0.664	0.67	0.03			

Note: The distance between the EUT and the phantom bottom is 15mm.

Table 14.2-13: SAR Values (LTE Band4 - Head)

			Ambi	ent Temp	erature:	22.9 °C	Liquid	l Temperatu	ure: 22.5°C			
Frequ	ency			Test	Figure	Conducted	Max.	Measured	Reported	Measured	Reported	Power
Ch.	MHz	Mode	Side	Test Position	No./ Note	Power (dBm)	tune-up Power (dBm)	SAR(10g) (W/kg)	SAR(10g)(W/kg)	SAR(1g) (W/kg)	SAR(1g) (W/kg)	Drift (dB)
20300	1745	1RB_Mid	Left	Touch	Fig.13	23.46	23.50	0.306	0.31	0.489	0.49	0.03

Note1: The LTE mode is QPSK_20MHz.

Table 14.2-14: SAR Values (LTE Band4 - Body)

			Ambient	Tempera	ture: 22.9 °C	C Liqui	d Temperat	ure: 22.5°C			
Freau	uency		Test	Figure	Conducted	Max. tune-	Measured	Reported	Measured	Reported	Power
Trequency		Mode		No./	Power	up Power	SAR(10g)	SAR(10g)(SAR(1g)	SAR(1g)	Drift
Ch.	MHz		Position	Note	(dBm)	(dBm)	(W/kg)	W/kg)	(W/kg)	(W/kg)	(dB)
20300	1745	1RB_Mid	Rear	Fig.14	23.46	23.50	0.462	0.47	0.753	0.76	-0.03

Note: The distance between the EUT and the phantom bottom is 15mm.

	Table 14.2-15: SAR Values (LTE Band5 - Head)												
Ambient Temperature: 22.9 °C Liquid Temperature: 22.5°C													
Frequ	iency			Test	Figure	Conducted	Max.	Measured	Reported	Measured	Reported	Power	
Ch.	MHz	Mode	Side	Test Position	No./ Note	Power (dBm)	tune-up Power (dBm)	SAR(10g) (W/kg)	SAR(10g)(W/kg)	SAR(1g) (W/kg)	SAR(1g) (W/kg)	Drift (dB)	
20600	844	1RB_Mid	Right	Touch	Fig.15	23.28	23.50	0.243	0.26	0.366	0.39	-0.03	

Note1: The LTE mode is QPSK_20MHz.

No. I19Z60716-SEM03 Page 58 of 186

Table 14.2-16: SAR Values (LTE Band5 - Body)

	Ambient Temperature: 22.9 °C Liquid Temperature: 22.5 °C													
Frequ	encv		Teet	Figure	Conducted	Max. tune-	Measured	Reported	Measured	Reported	Power			
Frequency		Mode	Test	No./	Power	up Power	SAR(10g)	SAR(10g)(SAR(1g)	SAR(1g)	Drift			
Ch.	MHz		Position	Note	(dBm)	(dBm)	(W/kg)	W/kg)	(W/kg)	(W/kg)	(dB)			
20600	844	1RB_Mid	Rear	Fig.16	23.28	23.50	0.243	0.26	0.341	0.36	-0.05			

Note: The distance between the EUT and the phantom bottom is 15mm.

Table 14.2-17: SAR Values (LTE Band12 - Head)

									,			
			Ambi	ient Temp	erature:	22.9 °C	Liquid	l Temperati	ure: 22.5°C			
Frequency			Test	Figure	Conducted	Max.	Measured	Reported	Measured	Reported	Power	
Ch.	MHz	Mode	Side	Test Position	No./ Note	Power (dBm)	tune-up Power (dBm)	SAR(10g) (W/kg)	SAR(10g)(W/kg)	SAR(1g) (W/kg)	SAR(1g) (W/kg)	Drift (dB)
23060	704	1RB_Mid	Right	Touch	Fig.17	23.33	23.50	0.257	0.27	0.417	0.43	0.04

Note1: The LTE mode is QPSK_20MHz.

Table 14.2-18: SAR Values (LTE Band12 - Body)

			Ambient	Tempera	ture: 22.9 °C	Liqui	d Temperat	ure: 22.5°C			
Frequ	encv		Test	Figure	Conducted	Max. tune-	Measured	Reported	Measured	Reported	Power
	1	Mode		No./	Power	up Power	SAR(10g)	SAR(10g)(SAR(1g)	SAR(1g)	Drift
Ch.	MHz	Mode	Position	Note	(dBm)	(dBm)	(W/kg)	W/kg)	(W/kg)	(W/kg)	(dB)
23060	704	1RB_Mid	Rear	Fig.18	23.33	23.50	0.331	0.34	0.474	0.49	0.02

Note: The distance between the EUT and the phantom bottom is 15mm.

Table 14.2-19: SAR Values (LTE Band14 - Head) Ambient Temperature: 22.9 °C Liquid Temperature: 22.5°C Max. Frequency Figure Conducted Measured Reported Measured Reported Power Test tune-up Side No./ SAR(10g) SAR(10g)(SAR(1g) SAR(1g) Drift Mode Power Position Power Ch. MHz (W/kg) Note (dBm) W/kg) (W/kg) (W/kg) (dB) (dBm) 23.50 0.340 23330 793 1RB_High Left Touch Fig.19 23.47 0.34 0.564 0.57 -0.04

Note1: The LTE mode is QPSK_20MHz.

Table 14.2-20: SAR Values (LTE Band14 - Body)

			Ambient ⁻	Tempera	ture: 22.9 °C	C Liqui	d Temperat	ure: 22.5°C			
Frequ	encv		Teet	Figure	Conducted	Max. tune-	Measured	Reported	Measured	Reported	Power
	,	Mode	Test	No./	Power	up Power	SAR(10g)	SAR(10g)(SAR(1g)	SAR(1g)	Drift
Ch.	MHz		Position	Note	(dBm)	(dBm)	(W/kg)	W/kg)	(W/kg)	(W/kg)	(dB)
23330	793	1RB_High	Rear	Fig.20	23.47	23.50	0.365	0.37	0.532	0.54	0.19

14.3 WLAN Evaluation

According to the KDB248227 D01, SAR is measured for 802.11b DSSS using the initial test position procedure.

Head Evaluation

			Amt	pient Tem	perature: 2	2.9°C l	_iquid Temp	erature: 22	.5°C		
Frequ	ency		Test	Figure	Conducte	Max. tune-	Measured	Reported	Measured	Reported	Power
	-	Side	Position	No./	d Power	up Power	SAR(10g)	SAR(10g	SAR(1g)	SAR(1g)(Drift
MHz	-		Position	Note	(dBm)	(dBm)	(W/kg))(W/kg)	(W/kg)	W/kg)	(dB)
2437	6	Left	Touch	/	16.41	17.50	0.132	0.17	0.243	0.31	0.06
2437	6	Left	Tilt	/	16.41	17.50	0.015	0.02	0.026	0.03	-0.08
2437	6	Right	Touch	/	16.41	17.50	0.214	0.28	0.401	0.52	0.03
2437	6	Right	Tilt	/	16.41	17.50	0.025	0.03	0.043	0.06	0.04

Table 14.3-1: SAR Values (WLAN - Head)– 802.11b (Fast SAR)

As shown above table, the <u>initial test position</u> for head is "Right Touch". So the head SAR of WLAN is presented as below:

Table 14.3-2: SAR Values (WLAN - Head)– 802.11b (Full SAR)

			Amb	ient Tem	perature: 2	2.9 ℃ L	iquid Temp	erature: 22	.5°C		
Frequ	ency		Test	Figure	Conducte	Max. tune-	Measured	Reported	Measured	Reported	Power
-	-	Side	Position	No./	d Power	up Power	SAR(10g)	SAR(10g)	SAR(1g)	SAR(1g)(Drift
MHz	Ch.		FUSILION	Note	(dBm)	(dBm)	(W/kg)	(W/kg)	(W/kg)	W/kg)	(dB)
2437 6 Left Touch / 16.41 17.50 0.146 0.19 0.251 0.32 0.06											
2437	2437 6 Right Touch Fig.21 16.41 17.50 0.235 0.30 0.475 0.61 0.03										
Note1	: Whei	n the <u>rep</u> o	orted SAF	R of the <u>i</u>	nitial test po	osition is > 0.4	4 W/kg, SAF	R is repeate	ed for the 80	02.11 trans	mission
mode	config	uration te	ested in th	e <u>initial</u>	test positior	<u>n</u> using subse	quent highe	st estimate	d 1-g SAR	conditions	
determined by area scans, on the highest maximum output power channel, until the reported SAR is \leq 0.8 W/kg.											
Note2: For all positions/configurations tested using the initial test position and subsequent test positions, when the											
reporte	ed SA	R is > 0.8	8 W/kg, S/	AR is me	easured for	these test po	sitions/confi	gurations c	on the subse	equent nex	t

highest measured output power channel until the reported SAR is ≤ 1.2 W/kg or all required channels are tested.

According to the KDB248227 D01, The reported SAR must be scaled to 100% transmission duty factor to determine compliance at the maximum tune-up tolerance limit. The scaled reported SAR is presented as below.

Table 14.3-3: SAR Values (WLAN - Head) – 802.11b (Scaled Reported SAR)

			Ambien	t Temperatu	ure: 22.9 °C	Liquid Te	emperature: 22.5	^o C
	Freque	ency	Side	Test	Actual duty	maximum	Reported SAR	Scaled reported
Ī	MHz	Ch.	Side	Position	factor	duty factor	(1g)(W/kg)	SAR (1g)(W/kg)
Ī	2437	6	Left	Touch	100%	100%	0.32	0.32
	2437	6	Right	Touch	100%	100%	0.61	0.61

SAR is not required for OFDM because the 802.11b adjusted SAR $\,\leq\,$ 1.2 W/kg.

Body Evaluation

	Ambient Temperature: 22.9 °C Liquid Temperature: 22.5°C												
Frequency		Test	Figure	Conducted	Conducted Max. tune-up		Reported	Measured	Reported	Power			
	,		No./	Power	•	SAR(10g)	SAR(10g)	SAR(1g)	SAR(1g)(Drift			
MHz	Ch.	Position	Note	(dBm)	Power (dBm)	(W/kg)	(W/kg)	(W/kg)	W/kg)	(dB)			
2437	6	Front	/	18.99	19.00	0.023	0.02	0.042	0.04	0.08			
2437	6	Rear	/	18.99	19.00	0.051	0.05	0.102	0.10	-0.03			
2437	6	Rear unfold	/	18.99	19.00	0.092	0.09	0.159	0.16	0.09			

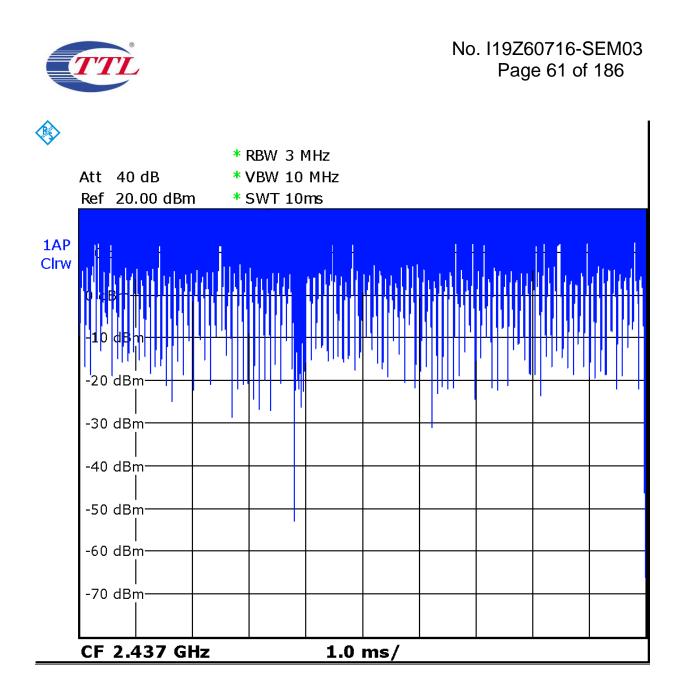
Table 14.3-4: SAR Values (WLAN - Body)- 802.11b (Fast SAR)

As shown above table, the <u>initial test position</u> for body is "Rear unfold". So the body SAR of WLAN is presented as below:

Table 14.3-5: SAR Values (WLAN - Body)- 802.11b (Full SAR)

		A	mbient T	emperature:	Liquid Temperature: 22.5°C					
Frequency		Test	Figure No./	Conducted Power	Max. tune-up		Reported SAR(10g)	Measured SAR(1g)	Reported SAR(1g)(Power Drift
MHz	Ch.	Position	Note	(dBm)	Power (dBm)	SAR(10g) (W/kg)	(W/kg)	(W/kg)	W/kg)	(dB)
2437	6	Rear unfold	Fig.22	18.99	19.00	0.105	0.11	0.168	0.17	0.09

Note1: When the <u>reported</u> SAR of the <u>initial test position</u> is > 0.4 W/kg, SAR is repeated for the 802.11 transmission mode configuration tested in the <u>initial test position</u> using subsequent highest estimated 1-g SAR conditions determined by area scans, on the highest maximum output power channel, until the <u>reported</u> SAR is \leq 0.8 W/kg.


