
J.7 Probe Calibration Certificate

Probe 7673 Calibration Certificate

中国认可 CAICT Add: No.52 HuaYuanBei Road, Haidian District, Beijing, 100191, China CALIBRATION CNAS 1.0570 Tel: +86-10-62304633-2117

E-mail: emf@caict.ac.cn http://www.caict.ac.cn CTTL Client

Certificate No: 24J02Z000429

CALIBRATION CERTIFICATE

Object EX3DV4 - SN: 7673

Calibration Procedure(s) FF-Z11-004-02

Calibration Procedures for Dosimetric E-field Probes

Calibration date: July 29, 2024

This calibration Certificate documents the traceability to national standards, which realize the physical units of measurements(SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate. All calibrations have been conducted in the closed laboratory facility: environment temperature(22±3)°C and humidity<70%. Calibration Equipment used (M&TE critical for calibration)

Primary Standards	ID# C	al Date(Calibrated by, Certificate No.) Scheduled C	Calibration
Power Meter NRP2	106277	19-Oct-23(CTTL, No.J23X11026)	Oct-24
Power sensor NRP8S	104291	19-Oct-23(CTTL, No.J23X11026)	Oct-24
Power sensor NRP8S	104292	19-Oct-23(CTTL, No.J23X11026)	Oct-24
Reference 10dBAttenuator	18N50W-10dB	19-Jan-23(CTTL, No.J23X00212)	Jan-25
Reference 20dBAttenuator	18N50W-20dB	19-Jan-23(CTTL, No.J23X00211)	Jan-25
Reference Probe EX3DV4	SN 7307	28-May-24(SPEAG, No.EX-7307_May24)	May-25
DAE4	SN 1555	24-Aug-23(SPEAG, No.DAE4-1555_Aug23)	Aug-24
Secondary Standards	ID#	Cal Date(Calibrated by, Certificate No.)	Scheduled Calibration
SignalGenerator MG3700A	6201052605	12-Jun-24(CTTL, No.24J02X005419)	Jun-25
SignalGenerator APSIN26G	181-33A6D0700-	1959 26-Mar-24(CTTL, No.24J02X002468)	Mar-25
Network Analyzer E5071C	MY46110673	25-Dec-23(CTTL, No.J23X13425)	Dec-24
Reference 10dBAttenuator	BT0520	11-May-23(CTTL, No.J23X04061)	May-25
Reference 20dBAttenuator	BT0267	11-May-23(CTTL, No.J23X04062)	May-25
OCP DAK-12	SN 1174	25-Oct-23(SPEAG, No.OCP-DAK12-1174_Oc	ct23) Oct-24

Name Function Signature Calibrated by: Yu Zongying SAR Test Engineer Reviewed by: Lin Jun SAR Test Engineer Approved by: Qi Dianyuan SAR Project Leader

Issued: August 05, 2024

This calibration certificate shall not be reproduced except in full without written approval of the laboratory.

Add: No.52 HuaYuanBei Road, Haidian District, Beijing, 100191, China

Tel: +86-10-62304633-2117

E-mail: emf@caict.ac.cn http://www.caict.ac.cn

Glossary:

TSL tissue simulating liquid
NORMx,y,z sensitivity in free space
ConvF sensitivity in TSL / NORMx,y,z
DCP diode compression point

CF crest factor (1/duty_cycle) of the RF signal A,B,C,D modulation dependent linearization parameters

Polarization Φ rotation around probe axis

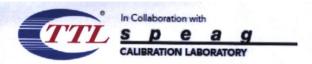
Polarization θ θ rotation around an axis that is in the plane normal to probe axis (at measurement center), i

 θ =0 is normal to probe axis

Connector Angle information used in DASY system to align probe sensor X to the robot coordinate system Calibration is Performed According to the Following Standards:

a) IEEE Std 1528-2013, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", June 2013

b) IEC 62209-1, "Measurement procedure for the assessment of Specific Absorption Rate (SAR) from hand-held and body-mounted devices used next to the ear (frequency range of 300 MHz to 6 GHz)", July 2016


c) IEC 62209-2, "Procedure to determine the Specific Absorption Rate (SAR) for wireless communication devices used in close proximity to the human body (frequency range of 30 MHz to 6 GHz)", March 2010

d) KDB 865664, "SAR Measurement Requirements for 100 MHz to 6 GHz"

Methods Applied and Interpretation of Parameters:

