

FCC RF Test Report

APPLICANT	:	TCL Communication Ltd.
EQUIPMENT	:	GSM/UMTS/LTE/NR Mobile phone
BRAND NAME	:	TCL
MODEL NAME	:	T803E
FCC ID	:	2ACCJH183
STANDARD	:	FCC Part 15 Subpart C §15.225
CLASSIFICATION	:	(DXX) Low Power Communication Device Transmitter
TEST DATE(S)	:	Mar. 22, 2024 ~ Mar. 24, 2024

We, Sporton International Inc. (Kunshan), would like to declare that the tested sample has been evaluated in accordance with the test procedures and has been in compliance with the applicable technical standards.

The test results in this report apply exclusively to the tested model / sample. Without written approval of Sporton International Inc. (Kunshan), the test report shall not be reproduced except in full.

JasonJia

Approved by: Jason Jia

Sporton International Inc. (ShenZhen) 1/F, 2/F, Bldg 5, Shiling Industrial Zone, Xinwei Village, Xili, Nanshan, Shenzhen, 518055 People's Republic of China

TABLE OF CONTENTS

TABL	E OF CONTENTS	2
REVIS	SION HISTORY	3
	IARY OF THE TEST RESULT	
	NERAL DESCRIPTION	
1.1	Applicant	5
1.2	Manufacturer	5
1.3	Product Feature of Equipment Under Test	5
1.4	Product Specification of Equipment Under Test	5
1.5	Modification of EUT	6
1.6	Testing Location	6
1.7	Test Software	7
1.8	Applicable Standards	7
2. TES	ST CONFIGURATION OF EQUIPMENT UNDER TEST	8
2.1	Descriptions of Test Mode	8
2.2	Connection Diagram of Test System	9
2.3	Table for Supporting Units	10
2.4	EUT Operation Test Setup	10
3. TES	ST RESULTS	
3.1	AC Power Line Conducted Emissions Measurement	11
3.2	20dB and 99% OBW Spectrum Bandwidth Measurement	13
3.3	Frequency Stability Measurement	14
3.4		
3.5	Radiated Emissions Measurement	17
3.6		
	T OF MEASURING EQUIPMENT	
5. UNC	CERTAINTY OF EVALUATION	22
APPE	NDIX A. TEST RESULTS OF CONDUCTED EMISSION TEST	
APPE	NDIX B. TEST RESULTS OF CONDUCTED TEST ITEMS	
B1	. Test Result of 20dB Spectrum Bandwidth	

B2. Test Result of Frequency Stability

APPENDIX C. TEST RESULTS OF RADIATED TEST ITEMS

- C1. Test Result of Field Strength of Fundamental Emissions
- C2. Results of Radiated Emissions (9 kHz~30MHz)
- C3. Results of Radiated Emissions (30MHz~1GHz)

APPEDNIX D. SETUP PHOTOGRAPHS

REVISION HISTORY

REPORT NO.	VERSION	DESCRIPTION	ISSUED DATE
FR422702D	Rev. 01	Initial issue of report	Apr. 07, 2024

SUMMARY OF THE TEST RESULT

Report Section	FCC Rule	Description of Test	Result	Remark
3.1	15.207	AC Power Line Conducted Emissions	Complies	Under limit 3.41 dB at 13.56MHz
	15.215(c)	20dB Spectrum Bandwidth	Complies	-
3.2	-	99% OBW Spectrum Bandwidth	Complies	-
3.3	15.225(e)	Frequency Stability	Complies	-
3.4	15.225(a)(b)(c)	Field Strength of Fundamental Emissions	Complies	Max level 54.72 dBµV/m at 13.56 MHz
3.5	15.225(d) & 15.209	Radiated Spurious Emissions	Complies	Under limit 6.83 dB at 108.57MHz
3.6	15.203	Antenna Requirements	Complies	-

Conformity Assessment Condition:

1. The test results (PASS/FAIL) with all measurement uncertainty excluded are presented against the regulation limits or in accordance with the requirements stipulated by the applicant/manufacturer who shall bear all the risks of non-compliance that may potentially occur if measurement uncertainty is taken into account.

