

Table 14.1-35: SAR Values (LTE band66 - Body)

		An	nbient Ten	nperatur	e: 22.9°C	Liqui	d Temperat	ture: 22.5°0	2		
Freque	ency		Test	Figure	Conducted	Max.	Measured	Reported	Measured	Reported	Power
Ch.	MHz	Mode	Position	No./ Note	Power (dBm)	Power	SAR(10g) (W/kg)	SAR(10g) (W/kg)	SAR(1g) (W/kg)	SAR(1g) (W/kg)	Drift (dB)
				Note	(ubiii)	(dBm)	(VV/Kg)	(VV/Kg)	(VV/Kg)	(VV/Kg)	(ub)
132322	1745	1RB_Mid	Front	/	23.36	24	0.153	0.18	0.251	0.29	0.09
132322	1745	1RB_Mid	Rear	Fig.35	23.36	24	0.271	0.31	0.460	0.53	0.09
132322	1745	50RB_Low	Front	/	22.11	23	0.116	0.14	0.191	0.23	-0.03
132322	1745	50RB_Low	Rear	/	22.11	23	0.209	0.26	0.355	0.44	0.12

Note1: The distance between the EUT and the phantom bottom is 15mm.

Note2: The LTE mode is QPSK_20MHz.

14.2 SAR results for Standard procedure

There is zoom scan measurement to be added for the highest measured SAR in each exposure configuration/band.

Table 14.2-1: SAR Values (GSM 850 MHz Band - Head)

			Am	nbient Tem	perature: 22	.9°C Lic	uid Tempera	ture: 22.5°C	1		
Fred	uency		Test	Figure	Conducted	Max. tune-up	Measured	Reported	Measured	Reported	Power
	· ·	Side	Position		Power	•	SAR(10g)	SAR(10g)	SAR(1g)	SAR(1g)	Drift
Ch.	MHz		Position	No./Note	(dBm)	Power (dBm)	(W/kg)	(W/kg)	(W/kg)	(W/kg)	(dB)
251	848.8	Right	Touch	Fig.1	28.70	29.5	0.254	0.31	0.322	0.39	0.08

Note: the head SAR of GSM850 is tested with GPRS (4Txslots) mode because of VoIP.

Table 14.2-2: SAR Values (GSM 850 MHz Band - Body)

			Ambie	nt Temp	erature: 22.	9°C Liq	uid Tempera	ture: 22.5°C	C		
Fred	quency	Mode	Test	Figure	Conducted	Max. tune-up	Measured	Reported	Measured	Reported	Power
	. ,	(number of	Position	No./	Power	Power (dBm)	SAR(10g)	SAR(10g)	SAR(1g)	SAR(1g)	Drift
Ch.	MHz	timeslots)	FUSILIUII	Note	(dBm)	Fower (ubili)	(W/kg)	(W/kg)	(W/kg)	(W/kg)	(dB)
251	848.8	GPRS (4)	Rear	Fig.2	28.70	29.5	0.367	0.44	0.620	0.75	-0.03

Note: The distance between the EUT and the phantom bottom is 10mm.

Table 14.2-3: SAR Values (GSM 1900 MHz Band - Head)

			Amb	oient Ter	nperature: 22	2.9°C Lic	quid Tempe	rature: 22.5	°C					
Fre	quency		Test	Figure	Conducted	May tung up	Measured	Reported	Measured	Reported	Power			
	· · ·	Side	Position	No./	Power	Max. tune-up Power (dBm)	SAR(10g)	SAR(10g)	SAR(1g)	SAR(1g)	Drift			
Ch.	MHz		FUSITION	Note	(dBm)	Fower (dbill)	(W/kg)	(W/kg)	(W/kg)	(W/kg)	(dB)			
810	1909.8	Left	Touch	Fig.3	27.95	29	0.207	0.26	0.426	0.54	-0.18			

Note: the head SAR of GSM1900 is tested with GPRS (3Txslots) mode because of VoIP.

Table 14.2-4: SAR Values (GSM 1900 MHz Band - Body)

			Ambier	nt Tempe	erature: 22.9)°C Liqu	id Tempera	ture: 22.5°0	7		
Fre	(number of Position Power				Conducted	Max. tune-up	Measured SAR(10a)	Reported	Measured	Reported	Power Drift
Ch.	MHz	timeslots)	Position	Note	(dBm)	Power (dBm)	(W/kg)	SAR(10g) (W/kg)	SAR(1g) (W/kg)	SAR(1g) (W/kg)	(dB)
512 1850.2 GPRS (3) Bottom Fig.4 27.56					27.56	28	0.474	0.52	0.844	0.93	-0.13

Note: The distance between the EUT and the phantom bottom is 10mm.

Table 14.2-5: SAR Values (GSM 1900 MHz Band - Body)

			Ambier	nt Tempe	erature: 22.9	°C Liqu	id Tempera	ture: 22.5°0	C		
Fre	auencv	Mode	Toot	Figure	Conducted	May tung up	Measured	Reported	Measured	Reported	Power
	Frequency (num	(number of	Test Position	No./	Power	Max. tune-up	SAR(10g)	SAR(10g)	SAR(1g)	SAR(1g)	Drift
Ch.	MHz	timeslots)	Position	Note	(dBm)	Power (dBm)	(W/kg)	(W/kg)	(W/kg)	(W/kg)	(dB)
810 1909.8 GPRS (3) Rear Fig.5 27.95 29 0.229 0.29 0.397								0.397	0.51	-0.03	

Note: The distance between the EUT and the phantom bottom is 15mm.

Table 14.2-6: SAR Values (WCDMA 850 MHz Band - Head)

			Ambi	ent Tempe	rature: 22.9°	C Li	quid Tempe	erature: 22.	5°C		
Freq	uency		Took	F:	Conducted	Max.	Measured	Reported	Measured	Reported	Power
Ch.	MHz	Side	Test Position	Figure No./Note	Power (dBm)	tune-up Power (dBm)	SAR(10g) (W/kg)	SAR(10g) (W/kg)	SAR(1g) (W/kg)	SAR(1g) (W/kg)	Drift (dB)
4182	836.4	Right	Touch	Fig.6	23.56	24	0.206	0.23	0.262	0.29	0.13

Table 14.2-7: SAR Values (WCDMA 850 MHz Band - Body)

			Ambient	Temperatur	e: 22.9 °C	Liquid Ter	mperature:	22.5°C		
Freq	uency	Test	Figure	Conducted	Max. tune-up	Measured	Reported	Measured	Reported	Power
Ch.	MHz	Position	No./ Note	Power (dBm)	Power (dBm)	SAR(10g) (W/kg)	SAR(10g) (W/kg)	SAR(1g) (W/kg)	SAR(1g) (W/kg)	Drift (dB)
4233	4233 846.6 Rear Fig.7 23.68 24		0.259	0.28	0.432	0.47	-0.09			

Note: The distance between the EUT and the phantom bottom is 10mm.

Table 14.2-8: SAR Values (WCDMA 1700 MHz Band - Head)

			Ambier	nt Temperat	ture: 22.9 °C	Lic	quid Tempei	ature: 22.5	°С		
Fred	quency		T4	- :	Conducted	Max.	Measured	Reported	Measured	Reported	Power
Ch.	MHz	Side	Test Position	Figure No./Note	Power (dBm)	tune-up Power (dBm)	SAR(10g) (W/kg)	SAR(10g) (W/kg)	SAR(1g) (W/kg)	SAR(1g) (W/kg)	Drift (dB)
1537	1712.4	Left	Touch	Fig.8	23.55	24	0.088	0.10	0.133	0.15	0.01

Table 14.2-9: SAR Values (WCDMA 1700 MHz Band - Body)

		А	mbient ⁻	Temperature	e: 22.9°C	Liquid Ter	mperature:	22.5°C		
Fred	Frequency Test Figure Conducted Max. tune-up				May tung up	Measured	Reported	Measured	Reported	Power
	. ,		No./	Power	Max. tune-up	SAR(10g)	SAR(10g)	SAR(1g)	SAR(1g)	Drift
Ch.	MHz	Position	Note	(dBm)	Power (dBm)	(W/kg)	(W/kg)	(W/kg)	(W/kg)	(dB)
1738	1752.6	Rear	Fig.9	21.46	22	0.493	0.56	0.927	1.05	-0.03

Note1: The distance between the EUT and the phantom bottom is 10mm.

Table 14.2-10: SAR Values (WCDMA 1700 MHz Band - Body)

		А	mbient ⁻	Temperature	e: 22.9°C	Liquid Ter	mperature:	22.5°C		
Fred	Frequency Test Figure Conducted Max. tu					Measured	Reported	Measured	Reported	Power
	1		No./	Power	Max. tune-up	SAR(10g)	SAR(10g)	SAR(1g)	SAR(1g)	Drift
Ch.	MHz	Position	Note	(dBm)	Power (dBm)	(W/kg)	(W/kg)	(W/kg)	(W/kg)	(dB)
1537	1537 1712.4 Rear Fig.10 23.55				24	0.356	0.39	0.588	0.65	0.03

Note1: The distance between the EUT and the phantom bottom is 15mm.

Table 14.2-11: SAR Values (WCDMA 1900 MHz Band - Head)

			Ambie	nt Temp	erature: 22.9	9°C Liqı	uid Temper	ature: 22.5°	°C		
Fred	Test Test				Conducted	Max. tune-up	Measured	Reported	Measured	Reported	Power
		Side		No./	Power		SAR(10g)	SAR(10g)	SAR(1g)	SAR(1g)	Drift
Ch.	MHz		Position	Note	(dBm)	Power (dBm)	(W/kg)	(W/kg)	(W/kg)	(W/kg)	(dB)
9938	1907.6	Left	Touch	Fig.11	23.57	24	0.114	0.13	0.180	0.20	0.05

Table 14.2-12: SAR Values (WCDMA 1900 MHz Band - Body)

_											
			А	mbient ⁻	Temperature	e: 22.9°C	Liquid Ter	mperature:	22.5°C		
	Fred	luency	Test	Figure	Conducted	May tung up	Measured	Reported	Measured	Reported	Power
	Frequency		No./	Power	Max. tune-up	SAR(10g)	SAR(10g)	SAR(1g)	SAR(1g)	Drift	
	Ch.	MHz	_ Position	Note	(dBm)	Power (dBm)	(W/kg)	(W/kg)	(W/kg)	(W/kg)	(dB)
I	9800	1880	Bottom	Fig.12	21.81	22	0.617	0.64	1.04	1.09	0.03

Note1: The distance between the EUT and the phantom bottom is 10mm.

Table 14.2-13: SAR Values (WCDMA 1900 MHz Band - Body)

		Α	mbient ⁻	Temperature	e: 22.9°C	Liquid Ter	mperature:	22.5°C		
Fred	quency	Test	Figure	Conducted	Max. tune-up	Measured	Reported	Measured	Reported	Power
Ch.	· ,	Position	No./	Power	•	SAR(10g)	SAR(10g)	SAR(1g)	SAR(1g)	Drift
	MHz	Position	Note	(dBm)	Power (dBm)	(W/kg)	(W/kg)	(W/kg)	(W/kg)	(dB)
9800	1880	Rear	Fig.13	23.70	24	0.273	0.29	0.472	0.51	0.01

Note1: The distance between the EUT and the phantom bottom is 15mm.

Table 14.2-14: SAR Values (LTE Band2 - Head)

			Amb	ient Temp	perature:	22.9°C	Liquid	Temperatu	re: 22.5°C			
Frequ	ency			Toot	Figure	Conducted	Max.	Measured	Reported	Measured	Reported	Power
Ch.	MHz	Mode	Side	Test Position	No./ Note	Power (dBm)	Power (dBm)	SAR(10g) (W/kg)	SAR(10g) (W/kg)	SAR(1g) (W/kg)	SAR(1g) (W/kg)	Drift (dB)
18900	1880	1RB_Mid	Left	Touch	Fig.14	23.53	24	0.138	0.15	0.229	0.26	0.02

Note1: The LTE mode is QPSK_20MHz.

Table 14.2-15: SAR Values (LTE Band2 - Body)

			Ambient	Temperatu	re: 22.9°C	Liqui	d Temperat	ture: 22.5°0	2		
Frequ	ency		Toet	Figure	Conduct ed	Max. tune-up	Measured	Reported	Measured	Reported	Power
Ch.	MHz	Mode	Test Position	No./ Note	Power (dBm)	Power (dBm)	SAR(10g) (W/kg)	SAR(10g) (W/kg)	SAR(1g) (W/kg)	SAR(1g) (W/kg)	Drift (dB)
19100	1900	50RB_Low	Bottom	Fig.15	21.28	22	0.587	0.69	1.10	1.30	0.04

Note1: The distance between the EUT and the phantom bottom is 10mm.

Note2: The LTE mode is QPSK_20MHz.

Table 14.2-16: SAR Values (LTE Band2 - Body)

						•					
			Ambient	Temperatu	re: 22.9°C	C Liqui	d Temperat	ture: 22.5°0	C		
Frequency		Test	Figure	Conduct ed	Max. tune-up	Measured	Reported	Measured	Reported	Power	
Ch.	MHz	Mode	Position	No./ Note	Power (dBm)	Power (dBm)	SAR(10g) (W/kg)	SAR(10g) (W/kg)	SAR(1g) (W/kg)	SAR(1g) (W/kg)	Drift (dB)
18900	1880	1RB_Mid	Rear	Fig.16	23.53	24	0.281	0.31	0.491	0.55	0.16

Note1: The distance between the EUT and the phantom bottom is 15mm.

Note2: The LTE mode is QPSK_20MHz.

Table 14.2-17: SAR Values (LTE Band5 - Head)

							•					
			Amb	ient Temp	oerature	: 22.9°C	Liquid	Temperatur	e: 22.5°C			
Frequ	ency			To at	- :	Conducted	Max.	Measured	Reported	Measured	Reported	Power
Ch.	MHz	Mode	Side	Test Position	Figure No.	Power (dBm)	tune-up Power (dBm)	SAR(10g) (W/kg)	SAR(10g) (W/kg)	SAR(1g) (W/kg)	SAR(1g) (W/kg)	Drift (dB)
20600	844	1RB_High	Right	Touch	Fig.17	23.16	24	0.167	0.20	0.216	0.26	0.04

Note1: The LTE mode is QPSK_10MHz.

Table 14.2-18: SAR Values (LTE Band5 - Body)

			Ambient 7	Tempera	nture: 22.9°C	Liqui	id Tempera	ture: 22.5°0	7		
Frequ	ency		Test	Figure	Conducted	Max. tune-up	Measured	Reported	Measured	Reported	Power
Ch.	MHz	Mode	Position	No.	Power (dBm)	Power (dBm)	SAR(10g) (W/kg)	SAR(10g) (W/kg)	SAR(1g) (W/kg)	SAR(1g) (W/kg)	Drift (dB)
20600	844	1RB_High	Rear	Fig.18	23.16	24	0.272	0.33	0.386	0.47	-0.01

Note1: The distance between the EUT and the phantom bottom is 10mm.

Note2: The LTE mode is QPSK_10MHz.

Table 14.2-19: SAR Values (LTE Band7 - Head)

			Ambie	nt Tempe	rature: 2	22.9°C	Liquid	Temperatu	re: 22.5°C			
Frequ	ency			Test	Figure	Conduct ed	Max. tune-up	Measured	Reported	Measured	Reported	Power
Ch.	MHz	Mode	Side	Position	No./ Note	Power (dBm)	Power (dBm)	SAR(10g) (W/kg)	SAR(10g)(W/kg)	SAR(1g) (W/kg)	SAR(1g) (W/kg)	Drift (dB)
20850	2510	1RB_Low	Left	Touch	Fig.19	23.05	23.9	0.086	0.10	0.169	0.21	-0.09

Note1: The LTE mode is QPSK_20MHz.

Table 14.2-20: SAR Values (LTE Band7 - Body)

		1	Ambient Te	mperature	22.9°C	Liqui	d Temperat	ure: 22.5°C			
Frequency		Mode	Test	Figure	Conduc	Max. tune-up	Measured SAR(10g)	Reported SAR(10g)	Measured SAR(1g)	Reported SAR(1g)	Power Drift
Ch.	MHz		Position	No./ Note	Power (dBm)	Power (dBm)	(W/kg)	(W/kg)	(W/kg)	(W/kg)	(dB)
21350	2560	1RB_Mid	Bottom	Fig.20	19.04	19.9	0.515	0.63	1.08	1.32	0.11

Note1: The distance between the EUT and the phantom bottom is 10mm.