- NORMx,y,z: Assessed for E-field polarization θ=0 (f≤900MHz in TEM-cell; f>1800MHz: waveguide).
 NORMx,y,z are only intermediate values, i.e., the uncertainties of NORMx,y,z does not effect the E²-field uncertainty inside TSL (see below ConvF).
- NORM(f)x,y,z = NORMx,y,z* frequency_response (see Frequency Response Chart). This
 linearization is implemented in DASY4 software versions later than 4.2. The uncertainty of the
 frequency response is included in the stated uncertainty of ConvF.
- DCPx,y,z: DCP are numerical linearization parameters assessed based on the data of power sweep (no uncertainty required). DCP does not depend on frequency nor media.
- PAR: PAR is the Peak to Average Ratio that is not calibrated but determined based on the signal characteristics.
- Ax,y,z; Bx,y,z; Cx,y,z;VRx,y,z:A,B,C are numerical linearization parameters assessed based on the
 data of power sweep for specific modulation signal. The parameters do not depend on frequency nor
 media. VR is the maximum calibration range expressed in RMS voltage across the diode.
- ConvF and Boundary Effect Parameters: Assessed in flat phantom using E-field (or Temperature Transfer Standard for f≤800MHz) and inside waveguide using analytical field distributions based on power measurements for f >800MHz. The same setups are used for assessment of the parameters applied for boundary compensation (alpha, depth) of which typical uncertainty valued are given. These parameters are used in DASY4 software to improve probe accuracy close to the boundary. The sensitivity in TSL corresponds to NORMx,y,z* ConvF whereby the uncertainty corresponds to that given for ConvF. A frequency dependent ConvF is used in DASY version 4.4 and higher which allows extending the validity from±50MHz to±100MHz.
- Spherical isotropy (3D deviation from isotropy): in a field of low gradients realized using a flat phantom exposed by a patch antenna.
- Sensor Offset: The sensor offset corresponds to the offset of virtual measurement center from the probe tip (on probe axis). No tolerance required.
- Connector Angle: The angle is assessed using the information gained by determining the NORMx (no uncertainty required).

Certificate No:24J02Z000429

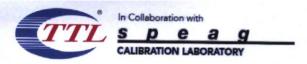
Add: No.52 Hua YuanBei Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2117
E-mail: emf@caict.ac.cn http://www.caict.ac.cn

DASY/EASY - Parameters of Probe: EX3DV4 - SN:7673

Basic Calibration Parameters

	Sensor X	Sensor Y	Sensor Z	Unc (k=2)
$Norm(\mu V/(V/m)^2)^A$	0.62	0.63	0.60	±10.0%
DCP(mV) ^B	109.4	111.6	108.0	

Modulation Calibration Parameters


UID	Communication System Name		A dB	B dBõV	С	D dB	VR mV	Unc ^E (<i>k</i> =2)
0 CW	X	0.0	0.0	1.0	0.00	214.8	±2.1%	
		Υ	0.0	0.0	1.0		218.1	
		Z	0.0	0.0	1.0		207.9	

The reported uncertainty of measurement is stated as the standard uncertainty of Measurement multiplied by the coverage factor k=2, which for a normal distribution Corresponds to a coverage probability of approximately 95%.

^A The uncertainties of Norm X, Y, Z do not affect the E²-field uncertainty inside TSL (see Page 4).

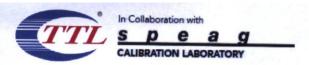
^B Numerical linearization parameter: uncertainty not required.

^E Uncertainly is determined using the max. deviation from linear response applying rectangular distribution and is expressed for the square of the field value.

Add: No.52 HuaYuanBei Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2117
E-mail: emf@caict.ac.cn http://www.caict.ac.cn

DASY/EASY - Parameters of Probe: EX3DV4 - SN:7673

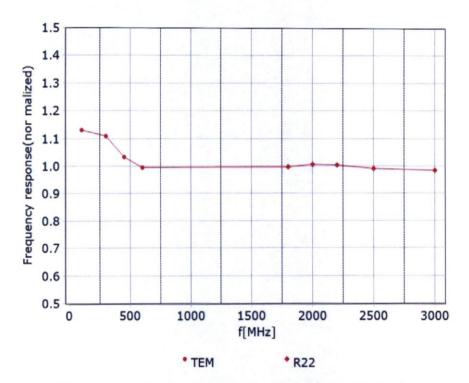
Calibration Parameter Determined in Head Tissue Simulating Media