Note2: For all positions/configurations tested using the <u>initial test position</u> and subsequent test positions, when the <u>reported</u> SAR is > 0.8 W/kg, SAR is measured for these test positions/configurations on the subsequent next highest measured output power channel until the <u>reported</u> SAR is \leq 1.2 W/kg or all required channels are tested.

According to the KDB248227 D01, The reported SAR must be scaled to 100% transmission duty factor to determine compliance at the maximum tune-up tolerance limit. The scaled reported SAR is presented as below.

	Ambient Temperature: 22.9 °C Liquid Temperature: 22.5 °C											
Frequ	ency	Test Position	Actual duty	maximum	Reported SAR	Scaled reported SAR						
MHz	Ch.		factor	duty factor	(1g)(W/kg)	(1g)(W/kg)						
2437	6	Rear unfold	100%	100%	0.17	0.17						

Table 14.3-6: SAR Values (WLAN - Body) – 802.11b (Scaled Reported SAR)

SAR is not required for OFDM because the 802.11b adjusted SAR $\,\leq\,$ 1.2 W/kg.

Picture 14.1 Duty factor plot for CH6

15 SAR Measurement Variability

SAR measurement variability must be assessed for each frequency band, which is determined by the SAR probe calibration point and tissue-equivalent medium used for the device measurements. When both head and body tissue-equivalent media are required for SAR measurements in a frequency band, the variability measurement procedures should be applied to the tissue medium with the highest measured SAR, using the highest measured SAR configuration for that tissue-equivalent medium.

The following procedures are applied to determine if repeated measurements are required. 1) Repeated measurement is not required when the original highest measured SAR is < 0.80 W/kg; steps 2) through 4) do not apply.

2) When the original highest measured SAR is \geq 0.80 W/kg, repeat that measurement once.

3) Perform a second repeated measurement only if the ratio of largest to smallest SAR for the original and first repeated measurements is > 1.20 or when the original or repeated measurement

is \geq 1.45 W/kg (~ 10% from the 1-g SAR limit).

4) Perform a third repeated measurement only if the original, first or second repeated measurement is \geq 1.5 W/kg and the ratio of largest to smallest SAR for the original, first and second repeated measurements is > 1.20.

			i i incacai ci				·
Frequency		quency Test		Original	First	The	Second
Ch.	MHz	Position	Spacing (mm)	SAR (W/kg)	Repeated SAR (W/kg)	Ratio	Repeated SAR (W/kg)
1513	1752.6	Rear	15	0.863	0.861	1.00	/

Table 15.1: SAR Measurement Variability for Body W1700 (1g)

16 Measurement Uncertainty

16.1 Measurement Uncertainty for Normal SAR Tests (300MHz~3GHz)

10.1		ocitai			5313						
No.	Error Description	Туре	Uncertainty	Probably	Div.	(Ci)	(Ci)	Std.	Std.	Degree	
			value	Distribution		1g	10g	Unc.	Unc.	of	
								(1g)	(10g)	freedo	
										m	
Measurement system											
1	Probe calibration	В	6.0	Ν	1	1	1	6.0	6.0	∞	
2	Isotropy	В	4.7	R	$\sqrt{3}$	0.7	0.7	1.9	1.9	∞	
3	Boundary effect	В	1.0	R	$\sqrt{3}$	1	1	0.6	0.6	∞	
4	Linearity	В	4.7	R	$\sqrt{3}$	1	1	2.7	2.7	∞	
5	Detection limit	В	1.0	Ν	1	1	1	0.6	0.6	8	
6	Readout electronics	В	0.3	R	$\sqrt{3}$	1	1	0.3	0.3	8	
7	Response time	В	0.8	R	$\sqrt{3}$	1	1	0.5	0.5	8	
8	Integration time	В	2.6	R	$\sqrt{3}$	1	1	1.5	1.5	8	
9	RF ambient conditions-noise	В	0	R	$\sqrt{3}$	1	1	0	0	8	
10	RFambient conditions-reflection	В	0	R	$\sqrt{3}$	1	1	0	0	8	
11	Probe positioned mech. restrictions	В	0.4	R	$\sqrt{3}$	1	1	0.2	0.2	8	
12	Probe positioning with respect to phantom shell	В	2.9	R	$\sqrt{3}$	1	1	1.7	1.7	8	
13	Post-processing	В	1.0	R	$\sqrt{3}$	1	1	0.6	0.6	∞	
			Test	sample related	1		•		•		
14	Test sample positioning	А	3.3	Ν	1	1	1	3.3	3.3	71	
15	Device holder uncertainty	А	3.4	Ν	1	1	1	3.4	3.4	5	
16	Drift of output power	В	5.0	R	$\sqrt{3}$	1	1	2.9	2.9	∞	
			Phant	tom and set-up	p						
17	Phantom uncertainty	В	4.0	R	$\sqrt{3}$	1	1	2.3	2.3	∞	
18	Liquid conductivity (target)	В	5.0	R	$\sqrt{3}$	0.64	0.43	1.8	1.2	8	
19	Liquid conductivity (meas.)	А	2.06	Ν	1	0.64	0.43	1.32	0.89	43	
20	Liquid permittivity (target)	В	5.0	R	$\sqrt{3}$	0.6	0.49	1.7	1.4	œ	
21	Liquid permittivity (meas.)	А	1.6	Ν	1	0.6	0.49	1.0	0.8	521	

No. I19Z60716-SEM03 Page 64 of 186

C	Combined standard uncertainty	u _c =	$= \sqrt{\sum_{i=1}^{21} c_i^2 u_i^2}$					9.55	9.43	257			
-	nded uncertainty idence interval of)	1	$u_e = 2u_c$					19.1	18.9				
16.2	16.2 Measurement Uncertainty for Normal SAR Tests (3~6GHz)												
No.	Error Description	Туре	Uncertainty	Probably	Div.	(Ci)	(Ci)	Std.	Std.	Degree			
			value	Distribution		1g	10g	Unc.	Unc.	of			
								(1g)	(10g)	freedo			
										m			
Meas	surement system												
1	Probe calibration	В	6.55	N	1	1	1	6.55	6.55	∞			
2	Isotropy	В	4.7	R	$\sqrt{3}$	0.7	0.7	1.9	1.9	∞			
3	Boundary effect	В	2.0	R	$\sqrt{3}$	1	1	1.2	1.2	8			
4	Linearity	В	4.7	R	$\sqrt{3}$	1	1	2.7	2.7	∞			
5	Detection limit	В	1.0	R	$\sqrt{3}$	1	1	0.6	0.6	∞			
6	Readout electronics	В	0.3	R	$\sqrt{3}$	1	1	0.3	0.3	∞			
7	Response time	В	0.8	R	$\sqrt{3}$	1	1	0.5	0.5	∞			
8	Integration time	В	2.6	R	$\sqrt{3}$	1	1	1.5	1.5	∞			
9	RF ambient conditions-noise	В	0	R	$\sqrt{3}$	1	1	0	0	8			
10	RF ambient conditions-reflection	В	0	R	$\sqrt{3}$	1	1	0	0	8			
11	Probe positioned mech. restrictions	В	0.8	R	$\sqrt{3}$	1	1	0.5	0.5	8			
12	Probepositioningwithrespecttophantom shell	В	6.7	R	$\sqrt{3}$	1	1	3.9	3.9	8			
13	Post-processing	В	4.0	R	$\sqrt{3}$	1	1	2.3	2.3	∞			
			Test	sample related	1								
14	Test sample positioning	А	3.3	Ν	1	1	1	3.3	3.3	71			
15	Device holder uncertainty	А	3.4	N	1	1	1	3.4	3.4	5			
16	Drift of output power	В	5.0	R	$\sqrt{3}$	1	1	2.9	2.9	∞			
			Phan	tom and set-u	р								
17	Phantom uncertainty	В	4.0	R	$\sqrt{3}$	1	1	2.3	2.3	∞			
18	Liquid conductivity (target)	В	5.0	R	$\sqrt{3}$	0.64	0.43	1.8	1.2	8			
19	Liquid conductivity (meas.)	А	2.06	N	1	0.64	0.43	1.32	0.89	43			
20	Liquid permittivity	В	5.0	R	$\sqrt{3}$	0.6	0.49	1.7	1.4	œ			

©Copyright. All rights reserved by CTTL.

	(target)									
21	Liquid permittivity (meas.)	А	1.6	Ν	1	0.6	0.49	1.0	0.8	521
(Combined standard uncertainty	<i>u</i> _c =	$= \sqrt{\sum_{i=1}^{21} c_i^2 u_i^2}$					10.7	10.6	257
-	nded uncertainty fidence interval of	1	$u_e = 2u_c$					21.4	21.1	
16.3	Measurement Un	certai	nty for Fas	t SAR Test	s (300	MHz	~3GH	lz)		
No.	Error Description	Туре	Uncertainty value	Probably Distribution	Div.	(Ci) 1g	(Ci) 10g	Std. Unc. (1g)	Std. Unc. (10g)	Degree of freedo m
Mea	surement system									
1	Probe calibration	В	6.0	Ν	1	1	1	6.0	6.0	∞
2	Isotropy	В	4.7	R	$\sqrt{3}$	0.7	0.7	1.9	1.9	8
3	Boundary effect	В	1.0	R	$\sqrt{3}$	1	1	0.6	0.6	8
4	Linearity	В	4.7	R	$\sqrt{3}$	1	1	2.7	2.7	8
5	Detection limit	В	1.0	R	$\sqrt{3}$	1	1	0.6	0.6	8
6	Readout electronics	В	0.3	R	$\sqrt{3}$	1	1	0.3	0.3	8
7	Response time	В	0.8	R	$\sqrt{3}$	1	1	0.5	0.5	8
8	Integration time	В	2.6	R	$\sqrt{3}$	1	1	1.5	1.5	8
9	RF ambient conditions-noise	В	0	R	$\sqrt{3}$	1	1	0	0	8
10	RF ambient conditions-reflection	В	0	R	$\sqrt{3}$	1	1	0	0	8
11	Probe positioned mech. Restrictions	В	0.4	R	$\sqrt{3}$	1	1	0.2	0.2	8
12	Probe positioning with respect to phantom shell	В	2.9	R	$\sqrt{3}$	1	1	1.7	1.7	8
13	Post-processing	В	1.0	R	$\sqrt{3}$	1	1	0.6	0.6	8
14	Fast SAR z- Approximation	В	7.0	R	$\sqrt{3}$	1	1	4.0	4.0	8
			Test	sample related	1					
15	Test sample positioning	А	3.3	N	1	1	1	3.3	3.3	71
16	Device holder uncertainty	А	3.4	Ν	1	1	1	3.4	3.4	5
17	Drift of output power	В	5.0	R	$\sqrt{3}$	1	1	2.9	2.9	8
	1	n	Phan	tom and set-up		n	T	1	1	
18	Phantom uncertainty	В	4.0	R	$\sqrt{3}$	1	1	2.3	2.3	8

©Copyright. All rights reserved by CTTL.