Note2: The LTE mode is QPSK_20MHz.

Table 14.2-21: SAR Values (LTE Band7 - Body)

			Ambient Te	mperatu	ıre: 22.9°C	Liqui	d Temperat	ure: 22.5°C			
Freque	ency MHz	Mode	Test Position	Figure No./ Note	Conducted Power (dBm)	Max. tune-up Power (dBm)	Measured SAR(10g) (W/kg)	Reported SAR(10g) (W/kg)	Measured SAR(1g) (W/kg)	Reported SAR(1g) (W/kg)	Power Drift (dB)
20850	2510	1RB_Low	Rear	Fig.21	23.05	23.9	0.240	0.29	0.422	0.51	0.01

Note1: The distance between the EUT and the phantom bottom is 15mm.

Note2: The LTE mode is QPSK_20MHz.

Table 14.2-22: SAR Values (LTE Band12 - Head)

			Amb	ient Tempe	erature: 2	22.9°C	Liquid	Temperatui	re: 22.5°C			
Frequ Ch.	iency MHz	Mode	Side	Test Position	Figure No./ Note	Conduct ed Power (dBm)	Max. tune-up Power (dBm)	Measured SAR(10g) (W/kg)	Reported SAR(10g) (W/kg)	Measured SAR(1g) (W/kg)	Reported SAR(1g) (W/kg)	Power Drift (dB)
23060	704	1RB_High	Right	Touch	Fig.22	23.02	24	0.121	0.15	0.152	0.19	0.00

Note1: The LTE mode is QPSK_10MHz.

Table 14.2-23: SAR Values (LTE Band12 - Body)

		А	mbient Te	mperatu	ıre: 22.9°C	Liqui	d Tempera	ture: 22.5°0			
Freque	ency		Test	Figure	Conducted	Max. tune-up	Measured	Reported	Measured	Reported	Power
Ch.	MHz	Mode	Position	No./ Note	Power (dBm)	Power (dBm)	SAR(10g) (W/kg)	SAR(10g) (W/kg)	SAR(1g) (W/kg)	SAR(1g) (W/kg)	Drift (dB)
23060	704	1RB_High	Rear	Fig.23	23.02	24	0.272	0.34	0.378	0.47	0.00

Note1: The distance between the EUT and the phantom bottom is 10mm.

Note2: The LTE mode is QPSK_10MHz.

Table 14.2-24: SAR Values (LTE Band13 - Head)

			Aml	bient Tem	perature:	22.9 °C	Liquid	Temperatur	e: 22.5°C			
Freque	ency MHz	Mode	Side	Test Position	Figure No./ Note	Conducted Power (dBm)	Max. tune-up Power (dBm)	Measured SAR(10g) (W/kg)	Reported SAR(10g) (W/kg)	Measured SAR(1g) (W/kg)	Reported SAR(1g) (W/kg)	Powe r Drift (dB)
23230	782	1RB_Low	Right	Touch	Fig.24	23.21	24	0.155	0.19	0.197	0.24	0.01

Note1: The LTE mode is QPSK_10MHz.

Table 14.2-25: SAR Values (LTE Band13 - Body)

			iu	310 I III <u>-</u>	20. 0/ 11. 10	11400 (=11	- Banaro	204,			
		,	Ambient Te	mperatu	re: 22.9 °C	Liqui	id Temperat	ture: 22.5°0	C		
Frequency			Test	Figure	Conducted	Max. tune-up	Measured	Reported	Measured	Reported	Power
Ch.	MHz	Mode	Position	No./ Note	Power (dBm)	Power (dBm)	SAR(10g) (W/kg)	SAR(10g) (W/kg)	SAR(1g) (W/kg)	SAR(1g) (W/kg)	Drift (dB)
23230	782	1RB_Low	Rear	Fig.25	23.21	24	0.288	0.35	0.400	0.48	0.04

Note1: The distance between the EUT and the phantom bottom is 10mm.

Note2: The LTE mode is QPSK_10MHz.

Table 14.2-26: SAR Values (LTE Band14 - Head)

			Am	bient Tem	perature:	22.9 °C	Liquid	Temperatur	e: 22.5°C			
Freque	Mode Side Test No./ Por		Conducted Power (dBm)	Max. tune-up Power (dBm)	Measured SAR(10g) (W/kg)	Reported SAR(10g) (W/kg)	Measured SAR(1g) (W/kg)	Reported SAR(1g) (W/kg)	Powe r Drift (dB)			
23330	793	1RB_ Mid	Right	Touch	Fig.26	23.06	24	0.143	0.18	0.183	0.23	0.07

Note1: The LTE mode is QPSK_10MHz.

Table 14.2-27: SAR Values (LTE Band14 - Body)

		ŀ	Ambient Te	mperatu	re: 22.9 °C	Liqui	d Tempera	ture: 22.5°0			
Freque	ency		Test	Figure	Conducted	Max. tune-up	Measured	Reported	Measured	Reported	Power
Ch.	MHz	Mode	Position	No./ Note	Power (dBm)	Power (dBm)	SAR(10g) (W/kg)	SAR(10g) (W/kg)	SAR(1g) (W/kg)	SAR(1g) (W/kg)	Drift (dB)
23330	793	1RB_ Mid	Rear	Fig.27	23.06	24	0.263	0.33	0.370	0.46	0.01

Note1: The distance between the EUT and the phantom bottom is 10mm.

Note2: The LTE mode is QPSK_10MHz.

Table 14.2-28: SAR Values (LTE Band30 - Head)

			Ambie	ent Tempe	rature: 2	22.9°C	Liquid	Temperatur	e: 22.5°C			
Frequ		Mode	Side	Test Position	Figure No./	Conduct ed Power	Max. tune-up Power	Measured SAR(10g)	Reported SAR(10g)	Measured SAR(1g)	Reported SAR(1g)	Powe r Drift
Ch.	MHz				Note	(dBm)	(dBm)	(W/kg)	(W/kg)	(W/kg)	(W/kg)	(dB)
27710	2310	1RB_High	Right	Touch	Fig.28	23.14	24	0.046	0.06	0.083	0.10	0.17

Note1: The LTE mode is QPSK_10MHz.

Table 14.2-29: SAR Values (LTE Band30 - Body)

			iu	010 1 11 <u>2</u> 2	.0. 0/ 1/1 70	11400 (=11	_ Banaoo	204,			
		А	mbient Te	mperature	e: 22.9°C	Liqui	id Temperat	ture: 22.5°0	C		
Freque	ency		Test	Figure	Conduct	Max. tune-up	Measured	Reported	Measured	Reported	Power
Ch.	MHz	Mode	Position	No./ Note	ed Power (dBm)	Power (dBm)	SAR(10g) (W/kg)	SAR(10g) (W/kg)	SAR(1g) (W/kg)	SAR(1g) (W/kg)	Drift (dB)
27710	2310	25RB_High	Bottom	Fig.29	21.27	22	0.603	0.71	1.15	1.36	0.01

Note1: The distance between the EUT and the phantom bottom is 10mm.

Note2: The LTE mode is QPSK_10MHz.

Table 14.2-30: SAR Values (LTE Band30 - Body)

			А	mbient Te	mperatur	e: 22.9°C	Liqui	d Temperat	ture: 22.5°0	7		
	Freque	ency		Test	Figure	Conduct	Max. tune-up	Measured	Reported	Measured	Reported	Power
	Ch.	MHz	Mode	Position	No./ Note	ed Power (dBm)	Power (dBm)	SAR(10g) (W/kg)	SAR(10g) (W/kg)	SAR(1g) (W/kg)	SAR(1g) (W/kg)	Drift (dB)
ſ	27710	2310	1RB_High	Rear	Fig.30	23.14	24	0.187	0.23	0.325	0.40	0.13

Note1: The distance between the EUT and the phantom bottom is 15mm.

Note2: The LTE mode is QPSK_10MHz.

Table 14.2-31: SAR Values (LTE Band41 - Head)

			Ambie	nt Tempe	rature: 2	22.9 °C	Liquid	Temperatu	re: 22.5°C			
Freq Ch.	uency MHz	Mode	Side	Test Position	Figure No./ Note	Conduct ed Power (dBm)	Max. tune-up Power (dBm)	Measured SAR(10g) (W/kg)	Reported SAR(10g) (W/kg)	Measured SAR(1g) (W/kg)	Reported SAR(1g) (W/kg)	Power Drift (dB)
40185	2549.5	1RB_Low	Left	Touch	Fig.31	23.09	24	0.055	0.07	0.113	0.14	0.14

Note1: The LTE mode is QPSK_20MHz.

Table 14.2-32: SAR Values (LTE Band41 - Body)

						•					
		А	mbient Te	mperatu	re: 22.9 °C	Liqui	id Tempera	ture: 22.5°0	C		
Freq Ch.	uency MHz	Mode	Test Position	Figure No./ Note	Conducted Power (dBm)	Max. tune-up Power (dBm)	Measured SAR(10g) (W/kg)	Reported SAR(10g) (W/kg)	Measured SAR(1g) (W/kg)	Reported SAR(1g) (W/kg)	Power Drift (dB)
40620	2593	1RB_Low	Bottom	Fig.32	23.06	24	0.436	0.54	0.929	1.15	0.08

Note1: The distance between the EUT and the phantom bottom is 10mm.

Note2: The LTE mode is QPSK_20MHz.

Table 14.2-33: SAR Values (LTE band66 - Head)

			Ambi	ent Temp	erature:	22.9°C	Liquid	Temperatur	e: 22.5°C	_		
Freque	ency			To et	Fig	Conducted	Max.	Measured	Reported	Measured	Reported	Power
Ch.	MHz	Mode	Side	Test Position	Figure No.	Power (dBm)	Power (dBm)	SAR(10g) (W/kg)	SAR(10g) (W/kg)	SAR(1g) (W/kg)	SAR(1g) (W/kg)	Drift (dB)
132322	1745	1RB_Mid	Left	Touch	Fig.33	23.36	24	0.081	0.09	0.133	0.15	0.02

Note1: The LTE mode is QPSK_20MHz.

Table 14.2-34: SAR Values (LTE band66 - Body)

		Am	nbient Ten	nperatur	e: 22.9°C	Liqui	d Temperat	ture: 22.5°C			
Freque	ency		Test	Figure	Conducted	Max.	Measured	Reported	Measured	Reported	Power
Ch.	MHz	Mode	Position	No./ Note	Power (dBm)	Power (dBm)	SAR(10g) (W/kg)	SAR(10g) (W/kg)	SAR(1g) (W/kg)	SAR(1g) (W/kg)	Drift (dB)
132072	1720	50RB_Middle	Rear	Fig.34	21.02	22	0.448	0.56	0.812	1.02	-0.05

Note1: The distance between the EUT and the phantom bottom is 10mm.

Note2: The LTE mode is QPSK_20MHz.

Table 14.2-35: SAR Values (LTE band66 - Body)

		An	nbient Ten	nperatur	e: 22.9°C	Liqui	d Temperat	ture: 22.5°0	7		
Freque	ency		Test	Figure	Conducted	Max.	Measured	Reported	Measured	Reported	Power
Ch.	MHz	Mode	Position	No./ Note	Power (dBm)	Power (dBm)	SAR(10g) (W/kg)	SAR(10g) (W/kg)	SAR(1g) (W/kg)	SAR(1g) (W/kg)	Drift (dB)
132322	1745	1RB_Mid	Rear	Fig.35	23.36	24	0.271	0.31	0.460	0.53	0.09

Note1: The distance between the EUT and the phantom bottom is 15mm.

Note2: The LTE mode is QPSK_20MHz.

14.3 WLAN Evaluation for 2.4G

According to the KDB248227 D01, SAR is measured for 2.4GHz 802.11b DSSS using the <u>initial</u> test position procedure.

Head Evaluation

Table 14.3-1: SAR Values (WLAN - Head) - 802.11b (Fast SAR)

			Amb	pient Ten	nperature: 2	2.9°C L	iquid Tempe	erature: 22.	5°C			
Frequ	Frequency		Test		Figure Conducted	Max. tune-up	Measured	Reported	Measured	Reported	Power	
		Side		No./	Power	•	SAR(10g)	SAR(10g)	SAR(1g)	SAR(1g)(Drift	
MHz	Hz Ch. Position	Note	(dBm)	Power (dBm)	(W/kg)	(W/kg)	(W/kg)	W/kg)	(dB)			
2437	6	Left	Touch	/	17.52	18.5	0.212	0.27	0.435	0.55	-0.09	
2437	6	Left	Tilt	/	17.52	18.5	0.171	0.21	0.379	0.47	0.17	
2437	6	Right	Touch	/	17.52	18.5	0.103	0.13	0.204	0.26	-0.02	
2437	6	Right	Tilt	/	17.52	18.5	0.101	0.13	0.205	0.26	0.06	

As shown above table, the <u>initial test position</u> for head is "Left Touch". So the head SAR of WLAN is presented as below:

Table 14.3-2: SAR Values (WLAN - Head) – 802.11b (Full SAR)

			Amb	ient Ten	nperature: 2	2.9°C L	iquid Tempe	erature: 22.	5°C		
Freque	Frequency		Test	Figure	Conducted	May tupo up	Measured	Reported	Measured	Reported	Power
	Side		No./	Power	Max. tune-up Power (dBm)	SAR(10g)	SAR(10g)	SAR(1g)	SAR(1g)(Drift	
MHz	Dooit	Position	Note	(dBm)		(W/kg)	(W/kg)	(W/kg)	W/kg)	(dB)	
					(- /		(' 3/	(- 3/	(- 3/	. 37	(- /
2437	6	Left	Touch	Fig.36	17.52	18.5	0.216	0.27	0.464	0.58	-0.09
2437	6	Left	Tilt	/	17.52	18.5	0.179	0.22	0.408	0.51	0.17

Note1: When the <u>reported</u> SAR of the <u>initial test position</u> is > 0.4 W/kg, SAR is repeated for the 802.11 transmission mode configuration tested in the <u>initial test position</u> using subsequent highest estimated 1-g SAR conditions determined by area scans, on the highest maximum output power channel, until the <u>reported</u> SAR is ≤ 0.8 W/kg.

Note2: For all positions/configurations tested using the <u>initial test position</u> and subsequent test positions, when the <u>reported</u> SAR is > 0.8 W/kg, SAR is measured for these test positions/configurations on the subsequent next highest measured output power channel until the <u>reported</u> SAR is ≤ 1.2 W/kg or all required channels are tested.

According to the KDB248227 D01, The reported SAR must be scaled to 100% transmission duty factor to determine compliance at the maximum tune-up tolerance limit. The scaled reported SAR is presented as below.

Table 14.3-3: SAR Values (WLAN - Head) – 802.11b (Scaled Reported SAR)

		Ambier	nt Temperat	ure: 22.9 °C	Liquid Temperature: 22.5°C				
Freque	Frequency		Test	Actual duty	maximum	Reported SAR	Scaled reported SAR		
MHz	Ch.	Side	Position	factor	duty factor	(1g)(W/kg)	(1g)(W/kg)		
2437	2437 6		Touch	97.69%	100%	0.58	0.59		

SAR is not required for OFDM because the 802.11b adjusted SAR \leq 1.2 W/kg.