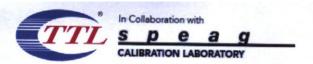

f [MHz] ^C	Relative Permittivity ^F	Conductivity (S/m) F	ConvF X	ConvF Y	ConvF Z	Alpha ^G	Depth ^G (mm)	Unct. (k=2)
750	41.9	0.89	10.45	10.45	10.45	0.23	1.09	±12.7%
900	41.5	0.97	10.03	10.03	10.03	0.21	1.24	±12.7%
1450	40.5	1.20	8.74	8.74	8.74	0.18	1.04	±12.7%
1750	40.1	1.37	8.45	8.45	8.45	0.25	1.02	±12.7%
1900	40.0	1.40	8.10	8.10	8.10	0.25	1.04	±12.7%
2000	40.0	1.40	8.15	8.15	8.15	0.26	1.05	±12.7%
2300	39.5	1.67	7.85	7.85	7.85	0.58	0.69	±12.79
2450	39.2	1.80	7.60	7.60	7.60	0.57	0.71	±12.79
2600	39.0	1.96	7.44	7.44	7.44	0.64	0.67	±12.79
3300	38.2	2.71	6.93	6.93	6.93	0.47	0.88	±13.9%
3500	37.9	2.91	6.73	6.73	6.73	0.45	1.00	±13.99
3700	37.7	3.12	6.48	6.48	6.48	0.35	1.20	±13.99
3900	37.5	3.32	6.44	6.44	6.44	0.30	1.52	±13.99
4100	37.2	3.53	6.43	6.43	6.43	0.35	1.25	±13.99
4200	37.1	3.63	6.33	6.33	6.33	0.30	1.52	±13.9
4400	36.9	3.84	6.23	6.23	6.23	0.30	1.52	±13.9
4600	36.7	4.04	6.18	6.18	6.18	0.35	1.40	±13.9
4800	36.4	4.25	6.07	6.07	6.07	0.35	1.55	±13.9
4950	36.3	4.40	5.74	5.74	5.74	0.35	1.55	±13.9
5250	35.9	4.71	5.18	5.18	5.18	0.40	1.52	±13.99
5600	35.5	5.07	4.60	4.60	4.60	0.40	1.52	±13.9
5750	35.4	5.22	4.71	4.71	4.71	0.40	1.55	±13.9

^c Frequency validity above 300 MHz of ±100MHz only applies for DASY v4.4 and higher (Page 2), else it is restricted to ±50MHz. The uncertainty is the RSS of ConvF uncertainty at calibration frequency and the uncertainty for the indicated frequency band. Frequency validity below 300 MHz is ± 10, 25, 40, 50 and 70 MHz for ConvF assessments at 30, 64, 128, 150 and 220 MHz respectively. Above 5 GHz frequency validity can be extended to ± 110 MHz.

Certificate No:24J02Z000429

F At frequency up to 6 GHz, the validity of tissue parameters (ε and σ) can be relaxed to ±10% if liquid compensation formula is applied to measured SAR values. The uncertainty is the RSS of the ConvF uncertainty for indicated target tissue parameters.

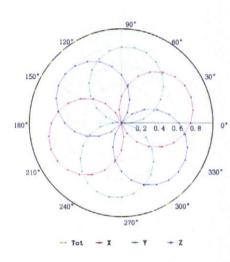

^G Alpha/Depth are determined during calibration. SPEAG warrants that the remaining deviation due to the boundary effect after compensation is always less than ± 1% for frequencies below 3 GHz and below ± 2% for the frequencies between 3-6 GHz at any distance larger than half the probe tip diameter from the boundary.

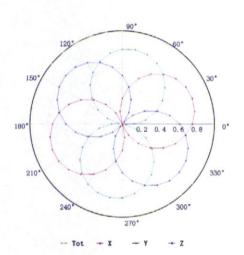


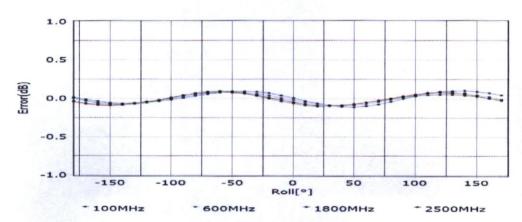
Add: No.52 Hua YuanBei Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2117
E-mail: emf@caict.ac.cn http://www.caict.ac.cn

Frequency Response of E-Field (TEM-Cell: ifi110 EXX, Waveguide: R22)