No. I19Z60716-SEM03 Page 66 of 186

								1		
19	Liquid conductivity (target)	В	5.0	R	$\sqrt{3}$	0.64	0.43	1.8	1.2	~
20	Liquid conductivity (meas.)	А	2.06	Ν	1	0.64	0.43	1.32	0.89	43
21	Liquid permittivity (target)	В	5.0	R	$\sqrt{3}$	0.6	0.49	1.7	1.4	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
22	Liquid permittivity (meas.)	А	1.6	Ν	1	0.6	0.49	1.0	0.8	521
C	Combined standard uncertainty	$u_{c}^{'} =$	$=\sqrt{\sum_{i=1}^{22}c_i^2u_i^2}$					10.4	10.3	257
(conf 95 %	,		$u_e = 2u_c$					20.8	20.6	
16.4	Measurement Un	certai	nty for Fas	t SAR Test	s (3~l	6GHz)	1	n	
No.	Error Description	Туре	Uncertainty	Probably	Div.	(Ci)	(Ci)	Std.	Std.	Degree
			value	Distribution		1g	10g	Unc.	Unc.	of
								(1g)	(10g)	freedo
										m
Meas	surement system			1						
1	Probe calibration	В	6.55	Ν	1	1	1	6.55	6.55	∞
2	Isotropy	В	4.7	R	$\sqrt{3}$	0.7	0.7	1.9	1.9	∞
3	Boundary effect	В	2.0	R	$\sqrt{3}$	1	1	1.2	1.2	∞
4	Linearity	В	4.7	R	$\sqrt{3}$	1	1	2.7	2.7	∞
5	Detection limit	В	1.0	R	$\sqrt{3}$	1	1	0.6	0.6	∞
6	Readout electronics	В	0.3	R	$\sqrt{3}$	1	1	0.3	0.3	∞
7	Response time	В	0.8	R	$\sqrt{3}$	1	1	0.5	0.5	∞
8	Integration time	В	2.6	R	$\sqrt{3}$	1	1	1.5	1.5	∞
9	RF ambient conditions-noise	В	0	R	$\sqrt{3}$	1	1	0	0	∞
10	RF ambient conditions-reflection	В	0	R	$\sqrt{3}$	1	1	0	0	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
11	Probe positioned mech. Restrictions	В	0.8	R	$\sqrt{3}$	1	1	0.5	0.5	8
12	Probepositioningwithrespecttophantomshell	В	6.7	R	$\sqrt{3}$	1	1	3.9	3.9	ø
13	Post-processing	В	1.0	R	$\sqrt{3}$	1	1	0.6	0.6	∞
14	Fast SAR z- Approximation	В	14.0	R	$\sqrt{3}$	1	1	8.1	8.1	œ
			Test	sample related	1	•		•	•	·
15	Test sample positioning	А	3.3	N	1	1	1	3.3	3.3	71

©Copyright. All rights reserved by CTTL.

No. I19Z60716-SEM03 Page 67 of 186

16	Device holder uncertainty	А	3.4	N	1	1	1	3.4	3.4	5
17	Drift of output power	В	5.0	R	$\sqrt{3}$	1	1	2.9	2.9	∞
			Phant	tom and set-uj	р					
18	Phantom uncertainty	В	4.0	R	$\sqrt{3}$	1	1	2.3	2.3	∞
19	Liquid conductivity (target)	В	5.0	R	$\sqrt{3}$	0.64	0.43	1.8	1.2	8
20	Liquid conductivity (meas.)	А	2.06	N	1	0.64	0.43	1.32	0.89	43
21	Liquid permittivity (target)	В	5.0	R	$\sqrt{3}$	0.6	0.49	1.7	1.4	8
22	Liquid permittivity (meas.)	А	1.6	Ν	1	0.6	0.49	1.0	0.8	521
(Combined standard uncertainty	<i>u</i> _c =	$=\sqrt{\sum_{i=1}^{22}c_i^2u_i^2}$					13.5	13.4	257
-	nded uncertainty fidence interval of	l	$u_e = 2u_c$					27.0	26.8	

No. I19Z60716-SEM03 Page 68 of 186

17 MAIN TEST INSTRUMENTS

Table 17.1: List of Main Instruments

No.	Name	Туре	Serial Number	Calibration Date	Valid Period
01	Network analyzer	E5071C	MY46110673	January 24, 2019	One year
02	Power meter	NRVD	102083	October 24, 2018	
03	Power sensor	NRV-Z5	100542	October 24, 2018	One year
04	Signal Generator	E4438C	MY49070393	January 4, 2019	One Year
05	Amplifier	60S1G4	0331848	No Calibration Re	equested
06	BTS	E5515C	MY50263375	January 17, 2019	One year
07	BTS	CMW500	159890	January 3, 2019	One year
08	E-field Probe	SPEAG EX3DV4	7514	August 27, 2018	One year
09	DAE	SPEAG DAE4	1525	September 18, 2018	One year
10	Dipole Validation Kit	SPEAG D750V3	1017	July 23, 2018	One year
11	Dipole Validation Kit	SPEAG D835V2	4d069	July 23, 2018	One year
12	Dipole Validation Kit	SPEAG D1750V2	1003	July 20, 2018	One year
13	Dipole Validation Kit	SPEAG D1900V2	5d101	July 24, 2018	One year
14	Dipole Validation Kit	SPEAG D2450V2	853	July 24, 2018	One year

END OF REPORT BODY

ANNEX A Graph Results

GSM850_ Right Cheek Middle Date: 2019/6/18 Electronics: DAE4 Sn1525 Medium: head 835 MHz Medium parameters used: f = 836.6 MHz; $\sigma = 0.875$ mho/m; $\epsilon r = 42.51$; $\rho = 1000$ kg/m³ Ambient Temperature: 22.5°C, Liquid Temperature: 22.3°C Communication System: GSM850 836.6 MHz Duty Cycle: 1:8.3 Probe: EX3DV4 –SN7514 ConvF(9.09, 9.09, 9.09)

Area Scan (71x161x1): Interpolated grid: dx=1.000 mm, dy=1.000 mm Maximum value of SAR (interpolated) = 0.601 W/kg

Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 3.119 V/m; Power Drift = 0.01 dB
Peak SAR (extrapolated) = 0.721 W/kg
SAR(1 g) = 0.420 W/kg; SAR(10 g) = 0.270 W/kg
Maximum value of SAR (measured) = 0.563 W/kg

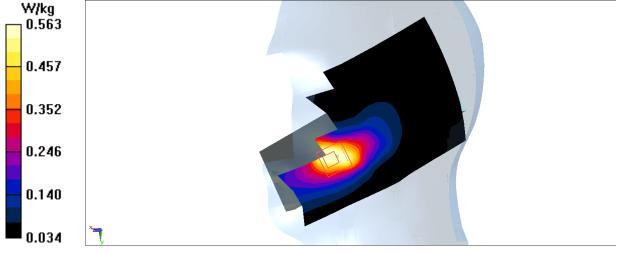


Fig.1 850MHz

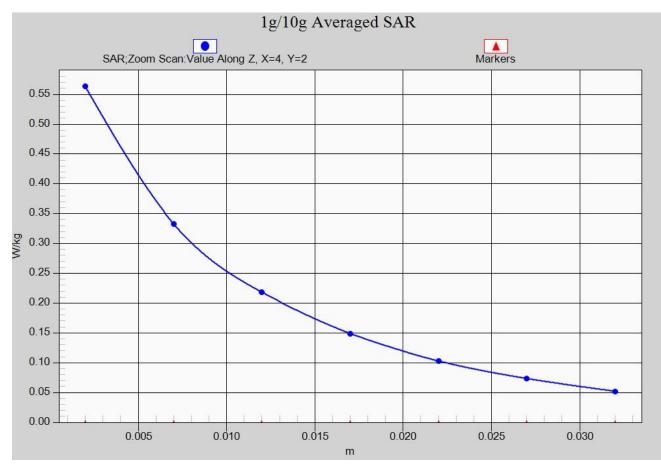


Fig. 1-1 Z-Scan at power reference point (850 MHz)

GSM850_ Rear High

Date: 2019/6/18 Electronics: DAE4 Sn1525 Medium: body 835 MHz Medium parameters used: f = 848.8 MHz; $\sigma = 0.991$ mho/m; $\epsilon r = 54.84$; $\rho = 1000$ kg/m³ Ambient Temperature: 22.5°C, Liquid Temperature: 22.3°C Communication System: GSM850 848.8 MHz Duty Cycle: 1:8.3 Probe: EX3DV4 –SN7514 ConvF(9.47, 9.47, 9.47)

Area Scan (61x101x1): Interpolated grid: dx=1.000 mm, dy=1.000 mm Maximum value of SAR (interpolated) = 0.294 W/kg

Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mmReference Value = 15.84 V/m; Power Drift = -0.01 dB Peak SAR (extrapolated) = 0.329 W/kg SAR(1 g) = 0.238 W/kg; SAR(10 g) = 0.168 W/kg Maximum value of SAR (measured) = 0.286 W/kg

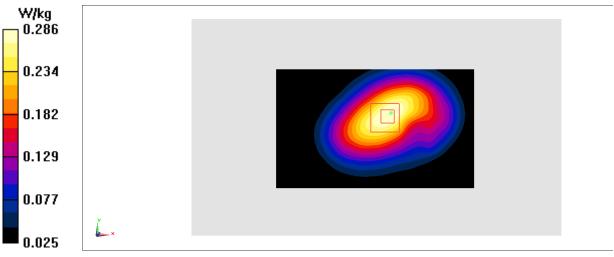


Fig.2 850 MHz

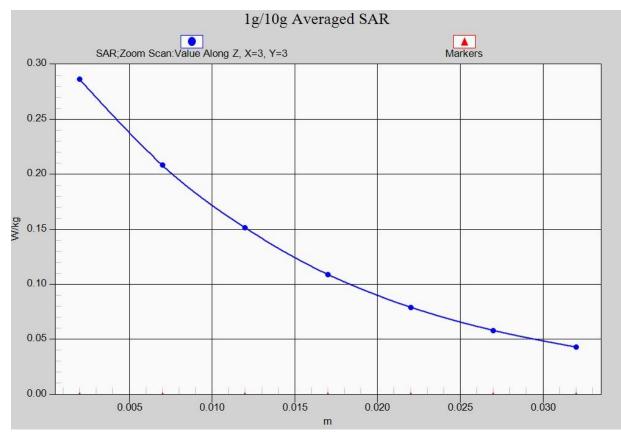


Fig. 2-1 Z-Scan at power reference point (850 MHz)

PCS1900_ Left Cheek Middle

Date: 2019/6/19 Electronics: DAE4 Sn1525 Medium: head 1900 MHz Medium parameters used: f = 1880 MHz; σ = 1.393 mho/m; ϵ r = 40.23; ρ = 1000 kg/m³ Ambient Temperature: 22.5°C, Liquid Temperature: 22.3°C Communication System: PCS1900 1880 MHz Duty Cycle: 1:8.3 Probe: EX3DV4 –SN7514 ConvF(7.73, 7.73, 7.73)

Area Scan (61x151x1): Interpolated grid: dx=1.000 mm, dy=1.000 mm Maximum value of SAR (interpolated) = 0.468 W/kg

Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 2.934 V/m; Power Drift = 0.05 dB
Peak SAR (extrapolated) = 0.539 W/kg
SAR(1 g) = 0.331 W/kg; SAR(10 g) = 0.199 W/kg
Maximum value of SAR (measured) = 0.430 W/kg

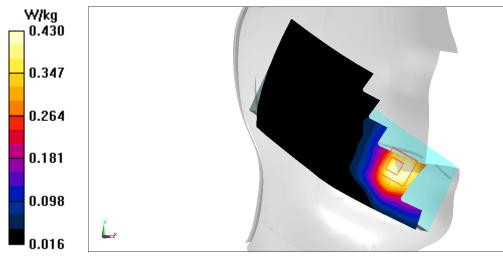


Fig.3 1900 MHz

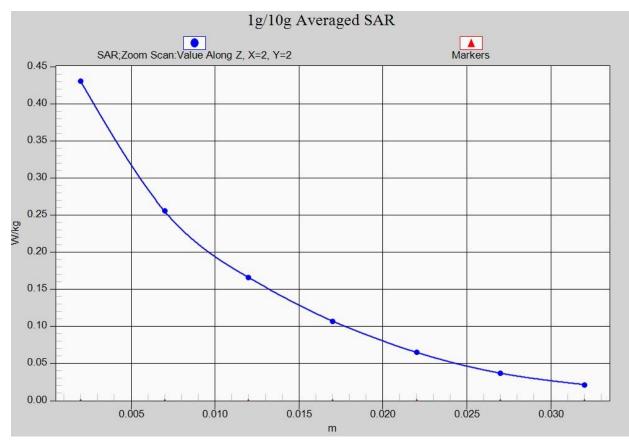


Fig. 3-1 Z-Scan at power reference point (1900 MHz)

PCS1900_Rear Low

Date: 2019/6/19 Electronics: DAE4 Sn1525 Medium: body 1900 MHz Medium parameters used: f = 1850.2 MHz; σ = 1.517 mho/m; ϵ r = 52.34; ρ = 1000 kg/m³ Ambient Temperature: 22.5°C, Liquid Temperature: 22.3°C Communication System: PCS1900 1850.2 MHz Duty Cycle: 1:8.3 Probe: EX3DV4 –SN7514 ConvF(7.53, 7.53, 7.53)