Body Evaluation

Table 14.3-4: SAR Values (WLAN - Body) - 802.11b (Fast SAR)

		А	mbient T	emperature	22.9°C	Liquid Temperature: 22.5°C					
Freque	encv	Test	Figure	Conducted	Max. tune-up	Measured	Reported	Measured	Reported	Power	
- 1		Position	No./	Power	Power (dBm)	SAR(10g)	SAR(10g)	SAR(1g)	SAR(1g)(Drift	
MHz	Ch.	Position	Note	(dBm)		(W/kg)	(W/kg)	(W/kg)	W/kg)	(dB)	
2437	6	Front	/	18.50	20	0.036	0.05	0.063	0.09	0.04	
2437	6	Rear	/	18.50	20	0.040	0.06	0.077	0.11	0.11	
2437	6	Right	/	18.50	20	0.058	80.0	0.118	0.17	-0.03	
2437	6	Тор	/	18.50	20	0.021	0.03	0.041	0.06	0.17	

As shown above table, the <u>initial test position</u> for body is "Right". So the body SAR of WLAN is presented as below:

Table 14.3-5: SAR Values (WLAN - Body) - 802.11b (Full SAR)

			Α	mbient T	emperature:	Liquid Temperature: 22.5°C					
	Frequency		Tool	Figure			Measured	Reported	Measured	Reported	Power
			Test	No./	Power	Max. tune-up	SAR(10g)	SAR(10g)	SAR(1g)	SAR(1g)(Drift
	MHz	Ch.	Position	Note	(dBm)	Power (dBm)	(W/kg)	(W/kg)	(W/kg)	W/kg)	(dB)
I	2437	6	Right	Fig.37	18.50	20	0.057	0.08	0.121	0.17	-0.03

Note1: When the <u>reported</u> SAR of the <u>initial test position</u> is > 0.4 W/kg, SAR is repeated for the 802.11 transmission mode configuration tested in the <u>initial test position</u> using subsequent highest estimated 1-g SAR conditions determined by area scans, on the highest maximum output power channel, until the <u>reported</u> SAR is $\leq 0.8 \text{ W/kg}$.

Note2: For all positions/configurations tested using the <u>initial test position</u> and subsequent test positions, when the <u>reported</u> SAR is > 0.8 W/kg, SAR is measured for these test positions/configurations on the subsequent next highest measured output power channel until the <u>reported</u> SAR is ≤ 1.2 W/kg or all required channels are tested.

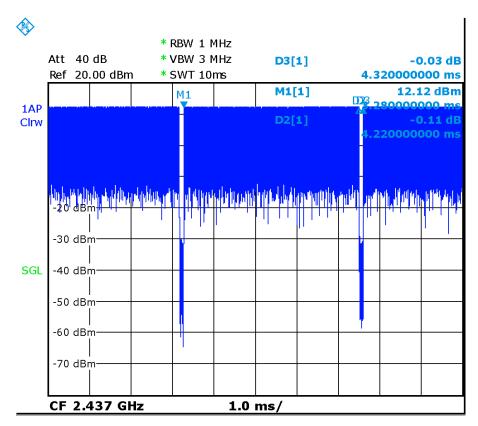
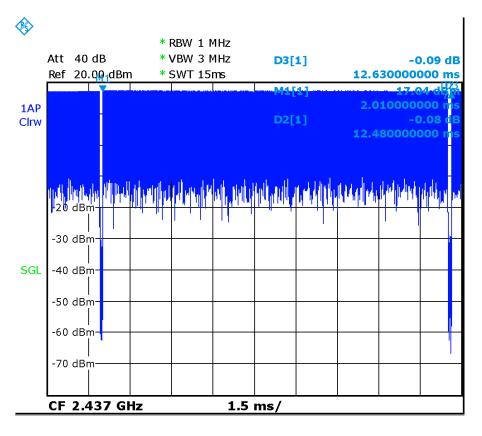

According to the KDB248227 D01, The reported SAR must be scaled to 100% transmission duty factor to determine compliance at the maximum tune-up tolerance limit. The scaled reported SAR is presented as below.

Table 14.3-6: SAR Values (WLAN - Body) – 802.11b (Scaled Reported SAR)


	Ambient Temperature: 22.9 °C Liquid Temperature: 22.5 °C											
Freque	ency	Test	Actual duty	maximum duty	Reported SAR	Scaled reported SAR						
MHz Ch.		Position	factor	factor	(1g)(W/kg)	(1g)(W/kg)						
2437	6	Right	98.81%	100%	0.17	0.17						

SAR is not required for OFDM because the 802.11b adjusted SAR \leq 1.2 W/kg.

Picture 14.1 Duty factor plot for head

Picture 14.2 Duty factor plot for body

14.4 WLAN Evaluation For 5G

Table 14.4-1: OFDM mode specified maximum output power of WLAN antenna

802.11 mode	а	g	n			ac				
Ch. BW(MHz)	20	20	20	20 40		40	80	160		
U-NII-1	Χ		X	Х	X	X	X			
U-NII-2A	Χ		Х	Х	Х	Х	Х			
U-NII-2C	Х		Х	Х	Х	Х	Х			
U-NII-3	Х		Х	Х	Х	Х	Х			
§ 15.247 (5.8 GHz)										

X: maximum(conducted) output power(mW), including tolerance, specified for production units

Table 14.4-2: Maximum output power specified of WLAN antenna

802.11 mode	а	g	ı	า	ac				
Ch. BW(MHz)	20	20	20	20 40		40	80	160	
U-NII-1	71		50	50	25	25	25		
U-NII-2A	63		50	50	25	25	25		
U-NII-2C	63		50	50	25	25	25		
U-NII-3	71		50	50	25	25	25		
§ 15.247 (5.8 GHz)									

- The maximum output power specified for production units is the same for all channels, modulations and data rates in each channel bandwidth configuration of the 802.11a/g/n/ac modes.
- The blue highlighted cells represent highest output configurations in each standalone or aggregated frequency band, with tune-up tolerance included.

Table 14.4-3: Maximum output power measured of WLAN antenna, for the applicable OFDM configurations according to the default power measurement procedures for selection initial test configurations

802.11 mode	а	n		ac			
BW(MHz)	20	20	40	20	40	80	
11 111 4	36/40/44/48	36/40/44/48	38/46	36/40/44/48	38/46	42	
U-NII-1	67/66/60/45	Lower power	Lower power	Lower power	Lower power	Lower power	
U-NII-2A	52/56/60/ <mark>64</mark>	52/56/60/64	54/62	52/56/60/64	54/62	58	
U-MII-ZA	59/62/62/ <mark>63</mark>	Lower power	Lower power	Lower power	Lower power	Lower power	
U-NII-2C	100/104/108/112 58/54/51/52 116/120/124/128 54/57/59/61 132/136/140/144 62/61/60/59	100/104/108/112 116/132/136/140 Lower power	102/110/134 Lower power	100/104/108 /112 116/132/136/ 140 Lower power	102/110/134 Lower power	106 Lower power	
U-NII-3	149/153/ <mark>157</mark> /161/165 63/63/<mark>67/</mark>67/67	149/153/157/16 1/165 Lower power	151/159 Lower power	149/153/157 /161/165 Lower power	151/159 Lower power	155 Lower power	

Channels with measured maximum power within 0.25dB are considered to have the same measured output.
 Channels selected for initial test configuration are highlighted in yellow.

Table 14.4-4: Reported SAR of initial test configuration for Head

802.11 mode	а	n		ас			
BW(MHz)	20	20	40	20	40	80	
U-NII-1	36/40/44/48 U-NII-2A exclusion applied	36/40/44/48	38/46	36/40/44/48	38/46	42	
U-NII-2A	52/56/ <mark>60/64</mark> <mark>1.04</mark> / <mark>1.00</mark>	52/56/60/64	54/62	52/56/60/64	54/62	58	
U-NII-2C	100/104/108/112/116/120/124 / <mark>128</mark> / <mark>132</mark> /136/140/144 0.84 / <mark>0.96</mark>	100/104/108/112 116/132/136/140	102/110/118/ 126/134	100/104/108/112 116/132/136/140	102/110 /134	106	
U-NII-3	149/153/ <mark>157/161</mark> /165 <mark>0.99</mark> / <mark>1.03</mark>	149/153/157/161/ 165	151/159	149/153/157/161 /165	151/159	155	

U-NII-1 and U-NII-2A bands have the same specified maximum output and tolerance; SAR is measured for U-NII-2A band first. Adjusted SAR of U-NII-2A band is ≤ 1.2W/kg, SAR is not required for U-NII-1 band.

<u>Initial test configuration</u> SAR for U-NII-2A band is > 0.8 W/kg, SAR is required for next highest output channel in <u>initial</u> test configuration. The next highest output channel SAR is ≤ 1.2 W/kg, SAR is not required for subsequent next highest output channel. Similar circumstances apply to U-NII-2C band and U-NII-3 band.

The green highlighted channels are next highest measured output channel in the initial test configuration. Highest measured output power channel tested initially are in yellow highlight.

Table 14.4-5: Reported SAR of initial test configuration for Body

802.11 mode	а	n		ac			
BW(MHz)	20	20	40	20	40	80	
U-NII-1	36/40/44/48 U-NII-2A exclusion applied	36/40/44/48	38/46	36/40/44/48	38/46	42	
U-NII-2A	52/56/60/ <mark>64</mark> 0.11	52/56/60/64	54/62	52/56/60/64	54/62	58	
U-NII-2C	100/104/108/112/116/120/12 4/128/ <mark>132</mark> /136/140/144 0.16	100/104/108/112 116/132/136/140	102/110/118/ 126/134	100/104/108/112 116/132/136/140	102/110 /134	106	
U-NII-3	149/153/ <mark>157</mark> /161/165 0.15	149/153/157/161/ 165	151/159	149/153/157/161 /165	151/159	155	

U-NII-1 and U-NII-2A bands have the same specified maximum output and tolerance; SAR is measured for U-NII-2A band first. Adjusted SAR of U-NII-2A band is ≤ 1.2W/kg, SAR is not required for U-NII-1 band. Highest measured output power channel tested initially are in yellow highlight.

Table 14.4-6: SAR Values (WLAN - Head) - 802.11a 18Mbps

Frequ	uency		Test	Figure	Conducted	Max. tune-up		Reported	Measured	Reported	Power
-		Side			Power		SAR(10g)	SAR(10g)	SAR(1g)	SAR(1g)	Drift
MHz	Ch.		Position	No.	(dBm)	Power (dBm)	(W/kg)	(W/kg)	(W/kg)	(W/kg)	(dB)
64	5320	Left	Touch	1	17.99	18	0.268	0.27	0.885	0.89	0.17
64	5320	Left	Tilt	/	17.99	18	0.230	0.23	0.758	0.76	0.03
64	5320	Right	Touch	/	17.99	18	0.263	0.26	0.803	0.80	0.01
64	5320	Right	Tilt	/	17.99	18	0.244	0.24	0.790	0.79	0.03
60	5300	Left	Touch	Fig.38	17.95	18	0.255	0.26	0.913	0.92	0.07
132	5660	Left	Touch	/	17.89	18	0.287	0.29	0.824	0.85	0.13
132	5660	Left	Tilt	/	17.89	18	0.275	0.28	0.653	0.67	0.08
132	5660	Right	Touch	/	17.89	18	0.250	0.26	0.693	0.71	0.06
132	5660	Right	Tilt	/	17.89	18	0.264	0.27	0.638	0.65	0.05
128	5640	Left	Touch	/	17.87	18	0.254	0.26	0.717	0.74	-0.06
157	5785	Left	Touch	/	18.29	18.5	0.299	0.31	0.826	0.87	-0.02
157	5785	Left	Tilt	/	18.29	18.5	0.268	0.28	0.716	0.75	0.11
157	5785	Right	Touch	/	18.29	18.5	0.252	0.26	0.663	0.70	0.05
157	5785	Right	Tilt	/	18.29	18.5	0.239	0.25	0.654	0.69	-0.12
161	5805	Left	Touch	/	18.27	18.5	0.305	0.32	0.867	0.91	0.18

Table 14.4-7: SAR Values (WLAN - Body) - 802.11a 18Mbps

				14.4 7. 0/	Ait Body,	00=:::	TOMBPS			
Frequ	uency	Test	Figure	Conducted	Max. tune-up	Measured	Reported	Measured	Reported	Power
-	,			Power	-	SAR(10g)	SAR(10g)	SAR(1g)	SAR(1g)	Drift
MHz	Ch.	Position	No.	(dBm)	Power (dBm)	(W/kg)	(W/kg)	(W/kg)	(W/kg)	(dB)
64	5320	Front	/	17.99	18	<0.01	<0.01	<0.01	<0.01	/
64	5320	Rear	/	17.99	18	0.041	0.04	0.100	0.10	0.09
64	5320	Right	/	17.99	18	<0.01	<0.01	<0.01	<0.01	/
64	5320	Тор	/	17.99	18	0.028	0.03	0.084	0.08	0.05
132	5660	Front	/	17.89	18	<0.01	<0.01	<0.01	<0.01	/
132	5660	Rear	Fig.39	17.89	18	0.054	0.06	0.133	0.14	0.08
132	5660	Right	/	17.89	18	0.002	0.00	0.012	0.01	0.06
132	5660	Тор	/	17.89	18	0.042	0.04	0.118	0.12	0.05
157	5785	Front	/	18.29	18.5	<0.01	<0.01	<0.01	<0.01	/
157	5785	Rear	/	18.29	18.5	0.051	0.05	0.127	0.13	0.06
157	5785	Right	/	18.29	18.5	<0.01	<0.01	<0.01	<0.01	/
157	5785	Тор	/	18.29	18.5	0.027	0.03	0.104	0.11	0.09

Note: The distance between the EUT and the phantom bottom is 10mm.

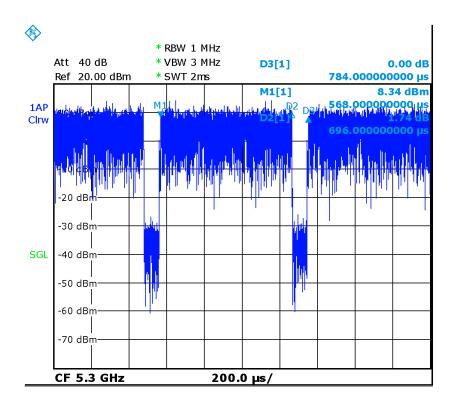
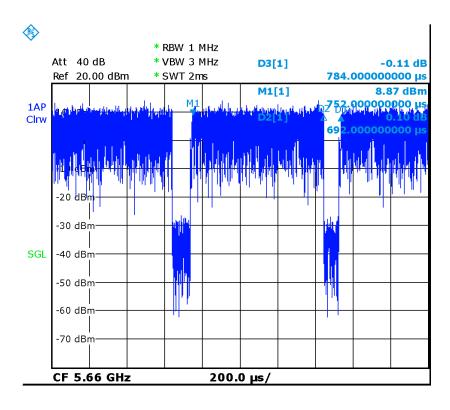
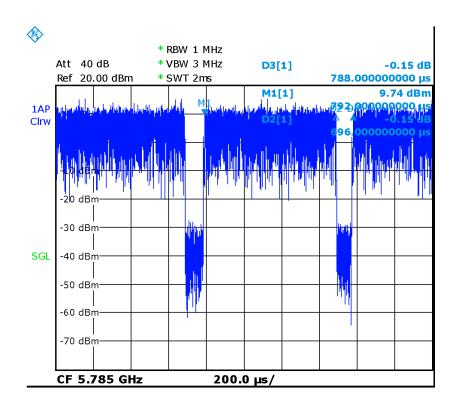

According to the KDB248227 D01, The reported SAR must be scaled to 100% transmission duty factor to determine compliance at the maximum tune-up tolerance limit. The scaled reported SAR is presented as below.

Table 14.4-8: SAR Values (WLAN - Head) – 802.11a 18Mbps (Scaled Reported SAR)

Freque MHz	ency Ch.	Side	1001 1101001 0101 11101		maximum duty factor	Reported SAR (1g) (W/kg)	Scaled reported SAR (1g) (W/kg)
5320	64	Left	Touch	88.78%	100%	0.89	1.00
5300	60	Left	Touch	88.78%	100%	0.92	1.04
5660	132	Left	Touch	88.27%	100%	0.85	0.96
5640	128	Left	Touch	88.27%	100%	0.74	0.84
5785	157	Left	Touch	88.32%	100%	0.87	0.99
5805	161	Left	Touch	88.32%	100%	0.91	1.03
5320	64	Right	Touch	88.78%	100%	0.80	0.90


Table 14.4-9: SAR Values (WLAN - Body) - 802.11a 18Mbps (Scaled Reported SAR)

			<u> </u>			<u> </u>	
Frequ	Frequency		D	Actual	maximum	Reported SAR	Scaled reported
MHz	Ch.	Position	(mm)	duty factor	duty factor	(1g) (W/kg)	SAR (1g) (W/kg)
5320	64	Rear	10	88.78%	100%	0.10	0.11
5660	132	Rear	10	88.27%	100%	0.14	0.16
5785	157	Rear	10	88.32%	100%	0.13	0.15



Picture 14.3 The plot of duty factor for U-NII-2A

Picture 14.4 The plot of duty factor for U-NII-2C

Picture 14.5 The plot of duty factor for U-NII-3

15 SAR Measurement Variability

SAR measurement variability must be assessed for each frequency band, which is determined by the SAR probe calibration point and tissue-equivalent medium used for the device measurements. When both head and body tissue-equivalent media are required for SAR measurements in a frequency band, the variability measurement procedures should be applied to the tissue medium with the highest measured SAR, using the highest measured SAR configuration for that tissue-equivalent medium.