Uncertainty of Frequency Response of E-field: ±7.4% (k=2)



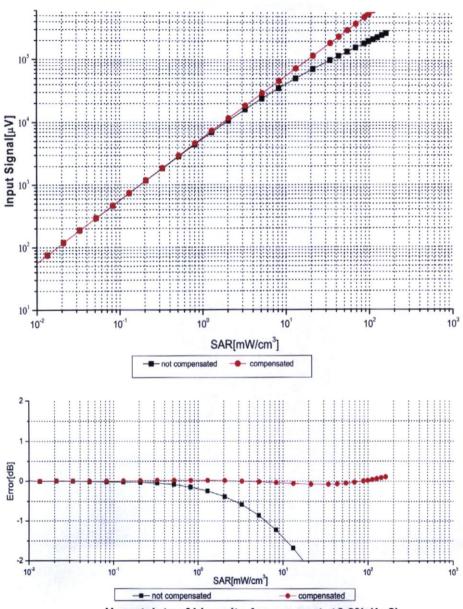

Add: No.52 HuaYuanBei Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2117
E-mail: emf@caict.ac.cn http://www.caict.ac.cn


Receiving Pattern (Φ), θ=0°

f=600 MHz, TEM

f=1800 MHz, R22

Uncertainty of Axial Isotropy Assessment: ±1.2% (k=2)

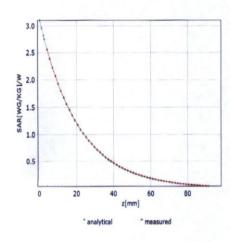


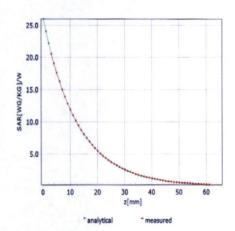
Add: No.52 HuaYuanBei Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2117

E-mail: emf@caict.ac.cn http://www.caict.ac.cn

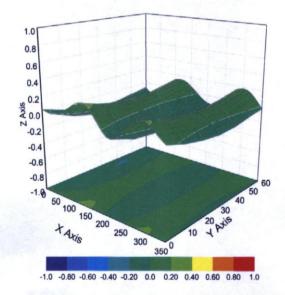
Dynamic Range f(SAR_{head}) (TEM cell, f = 900 MHz)

Uncertainty of Linearity Assessment: ±0.9% (k=2)




Add: No.52 HuaYuanBei Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2117

E-mail: emf@caict.ac.cn http://www.caict.ac.cn


Conversion Factor Assessment

f=750 MHz,WGLS R9(H_convF) f=1750 MHz,WGLS R22(H_convF)

Deviation from Isotropy in Liquid

Uncertainty of Spherical Isotropy Assessment: ±3.2% (k=2)

Certificate No:24J02Z000429

Page 8 of 9

Add: No.52 HuaYuanBei Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2117
E-mail: emf@caict.ac.cn http://www.caict.ac.cn

DASY/EASY – Parameters of Probe: EX3DV4 – SN:7673

Other Probe Parameters

Sensor Arrangement	Triangular
Connector Angle (°)	146.2
Mechanical Surface Detection Mode	enabled
Optical Surface Detection Mode	disable
Probe Overall Length	337mm
Probe Body Diameter	10mm
Tip Length	9mm
Tip Diameter	2.5mm
Probe Tip to Sensor X Calibration Point	1mm
Probe Tip to Sensor Y Calibration Point	1mm
Probe Tip to Sensor Z Calibration Point	1mm
Recommended Measurement Distance from Surface	1.4mm

J.8 Dipole Calibration Certificate

835 MHz Dipole Calibration Certificate

Calibration Laboratory of

Schmid & Partner Engineering AG

Zeughausstrasse 43, 8004 Zurich, Switzerland

S Schweizerischer Kalibrierdienst C Service suisse d'étalonnage Servizio svizzero di taratura

Swiss Calibration Service

Accreditation No.: SCS 0108

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

CTTL Beijing Certificate No.

D835V2-4d069_Jul24

CALIBRATION CERTIFICATE

Object

Client

D835V2 - SN: 4d069

Calibration procedure(s)

QA CAL-05.v12

Calibration Procedure for SAR Validation Sources between 0.7 - 3 GHz

Calibration date

July 9, 2024

This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate.

All calibrations have been conducted in the closed laboratory facility: environment temperature (22 ± 3)°C and humidity < 70%.