Area Scan (101x61x1): Interpolated grid: dx=1.000 mm, dy=1.000 mm Maximum value of SAR (interpolated) = 0.596 W/kg

Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 8.986 V/m; Power Drift = -0.14 dB Peak SAR (extrapolated) = 0.702 W/kg SAR(1 g) = 0.432 W/kg; SAR(10 g) = 0.261 W/kg Maximum value of SAR (measured) = 0.574 W/kg

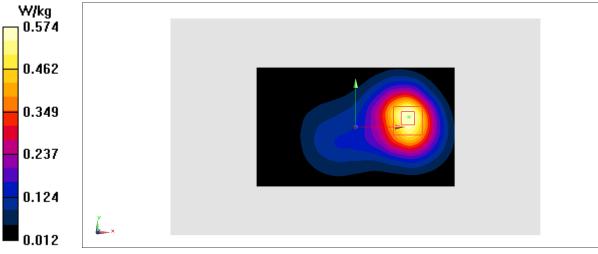


Fig.4 1900 MHz

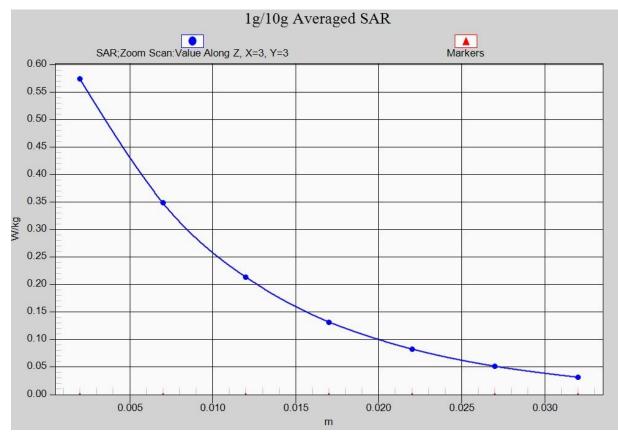


Fig. 4-1 Z-Scan at power reference point (1900 MHz)

WCDMA1900-BII_Left Cheek Middle

Date: 2019/6/19 Electronics: DAE4 Sn1525 Medium: head 1900 MHz Medium parameters used: f = 1880 MHz; σ = 1.393 mho/m; ϵ r = 40.23; ρ = 1000 kg/m³ Ambient Temperature: 22.5°C, Liquid Temperature: 22.3°C Communication System: WCDMA1900-BII 1880 MHz Duty Cycle: 1:1 Probe: EX3DV4 –SN7514 ConvF(7.73, 7.73, 7.73)

```
Area Scan (61x151x1): Interpolated grid: dx=1.000 mm, dy=1.000 mm
Maximum value of SAR (interpolated) = 0.977 W/kg
```

Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 4.692 V/m; Power Drift = 0.04 dB
Peak SAR (extrapolated) = 1.03 W/kg
SAR(1 g) = 0.656 W/kg; SAR(10 g) = 0.398 W/kg
Maximum value of SAR (measured) = 0.831 W/kg

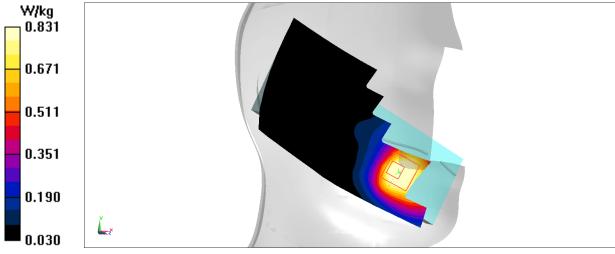


Fig.5 WCDMA1900

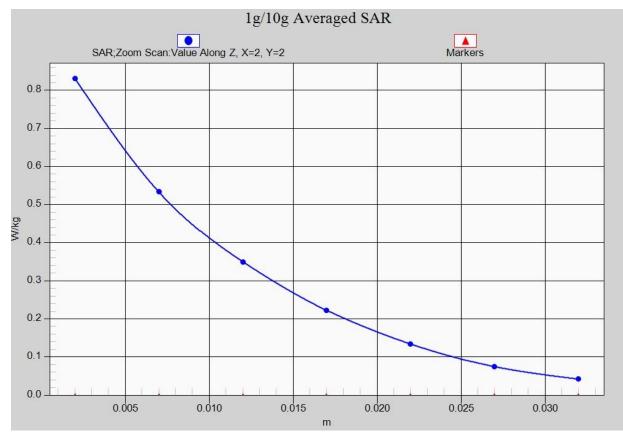


Fig. 5-1 Z-Scan at power reference point (WCDMA1900)

WCDMA1900-BII_Rear Low

Date: 2019/6/19 Electronics: DAE4 Sn1525 Medium: body 1900 MHz Medium parameters used: f = 1852.4 MHz; σ = 1.517 mho/m; ϵ r = 52.34; ρ = 1000 kg/m³ Ambient Temperature: 22.5°C, Liquid Temperature: 22.3°C Communication System: WCDMA1900-BII 1852.4 MHz Duty Cycle: 1:1 Probe: EX3DV4 –SN7514 ConvF(7.53, 7.53, 7.53)

Area Scan (101x61x1): Interpolated grid: dx=1.000 mm, dy=1.000 mm Maximum value of SAR (interpolated) = 1.06 W/kg

Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 12.47 V/m; Power Drift = 0.03 dB
Peak SAR (extrapolated) = 1.22 W/kg
SAR(1 g) = 0.753 W/kg; SAR(10 g) = 0.455 W/kg
Maximum value of SAR (measured) = 0.992 W/kg

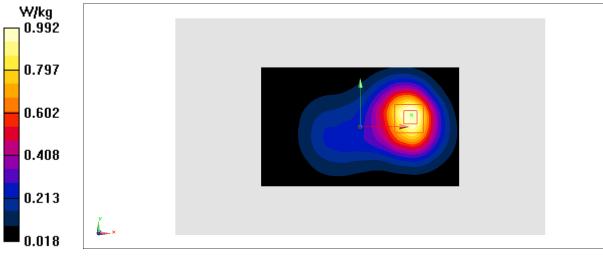


Fig.6 WCDMA1900

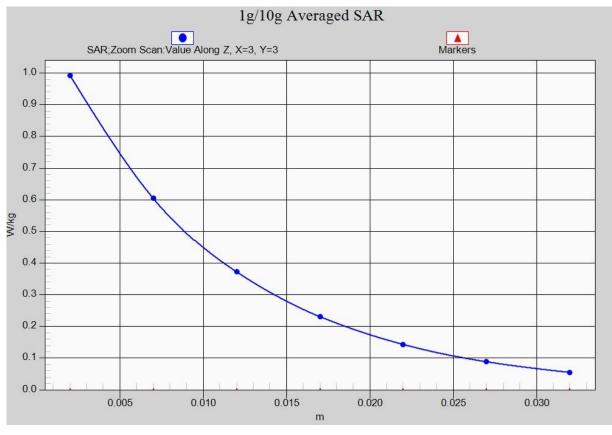


Fig. 6-1 Z-Scan at power reference point (WCDMA1900)

WCDMA1700-BIV_ Left Cheek Middle

Date: 2019/6/15 Electronics: DAE4 Sn1525 Medium: head 1750 MHz Medium parameters used: f = 1732.4 MHz; σ = 1.386 mho/m; ϵ r = 40.49; ρ = 1000 kg/m³ Ambient Temperature: 22.5°C, Liquid Temperature: 22.3°C Communication System: WCDMA1700-BIV 1732.4 MHz Duty Cycle: 1:1 Probe: EX3DV4 –SN7514 ConvF(8.10, 8.10, 8.10)

Area Scan (61x151x1): Interpolated grid: dx=1.000 mm, dy=1.000 mm Maximum value of SAR (interpolated) = 0.696 W/kg

Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 4.694 V/m; Power Drift = -0.49 dBPeak SAR (extrapolated) = 0.759 W/kgSAR(1 g) = 0.454 W/kg; SAR(10 g) = 0.164 W/kgMaximum value of SAR (measured) = 0.539 W/kg

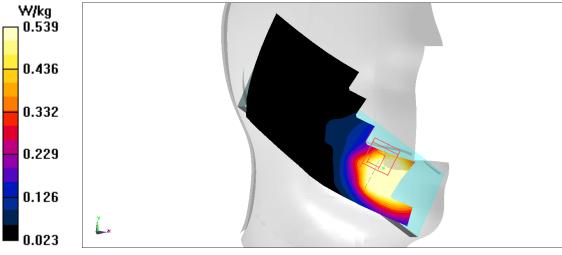


Fig.7 WCDMA1700

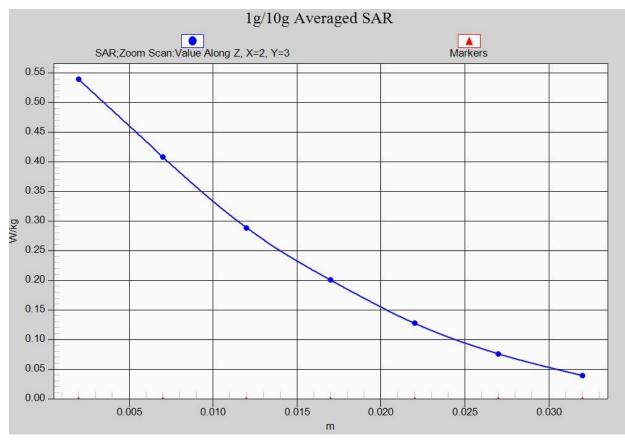


Fig. 7-1 Z-Scan at power reference point (WCDMA1700)

WCDMA1700-BIV_Rear High

Date: 2019/6/15 Electronics: DAE4 Sn1525 Medium: body 1750 MHz Medium parameters used: f = 1752.6 MHz; σ = 1.469 mho/m; ϵ r = 54.32; ρ = 1000 kg/m³ Ambient Temperature: 22.5°C, Liquid Temperature: 22.3°C Communication System: WCDMA1700-BIV 1752.6 MHz Duty Cycle: 1:1 Probe: EX3DV4 –SN7514 ConvF(7.82, 7.82, 7.82)

Area Scan (101x61x1): Interpolated grid: dx=1.000 mm, dy=1.000 mm Maximum value of SAR (interpolated) = 1.19 W/kg

Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 11.88 V/m; Power Drift = 0.10 dB
Peak SAR (extrapolated) = 1.35 W/kg
SAR(1 g) = 0.863 W/kg; SAR(10 g) = 0.528 W/kg
Maximum value of SAR (measured) = 1.12 W/kg

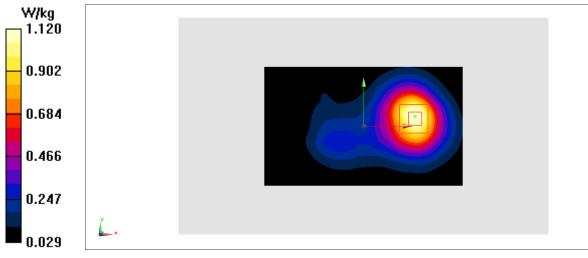


Fig.8 WCDMA1700

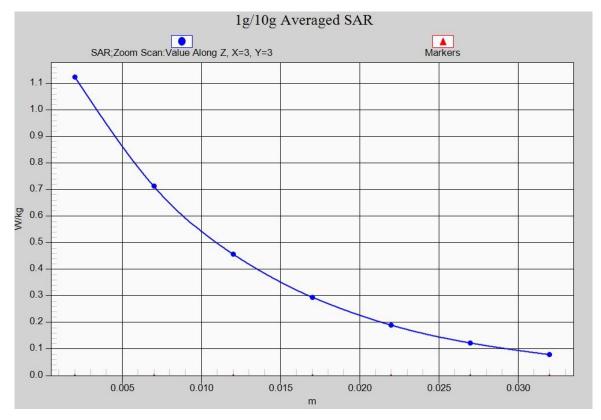


Fig. 8-1 Z-Scan at power reference point (WCDMA1700)

WCDMA850-BV_ Right Cheek High Date: 2019/6/18 Electronics: DAE4 Sn1525 Medium: head 835 MHz Medium parameters used: f = 846.6 MHz; $\sigma = 0.925$ mho/m; $\epsilon r = 41.7$; $\rho = 1000$ kg/m³ Ambient Temperature: 22.5°C, Liquid Temperature: 22.3°C Communication System: WCDMA850-BV 846.6 MHz Duty Cycle: 1:1

Probe: EX3DV4 –SN7514 ConvF(9.09, 9.09, 9.09)