The following procedures are applied to determine if repeated measurements are required.

- 1) Repeated measurement is not required when the original highest measured SAR is < 0.80 W/kg; steps2) through 4) do not apply.
- 2) When the original highest measured SAR is ≥ 0.80 W/kg, repeat that measurement once.
- 3) Perform a second repeated measurement only if the ratio of largest to smallest SAR for the original and first repeated measurements is > 1.20 or when the original or repeated measurement is ≥ 1.45W/kg (~ 10% from the 1-g SAR limit).
- 4) Perform a third repeated measurement only if the original, first or second repeated measurement is ≥1.5 W/kg and the ratio of largest to smallest SAR for the original, first and second repeated measurements is > 1.20.

Table 15.1: SAR Measurement Variability for Body PCS1900 (1g)

Fred	luency	Toot	Specing	Original First		The	Second
Ch.	MHz	Test Spacin Position (mm)		SAR (W/kg)	Repeated SAR (W/kg)	The Ratio	Repeated SAR (W/kg)
512	1850.2	Bottom	10	0.844	0.825	1.02	1

Table 15.2: SAR Measurement Variability for Body W1700 (1g)

Fred	luency	Toot	Specing	Original	First	The	Second
Ch.	MHz	Test Position	Spacing (mm)	SAR (W/kg)	Repeated SAR (W/kg)	Ratio	Repeated SAR (W/kg)
1738	1752.6	Rear	10	0.927	0.904	1.03	1

Table 15.3: SAR Measurement Variability for Body W1900 (1g)

Freq	luency	Test	Spacing	Original	First	The	Second
Ch.	MHz	Position	Spacing (mm)	SAR (W/kg)	Repeated SAR (W/kg)	Ratio	Repeated SAR (W/kg)
9800	1880	Bottom	10	1.04	1.01	1.03	1

Table 15.4: SAR Measurement Variability for Body LTE B2 (1g)

Frequ	ency		Test	Spacing	Original	First	The	Second
Ch.	MHz	Mode	Position	(mm)	SAR (W/kg)	Repeated SAR (W/kg)	Ratio	Repeated SAR (W/kg)
19100	1900	50RB_Low	Bottom	10	1.10	1.05	1.05	1

Table 15.5: SAR Measurement Variability for Body LTE B7 (1g)

Frequ	ency		Test Spac	Spacing	Original	First	The	Second
Ch.	MHz	Mode	Position	(mm)	SAR (W/kg)	Repeated SAR (W/kg)	Ratio	Repeated SAR (W/kg)
21350	2560	1RB_Mid	Bottom	10	1.08	1.06	1.02	/

Table 15.6: SAR Measurement Variability for Body LTE B30 (1g)

Frequ	ency		Test Position	Spacing	Original	First	The	Second
Ch.	MHz	Mode		(mm)	SAR (W/kg)	Repeated SAR (W/kg)	Ratio	Repeated SAR (W/kg)
27710	2310	25RB_High	Bottom	10	1.15	1.11	1.04	1

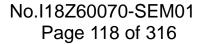
Table 15.7: SAR Measurement Variability for Body LTE B41 (1g)

Frequ	ency		Test	Spacing Orig	Original	First	The	Second
Ch.	MHz	Mode	Position	(mm)	SAR (W/kg)	Repeated SAR (W/kg)	Ratio	Repeated SAR (W/kg)
40620	2593	1RB_Low	Bottom	10	0.929	0.915	1.02	1

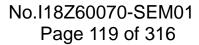
Table 15.8: SAR Measurement Variability for Body LTE B66 (1g)

Freque	ency		Test	Spacing	Original	First	The	Second
Ch.	MHz	Mode	Position	(mm)	SAR (W/kg)	Repeated SAR (W/kg)	Ratio	Repeated SAR (W/kg)
132072	1720	50RB_Mid	Rear	10	0.812	0.798	1.02	1

Table 15.9: SAR Measurement Variability for Head WiFi-5G (1g)


Freq	uency			Test	Original	First	The	Second
Ch.	MHz	Mode	Side	Position	SAR (W/kg)	Repeated SAR (W/kg)	Ratio	Repeated SAR (W/kg)
60	5300	11a-18M	Left	Touch	0.913	0.901	1.01	1

16 Measurement Uncertainty


16.1 Measurement Uncertainty for Normal SAR Tests (300MHz~3GHz)

	i weasurement of	icci te	inity for 140	illiai OAIX	10313	(300)	VII 12~	<u> 30112</u>			
No.	Error Description	Type	Uncertainty	Probably	Div.	(Ci)	(Ci)	Std.	Std.	Degree	
			value	Distribution		1g	10g	Unc.	Unc.	of	
								(1g)	(10g)	freedom	
Meas	Measurement system										
1	Probe calibration	В	6.0	N	1	1	1	6.0	6.0	8	
2	Isotropy	В	4.7	R	$\sqrt{3}$	0.7	0.7	1.9	1.9	∞	
3	Boundary effect	В	1.0	R	$\sqrt{3}$	1	1	0.6	0.6	∞	
4	Linearity	В	4.7	R	$\sqrt{3}$	1	1	2.7	2.7	∞	
5	Detection limit	В	1.0	N	1	1	1	0.6	0.6	∞	
6	Readout electronics	В	0.3	R	$\sqrt{3}$	1	1	0.3	0.3	∞	
7	Response time	В	0.8	R	$\sqrt{3}$	1	1	0.5	0.5	∞	
8	Integration time	В	2.6	R	$\sqrt{3}$	1	1	1.5	1.5	∞	
9	RF ambient conditions-noise	В	0	R	$\sqrt{3}$	1	1	0	0	8	
10	RFambient conditions-reflection	В	0	R	$\sqrt{3}$	1	1	0	0	8	
11	Probe positioned mech. restrictions	В	0.4	R	$\sqrt{3}$	1	1	0.2	0.2	&	
12	Probe positioning with respect to phantom shell	В	2.9	R	$\sqrt{3}$	1	1	1.7	1.7	∞	
13	Post-processing	В	1.0	R	$\sqrt{3}$	1	1	0.6	0.6	∞	
		•	Test	sample related	d	•	•				
14	Test sample positioning	A	3.3	N	1	1	1	3.3	3.3	71	
15	Device holder uncertainty	A	3.4	N	1	1	1	3.4	3.4	5	
16	Drift of output power	В	5.0	R	$\sqrt{3}$	1	1	2.9	2.9	∞	
		I	Phan	tom and set-u	p	I	I	I		I .	
17	Phantom uncertainty	В	4.0	R	$\sqrt{3}$	1	1	2.3	2.3	∞	
18	Liquid conductivity (target)	В	5.0	R	$\sqrt{3}$	0.64	0.43	1.8	1.2	∞	
19	Liquid conductivity (meas.)	A	2.06	N	1	0.64	0.43	1.32	0.89	43	
20	Liquid permittivity (target)	В	5.0	R	$\sqrt{3}$	0.6	0.49	1.7	1.4	∞	
21	Liquid permittivity (meas.)	A	1.6	N	1	0.6	0.49	1.0	0.8	521	

									•	
(Combined standard uncertainty	$u_c' =$	$= \sqrt{\sum_{i=1}^{21} c_i^2 u_i^2}$					9.55	9.43	257
_	anded uncertainty fidence interval of	ı	$u_e = 2u_c$					19.1	18.9	
16.	2 Measurement Ui	ncerta	inty for No	rmal SAR	Tests	(3~6	GHz)			
No.	Error Description	Type	Uncertainty	Probably	Div.	(Ci)	(Ci)	Std.	Std.	Degree
			value	Distribution		1g	10g	Unc. (1g)	Unc. (10g)	of freedom
Mea	surement system							(18)	(108)	necdom
1	Probe calibration	В	6.55	N	1	1	1	6.55	6.55	∞
2	Isotropy	В	4.7	R	$\sqrt{3}$	0.7	0.7	1.9	1.9	∞
3	Boundary effect	В	2.0	R	$\sqrt{3}$	1	1	1.2	1.2	∞
4	Linearity	В	4.7	R	$\sqrt{3}$	1	1	2.7	2.7	∞
5	Detection limit	В	1.0	R	$\sqrt{3}$	1	1	0.6	0.6	∞
6	Readout electronics	В	0.3	R	$\sqrt{3}$	1	1	0.3	0.3	∞
7	Response time	В	0.8	R	$\sqrt{3}$	1	1	0.5	0.5	∞
8	Integration time	В	2.6	R	$\sqrt{3}$	1	1	1.5	1.5	∞
9	RF ambient conditions-noise	В	0	R	$\sqrt{3}$	1	1	0	0	∞
10	RFambient conditions-reflection	В	0	R	$\sqrt{3}$	1	1	0	0	8
11	Probe positioned mech. restrictions	В	0.8	R	$\sqrt{3}$	1	1	0.5	0.5	∞
12	Probe positioning with respect to phantom shell	В	6.7	R	$\sqrt{3}$	1	1	3.9	3.9	8
13	Post-processing	В	4.0	R	$\sqrt{3}$	1	1	2.3	2.3	∞
			Test	sample related	d					
14	Test sample positioning	A	3.3	N	1	1	1	3.3	3.3	71
15	Device holder uncertainty	A	3.4	N	1	1	1	3.4	3.4	5
16	Drift of output power	В	5.0	R	$\sqrt{3}$	1	1	2.9	2.9	∞
			Phan	tom and set-u	p					
17	Phantom uncertainty	В	4.0	R	$\sqrt{3}$	1	1	2.3	2.3	∞
18	Liquid conductivity (target)	В	5.0	R	$\sqrt{3}$	0.64	0.43	1.8	1.2	8
19	Liquid conductivity (meas.)	A	2.06	N	1	0.64	0.43	1.32	0.89	43
20	Liquid permittivity	В	5.0	R	$\sqrt{3}$	0.6	0.49	1.7	1.4	∞

	(target)									
21	Liquid permittivity (meas.)	A	1.6	N	1	0.6	0.49	1.0	0.8	521
Combined standard uncertainty		$u_c^{'} =$	$= \sqrt{\sum_{i=1}^{21} c_i^2 u_i^2}$					10.7	10.6	257
1 -	anded uncertainty fidence interval of		$u_e = 2u_c$					21.4	21.1	

16.3 Measurement Uncertainty for Fast SAR Tests (300MHz~3GHz)

No.	Error Description	Type	Uncertainty	Probably	Div.	(Ci)	(Ci)	Std.	Std.	Degree
			value	Distribution		1g	10g	Unc.	Unc.	of
								(1g)	(10g)	freedom
Measurement system										
1	Probe calibration	В	6.0	N	1	1	1	6.0	6.0	∞
2	Isotropy	В	4.7	R	$\sqrt{3}$	0.7	0.7	1.9	1.9	∞
3	Boundary effect	В	1.0	R	$\sqrt{3}$	1	1	0.6	0.6	∞
4	Linearity	В	4.7	R	$\sqrt{3}$	1	1	2.7	2.7	∞
5	Detection limit	В	1.0	R	$\sqrt{3}$	1	1	0.6	0.6	∞
6	Readout electronics	В	0.3	R	$\sqrt{3}$	1	1	0.3	0.3	∞
7	Response time	В	0.8	R	$\sqrt{3}$	1	1	0.5	0.5	∞
8	Integration time	В	2.6	R	$\sqrt{3}$	1	1	1.5	1.5	∞
9	RF ambient conditions-noise	В	0	R	$\sqrt{3}$	1	1	0	0	∞
10	RFambient conditions-reflection	В	0	R	$\sqrt{3}$	1	1	0	0	8
11	Probe positioned mech. Restrictions	В	0.4	R	$\sqrt{3}$	1	1	0.2	0.2	∞
12	Probe positioning with respect to phantom shell	В	2.9	R	$\sqrt{3}$	1	1	1.7	1.7	∞
13	Post-processing	В	1.0	R	$\sqrt{3}$	1	1	0.6	0.6	∞
14	Fast SAR z-Approximation	В	7.0	R	$\sqrt{3}$	1	1	4.0	4.0	∞
			Test	sample related	i					
15	Test sample positioning	A	3.3	N	1	1	1	3.3	3.3	71
16	Device holder uncertainty	A	3.4	N	1	1	1	3.4	3.4	5
17	Drift of output power	В	5.0	R	$\sqrt{3}$	1	1	2.9	2.9	∞
			Phan	tom and set-u	p					
18	Phantom uncertainty	В	4.0	R	$\sqrt{3}$	1	1	2.3	2.3	∞

19	Liquid conductivity (target)	В	5.0	R	$\sqrt{3}$	0.64	0.43	1.8	1.2	∞
20	Liquid conductivity (meas.)	A	2.06	N	1	0.64	0.43	1.32	0.89	43
21	Liquid permittivity (target)	В	5.0	R	$\sqrt{3}$	0.6	0.49	1.7	1.4	8
22	Liquid permittivity (meas.)	A	1.6	N	1	0.6	0.49	1.0	0.8	521
(Combined standard uncertainty		$\sqrt{\sum_{i=1}^{22} c_i^2 u_i^2}$					10.4	10.3	257
Expanded uncertainty (confidence interval of 95 %)		1	$u_e = 2u_c$					20.8	20.6	

16.4 Measurement Uncertainty for Fast SAR Tests (3~6GHz)

No.	Error Description	Type	Uncertainty	Probably	Div.	(Ci)	(Ci)	Std.	Std.	Degree		
110.	Error Description	1,100	value	Distribution	D17.	1g	10g	Unc.	Unc.	of		
			varac	Distribution		15	108	(1g)	(10g)	freedom		
Mea	Measurement system											
1	Probe calibration	В	6.55	N	1	1	1	6.55	6.55	∞		
2	Isotropy	В	4.7	R	$\sqrt{3}$	0.7	0.7	1.9	1.9	∞		
3	Boundary effect	В	2.0	R	$\sqrt{3}$	1	1	1.2	1.2	∞		
4	Linearity	В	4.7	R	$\sqrt{3}$	1	1	2.7	2.7	∞		
5	Detection limit	В	1.0	R	$\sqrt{3}$	1	1	0.6	0.6	∞		
6	Readout electronics	В	0.3	R	$\sqrt{3}$	1	1	0.3	0.3	∞		
7	Response time	В	0.8	R	$\sqrt{3}$	1	1	0.5	0.5	∞		
8	Integration time	В	2.6	R	$\sqrt{3}$	1	1	1.5	1.5	∞		
9	RF ambient conditions-noise	В	0	R	$\sqrt{3}$	1	1	0	0	∞		
10	RFambient conditions-reflection	В	0	R	$\sqrt{3}$	1	1	0	0	∞		
11	Probe positioned mech. Restrictions	В	0.8	R	$\sqrt{3}$	1	1	0.5	0.5	∞		
12	Probe positioning with respect to phantom shell	В	6.7	R	$\sqrt{3}$	1	1	3.9	3.9	8		
13	Post-processing	В	1.0	R	$\sqrt{3}$	1	1	0.6	0.6	∞		
14	Fast SAR z-Approximation	В	14.0	R	$\sqrt{3}$	1	1	8.1	8.1	∞		
	Test sample related											
15	Test sample positioning	A	3.3	N	1	1	1	3.3	3.3	71		
16	Device holder	Α	3.4	N	1	1	1	3.4	3.4	5		

©Copyright. All rights reserved by CTTL.