Calibration Equipment used (M&TE critical for calibration)

Primary Standards	ID	Cal Date (Certificate No.)	Scheduled Cal
Power Sensor R&S NRP-33T	SN: 100967	28-Mar-24 (No. 217-04038)	Mar-25
Power Sensor R&S NRP18A	SN: 101859	21-Mar-24 (No. 4030A315007801)	Mar-25
Spectrum Analyzer R&S FSV40	SN: 101832	25-Jan-24 (No. 4030-315007551)	Jan-25
Mismatch; Short [S4188] Attenuator [S4423]	SN: 1152	28-Mar-24 (No. 217-04050)	Mar-25
OCP DAK-12	SN: 1016	05-Oct-23 (No. OCP-DAK12-1016_Oct23)	Oct-24
OCP DAK-3.5	SN: 1249	05-Oct-23 (No. OCP-DAK3.5-1249_Oct23)	Oct-24
Reference Probe EX3DV4	SN: 7349	03-Jun-24 (No. EX3-7349_Jun24)	Jun-25
DAE4in	SN: 1836	10-Jan-24 (No. DAE4ip-1836 Jan24)	Jan-25

Secondary Standards	ID	Check Date (in house)	Scheduled Check
ACAD Source Box	SN: 1000	28-May-24 (No. 675-ACAD_Source_Box-240528)	May-25
Signal Generator R&S SMB100A	SN: 182081	28-May-24 (No. 0001-300719404)	May-25
Mismatch; SMA	SN: 1102	22-May-24 (No. 675-Mismatch_SMA-240522)	May-25

Name Function

Sig

Calibrated by

Paulo Pina

Laboratory Technician

Approved by

Sven Kühn

Technical Manager

Issued: July 9, 2024

This calibration certificate shall not be reproduced except in full without written approval of the laboratory.

Calibration Laboratory of Schmid & Partner Engineering AG

Zeughausstrasse 43, 8004 Zurich, Switzerland

S Schweizerischer Kalibrierdienst
C Service suisse d'étalonnage
Servizio svizzero di taratura
S Swiss Calibration Service

Accreditation No.: SCS 0108

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA

Multilateral Agreement for the recognition of calibration certificates

Glossary

TSL tissue simulating liquid
ConvF sensitivity in TSL / NORM x,y,z
N/A not applicable or not measured

Calibration is Performed According to the Following Standards

- IEC/IEEE 62209-1528, "Measurement Procedure For The Assessment Of Specific Absorption Rate Of Human Exposure To Radio Frequency Fields From Hand-Held And Body-Worn Wireless Communication Devices - Part 1528: Human Models, Instrumentation And Procedures (Frequency Range of 4 MHz to 10 GHz)", October 2020.
- · KDB 865664, "SAR Measurement Requirements for 100 MHz to 6 GHz"

Additional Documentation

· DASY System Handbook

Methods Applied and Interpretation of Parameters

- Measurement Conditions: Further details are available from the Validation Report at the end of the certificate. All figures stated in the certificate are valid at the frequency indicated.
- Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed point exactly below the center marking of the flat phantom section, with the arms oriented parallel to the body axis.
- Feed Point Impedance and Return Loss: These parameters are measured with the dipole positioned under the liquid filled phantom. The impedance stated is transformed from the measurement at the SMA connector to the feed point. The Return Loss ensures low reflected power. No uncertainty required.
- Electrical Delay: One-way delay between the SMA connector and the antenna feed point. No uncertainty required.
- SAR measured: SAR measured at the stated antenna input power.
- · SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector.
- SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result.

The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%.

Certificate No: D835V2-4d069_Jul24

Page 2 of 6

Measurement Conditions

DASY system configuration, as far as not given on page 1.

DASY Version	DASY8 Module SAR	16.4.0
Extrapolation	Advanced Extrapolation	
Phantom	Modular Flat Phantom	
Distance Dipole Center - TSL	15 mm	with spacer
Zoom Scan Resolution	dx, $dy = 6mm$, $dz = 1.5mm$	Graded Ratio = 1.5 mm (Z direction)
Frequency	835MHz ±1MHz	

Head TSL parameters at 835 MHz

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	22.0 °C	41.5	0.900 mho/m
Measured Head TSL parameters	(22.0 ±0.2)°C	42.3 ±6%	0.930 mho/m ±6%
Head TSL temperature change during test	< 0.5 °C		