2. The measurement uncertainty please refer to each test result in the section "Measurement Uncertainty"

Disclaimer:

The product specifications of the EUT presented in the test report that may affect the test assessments are declared by the manufacturer who shall take full responsibility for the authenticity.

1. General Description

1.1 Applicant

TCL Communication Ltd.

5/F, Building 22E, 22 Science Park East Avenue, Hong Kong Science Park, Shatin, NT, Hong Kong

1.2 Manufacturer

TCL Communication Ltd.

5/F, Building 22E, 22 Science Park East Avenue, Hong Kong Science Park, Shatin, NT, Hong Kong

1.3 Product Feature of Equipment Under Test

Product Feature			
Equipment GSM/UMTS/LTE/NR Mobile phone			
Brand Name	TCL		
Model Name	T803E		
FCC ID	2ACCJH183		
IMEI Code	Conducted: 353318350121694&353318350121702 Conduction: 353318350121777/353318350121785 Radiation: 353318350121835/353318350121843		
HW Version	05		
SW Version	AGS7		
EUT Stage	Identical Prototype		

Remark: The above EUT's information was declared by manufacturer. Please refer to the specifications or user's manual for more detailed description.

1.4 Product Specification of Equipment Under Test

Standards-related Product Specification			
Tx/Rx Frequency Range	13.553 ~ 13.567MHz		
Channel Number	1		
20dBW	2.577 KHz		
99%OBW	2.178 KHz		
Antenna Type	Loop Antenna		
Type of Modulation	ASK		

1.5 Modification of EUT

No modifications are made to the EUT during all test items.

1.6 Testing Location

Sporton International Inc. (ShenZhen) is accredited to ISO/IEC 17025:2017 by American Association for Laboratory Accreditation with Certificate Number 5145.01.

Test Firm	Sporton International Inc. (ShenZhen)							
Test Site Location	1/F, 2/F, Bldg 5, Shiling Industrial Zone, Xinwei Village, Xili, Nanshan, Shenzhen, 518055 People's Republic of China TEL: +86-755-86379589 FAX: +86-755-86379595							
Test Site No.	Sporton Site No.		FCC Designation No.	FCC Test Firm Registration No.				
	TH01-SZ	CO01-SZ						
Test Engineer	Jason Zhang Yuki Tang							
Temperature	22~24	22~24	CN1256	421272				
Relative Humidity	53~55							

Test Firm	Sporton International Inc. (ShenZhen)					
Test Site	101, 1st Floor, Block B, Building 1, No. 2, Tengfeng 4th Road, Fenghuang					
Test Sile	Community, Fuyong Street, Baoan	District, Shenzhen City,	Guangdong Province			
Location	518103 People's Republic of China					
	TEL: +86-755-86066985					
Test Site No.	Sporton Site No.	FCC Designation No.	FCC Test Firm Registration No.			
	03CH05-SZ					
Test Engineer	ZhanSheng Liu					
Temperature	23~25 CN1256 421272					
Relative Humidity	48~52					

1.7 Test Software

ltem	Site	Manufacturer	Name	Version
1.	03CH05-SZ	AUDIX	E3	6.2009-8-24al
2.	CO01-SZ	AUDIX	E3	6.120613b

1.8 Applicable Standards

According to the specifications of the manufacturer, the EUT must comply with the requirements of the following standards:

- 47 CFR Part 15 Subpart C §15.225
- ANSI C63.10-2013

2. Test Configuration of Equipment Under Test

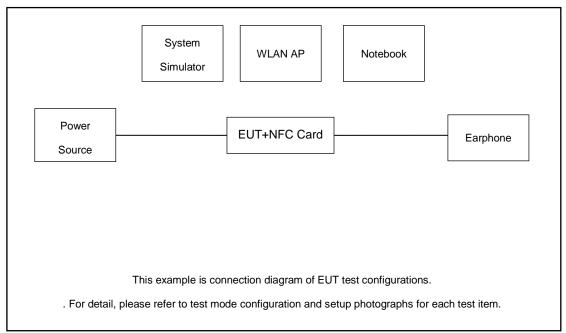
2.1 Descriptions of Test Mode

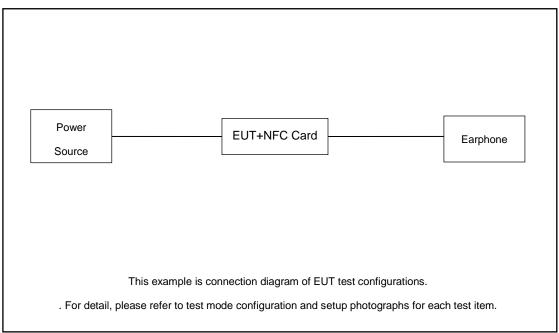
Investigation has been done on all the possible configurations.

The following table is a list of the test modes shown in this test report.

Test Items				
AC Power Line Conducted Emissions	Field Strength of Fundamental Emissions			
20dB Spectrum Bandwidth	Frequency Stability			
Radiated Emissions 9kHz~30MHz	Radiated Emissions 30MHz~1GHz			

The EUT pre-scanned in four NFC type, A, B, F, V. The worst type (type F) was recorded in this report. Pre-scanned tests, X, Y, Z in three orthogonal panels to determine the final configuration (Y plane as worst plane) from all possible combinations.


	Test Cases					
AC Conducted Emission	Mode 1: GSM850 Idle + WLAN Link(2.4G) + NFC TX + Earphone + Battery 1 + USB Cable(Charging from Adapter 2)					
Remark: For Radiated Test Cases, The tests were performed with Adapter 1, Earphone and USB Cable.						



2.2 Connection Diagram of Test System

For Conducted Emission:

For Radiated Emission:

2.3 Table for Supporting Units

Item	Equipment	Trade Name	Model Name	FCC ID	Data Cable	Power Cord
1.	System Simulator	R&S	CMU 200	N/A	N/A	Unshielded, 1.8 m
2.	WLAN AP	D-Link	DIR-820L	KA2IR820LA1	N/A	Unshielded,1.8m
3.	Notebook	Lenovo	E540	FCC DoC	N/A	AC I/P: Unshielded, 1.2 m DC O/P: Shielded, 1.8 m
4.	NFC Card	N/A	N/A	N/A	N/A	N/A
5.	Earphone	apple	N/A	N/A	N/A	N/A

2.4 EUT Operation Test Setup

The EUT was programmed to be in continuously transmitting mode.

The ancillary equipment, NFC card, is used to make the EUT (NFC) continuously transmit at 13.56MHz and is placed around 0 cm gap to the EUT.

3. Test Results

3.1 AC Power Line Conducted Emissions Measurement

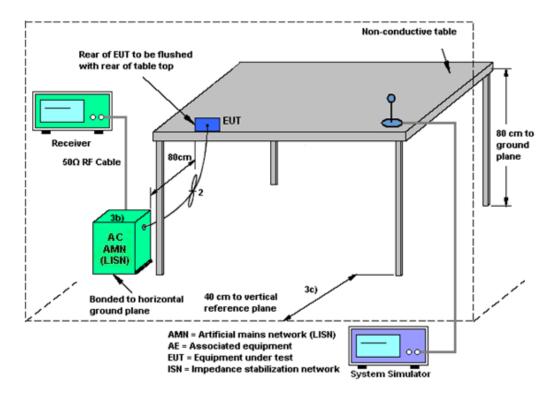
3.1.1 Limit of AC Conducted Emission

For equipment that is designed to be connected to the public utility (AC) power line, the radio frequency voltage that is conducted back onto the AC power line on any frequency or frequencies within the band 150 kHz to 30 MHz shall not exceed the limits in the following table.

Frequency of Emission	Conducted Limit (dBµV)				
(MHz)	Quasi-Peak	Average			
0.15-0.5	66 to 56*	56 to 46*			
0.5-5	56	46			
5-30	60	50			

*Decreases with the logarithm of the frequency.

3.1.2 Measuring Instruments


See list of measuring instruments of this test report.