	uncertainty									
17	Drift of output power	В	5.0	R	$\sqrt{3}$	1	1	2.9	2.9	8
	Phantom and set-up									
18	Phantom uncertainty	В	4.0	R	$\sqrt{3}$	1	1	2.3	2.3	∞
19	Liquid conductivity (target)	В	5.0	R	$\sqrt{3}$	0.64	0.43	1.8	1.2	∞
20	Liquid conductivity (meas.)	A	2.06	N	1	0.64	0.43	1.32	0.89	43
21	Liquid permittivity (target)	В	5.0	R	$\sqrt{3}$	0.6	0.49	1.7	1.4	∞
22	Liquid permittivity (meas.)	A	1.6	N	1	0.6	0.49	1.0	0.8	521
(Combined standard uncertainty		$=\sqrt{\sum_{i=1}^{22}c_i^2u_i^2}$					13.5	13.4	257
Expanded uncertainty (confidence interval of 95 %)		1	$u_e = 2u_c$					27.0	26.8	

17 MAIN TEST INSTRUMENTS

Table 17.1: List of Main Instruments

No.	Name	Туре	Serial Number	Calibration Date	Valid Period	
01	Network analyzer	E5071C	MY46110673	January 24, 2018	One year	
02	Power meter	NRVD	102083	November 04, 2017	One year	
03	Power sensor	NRV-Z5	100542	November 01, 2017	One year	
04	Signal Generator	E4438C	MY49071430	January 2,2018	One Year	
05	Amplifier	60S1G4	0331848	No Calibration Requested		
06	BTS	E5515C	MY50263375	January 23, 2018	One year	
07	BTS	CMW500	149646	October 31, 2017	One year	
08	E-field Probe	SPEAG EX3DV4	7464	September 12,2017	One year	
09	DAE	SPEAG DAE4	1525	October 2, 2017	One year	
10	Dipole Validation Kit	SPEAG D750V3	1017	July 19, 2017	One year	
11	Dipole Validation Kit	SPEAG D835V2	4d069	July 19, 2017	One year	
12	Dipole Validation Kit	SPEAG D1750V2	1003	July 21, 2017	One year	
13	Dipole Validation Kit	SPEAG D1900V2	5d101	July 26, 2017	One year	
14	Dipole Validation Kit	SPEAG D2300V2	1018	July 21, 2017	One year	
15	Dipole Validation Kit	SPEAG D2450V2	853	July 21, 2017	One year	
16	Dipole Validation Kit	SPEAG D2600V2	1012	July 21, 2017	One year	
17	Dipole Validation Kit	SPEAG D5GHzV2	1060	July 25, 2017	One year	

END OF REPORT BODY

ANNEX A Graph Results

850 Right Cheek High

Date: 2018-5-2

Electronics: DAE4 Sn1525 Medium: Head 850 MHz

Medium parameters used: f = 848.8 MHz; $\sigma = 0.912 \text{ mho/m}$; $\epsilon r = 41.72$; $\rho = 1000 \text{ kg/m}^3$

Ambient Temperature: 22.9°C Liquid Temperature: 22.5°C

Communication System: GSM 850 GPRS Frequency: 848.8 MHz Duty Cycle: 1:2

Probe: EX3DV4 – SN7464 ConvF(10.28, 10.28, 10.28)

Area Scan (71x131x1): Interpolated grid: dx=1.000 mm, dy=1.000 mm Maximum value of SAR (interpolated) = 0.295 W/kg

Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 6.523 V/m; Power Drift = 0.08 dB Peak SAR (extrapolated) = 0.394 W/kg

SAR(1 g) = 0.322 W/kg; SAR(10 g) = 0.254 W/kg

Maximum value of SAR (measured) = 0.347 W/kg

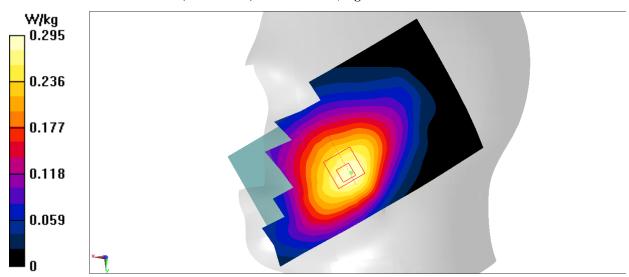


Fig.1 850MHz

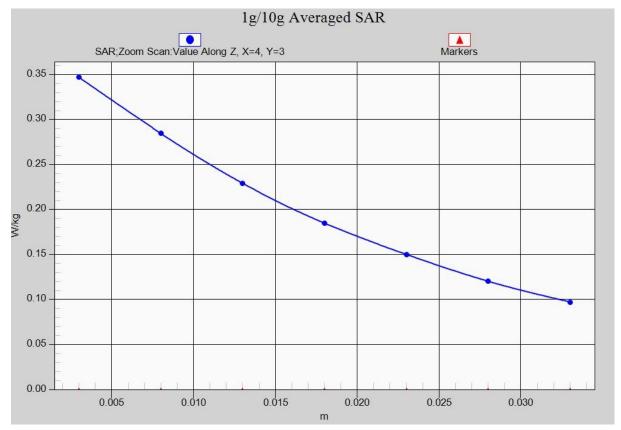


Fig. 1-1 Z-Scan at power reference point (850 MHz)

850 Body Rear High

Date: 2018-5-2

Electronics: DAE4 Sn1525 Medium: Body 850 MHz

Medium parameters used: f = 848.8 MHz; $\sigma = 0.984 \text{ mho/m}$; $\epsilon r = 55.87$; $\rho = 1000 \text{ kg/m}^3$

Ambient Temperature: 22.9°C Liquid Temperature: 22.5°C

Communication System: GSM 850 GPRS Frequency: 848.8 MHz Duty Cycle: 1:2

Probe: EX3DV4 – SN7464 ConvF(10.21, 10.21, 10.21)

Area Scan (71x131x1): Interpolated grid: dx=1.000 mm, dy=1.000 mm Maximum value of SAR (interpolated) = 0.707 W/kg

Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 15.47 V/m; Power Drift = -0.03 dB

Peak SAR (extrapolated) = 1.02 W/kg

SAR(1 g) = 0.620 W/kg; SAR(10 g) = 0.367 W/kgMaximum value of SAR (measured) = 0.684 W/kg

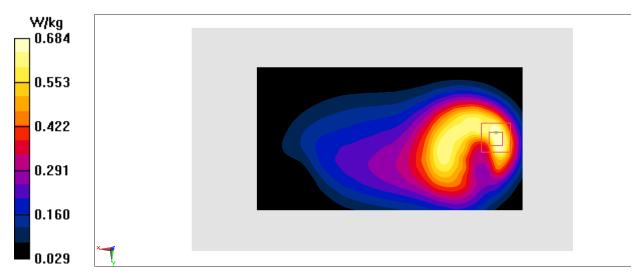


Fig.2 850 MHz

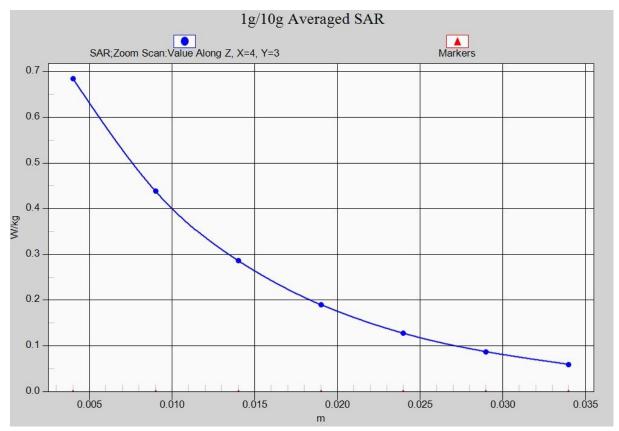


Fig. 2-1 Z-Scan at power reference point (850 MHz)

1900 Left Cheek High

Date: 2018-5-4

Electronics: DAE4 Sn1525 Medium: Head 1900 MHz

Medium parameters used (interpolated): f = 1909.8 MHz; $\sigma = 1.452$ mho/m; $\epsilon r = 40.39$; $\rho =$

 1000 kg/m^3

Ambient Temperature: 22.9°C Liquid Temperature: 22.5°C

Communication System: GSM 1900MHz Frequency: 1909.8 MHz Duty Cycle: 1:2.67

Probe: EX3DV4– SN7464 ConvF(8.39, 8.39, 8.39)

Area Scan (71x131x1): Interpolated grid: dx=1.000 mm, dy=1.000 mm

Maximum value of SAR (interpolated) = 0.647 W/kg

Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 13.22 V/m; Power Drift = -0.18 dB

Peak SAR (extrapolated) = 0.985 W/kg

SAR(1 g) = 0.426 W/kg; SAR(10 g) = 0.207 W/kg

Maximum value of SAR (measured) = 0.548 W/kg

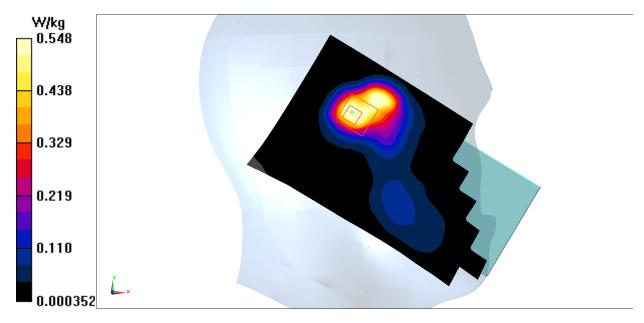


Fig.3 1900 MHz

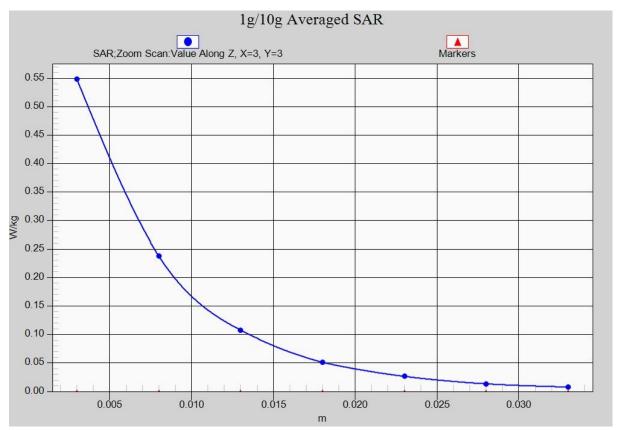


Fig. 3-1 Z-Scan at power reference point (1900 MHz)

1900 Body Bottom Low

Date: 2018-5-4

Electronics: DAE4 Sn1525 Medium: Body 1900 MHz

Medium parameters used: f = 1850.2 MHz; $\sigma = 1.515 \text{ mho/m}$; $\epsilon r = 52.83$; $\rho = 1000 \text{ kg/m}^3$

Ambient Temperature: 22.9°C Liquid Temperature: 22.5°C

Communication System: GSM 1900MHz GPRS Frequency: 1850.2 MHz Duty Cycle: 1:2.67

Probe: EX3DV4–SN7464 ConvF(8.32, 8.32, 8.32)

Area Scan (131x81x1): Interpolated grid: dx=1.000 mm, dy=1.000 mm Maximum value of SAR (interpolated) = 1.78 W/kg

Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 25.29 V/m; Power Drift = -0.13 dB

Peak SAR (extrapolated) = 1.39 W/kg

SAR(1 g) = 0.844 W/kg; SAR(10 g) = 0.474 W/kgMaximum value of SAR (measured) = 1.02 W/kg

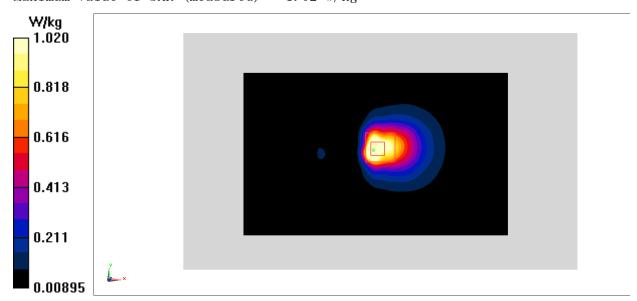


Fig.4 1900 MHz

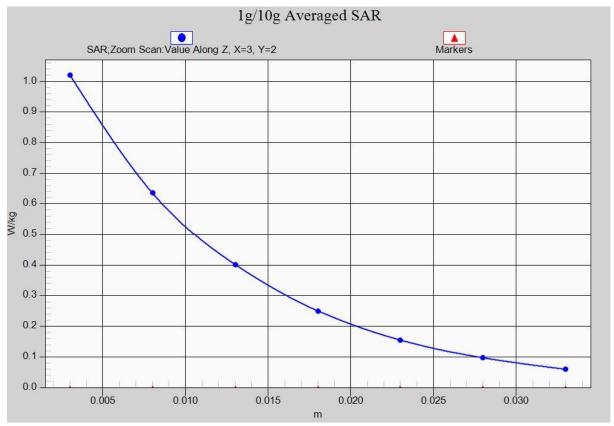


Fig. 4-1 Z-Scan at power reference point (1900 MHz)

1900 Body Rear High

Date: 2018-5-4

Electronics: DAE4 Sn1525 Medium: Body 1900 MHz

Medium parameters used: f = 1909.8 MHz; $\sigma = 1.575 \text{ mho/m}$; $\epsilon r = 52.65$; $\rho = 1000 \text{ kg/m}^3$

Ambient Temperature: 22.9°C Liquid Temperature: 22.5°C

Communication System: GSM 1900MHz GPRS Frequency: 1909.8 MHz Duty Cycle: 1:2.67

Probe: EX3DV4–SN7464 ConvF(8.32, 8.32, 8.32)

Area Scan (131x81x1): Interpolated grid: dx=1.000 mm, dy=1.000 mm Maximum value of SAR (interpolated) = 0.446 W/kg

Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 6.437 V/m; Power Drift = -0.03 dB

Peak SAR (extrapolated) = 0.644 W/kg

SAR(1 g) = 0.397 W/kg; SAR(10 g) = 0.229 W/kgMaximum value of SAR (measured) = 0.470 W/kg

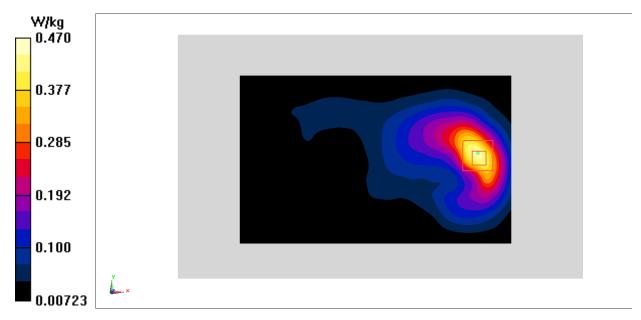


Fig.5 1900 MHz

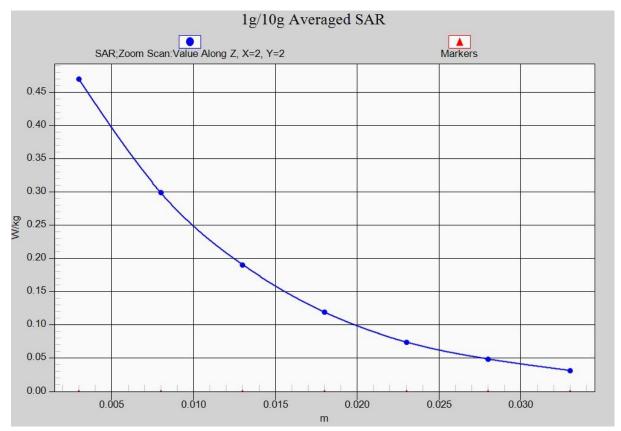


Fig. 5-1 Z-Scan at power reference point (1900 MHz)

WCDMA 850 Right Cheek Middle

Date: 2018-5-2

Electronics: DAE4 Sn1525 Medium: Head 850 MHz

Medium parameters used (interpolated): f = 836.4 MHz; $\sigma = 0.9$ mho/m; $\epsilon r = 41.855$; $\rho = 1000$

 kg/m^3

Ambient Temperature: 22.9°C Liquid Temperature: 22.5°C

Communication System: WCDMA; Frequency: 836.4 MHz; Duty Cycle: 1:1

Probe: EX3DV4 – SN7464 ConvF(10.28, 10.28, 10.28)