Area Scan (71x161x1): Interpolated grid: dx=1.000 mm, dy=1.000 mm Maximum value of SAR (interpolated) = 0.659 W/kg

Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 0 V/m; Power Drift = 0.00 dB
Peak SAR (extrapolated) = 0.782 W/kg
SAR(1 g) = 0.441 W/kg; SAR(10 g) = 0.289 W/kg
Maximum value of SAR (measured) = 0.600 W/kg

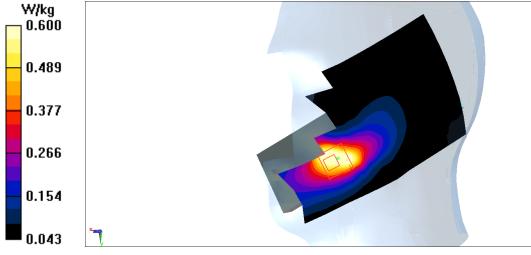


Fig.9 WCDMA 850

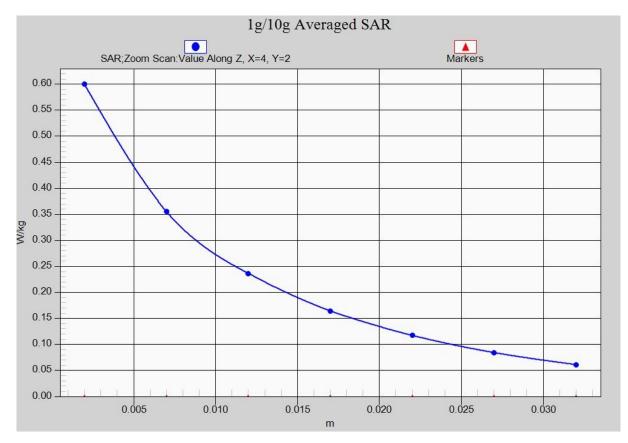


Fig. 9-1 Z-Scan at power reference point (WCDMA850)

WCDMA850-BV_Rear High

Date: 2019/6/18 Electronics: DAE4 Sn1525 Medium: body 835 MHz Medium parameters used: f = 846.6 MHz; $\sigma = 1.005$ mho/m; $\epsilon r = 55.8$; $\rho = 1000$ kg/m³ Ambient Temperature: 22.5°C, Liquid Temperature: 22.3°C Communication System: WCDMA850-BV 846.6 MHz Duty Cycle: 1:1 Probe: EX3DV4 –SN7514 ConvF(9.47, 9.47, 9.47)

Area Scan (61x101x1): Interpolated grid: dx=1.000 mm, dy=1.000 mm Maximum value of SAR (interpolated) = 0.394 W/kg

Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 18.64 V/m; Power Drift = 0.11 dB
Peak SAR (extrapolated) = 0.448 W/kg
SAR(1 g) = 0.317 W/kg; SAR(10 g) = 0.225 W/kg
Maximum value of SAR (measured) = 0.385 W/kg

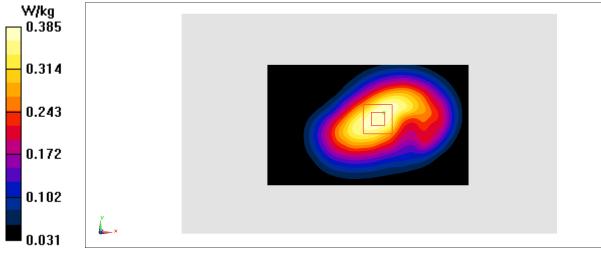


Fig.10 WCDMA 850

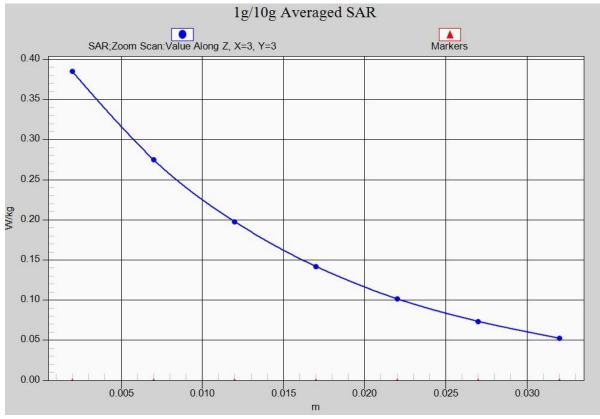


Fig. 10-1 Z-Scan at power reference point (WCDMA850)

LTE1900-FDD2_Left Cheek Middle with QPSK_20M_1RB_Middle

Date: 2019/6/19 Electronics: DAE4 Sn1525 Medium: head 1900 MHz Medium parameters used: f = 1880 MHz; σ = 1.393 mho/m; ϵ r = 40.23; ρ = 1000 kg/m³ Ambient Temperature: 22.5°C, Liquid Temperature: 22.3°C Communication System: LTE1900-FDD2 1880 MHz Duty Cycle: 1:1 Probe: EX3DV4 –SN7514 ConvF(7.73, 7.73, 7.73)

Area Scan (71x161x1): Interpolated grid: dx=1.000 mm, dy=1.000 mm Maximum value of SAR (interpolated) = 0.589 W/kg

Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 1.201 V/m; Power Drift = 0.12 dB Peak SAR (extrapolated) = 0.774 W/kg SAR(1 g) = 0.489 W/kg; SAR(10 g) = 0.295 W/kg Maximum value of SAR (measured) = 0.681 W/kg

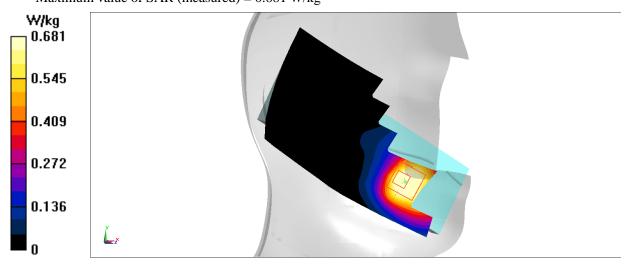


Fig.11 LTE Band2

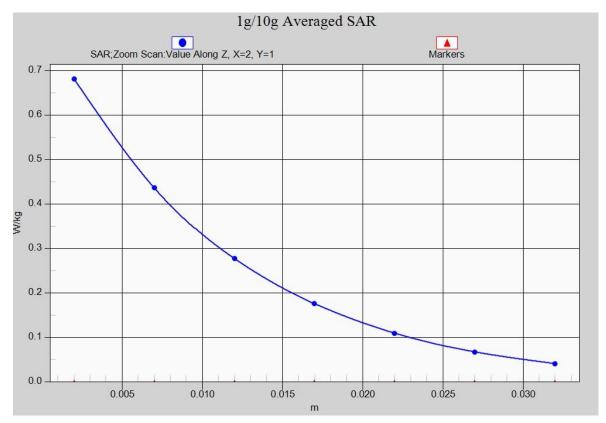


Fig. 11-1 Z-Scan at power reference point (LTE Band2)

LTE1900-FDD2_ Rear Middle with QPSK_20M_1RB_Middle Date: 2019/6/19 Electronics: DAE4 Sn1525 Medium: body 1900 MHz Medium parameters used: f = 1880 MHz; $\sigma = 1.547$ mho/m; $\epsilon r = 52.24$; $\rho = 1000$ kg/m³ Ambient Temperature: 22.5°C, Liquid Temperature: 22.3°C Communication System: LTE1900-FDD2 1880 MHz Duty Cycle: 1:1 Probe: EX3DV4 –SN7514 ConvF(7.53, 7.53, 7.53)

Area Scan (101x61x1): Interpolated grid: dx=1.000 mm, dy=1.000 mm Maximum value of SAR (interpolated) = 0.967 W/kg

Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 11.06 V/m; Power Drift = 0.03 dB
Peak SAR (extrapolated) = 1.09 W/kg
SAR(1 g) = 0.664 W/kg; SAR(10 g) = 0.401 W/kg
Maximum value of SAR (measured) = 0.896 W/kg

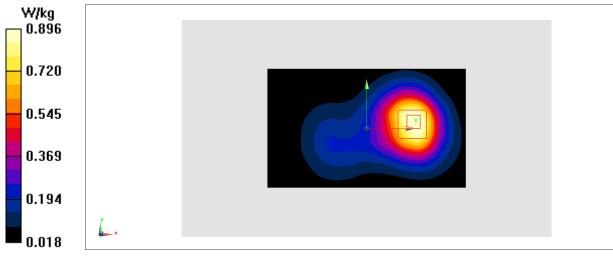


Fig.12 LTE Band2

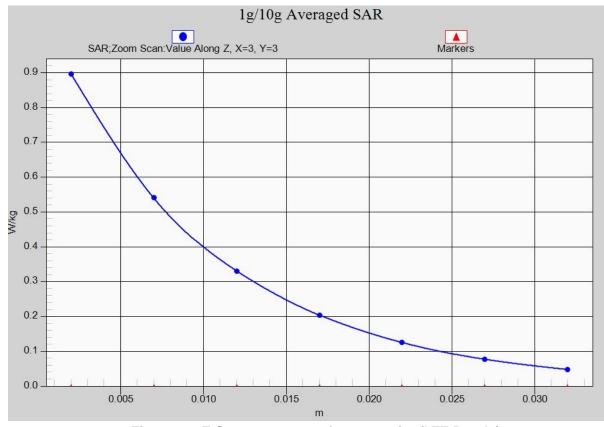


Fig. 12-1 Z-Scan at power reference point (LTE Band2)

LTE1700-FDD4_ Left Cheek High with QPSK_20M_1RB_Middle

Date: 2019/6/15 Electronics: DAE4 Sn1525 Medium: head 1750 MHz Medium parameters used: f = 1745 MHz; σ = 1.395 mho/m; ϵ r = 40.44; ρ = 1000 kg/m³ Ambient Temperature: 22.5°C, Liquid Temperature: 22.3°C Communication System: LTE1700-FDD4 1745 MHz Duty Cycle: 1:1 Probe: EX3DV4 –SN7514 ConvF(8.10, 8.10, 8.10)

Area Scan (71x161x1): Interpolated grid: dx=1.000 mm, dy=1.000 mm Maximum value of SAR (interpolated) = 0.598 W/kg

Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 1.415 V/m; Power Drift = 0.03 dB Peak SAR (extrapolated) = 0.711 W/kg SAR(1 g) = 0.489 W/kg; SAR(10 g) = 0.306 W/kg Maximum value of SAR (measured) = 0.609 W/kg

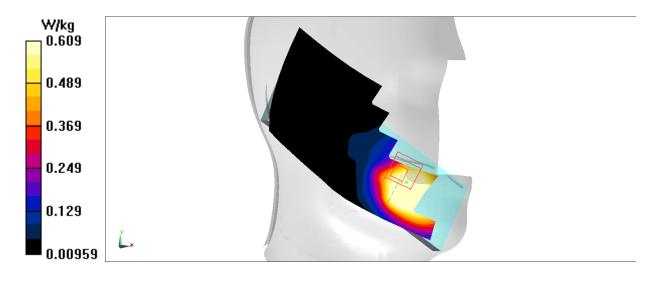


Fig.13 LTE Band4

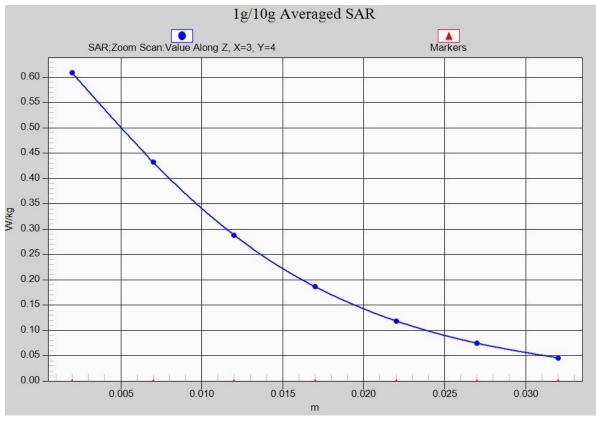


Fig. 13-1 Z-Scan at power reference point (LTE Band2)

LTE1700-FDD4_ Rear High with QPSK_20M_1RB_Middle Date: 2019/6/15 Electronics: DAE4 Sn1525 Medium: body 1750 MHz Medium parameters used: f = 1745 MHz; $\sigma = 1.465$ mho/m; $\epsilon r = 54.35$; $\rho = 1000$ kg/m³ Ambient Temperature: 22.5°C, Liquid Temperature: 22.3°C Communication System: LTE1700-FDD4 1745 MHz Duty Cycle: 1:1 Probe: EX3DV4 –SN7514 ConvF(7.82, 7.82, 7.82)