3.1.3 Test Procedures

- 1. The EUT was placed 0.4 meter from the conducting wall of the shielding room, and it was kept at least 80 centimeters from any other grounded conducting surface.
- 2. Connect EUT to the power mains through a line impedance stabilization network (LISN).
- 3. All the support units are connecting to the other LISN.
- 4. The LISN provides 50 ohm coupling impedance for the measuring instrument.
- 5. The FCC states that a 50 ohm, 50 microhenry LISN should be used.
- 6. Both sides of AC line were checked for maximum conducted interference.
- 7. The frequency range from 150 kHz to 30 MHz was searched.
- Set the test-receiver system to Peak Detect Function and specified bandwidth (IF Bandwidth = 9kHz) with Maximum Hold Mode. Then measurement is also conducted by Average Detector and Quasi-Peak Detector Function respectively.

3.1.4 Test setup

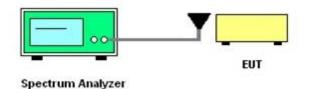
3.1.5 Test Result of AC Conducted Emission

Please refer to Appendix A.

3.2 20dB and 99% OBW Spectrum Bandwidth Measurement

3.2.1 Limit

Intentional radiators must be designed to ensure that the 20dB and 99% emission bandwidth in the specific band 13.553~13.567MHz.


3.2.2 Measuring Instruments

See list of measuring instruments of this test report.

3.2.3 Test Procedures

- 1. The spectrum analyzer connected via a receive antenna placed near the EUT in peak Max hold mode.
- 2. The resolution bandwidth of 1 kHz and the video bandwidth of 3 kHz were used.
- 3. Measured the spectrum width with power higher than 20dB below carrier.
- 4. Measured the 99% OBW.

3.2.4 Test Setup

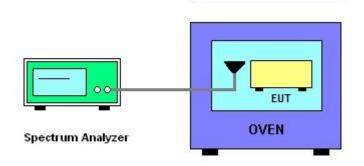
3.2.5 Test Result of Conducted Test Items

Please refer to Appendix B.

3.3 Frequency Stability Measurement

3.3.1 Limit

The frequency tolerance of the carrier signal shall be maintained within +/- 0.01% (100ppm) of the operating frequency over a temperature variation of -20 degrees to +50 degrees C at normal supply voltage, and for a variation in the primary supply voltage from 85% to 115% of the rated supply voltage at a temperature of 20 degrees C. For battery operated equipment, the equipment tests shall be performed using a new battery.


3.3.2 Measuring Instruments

See list of measuring instruments of this test report.

3.3.3 Test Procedures

- 1. The spectrum analyzer connected via a receive antenna placed near the EUT.
- 2. EUT have transmitted signal and fixed channelize.
- 3. Set the spectrum analyzer span to view the entire emissions bandwidth.
- 4. Set RBW = 1 kHz, VBW = 3 kHz with peak detector and maxhold settings.
- 5. The fc is declaring of channel frequency. Then the frequency error formula is $(fc-f)/fc \times 10^6$ ppm and the limit is less than ±100ppm.
- 6. Extreme temperature rule is -20°C~50°C.

3.3.4 Test Setup

3.3.5 Test Result of Conducted Test Items

Please refer to Appendix B.

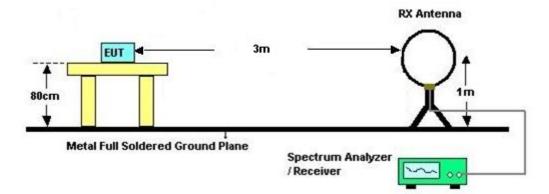
3.4 Field Strength of Fundamental Emissions and Mask Measurement

3.4.1 Limit

Rules and specifications	FCC CFR 47 Part 15 section 15.225							
Description	Compliance with the spectrum mask is tested with RBW set to 9kHz.							
	Field Strength	Field Strength	Field Strength	Field Strength				
Freq. of Emission (MHz)	(µV/m) at 30m	(dBµV/m) at 30m	(dBµV/m) at 10m	(dBµV/m) at 3m				
1.705~13.110	30	29.5	48.58	69.5				
13.110~13.410	106	40.5	59.58	80.5				
13.410~13.553	334	50.5	69.58	90.5				
13.553~13.567	15848	84.0	103.08	124.0				
13.567~13.710	334	50.5	69.58	90.5				
13.710~14.010	106	40.5	59.58	80.5				
14.010~30.000	30	29.5	48.58	69.5				

3.4.2 Measuring Instruments

See list of measuring instruments of this test report.