SAR result with Head TSL at 835 MHz

SAR averaged over 1 cm ³ (1 g) of Head TSL	Condition	
SAR for nominal Head TSL parameters	24 dBm input power	2.38 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	9.47 W/kg ±17.0% (k = 2)

SAR averaged over 10 cm ³ (10 g) of Head TSL	Condition	
SAR for nominal Head TSL parameters	24 dBm input power	1.53 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	6.09 W/kg ±16.5% (k = 2)

Appendix (Additional assessments outside the scope of SCS 0108)

Antenna Parameters with Head TSL at 835 MHz

Impedance	51.1 Ω – 4.5 jΩ	
Return Loss	-26.8 dB	

General Antenna Parameters and Design

=	1.393 ns
Electrical Delay (one direction)	1.393 08
Liectifical Delay (Offe direction)	11000 110

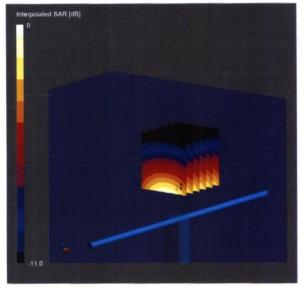
After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured. The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard. No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged.

Additional EUT Data

Manufactured by	SPEAG

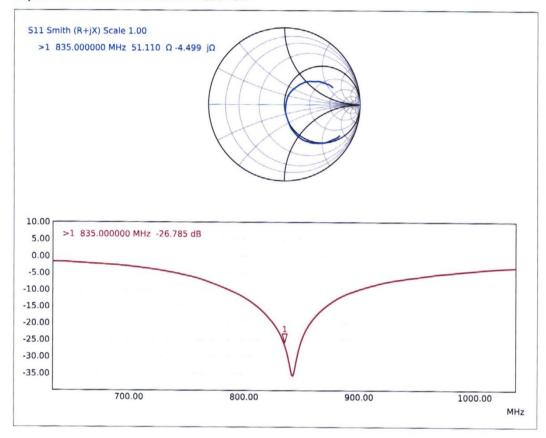
Certificate No: D835V2-4d069_Jul24 Page 4 of 6

System Performance Check Report


Summary				
Dipole	Frequency [MHz]	TSL	Power [dBm]	
D835V2 - SN4d069	835	HSL	24	

Phantom Section, TSL		Band	Group, UID	Frequency [MHz], Channel Number	Conversion Factor	TSL Conductivity [S/m]	TSL Permittivity
Flat	15		CW, 0	835, 0	9.61	0.93	42.3

Hardware Setup				
Phantom	TSL, Measured Date	Probe, Calibration Date	DAE, Calibration Date	
Flat V4.9 mod	HSL, 2024-07-09	EX3DV4 - SN7349, 2024-06-03	DAE4ip Sn1836, 2024-01-10	


cans Setup	
	Zoom Scar
Grid Extents [mm]	30 x 30 x 30
Grid Steps [mm]	6.0 × 6.0 × 1.
Sensor Surface [mm]	1.8
Graded Grid	Ye
Grading Ratio	1.3
MAIA	N/i
Surface Detection	VMS + 6
Scan Method	Measure

	Zoom Scan
Date	2024-07-09
psSAR1g [W/Kg]	2.38
psSAR10g [W/Kg]	1.53
Power Drift [dB]	0.00
Power Scaling	Disabled
Scaling Factor [dB]	
TSL Correction	Positive / Negative

0 dB = 3.85 W/Kg

Impedance Measurement Plot for Head TSL

2600 MHz Dipole Calibration Certificate

Calibration Laboratory of Schmid & Partner

Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

- Schweizerischer Kalibrierdienst Service suisse d'étalonnage
- С Servizio svizzero di taratura
 - **Swiss Calibration Service**

Accreditation No.: SCS 0108

~	ı	1	-			٠	
u	ı	ı	e	ı	1	ı	

CTTL Beijing Certificate No.

D2600V2-1012_Jul24

CALIBRATION CERTIFICATE

Object

D2600V2 - SN: 1012

Calibration procedure(s)

QA CAL-05.v12

Calibration Procedure for SAR Validation Sources between 0.7 - 3 GHz

Calibration date

July 10, 2024

This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate.

All calibrations have been conducted in the closed laboratory facility: environment temperature $(22\pm3)^{\circ}C$ and humidity < 70%.