Area Scan (101x61x1): Interpolated grid: dx=1.000 mm, dy=1.000 mm Maximum value of SAR (interpolated) = 1.04 W/kg

Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 12.29 V/m; Power Drift = -0.03 dB
Peak SAR (extrapolated) = 1.19 W/kg
SAR(1 g) = 0.753 W/kg; SAR(10 g) = 0.462 W/kg
Maximum value of SAR (measured) = 0.984 W/kg

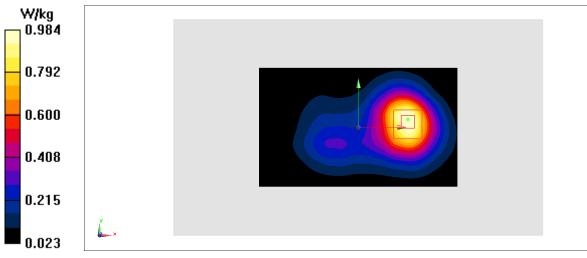


Fig.14 LTE Band4

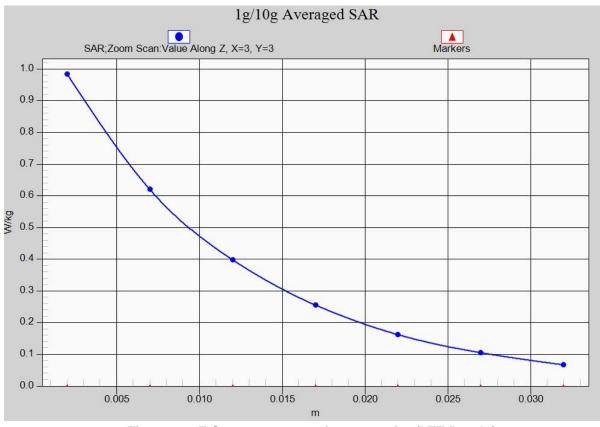


Fig. 14-1 Z-Scan at power reference point (LTE Band4)

LTE850-FDD5_ Right Cheek High with QPSK_10M_1RB_Middle

Date: 2019/6/18 Electronics: DAE4 Sn1525 Medium: head 835 MHz Medium parameters used: f = 844 MHz; $\sigma = 0.925$ mho/m; $\epsilon r = 41.69$; $\rho = 1000$ kg/m³ Ambient Temperature: 22.5°C, Liquid Temperature: 22.3°C Communication System: LTE850-FDD5 844 MHz Duty Cycle: 1:1 Probe: EX3DV4 –SN7514 ConvF(9.09, 9.09, 9.09)

Area Scan (71x161x1): Interpolated grid: dx=1.000 mm, dy=1.000 mm Maximum value of SAR (interpolated) = 0.529 W/kg

Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 5.483 V/m; Power Drift = -0.03 dB Peak SAR (extrapolated) = 0.618 W/kg SAR(1 g) = 0.366 W/kg; SAR(10 g) = 0.243 W/kg Maximum value of SAR (measured) = 0.475 W/kg

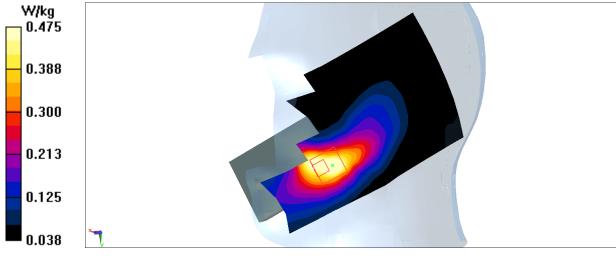


Fig.15 LTE Band5

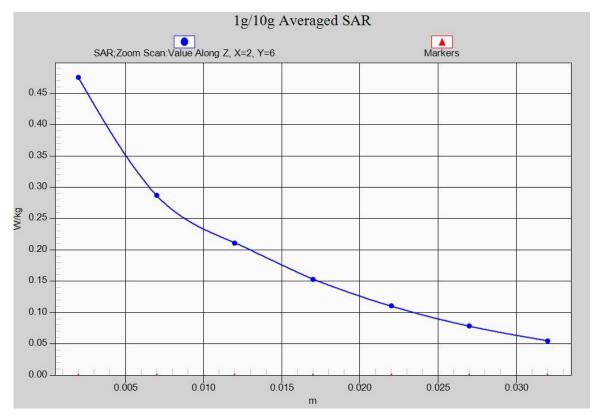


Fig. 15-1 Z-Scan at power reference point (LTE Band5)

LTE850-FDD5_ Rear High with QPSK_10M_1RB_Middle Date: 2019/6/19 Electronics: DAE4 Sn1525 Medium: body 835 MHz Medium parameters used: f = 844 MHz; $\sigma = 1.004$ mho/m; $\epsilon r = 55.79$; $\rho = 1000$ kg/m³ Ambient Temperature: 22.5°C, Liquid Temperature: 22.3°C Communication System: LTE850-FDD5 844 MHz Duty Cycle: 1:1 Probe: EX3DV4 –SN7514 ConvF(9.47, 9.47, 9.47)

```
Area Scan (61x101x1): Interpolated grid: dx=1.000 mm, dy=1.000 mm
Maximum value of SAR (interpolated) = 0.413 W/kg
```

Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 19.53 V/m; Power Drift = -0.05 dB Peak SAR (extrapolated) = 0.466 W/kg SAR(1 g) = 0.341 W/kg; SAR(10 g) = 0.243 W/kg Maximum value of SAR (measured) = 0.408 W/kg

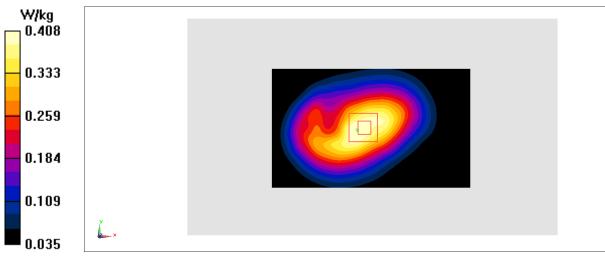


Fig.16 LTE Band5

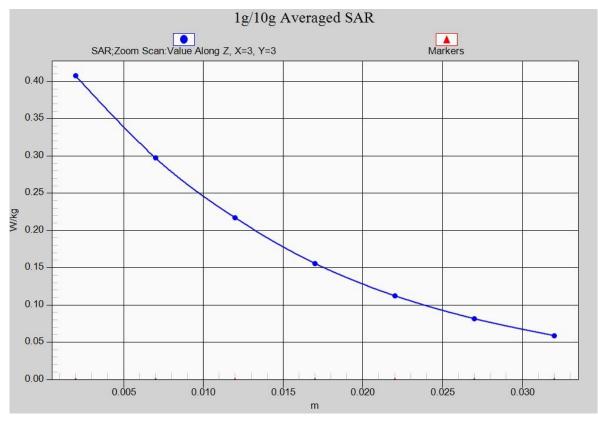


Fig. 16-1 Z-Scan at power reference point (LTE Band5)

LTE700-FDD12_ Right Cheek Low with QPSK_10M_1RB_Middle

Date: 2019/6/14 Electronics: DAE4 Sn1525 Medium: head 750 MHz Medium parameters used: f = 704 MHz; $\sigma = 0.87$ mho/m; $\epsilon r = 42.47$; $\rho = 1000$ kg/m³ Ambient Temperature: 22.5°C, Liquid Temperature: 22.3°C Communication System: LTE700-FDD12 704 MHz Duty Cycle: 1:1 Probe: EX3DV4 –SN7514 ConvF(9.47, 9.47, 9.47)

Area Scan (71x161x1): Interpolated grid: dx=1.000 mm, dy=1.000 mm Maximum value of SAR (interpolated) = 0.647 W/kg

Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 2.393 V/m; Power Drift = 0.04 dB
Peak SAR (extrapolated) = 0.870 W/kg
SAR(1 g) = 0.417 W/kg; SAR(10 g) = 0.257 W/kg
Maximum value of SAR (measured) = 0.603 W/kg

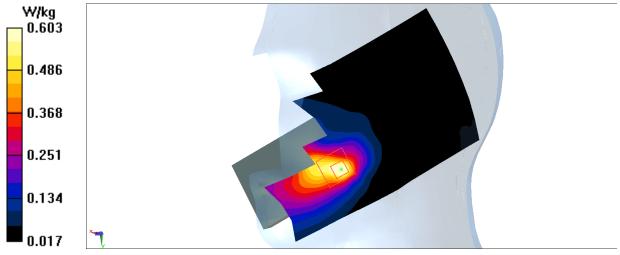


Fig.17 LTE Band12

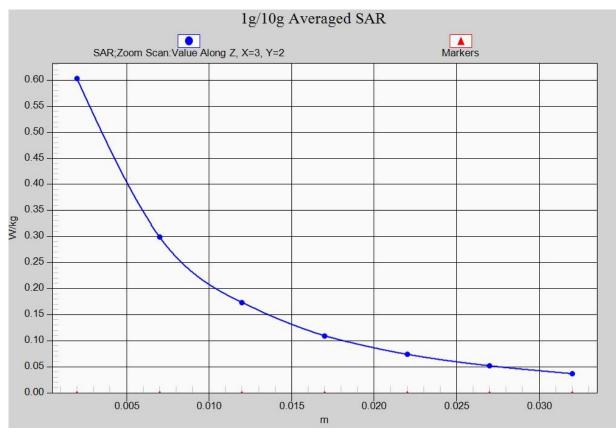


Fig. 17-1 Z-Scan at power reference point (LTE Band12)

LTE700-FDD12_ Rear Middle with QPSK_10M_1RB_Middle

Date: 2019/6/14 Electronics: DAE4 Sn1525 Medium: body 750 MHz Medium parameters used: f = 704 MHz; $\sigma = 0.975$ mho/m; $\epsilon r = 54.60$; $\rho = 1000$ kg/m³ Ambient Temperature: 22.5°C, Liquid Temperature: 22.3°C Communication System: LTE700-FDD12 704 MHz Duty Cycle: 1:1 Probe: EX3DV4 –SN7514 ConvF(9.68, 9.68, 9.68)

Area Scan (61x101x1): Interpolated grid: dx=1.000 mm, dy=1.000 mm Maximum value of SAR (interpolated) = 0.597 W/kg

Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 21.64 V/m; Power Drift = 0.02 dB
Peak SAR (extrapolated) = 0.669 W/kg
SAR(1 g) = 0.474 W/kg; SAR(10 g) = 0.331 W/kg
Maximum value of SAR (measured) = 0.575 W/kg

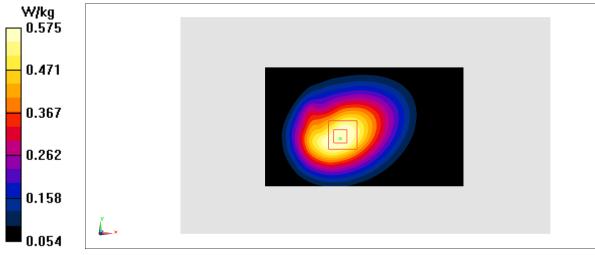


Fig.18 LTE Band12



Fig. 18-1 Z-Scan at power reference point (LTE Band12)

LTE700-FDD14_Left Cheek with QPSK_10M_1RB_High

Date: 2019/6/14 Electronics: DAE4 Sn1525 Medium: head 750 MHz Medium parameters used: f = 793 MHz; $\sigma = 0.875$ mho/m; $\epsilon r = 42.38$; $\rho = 1000$ kg/m³ Ambient Temperature: 22.5°C, Liquid Temperature: 22.3°C Communication System: LTE700-FDD14 793 MHz Duty Cycle: 1:1 Probe: EX3DV4 –SN7514 ConvF(9.47, 9.47, 9.47)

Area Scan (71x161x1): Interpolated grid: dx=1.000 mm, dy=1.000 mm Maximum value of SAR (interpolated) = 0.636 W/kg

Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 5.262 V/m; Power Drift = -0.04 dB Peak SAR (extrapolated) = 0.795 W/kg SAR(1 g) = 0.564 W/kg; SAR(10 g) = 0.34 W/kg Maximum value of SAR (measured) = 0.658 W/kg