Area Scan (71x131x1): Interpolated grid: dx=1.000 mm, dy=1.000 mm

Maximum value of SAR (interpolated) = 0.290 W/kg

Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 6.348 V/m; Power Drift = 0.13 dB

Peak SAR (extrapolated) = 0.325 W/kg

SAR(1 g) = 0.262 W/kg; SAR(10 g) = 0.206 W/kg

Maximum value of SAR (measured) = 0.285 W/kg

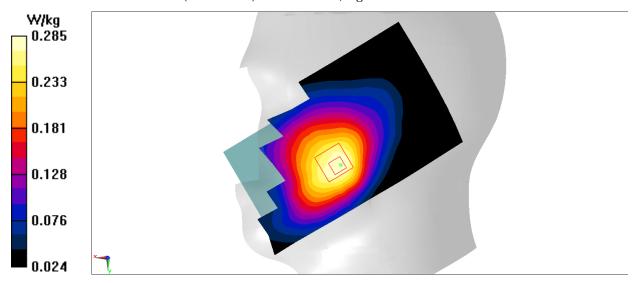


Fig.6 WCDMA 850

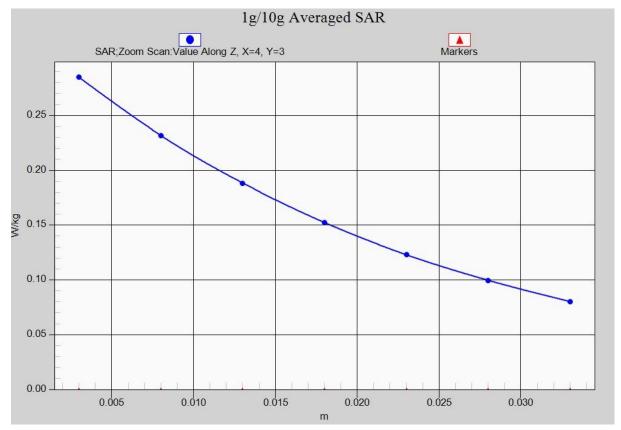


Fig. 6-1 Z-Scan at power reference point (850 MHz)

WCDMA 850 Body Rear High

Date: 2018-5-2

Electronics: DAE4 Sn1525 Medium: Body 850 MHz

Medium parameters used (interpolated): f = 846.6 MHz; $\sigma = 0.981$ mho/m; $\epsilon r = 55.876$; $\rho =$

 1000 kg/m^3

Ambient Temperature: 22.9°C Liquid Temperature: 22.5°C

Communication System: WCDMA; Frequency: 846.6 MHz; Duty Cycle: 1:1

Probe: EX3DV4 – SN7464 ConvF(10.21, 10.21, 10.21)

Area Scan (71x131x1): Interpolated grid: dx=1.000 mm, dy=1.000 mm

Maximum value of SAR (interpolated) = 0.498 W/kg

Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 13.70 V/m; Power Drift = -0.09 dB

Peak SAR (extrapolated) = 0.697 W/kg

SAR(1 g) = 0.432 W/kg; SAR(10 g) = 0.259 W/kgMaximum value of SAR (measured) = 0.478 W/kg

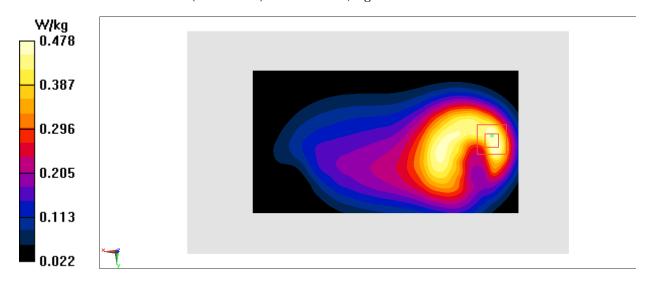


Fig.7 WCDMA 850

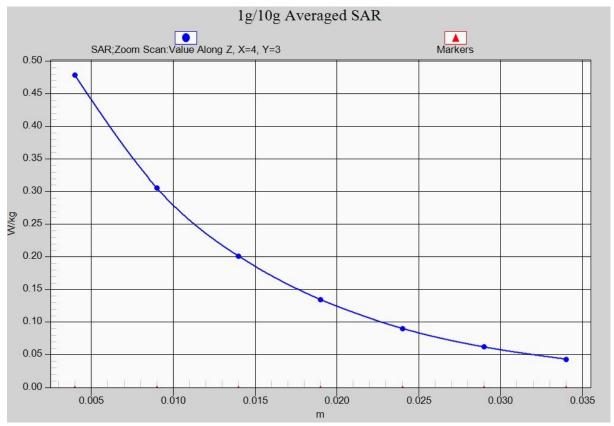


Fig. 7-1 Z-Scan at power reference point (WCDMA850)

WCDMA 1700 Left Cheek Low

Date: 2018-5-3

Electronics: DAE4 Sn1525 Medium: Head 1750 MHz

Medium parameters used (interpolated): f = 1712.4 MHz; $\sigma = 1.307$ mho/m; $\epsilon r = 40.677$; $\rho =$

 1000 kg/m^3

Ambient Temperature: 22.9°C Liquid Temperature: 22.5°C

Communication System: WCDMA 1750 Frequency: 1712.4 MHz Duty Cycle: 1:1

Probe: EX3DV4– SN7464 ConvF(8.70, 8.70, 8.70)

Area Scan (71x131x1): Interpolated grid: dx=1.000 mm, dy=1.000 mm

Maximum value of SAR (interpolated) = 0.156 W/kg

Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 4.648 V/m; Power Drift = 0.01 dB

Peak SAR (extrapolated) = 0.193 W/kg

SAR(1 g) = 0.133 W/kg; SAR(10 g) = 0.088 W/kg

Maximum value of SAR (measured) = 0.155 W/kg

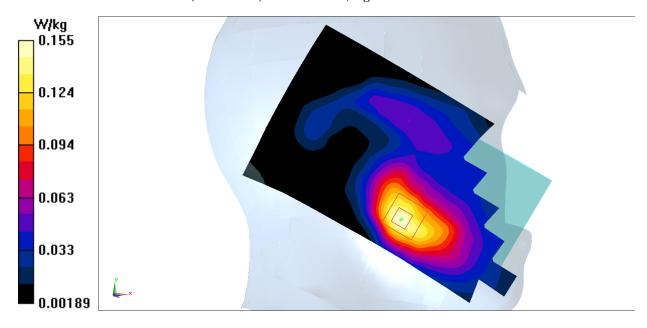


Fig.8 WCDMA1700

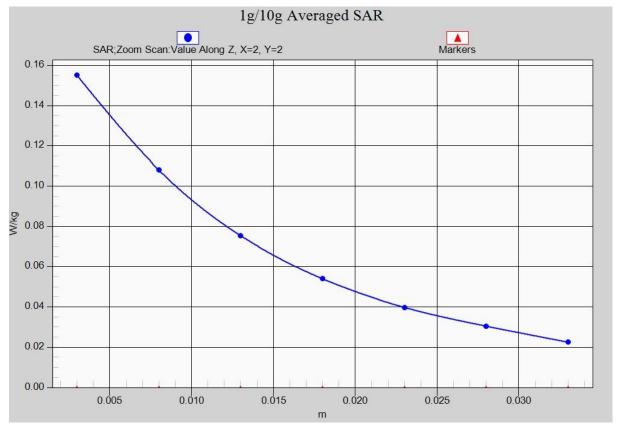


Fig. 8-1 Z-Scan at power reference point (WCDMA1700)

WCDMA 1700 Body Rear High

Date: 2018-5-3

Electronics: DAE4 Sn1525 Medium: Body 1750 MHz

Medium parameters used (interpolated): f = 1752.6 MHz; $\sigma = 1.509$ mho/m; $\epsilon r = 53.718$; $\rho =$

 1000 kg/m^3

Ambient Temperature: 22.9°C Liquid Temperature: 22.5°C

Communication System: WCDMA 1900 Frequency: 1752.6 MHz Duty Cycle: 1:1

Probe: EX3DV4– SN7464 ConvF(8.60, 8.60, 8.60)

Area Scan (131x81x1): Interpolated grid: dx=1.000 mm, dy=1.000 mm

Maximum value of SAR (interpolated) = 1.04 W/kg

Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 7.752 V/m; Power Drift = -0.03 dB

Peak SAR (extrapolated) = 1.58 W/kg

SAR(1 g) = 0.927 W/kg; SAR(10 g) = 0.493 W/kg

Maximum value of SAR (measured) = 1.14 W/kg

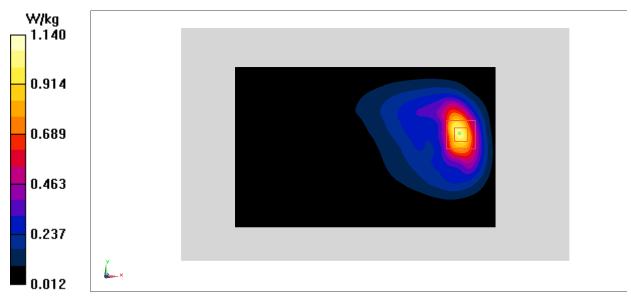


Fig.9 WCDMA1700

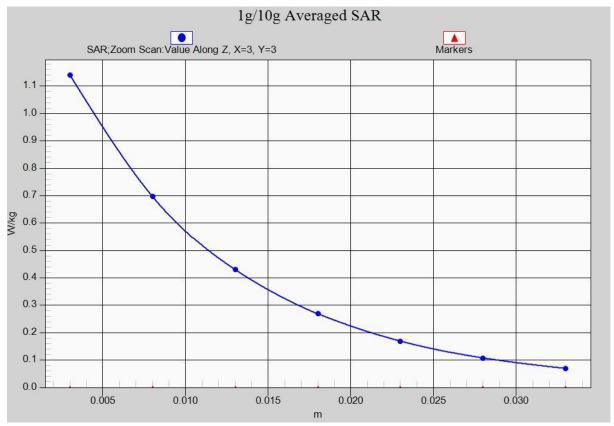


Fig. 9-1 Z-Scan at power reference point (WCDMA1700)

WCDMA 1700 Body Rear Low

Date: 2018-5-3

Electronics: DAE4 Sn1525 Medium: Body 1750 MHz

Medium parameters used (interpolated): f = 1712.4 MHz; $\sigma = 1.481$ mho/m; $\epsilon r = 53.828$; $\rho =$

 1000 kg/m^3

Ambient Temperature: 22.9°C Liquid Temperature: 22.5°C

Communication System: WCDMA 1900 Frequency: 1712.4 MHz Duty Cycle: 1:1

Probe: EX3DV4– SN7464 ConvF(8.60, 8.60, 8.60)

Area Scan (131x81x1): Interpolated grid: dx=1.000 mm, dy=1.000 mm

Maximum value of SAR (interpolated) = 0.671 W/kg

Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 7.729 V/m; Power Drift = 0.03 dB

Peak SAR (extrapolated) = 0.909 W/kg

SAR(1 g) = 0.588 W/kg; SAR(10 g) = 0.356 W/kg Maximum value of SAR (measured) = 0.705 W/kg

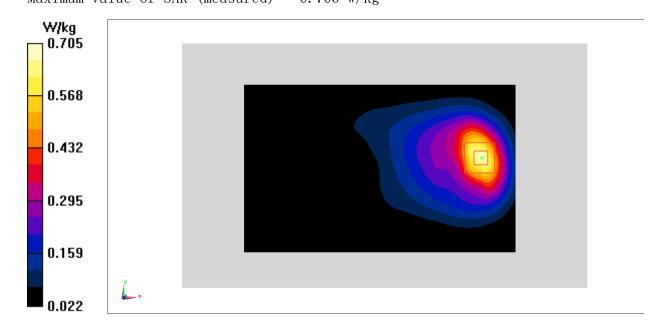


Fig.10 WCDMA1700

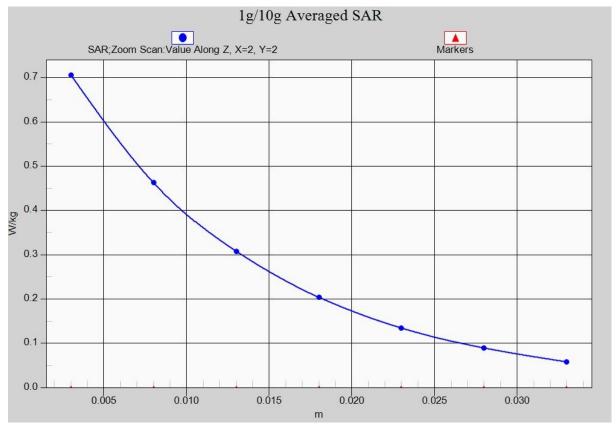


Fig. 10-1 Z-Scan at power reference point (WCDMA1700)

WCDMA 1900 Left Cheek High

Date: 2018-5-4

Electronics: DAE4 Sn1525 Medium: Head 1900 MHz

Medium parameters used (interpolated): f = 1907.6 MHz; $\sigma = 1.465$ mho/m; $\epsilon r = 40.806$; $\rho =$

 1000 kg/m^3

Ambient Temperature: 22.9°C Liquid Temperature: 22.5°C

Communication System: WCDMA 1900 Frequency: 1907.6 MHz Duty Cycle: 1:1

Probe: EX3DV4– SN7464 ConvF(8.39, 8.39, 8.39)

Area Scan (71x131x1): Interpolated grid: dx=1.000 mm, dy=1.000 mm

Maximum value of SAR (interpolated) = 0.202 W/kg

Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 4.173 V/m; Power Drift = 0.05 dB

Peak SAR (extrapolated) = 0.268 W/kg

SAR(1 g) = 0.180 W/kg; SAR(10 g) = 0.114 W/kg

Maximum value of SAR (measured) = 0.210 W/kg

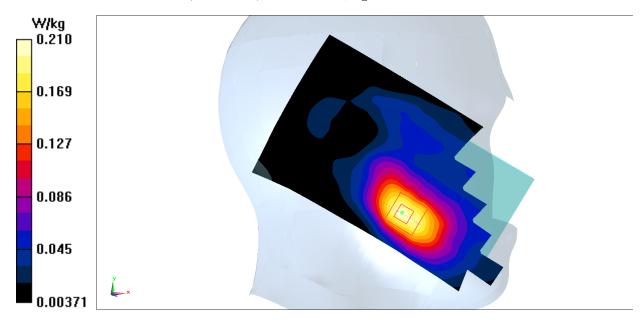


Fig.11 WCDMA1900

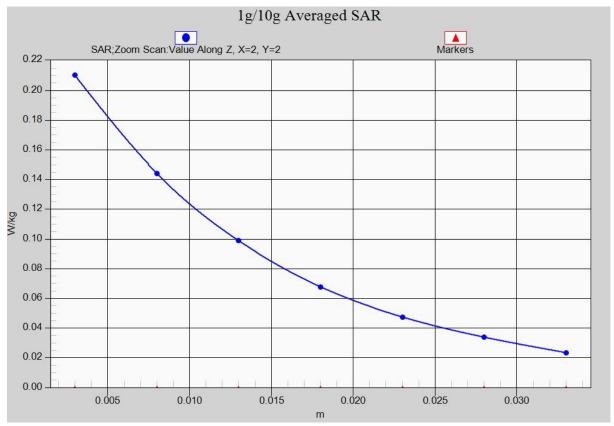


Fig. 11-1 Z-Scan at power reference point (WCDMA1900)

WCDMA 1900 Body Bottom Middle

Date: 2018-5-4

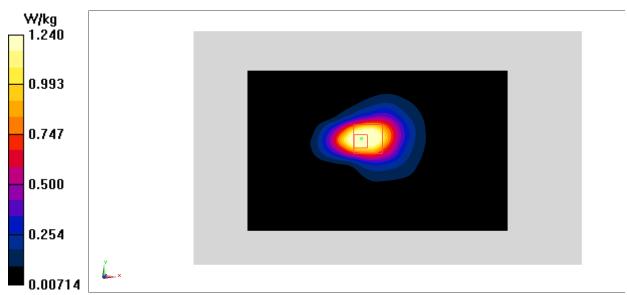
Electronics: DAE4 Sn1525 Medium: Body 1900 MHz