Calibration Equipment used (M&TE critical for calibration)

Primary Standards	ID	Cal Date (Certificate No.)	Scheduled Cal
Power Sensor R&S NRP-33T	SN: 100967	28-Mar-24 (No. 217-04038)	Mar-25
Power Sensor R&S NRP18A	SN: 101859	21-Mar-24 (No. 4030A315007801)	Mar-25
Spectrum Analyzer R&S FSV40	SN: 101832	25-Jan-24 (No. 4030-315007551)	Jan-25
Mismatch; Short [S4188] Attenuator [S4423]	SN: 1152	28-Mar-24 (No. 217-04050)	Mar-25
OCP DAK-12	SN: 1016	05-Oct-23 (No. OCP-DAK12-1016_Oct23)	Oct-24
OCP DAK-3.5	SN: 1249	05-Oct-23 (No. OCP-DAK3.5-1249_Oct23)	Oct-24
Reference Probe EX3DV4	SN: 7349	03-Jun-24 (No. EX3-7349_Jun24)	Jun-25
DAE4in	SN: 1836	10-Jan-24 (No. DAE4ip-1836_Jan24)	Jan-25

Secondary Standards	ID	Check Date (in house)	Scheduled Check
ACAD Source Box	SN: 1000	28-May-24 (No. 675-ACAD_Source_Box-240528)	May-25
Signal Generator R&S SMB100A	SN: 182081	28-May-24 (No. 0001-300719404)	May-25
Mismatch; SMA	SN: 1102	22-May-24 (No. 675-Mismatch_SMA-240522)	May-25

Function

Calibrated by

Paulo Pina

Laboratory Technician

Issued: July 10, 2024

Approved by

Sven Kühn

Technical Manager

This calibration certificate shall not be reproduced except in full without written approval of the laboratory.

Calibration Laboratory of

Schmid & Partner Engineering AG

Zeughausstrasse 43, 8004 Zurich, Switzerland

S Schweizerischer Kalibrierdienst
C Service sulsse d'étalonnage
Servizio svizzero di taratura
S wiss Calibration Service

Accreditation No.: SCS 0108

Accredited by the Swiss Accreditation Service (SAS)
The Swiss Accreditation Service is one of the signatories to the EA
Multilateral Agreement for the recognition of calibration certificates

Glossary

TSL tissue simulating liquid
ConvF sensitivity in TSL / NORM x,y,z
N/A not applicable or not measured

Calibration is Performed According to the Following Standards

- IEC/IEEE 62209-1528, "Measurement Procedure For The Assessment Of Specific Absorption Rate Of Human Exposure To Radio Frequency Fields From Hand-Held And Body-Worn Wireless Communication Devices - Part 1528: Human Models, Instrumentation And Procedures (Frequency Range of 4 MHz to 10 GHz)", October 2020.
- KDB 865664, "SAR Measurement Requirements for 100 MHz to 6 GHz"

Additional Documentation

· DASY System Handbook

Methods Applied and Interpretation of Parameters

- Measurement Conditions: Further details are available from the Validation Report at the end of the certificate. All figures stated in the certificate are valid at the frequency indicated.
- Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed point exactly below the center marking of the flat phantom section, with the arms oriented parallel to the body axis.
- Feed Point Impedance and Return Loss: These parameters are measured with the dipole positioned under the liquid filled phantom. The impedance stated is transformed from the measurement at the SMA connector to the feed point. The Return Loss ensures low reflected power. No uncertainty required.
- · Electrical Delay: One-way delay between the SMA connector and the antenna feed point. No uncertainty required.
- · SAR measured: SAR measured at the stated antenna input power.
- SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector.
- SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result.

The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%.

Measurement Conditions

DASY system configuration, as far as not given on page 1.

DASY Version	DASY8 Module SAR	16.4.0
Extrapolation	Advanced Extrapolation	
Phantom	Modular Flat Phantom	
Distance Dipole Center - TSL	10 mm	with spacer
Zoom Scan Resolution	dx, $dy = 5mm$, $dz = 1.5mm$	Graded Ratio = 1.5 mm (Z direction)
Frequency	2600MHz ±1MHz	

Head TSL parameters at 2600 MHz

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	22.0 °C	39.0	1.96 mho/m
Measured Head TSL parameters	(22.0 ±0.2)°C	37.4 ±6%	1.99 mho/m ±6%
Head TSL temperature change during test	< 0.5 °C		