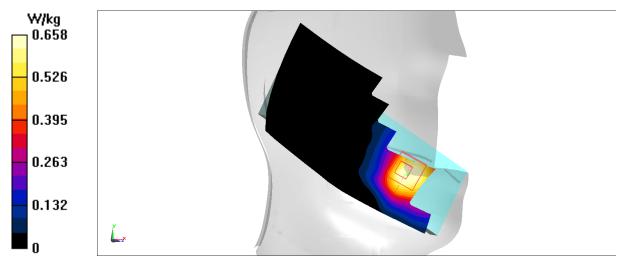


Fig.19 LTE Band14

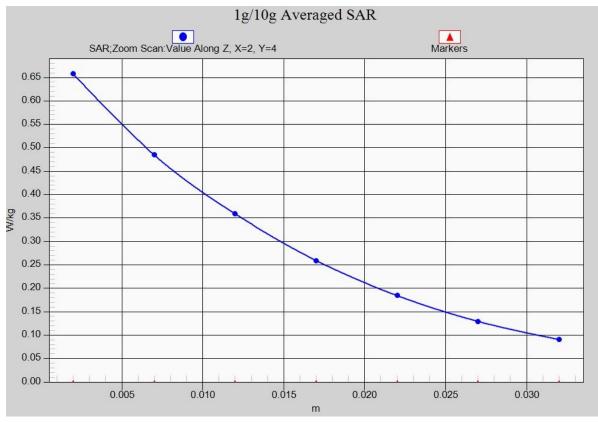


Fig. 19-1 Z-Scan at power reference point (LTE Band14)

LTE700-FDD14_ Rear with QPSK_10M_1RB_High

Date: 2019/6/14 Electronics: DAE4 Sn1525 Medium: body 750 MHz Medium parameters used: f = 793 MHz; $\sigma = 0.976$ mho/m; $\epsilon r = 54.56$; $\rho = 1000$ kg/m³ Ambient Temperature: 22.5°C, Liquid Temperature: 22.3°C Communication System: LTE700-FDD14 793 MHz Duty Cycle: 1:1 Probe: EX3DV4 –SN7514 ConvF(9.68, 9.68, 9.68)

Area Scan (61x101x1): Interpolated grid: dx=1.000 mm, dy=1.000 mm Maximum value of SAR (interpolated) = 0.643 W/kg

Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 21.97 V/m; Power Drift = 0.19 dB Peak SAR (extrapolated) = 0.765 W/kg SAR(1 g) = 0.532 W/kg; SAR(10 g) = 0.365 W/kg Maximum value of SAR (measured) = 0.654 W/kg

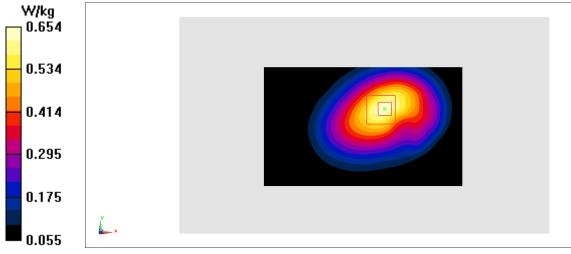


Fig.20 LTE Band14

Fig. 20-1 Z-Scan at power reference point (LTE Band14)

WLAN2450_CH6 Right Cheek

Date: 2019/6/16 Electronics: DAE4 Sn1525 Medium: head 2450 MHz Medium parameters used: f = 2437 MHz; σ = 1.798 mho/m; ϵ r = 38.89; ρ = 1000 kg/m³ Ambient Temperature: 22.5°C, Liquid Temperature: 22.3°C Communication System: WLAN2450 2437 MHz Duty Cycle: 1:1 Probe: EX3DV4 –SN7514 ConvF(6.95, 6.95, 6.95)

```
Area Scan (91x191x1): Interpolated grid: dx=1.000 mm, dy=1.000 mm
Maximum value of SAR (interpolated) = 0.606 W/kg
```

Zoom Scan (7x8x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 3.280 V/m; Power Drift = 0.03 dB
Peak SAR (extrapolated) = 0.962 W/kg
SAR(1 g) = 0.475 W/kg; SAR(10 g) = 0.235 W/kg
Maximum value of SAR (measured) = 0.724 W/kg

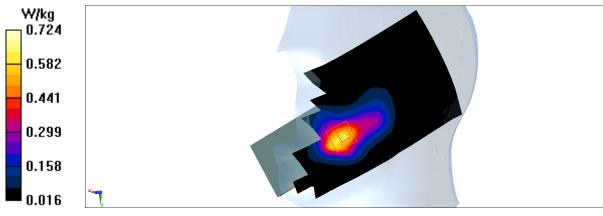


Fig.21 2450 MHz

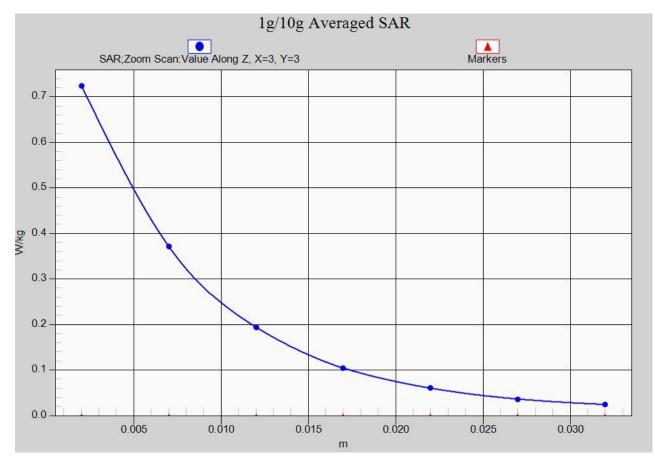


Fig. 21-1 Z-Scan at power reference point (2450 MHz)

WLAN2450_CH6 Rear unfold

Date: 2019/6/16 Electronics: DAE4 Sn1525 Medium: body 2450 MHz Medium parameters used: f = 2437 MHz; σ = 1.923 mho/m; ϵ r = 51.88; ρ = 1000 kg/m³ Ambient Temperature: 22.5°C, Liquid Temperature: 22.3°C Communication System: WLAN2450 2437 MHz Duty Cycle: 1:1 Probe: EX3DV4 –SN7514 ConvF(7.13, 7.13, 7.13)

Area Scan (171x91x1): Interpolated grid: dx=1.000 mm, dy=1.000 mm Maximum value of SAR (interpolated) = 0.219 W/kg

Zoom Scan (7x9x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 6.663 V/m; Power Drift = 0.09 dB
Peak SAR (extrapolated) = 0.277 W/kg
SAR(1 g) = 0.168 W/kg; SAR(10 g) = 0.105 W/kg
Maximum value of SAR (measured) = 0.222 W/kg

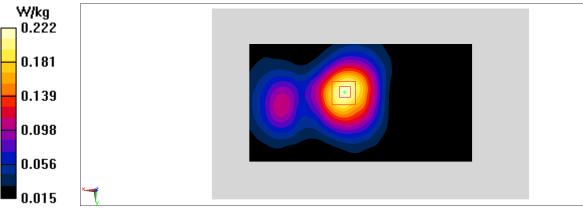


Fig.22 2450 MHz

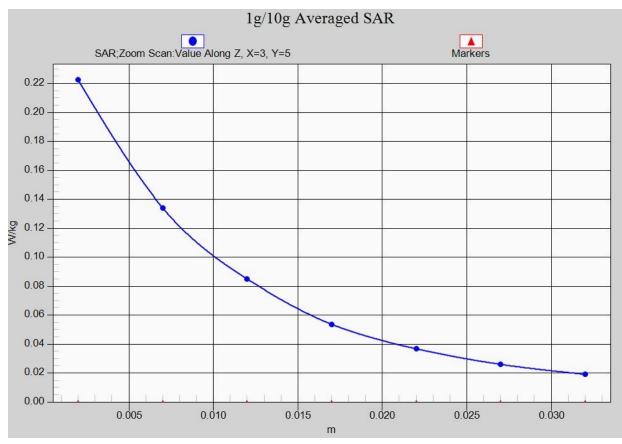
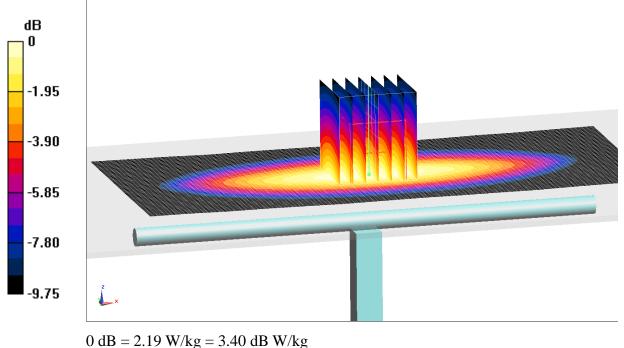


Fig. 2421 Z-Scan at power reference point (2450 MHz)

ANNEX B System Verification Results

750MHz


Date: 2019-6-14 Electronics: DAE4 Sn1525 Medium: Head 750 MHz Medium parameters used: f = 750 MHz; $\sigma = 0.875$ mho/m; $\epsilon_r = 42.51$; $\rho = 1000$ kg/m³ Ambient Temperature: 22.9°C Liquid Temperature: 22.5°C Communication System: CW Frequency: 750 MHz Duty Cycle: 1:1 Probe: EX3DV4 – SN7514 ConvF(9.47, 9.47, 9.47)

System Validation /Area Scan (81x191x1): Interpolated grid: dx=1.000 mm, dy=1.000 mm mm

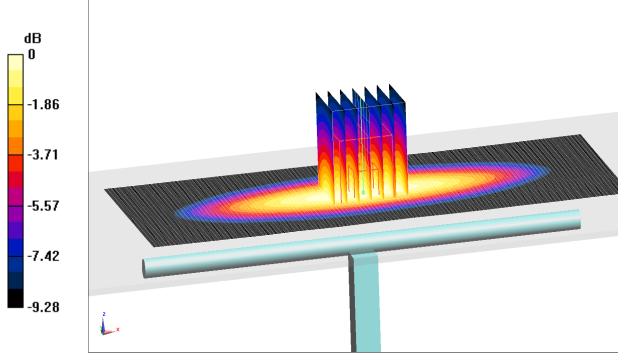
Reference Value = 49.45 V/m; Power Drift = 0.05 dBFast SAR: SAR(1 g) = 2.09 W/kg; SAR(10 g) = 1.38 W/kgMaximum value of SAR (interpolated) = 2.21 W/kg

System Validation /Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 49.45 V/m; Power Drift = 0.05 dB Peak SAR (extrapolated) = 2.86 W/kg SAR(1 g) = 2.07 W/kg; SAR(10 g) = 1.36 W/kg

Maximum value of SAR (measured) = 2.19 W/kg

- 2.17 W/Kg - 3.10 ub W/Kg

Fig.B.1 validation 750MHz 250mW


Date: 2019-6-14 Electronics: DAE4 Sn1525 Medium: Body750 MHz Medium parameters used: f = 750 MHz; $\sigma = 0.976$ mho/m; $\epsilon_r = 54.98$; $\rho = 1000$ kg/m³ Ambient Temperature: 22.9°C Liquid Temperature: 22.5°C Communication System: CW Frequency: 750 MHz Duty Cycle: 1:1 Probe: EX3DV4 – SN7514 ConvF(9.68, 9.68, 9.68)

System Validation/Area Scan (81x191x1): Interpolated grid: dx=1.000 mm, dy=1.000 mm

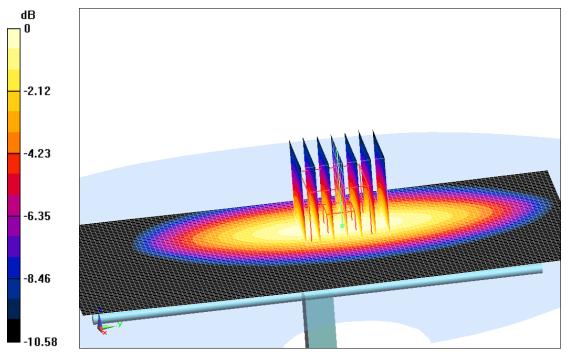
Reference Value = 51.669 V/m; Power Drift = -0.05 dB Fast SAR: SAR(1 g) = 2.16 W/kg; SAR(10 g) = 1.42 W/kg Maximum value of SAR (interpolated) = 2.41 W/kg

System Validation/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

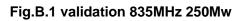
Reference Value = 51.669 V/m; Power Drift = -0.05 dB Peak SAR (extrapolated) = 3.06 W/kg SAR(1 g) = 2.19 W/kg; SAR(10 g) = 1.44 W/kg Maximum value of SAR (measured) = 2.43 W/kg