Medium parameters used: f = 1880 MHz; $\sigma = 1.561 \text{ mho/m}$; $\epsilon r = 53$; $\rho = 1000 \text{ kg/m}^3$

Ambient Temperature: 22.9°C Liquid Temperature: 22.5°C

Communication System: WCDMA 1900 Frequency: 1880 MHz Duty Cycle: 1:1

Probe: EX3DV4– SN7464 ConvF(8.32, 8.32, 8.32)


Area Scan (131x81x1): Interpolated grid: dx=1.000 mm, dy=1.000 mm Maximum value of SAR (interpolated) = 1.53 W/kg

Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 20.45 V/m; Power Drift = 0.03 dB

Peak SAR (extrapolated) = 1.74 W/kg

SAR(1 g) = 1.04 W/kg; SAR(10 g) = 0.617 W/kgMaximum value of SAR (measured) = 1.24 W/kg

Fig.12 WCDMA1900

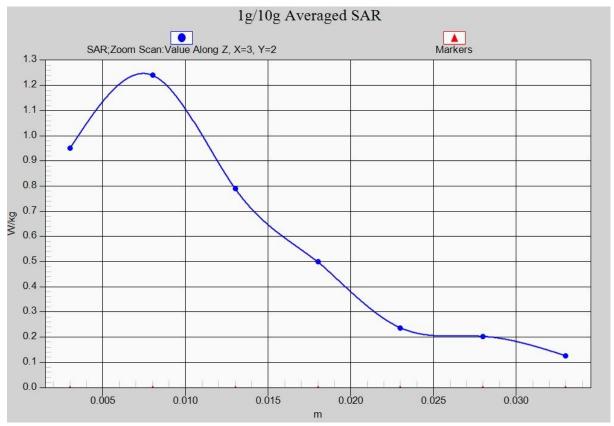


Fig. 12-1 Z-Scan at power reference point (WCDMA1900)

WCDMA 1900 Body Rear Middle

Date: 2018-5-4

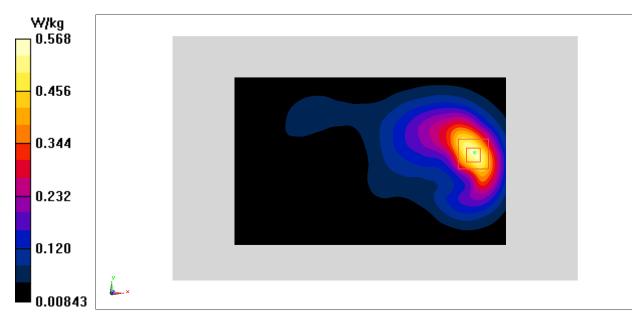
Electronics: DAE4 Sn1525 Medium: Body 1900 MHz

Medium parameters used: f = 1880 MHz; $\sigma = 1.561 \text{ mho/m}$; $\epsilon r = 53$; $\rho = 1000 \text{ kg/m}^3$

Ambient Temperature: 22.9°C Liquid Temperature: 22.5°C

Communication System: WCDMA 1900 Frequency: 1880 MHz Duty Cycle: 1:1

Probe: EX3DV4– SN7464 ConvF(8.32, 8.32, 8.32)


Area Scan (131x81x1): Interpolated grid: dx=1.000 mm, dy=1.000 mm Maximum value of SAR (interpolated) = 0.543 W/kg

Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 6.421 V/m; Power Drift = 0.01 dB

Peak SAR (extrapolated) = 0.764 W/kg

SAR(1 g) = 0.472 W/kg; SAR(10 g) = 0.273 W/kgMaximum value of SAR (measured) = 0.568 W/kg

Fig.13 WCDMA1900

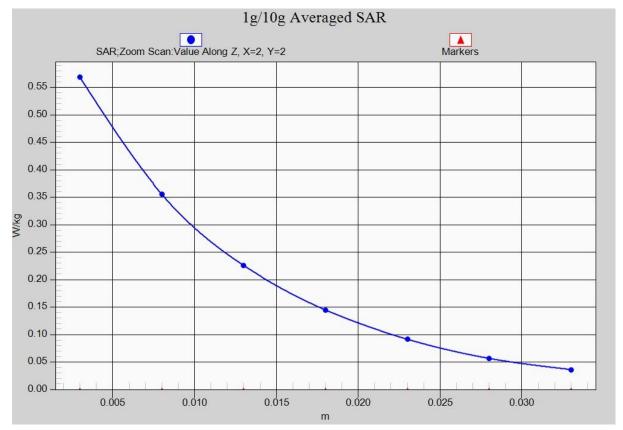


Fig. 13-1 Z-Scan at power reference point (WCDMA1900)

LTE Band2 Left Cheek Middle with QPSK_20M_1RB_Middle

Date: 2018-5-4

Electronics: DAE4 Sn1525 Medium: Head 1900 MHz

Medium parameters used: f = 1880 MHz; $\sigma = 1.393 \text{. mho/m}$; $\epsilon r = 40.69$; $\rho = 1000 \text{ kg/m}^3$

Ambient Temperature: 22.9°C Liquid Temperature: 22.5°C

Communication System: LTE Band2 Frequency: 1880 MHz Duty Cycle: 1:1

Probe: EX3DV4– SN7464 ConvF(8.39, 8.39, 8.39)

Area Scan (71x121x1): Interpolated grid: dx=1.000 mm, dy=1.000 mm

Maximum value of SAR (interpolated) = 0.278 W/kg

Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 4.724 V/m; Power Drift = 0.02 dB

Peak SAR (extrapolated) = 0.369 W/kg

SAR(1 g) = 0.229 W/kg; SAR(10 g) = 0.138 W/kg

Maximum value of SAR (measured) = 0.249 W/kg

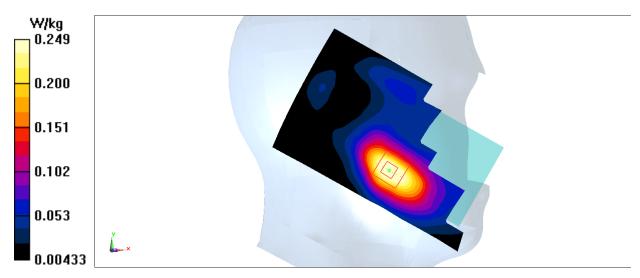


Fig.14 LTE Band2

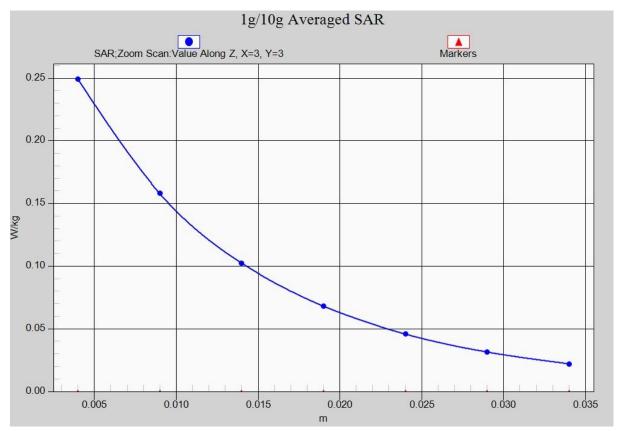


Fig. 14-1 Z-Scan at power reference point (LTE Band2)

LTE Band2 Body Bottom High with QPSK_20M_50RB_Low

Date: 2018-5-4

Electronics: DAE4 Sn1525 Medium: Body 1900 MHz

Medium parameters used: f = 1900 MHz; $\sigma = 1.507 \text{ mho/m}$; $\epsilon r = 52.71$; $\rho = 1000 \text{ kg/m}^3$

Ambient Temperature: 22.9°C Liquid Temperature: 22.5°C

Communication System: LTE Band2 Frequency: 1900 MHz Duty Cycle: 1:1

Probe: EX3DV4– SN7464 ConvF(8.32, 8.32, 8.32)

Area Scan (121x71x1): Interpolated grid: dx=1.000 mm, dy=1.000 mm Maximum value of SAR (interpolated) = 1.38 W/kg

Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 27.42 V/m; Power Drift = 0.04 dB

Peak SAR (extrapolated) = 1.90 W/kg

SAR(1 g) = 1.1 W/kg; SAR(10 g) = 0.587 W/kgMaximum value of SAR (measured) = 1.36 W/kg

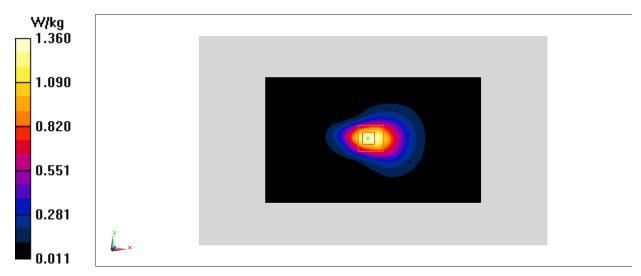


Fig.15 LTE Band2

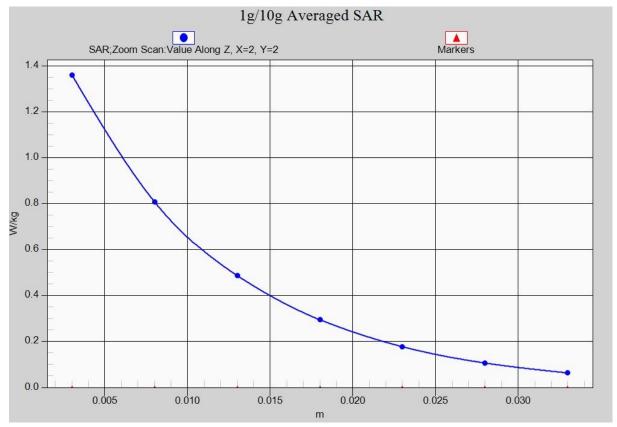


Fig. 15-1 Z-Scan at power reference point (LTE Band2)

LTE Band2 Body Rear Middle with QPSK_20M_1RB_Middle

Date: 2018-5-4

Electronics: DAE4 Sn1525 Medium: Body 1900 MHz

Medium parameters used: f = 1880 MHz; $\sigma = 1.488 \text{ mho/m}$; $\epsilon r = 52.77$; $\rho = 1000 \text{ kg/m}^3$

Ambient Temperature: 22.9°C Liquid Temperature: 22.5°C

Communication System: LTE Band2 Frequency: 1880 MHz Duty Cycle: 1:1

Probe: EX3DV4–SN7464 ConvF(8.32, 8.32, 8.32)

Area Scan (71x131x1): Interpolated grid: dx=1.000 mm, dy=1.000 mm

Maximum value of SAR (interpolated) = 0.577 W/kg

Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 6.458 V/m; Power Drift = 0.16 dB

Peak SAR (extrapolated) = 0.794 W/kg

SAR(1 g) = 0.491 W/kg; SAR(10 g) = 0.281 W/kg

Maximum value of SAR (measured) = 0.537 W/kg

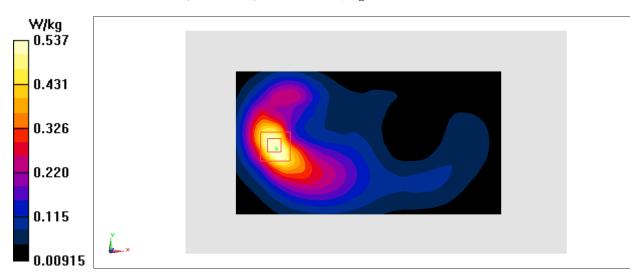


Fig.16 LTE Band2

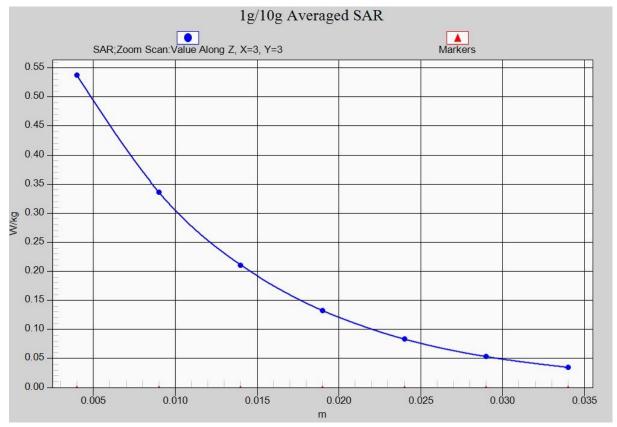


Fig. 16-1 Z-Scan at power reference point (LTE Band2)

LTE Band5 Right Cheek High with QPSK_10M_1RB_High

Date: 2018-5-2

Electronics: DAE4 Sn1525 Medium: Head 850 MHz

Medium parameters used (interpolated): f = 844 MHz; $\sigma = 0.918$ mho/m; $\epsilon r = 41.631$; $\rho = 1000$

 kg/m^3

Ambient Temperature: 22.9°C Liquid Temperature: 22.5°C

Communication System: LTE Band5 Frequency: 844 MHz Duty Cycle: 1:1

Probe: EX3DV4 - SN7464 ConvF(10.28, 10.28, 10.28)

Area Scan (71x121x1): Interpolated grid: dx=1.000 mm, dy=1.000 mm

Maximum value of SAR (interpolated) = 0.237 W/kg

Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 3.418 V/m; Power Drift = 0.04 dB

Peak SAR (extrapolated) = 0.266 W/kg

SAR(1 g) = 0.216 W/kg; SAR(10 g) = 0.167 W/kg

Maximum value of SAR (measured) = 0.226 W/kg

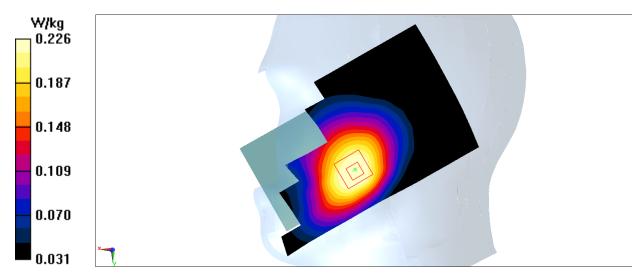


Fig.17 LTE Band5

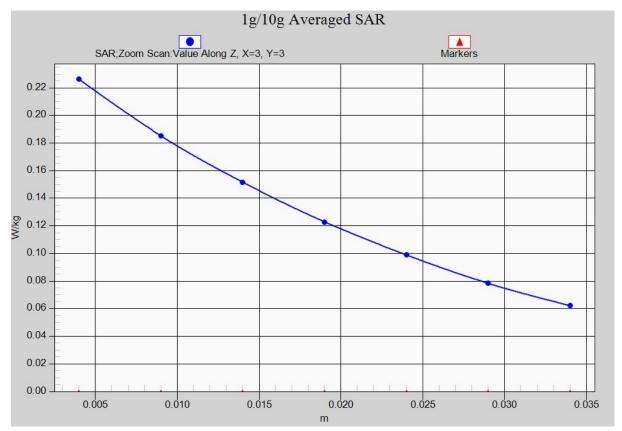


Fig. 17-1 Z-Scan at power reference point (LTE Band5)

LTE Band5 Body Rear High with QPSK_10M_1RB_High

Date: 2018-5-2

Electronics: DAE4 Sn1525 Medium: Body 850 MHz

Medium parameters used (interpolated): f = 844 MHz; $\sigma = 1.016$ mho/m; $\epsilon r = 55.534$; $\rho = 1000$

 kg/m^3

Ambient Temperature: 22.9°C Liquid Temperature: 22.5°C

Communication System: LTE Band5 Frequency: 844 MHz Duty Cycle: 1:1

Probe: EX3DV4 - SN7464 ConvF(10.21, 10.21, 10.21)

Area Scan (71x121x1): Interpolated grid: dx=1.000 mm, dy=1.000 mm

Maximum value of SAR (interpolated) = 0.435 W/kg

Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 14.27 V/m; Power Drift = -0.01 dB