SAR result with Head TSL at 2600 MHz

SAR averaged over 1 cm ³ (1 g) of Head TSL	Condition			
SAR for nominal Head TSL parameters	24 dBm input power	13.8 W/kg		
SAR for nominal Head TSL parameters	normalized to 1W	54.9 W/kg ±17.0% (k = 2)		

SAR averaged over 10 cm ³ (10 g) of Head TSL	Condition	
SAR for nominal Head TSL parameters	24 dBm input power	6.24 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	24.8 W/kg ±16.5% (k = 2)

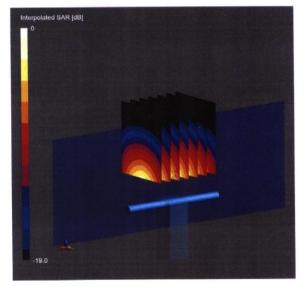
Appendix (Additional assessments outside the scope of SCS 0108) Antenna Parameters with Head TSL at 2600 MHz

Impedance	47.3 Ω – 6.6 jΩ			
Return Loss	-22.7 dB			

General Antenna Parameters and Design

Electrical Delay (one direction)	1.153 ns

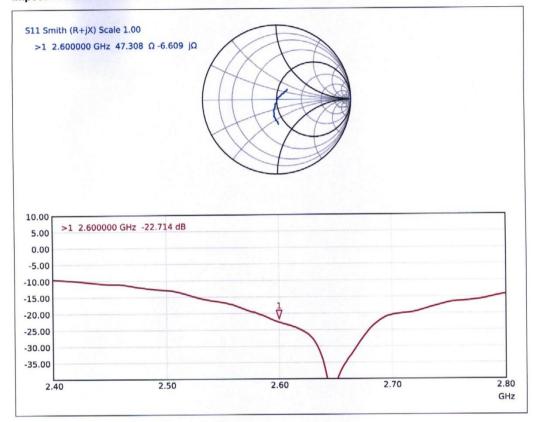
After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured. The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard. No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged.


Additional EUT Data

Manufactured by	SPEAG

System Performance Check Report

Surface Detection
Scan Method


Summary								
Dipole	Frequency [MHz]			z]	TSL	Power [dBm]		
D2600V2 - SN1012	2600			HSL	24			
Exposure Condition	S							
Phantom Section, TSL	Test Distance [mm]	Band	Group, UID	Frequency [MHz], C	hannel Number	Conversion Factor	TSL Conductivity [S/m]	TSL Permittivity
Flat	10		CW, 0	2600, 0		7.29	1.99	37.4
Hardware Setup								
Phantom	TSL, Measured	TSL, Measured Date Probe, Calibration Date			2	DAE, Calibration Date		
MFP V8.0 Center	HSL, 2024-07-	HSL, 2024-07-10 EX3DV4 - SN7349, 2024-06-03			24-06-03	DAE4ip Sn1836, 2024-01-10		
Scans Setup					Measureme	nt Results		
				Zoom Scan				Zoom Scan
Grid Extents [mm]	30 x 30 x 30			30 x 30 x 30	Date	2024-07-10		
Grid Steps [mm]	5.0 x 5.0 x 1.5			.0 x 5.0 x 1.5	psSAR1g (W/	AR1g [W/Kg] 13		
Sensor Surface [mm]	1.4			1.4	ps\$AR10g [W	W/Kg] 6.24		
Graded Grid	Yes			Yes	Power Drift [[dB] 0.00		
Grading Ratio			.5	1.5	Power Scaling	3		Disabled
MAIA				N/A	Scaling Facto	r [dB]		
Surface Detection				VMS + 6p	TSL Correction	on		Positive / Negative

Measured

0 dB = 29.3 W/Kg

Impedance Measurement Plot for Head TSL

ANNEX K Accreditation Certificate

Accredited Laboratory

A2LA has accredited

TELECOMMUNICATION TECHNOLOGY LABS, CAICT

Beijing, People's Republic of China

for technical competence in the field of

Electrical Testing

This laboratory is accredited in accordance with the recognized International Standard ISO/IEC 17025:2017

General requirements for the competence of testing and calibration laboratories. This accreditation demonstrates technical competence for a defined scope and the operation of a laboratory quality management system (refer to joint ISO-ILAC-IAF Communiqué dated April 2017).

Presented this 23rd day of July 2024.

Mr. Trace McInturff, Vice President, Accreditation Services For the Accreditation Council Certificate Number 7049,01

Valid to July 31, 2026

For the tests to which this accreditation applies, please refer to the laboratory's Electrical Scope of Accreditation.