0 dB = 2.43 W/kg = 3.86 dB W/kg

Fig.B.2 validation 750MHz 250mW



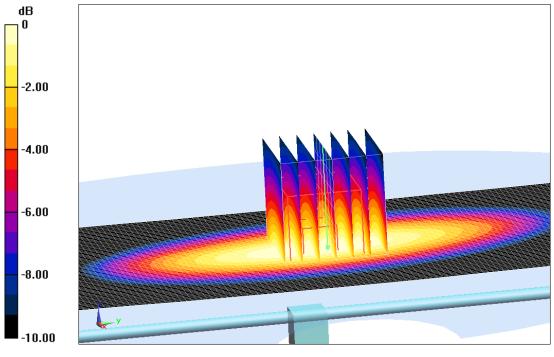
Date: 2019-6-18 Electronics: DAE4 Sn1525 Medium: Head 850 MHz Medium parameters used: f = 835 MHz; $\sigma = 0.916$ S/m; $\epsilon_r = 41.83$; $\rho = 1000$ kg/m³ Ambient Temperature: 22.9°C Liquid Temperature: 22.5°C Communication System: CW Frequency: 835 MHz Duty Cycle: 1:1 Probe: EX3DV4 – SN7514 ConvF(9.09, 9.09, 9.09)


System Validation/Area Scan (61x121x1):Interpolated grid: dx=1.000 mm, dy=1.000 mm Reference Value = 54.22 V/m; Power Drift = -0.05 dB Fast SAR: SAR(1 g) = 2.33 W/kg; SAR(10 g) = 1.49 W/kg Maximum value of SAR (interpolated) = 2.53 W/kg

System Validation/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 54.22 V/m; Power Drift = -0.05 dB Peak SAR (extrapolated) = 3.06 W/kg SAR(1 g) = 2.31 W/kg; SAR(10 g) = 1.48 W/kg Maximum value of SAR (measured) = 2.51 W/kg

0 dB = 2.51 W/kg = 4 dBW/kg


Date: 2019-6-18 Electronics: DAE4 Sn1525 Medium: Body 850 MHz Medium parameters used: f = 835 MHz; $\sigma = 0.995$ S/m; $\epsilon_r = 55.9$; $\rho = 1000$ kg/m³ Ambient Temperature: 22.9°C Liquid Temperature: 22.5°C Communication System: CW Frequency: 835 MHz Duty Cycle: 1:1 Probe: EX3DV4 – SN7514 ConvF(9.47, 9.47, 9.47)

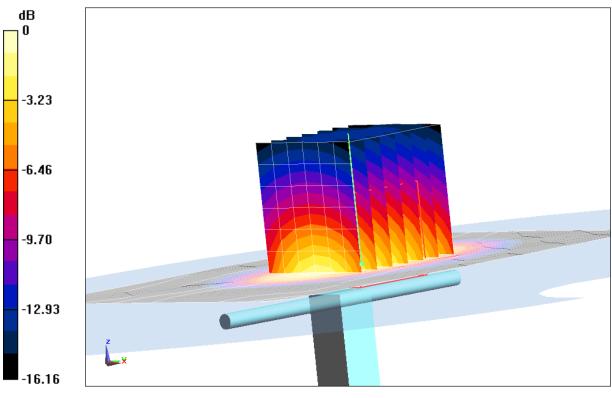
System Validation /Area Scan (61x121x1): Interpolated grid: dx=1.000 mm, dy=1.000 mm

Reference Value = 52.74 V/m; Power Drift = 0.02 dBFast SAR: SAR(1 g) = 2.39 W/kg; SAR(10 g) = 1.57 W/kgMaximum value of SAR (interpolated) = 2.72 W/kg

System Validation /Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 52.74 V/m; Power Drift = 0.02 dBPeak SAR (extrapolated) = 3.15 W/kg**SAR(1 g) = 2.42 \text{ W/kg}; SAR(10 g) = 1.59 \text{ W/kg}** Maximum value of SAR (measured) = 2.75 W/kg

0 dB = 2.75 W/kg = 4.39 dBW/kg



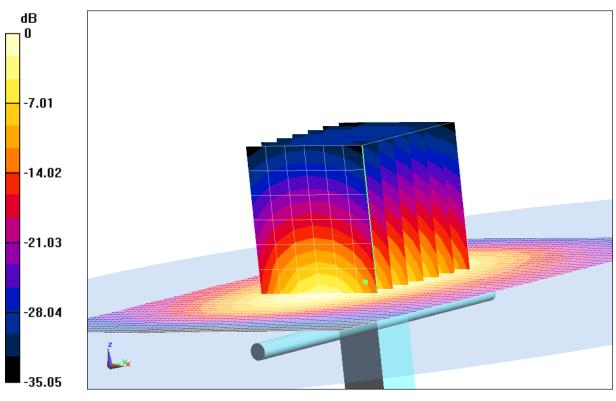
Date: 2019-6-15 Electronics: DAE4 Sn1525 Medium: Head 1750 MHz Medium parameters used: f=1750 MHz; σ = 1.386 mho/m; ϵ r = 40.49; ρ = 1000 kg/m³ Ambient Temperature: 22.9°C Liquid Temperature: 22.5°C Communication System: CW Frequency: 1750 MHz Duty Cycle: 1:1 Probe: EX3DV4 – SN7514 ConvF(8.10, 8.10, 8.10)


System Validation/Area Scan (81x121x1):Interpolated grid: dx=1.000 mm, dy=1.000 mm Reference Value = 89.61 V/m; Power Drift = 0.06 dB Fast SAR: SAR(1 g) = 9.08 W/kg; SAR(10 g) = 4.80 W/kg Maximum value of SAR (interpolated) = 10.0 W/kg

System Validation/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 89.61 V/m; Power Drift = 0.06 dB Peak SAR (extrapolated) = 15.59 W/kg

SAR(1 g) = 9.18 W/kg; SAR(10 g) = 4.86 W/kg Maximum value of SAR (measured) = 10.1 W/kg

0 dB = 10.1 W/kg = 10.04 dB W/kg



Date: 2019-6-15 Electronics: DAE4 Sn1525 Medium: Body 1750 MHz Medium parameters used: f=1750 MHz; σ = 1.456 mho/m; ϵ r = 54.4; ρ = 1000 kg/m³ Ambient Temperature: 22.9°C Liquid Temperature: 22.5°C Communication System: CW Frequency: 1750 MHz Duty Cycle: 1:1 Probe: EX3DV4 – SN7514 ConvF(7.82, 7.82, 7.82)

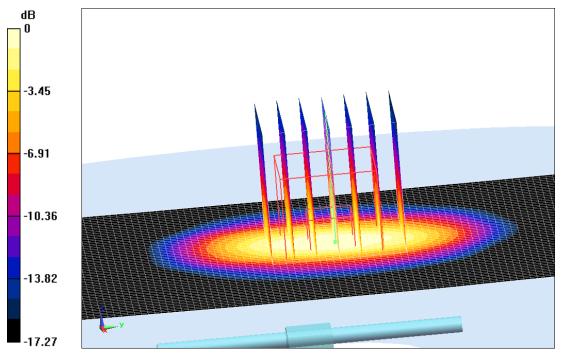
System Validation/Area Scan (81x121x1):Interpolated grid: dx=1.000 mm, dy=1.000 mm Reference Value = 95.17 V/m; Power Drift = -0.03 dB Fast SAR: SAR(1 g) = 9.51 W/kg; SAR(10 g) = 5.07 W/kg Maximum value of SAR (interpolated) = 10.4 W/kg

System Validation/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 95.17 V/m; Power Drift = -0.03 dB

Peak SAR (extrapolated) = 15.54 W/kg SAR(1 g) = 9.42 W/kg; SAR(10 g) = 4.98 W/kg Maximum value of SAR (measured) = 10.3 W/kg

0 dB = 10.3 W/kg = 10.13 dB W/kg

Fig.B.6 validation 1750MHz 250mW



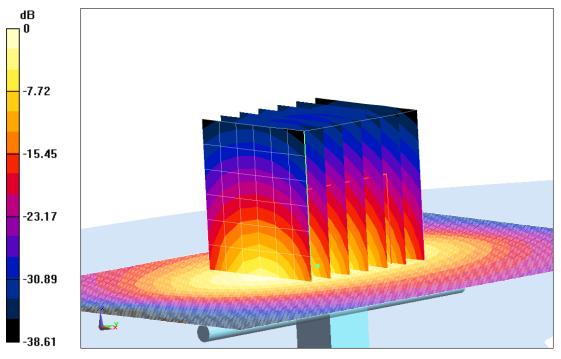
Date: 2019-6-19 Electronics: DAE4 Sn1525 Medium: Head 1900 MHz Medium parameters used: f = 1900 MHz; $\sigma = 1.393$ mho/m; $\epsilon_r = 40.23$; $\rho = 1000$ kg/m³ Ambient Temperature: 22.9°C Liquid Temperature: 22.5°C Communication System: CW Frequency: 1900 MHz Duty Cycle: 1:1 Probe: EX3DV4 – SN7514 ConvF (7.73, 7.73, 7.73)


System Validation /Area Scan(61x81x1):Interpolated grid: dx=1.000 mm, dy=1.000 mm Reference Value = 93.1 V/m; Power Drift = 0.03 dB SAR(1 g) = 10.4 W/kg; SAR(10 g) = 5.51 W/kg Maximum value of SAR (interpolated) = 12.6 W/kg

System Validation /Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 93.1 V/m; Power Drift = 0.03 dB Peak SAR (extrapolated) = 18.11 W/kg SAR(1 g) = 10.3 W/kg; SAR(10 g) = 5.44 W/kg Maximum value of SAR (measured) = 12.5 W/kg

0 dB = 12.5 W/kg = 10.97 dBW/kg



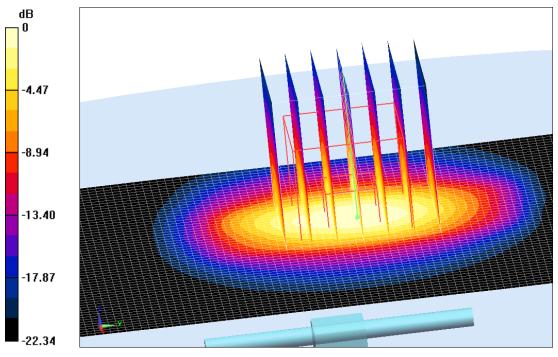
Date: 2019-6-19 Electronics: DAE4 Sn1525 Medium: Body 1900 MHz Medium parameters used: f = 1900 MHz; $\sigma = 1.547$ S/m; $\epsilon_r = 52.24$; $\rho = 1000$ kg/m³ Ambient Temperature: 22.9°C Liquid Temperature: 22.5°C Communication System: CW Frequency: 1900 MHz Duty Cycle: 1:1 Probe: EX3DV4 – SN7514 ConvF(7.53, 7.53, 7.53)

System Validation/Area Scan (81x121x1):Interpolated grid: dx=1.000 mm, dy=1.000 mm Reference Value = 94.4 V/m; Power Drift = 0.04 dB Fast SAR: SAR(1 g) = 10.5 W/kg; SAR(10 g) = 5.56 W/kg Maximum value of SAR (interpolated) = 12.5 W/kg

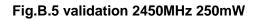
System Validation/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 94.4 V/m; Power Drift = 0.04 dB Peak SAR (extrapolated) = 19.08 W/kg SAR(1 g) = 10.4 W/kg; SAR(10 g) = 5.49 W/kgMaximum value of SAR (measured) = 12.4 W/kg

0 dB = 12.4 W/kg = 10.93 dB W/kg



Date: 2019-6-16 Electronics: DAE4 Sn1525 Medium: Head 2450 MHz Medium parameters used: f = 2450 MHz; $\sigma = 1.798$ mho/m; $\epsilon_r = 38.89$; $\rho = 1000$ kg/m³ Ambient Temperature: 22.9°C Liquid Temperature: 22.5°C Communication System: CW Frequency: 2450 MHz Duty Cycle: 1:1 Probe: EX3DV4 – SN7514 ConvF(6.95, 6.95, 6.95)


System Validation /Area Scan (61x81x1): Interpolated grid: dx=1.000 mm, dy=1.000 mm Reference Value = 82.01 V/m; Power Drift = -0.01 dB SAR(1 g) = 12.9 W/kg; SAR(10 g) = 6.05 W/kg Maximum value of SAR (interpolated) = 16.1 W/kg

System Validation /Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 82.01 V/m; Power Drift = -0.01 dB Peak SAR (extrapolated) = 26.76 W/kg SAR(1 g) = 12.7 W/kg; SAR(10 g) = 5.92 W/kg Maximum value of SAR (measured) = 15.9 W/kg

0 dB = 15.9 W/kg = 12.01 dBW/kg