Peak SAR (extrapolated) = 0.531 W/kg

SAR(1 g) = 0.386 W/kg; SAR(10 g) = 0.272 W/kg

Maximum value of SAR (measured) = 0.408 W/kg

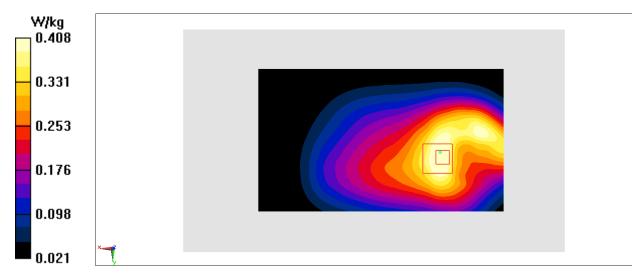


Fig.18 LTE Band5

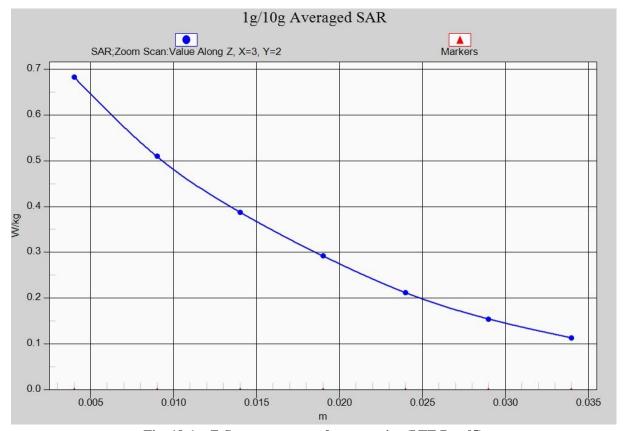


Fig. 18-1 Z-Scan at power reference point (LTE Band5)

LTE Band7 Left Cheek Low with QPSK_20M_1RB_Low

Date: 2018-5-5

Electronics: DAE4 Sn1525 Medium: Head 2600 MHz

Medium parameters used: f = 2510 MHz; $\sigma = 1.925 \text{ mho/m}$; $\epsilon r = 38.52$; $\rho = 1000 \text{ kg/m}^3$

Ambient Temperature: 22.9°C Liquid Temperature: 22.5°C

Communication System: LTE Band7Frequency: 2510 MHz Duty Cycle: 1:1

Probe: EX3DV4– SN7464 ConvF(7.76, 7.76, 7.76)

Area Scan (91x161x1): Interpolated grid: dx=1.000 mm, dy=1.000 mm

Maximum value of SAR (interpolated) = 0.211 W/kg

Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 2.859 V/m; Power Drift = -0.09 dB

Peak SAR (extrapolated) = 0.335 W/kg

SAR(1 g) = 0.169 W/kg; SAR(10 g) = 0.086 W/kg

Maximum value of SAR (measured) = 0.189 W/kg

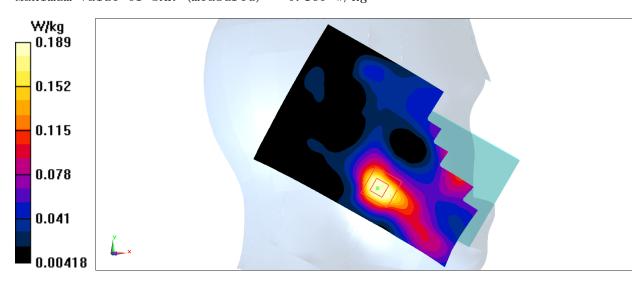


Fig.19 LTE Band7

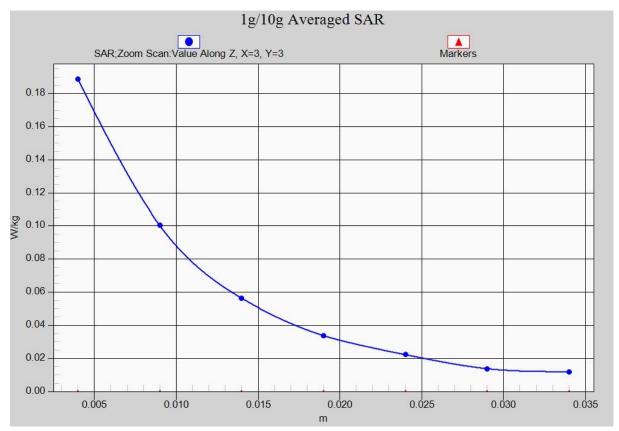


Fig. 19-1 Z-Scan at power reference point (LTE Band7)

LTE Band7 Body Bottom High with QPSK_20M_1RB_Middle

Date: 2018-5-5

Electronics: DAE4 Sn1525 Medium: Body 2600 MHz

Medium parameters used: f = 2560 MHz; $\sigma = 2.143 \text{ mho/m}$; $\epsilon r = 51.68$; $\rho = 1000 \text{ kg/m}^3$

Ambient Temperature: 22.9°C Liquid Temperature: 22.5°C

Communication System: LTE Band7 Frequency: 2560 MHz Duty Cycle: 1:1

Probe: EX3DV4–SN7464 ConvF(7.84, 7.84, 7.84)

Area Scan (31x71x1): Interpolated grid: dx=1.000 mm, dy=1.000 mm

Maximum value of SAR (interpolated) = 1.35 W/kg

Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 22.32 V/m; Power Drift = 0.11 dB

Peak SAR (extrapolated) = 2.06 W/kg

SAR(1 g) = 1.08 W/kg; SAR(10 g) = 0.515 W/kgMaximum value of SAR (measured) = 1.24 W/kg

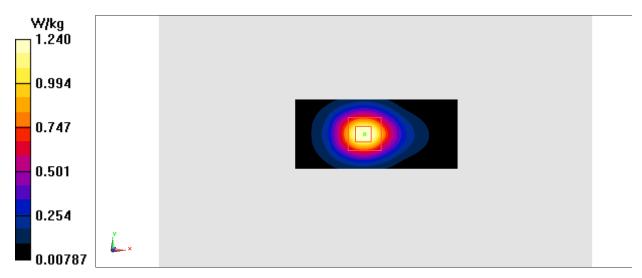


Fig.20 LTE Band7

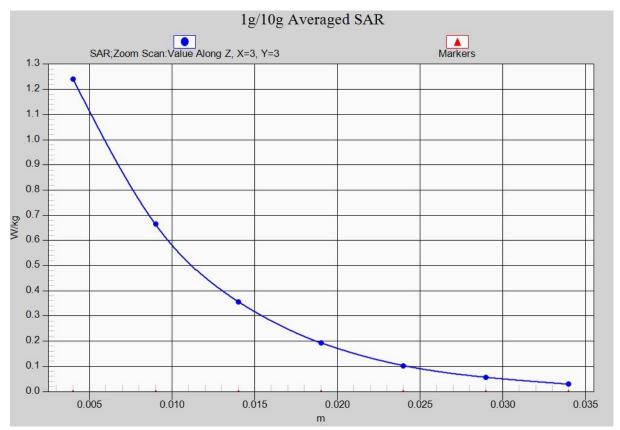


Fig. 20-1 Z-Scan at power reference point (LTE Band7)

LTE Band7 Body Rear Low with QPSK_20M_1RB_Low

Date: 2018-5-5

Electronics: DAE4 Sn1525 Medium: Body 2600 MHz

Medium parameters used: f = 2510 MHz; $\sigma = 2.095 \text{ mho/m}$; $\epsilon r = 51.85$; $\rho = 1000 \text{ kg/m}^3$

Ambient Temperature: 22.9°C Liquid Temperature: 22.5°C

Communication System: LTE Band7 Frequency: 2510 MHz Duty Cycle: 1:1

Probe: EX3DV4–SN7464 ConvF(7.84, 7.84, 7.84)

Area Scan (71x131x1): Interpolated grid: dx=1.000 mm, dy=1.000 mm

Maximum value of SAR (interpolated) = 0.511 W/kg

Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 4.737 V/m; Power Drift = 0.01 dB

Peak SAR (extrapolated) = 0.717 W/kg

SAR(1 g) = 0.422 W/kg; SAR(10 g) = 0.240 W/kg

Maximum value of SAR (measured) = 0.462 W/kg

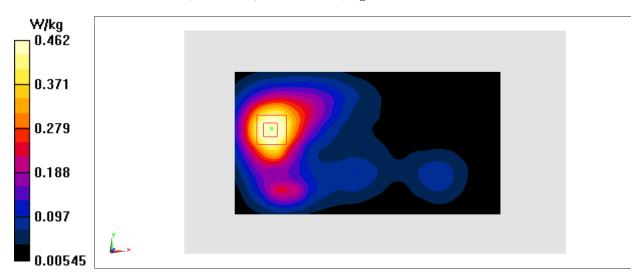


Fig.21 LTE Band7

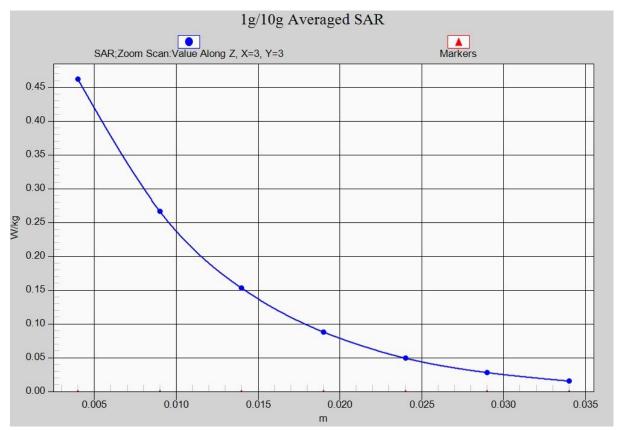


Fig. 21-1 Z-Scan at power reference point (LTE Band7)

LTE Band12 Right Cheek Low with QPSK_10M_1RB_High

Date: 2018-5-1

Electronics: DAE4 Sn1525 Medium: Head 750 MHz

Medium parameters used (interpolated): f = 704 MHz; $\sigma = 0.856$ mho/m; $\epsilon r = 42.34$; $\rho = 1000$

 kg/m^3

Ambient Temperature: 22.9°C Liquid Temperature: 22.5°C

Communication System: LTE Band12Frequency: 704 MHz Duty Cycle: 1:1

Probe: EX3DV4–SN7464 ConvF(10.57, 10.57, 10.57)

Area Scan (71x121x1): Interpolated grid: dx=1.000 mm, dy=1.000 mm

Maximum value of SAR (interpolated) = 0.166 W/kg

Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 5.422 V/m; Power Drift = 0.00 dB

Peak SAR (extrapolated) = 0.181 W/kg

SAR(1 g) = 0.152 W/kg; SAR(10 g) = 0.121 W/kg

Maximum value of SAR (measured) = 0.158 W/kg

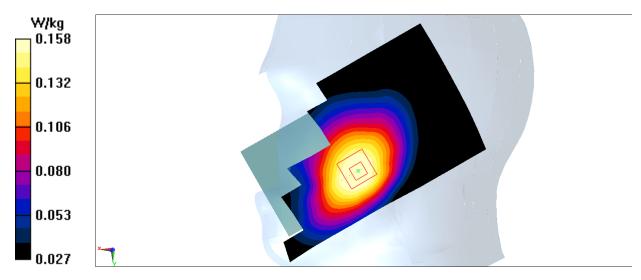


Fig.22 LTE Band12

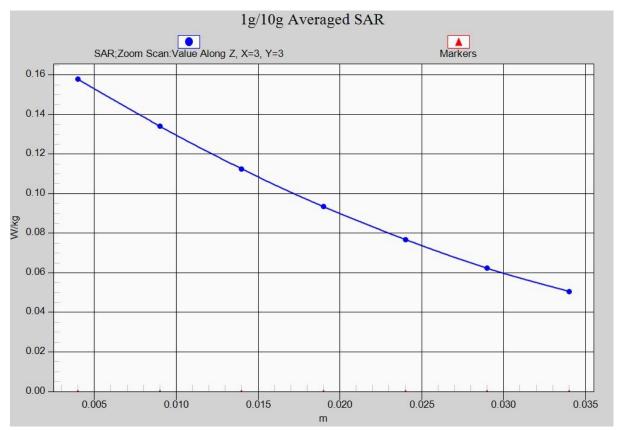


Fig. 22-1 Z-Scan at power reference point (LTE Band12)

LTE Band12 Body Rear Low with QPSK_10M_1RB_High

Date: 2018-5-1

Electronics: DAE4 Sn1525 Medium: Body750 MHz

Medium parameters used (interpolated): f = 704 MHz; $\sigma = 0.931$ mho/m; $\epsilon r = 56.51$; $\rho = 1000$

 kg/m^3

Ambient Temperature: 22.9°C Liquid Temperature: 22.5°C

Communication System: LTE Band12Frequency: 704 MHz Duty Cycle: 1:1

Probe: EX3DV4–SN7464 ConvF(10.63, 10.63, 10.63)

Area Scan (71x131x1): Interpolated grid: dx=1.000 mm, dy=1.000 mm

Maximum value of SAR (interpolated) = 0.417 W/kg

Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 16.63 V/m; Power Drift = 0.00 dB

Peak SAR (extrapolated) = 0.522 W/kg

SAR(1 g) = 0.378 W/kg; SAR(10 g) = 0.272 W/kg

Maximum value of SAR (measured) = 0.399 W/kg

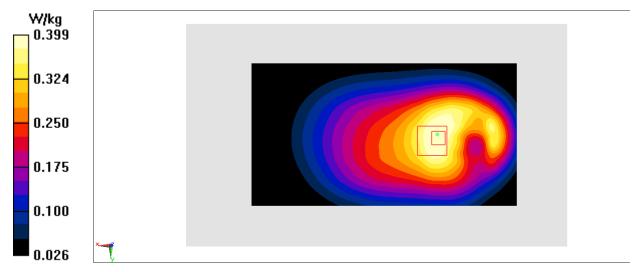


Fig.23 LTE Band12

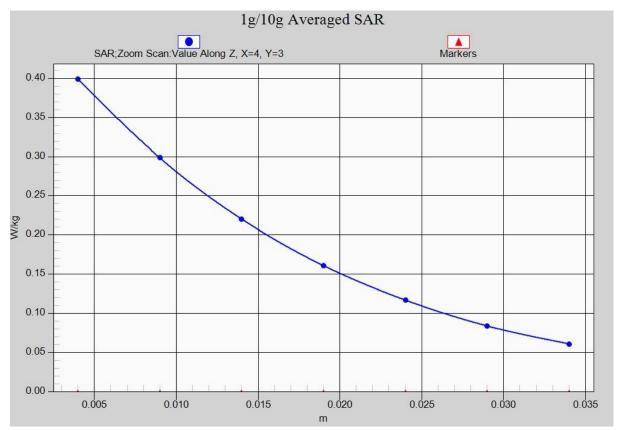


Fig. 23-1 Z-Scan at power reference point (LTE Band12)

LTE Band13 Right Cheek with QPSK_10M_1RB_Low

Date: 2018-5-1

Electronics: DAE4 Sn1525 Medium: Head 750 MHz

Medium parameters used (interpolated): f = 782 MHz; $\sigma = 0.899$ mho/m; $\epsilon r = 42.28$; $\rho = 1000$

 kg/m^3

Ambient Temperature: 22.9°C Liquid Temperature: 22.5°C

Communication System: LTE Band13Frequency: 782 MHz Duty Cycle: 1:1

Probe: EX3DV4- SN7464 ConvF(10.57, 10.57, 10.57)

Area Scan (71x121x1): Interpolated grid: dx=1.000 mm, dy=1.000 mm

Maximum value of SAR (interpolated) = 0.213 W/kg

Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 5.482 V/m; Power Drift = 0.01 dB

Peak SAR (extrapolated) = 0.242 W/kg

SAR(1 g) = 0.197 W/kg; SAR(10 g) = 0.155 W/kg

Maximum value of SAR (measured) = 0.206 W/kg

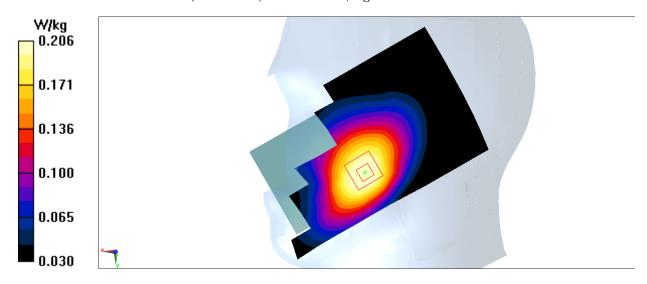


Fig.24 LTE Band13