3.4.3 Test Procedures

- Configure the EUT according to ANSI C63.10. The EUT was placed on the top of the turntable 0.8 meter above ground. The phase center of the loop receiving antenna mounted antenna tower was placed 3 meters far away from the turntable.
- 2. Power on the EUT and all the supporting units. The turntable was rotated by 360 degrees to determine the position of the highest radiation.
- 3. The height of the receiving antenna was fixed at one meter above ground to find the maximum emissions field strength.
- 4. For Fundamental emissions, use the receiver to measure QP reading.
- 5. When the radiated emissions limits are expressed in terms of the average value of the emissions, and pulsed operation is employed, the measurement field strength shall be determined by averaging over one complete pulse train, including blanking intervals, as long as the pulse train does not exceed 0.1 seconds. As an alternative (provided the transmitter operates for longer than 0.1 seconds) or in cases where the pulse train exceeds 0.1 seconds, the measured field strength shall be determined from the average absolute voltage during a 0.1 second interval during which the field strength is at its maximum value.
- Compliance with the spectrum mask is tested with RBW set to 9kHz.
 Note: Emission level (dBμV/m) = 20 log Emission level (μV/m).

3.4.4 Test Setup

For radiated emissions below 30MHz

3.4.5 Test Result of Field Strength of Fundamental Emissions and Mask

Please refer to Appendix C.

3.5 Radiated Emissions Measurement

3.5.1 Limit

The field strength of any emissions which appear outside of 13.110 ~14.010MHz band shall not exceed the general radiated emissions limits.

<FCC Limit>

Frequencies	Field Strength	Measurement Distance		
(MHz)	(μV/m)	(meters)		
0.009~0.490	2400/F(kHz)	300		
0.490~1.705	24000/F(kHz)	30		
1.705~30.0	30	30		
30~88	100	3		
88~216	150	3		
216~960	200	3		
Above 960	500	3		

3.5.2 Measuring Instruments

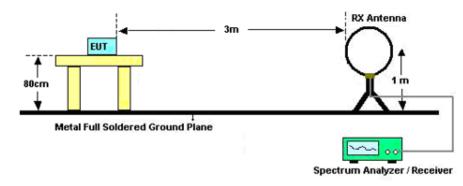
See list of measuring instruments of this test report.

3.5.3 Measuring Instrument Setting

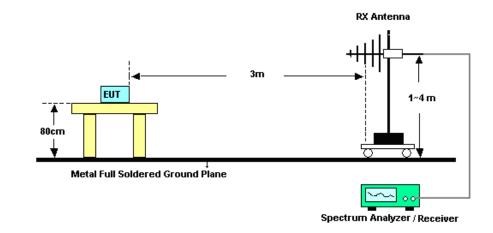
The following table is the setting of receiver.

Receiver Parameter	Setting
Attenuation	Auto
Frequency Range: 9kHz~150kHz	RBW 200Hz for QP
Frequency Range: 150kHz~30MHz	RBW 9kHz for QP
Frequency Range: 30MHz~1000MHz	RBW 120kHz for Peak

Note: The emission limits shown in the above table are based on measurements employing a CISPR quasi-peak detector except for the frequency bands 9-90 kHz, 110-490 kHz. Radiated emission limits in these two bands are based on measurements employing an average detector.


3.5.4 Test Procedures

- Configure the EUT according to ANSI C63.10. The EUT was placed on the top of the turntable 0.8 meter above ground. The phase center of the receiving antenna mounted on the top of a height-variable antenna tower was placed 3 meters far away from the turntable.
- 2. Power on the EUT and all the supporting units. The turntable was rotated by 360 degrees to determine the position of the highest radiation.
- 3. The height of the broadband receiving antenna was varied between one meter and four meters above ground to find the maximum emissions field strength of both horizontal and vertical polarization.
- 4. For each suspected emissions, the antenna tower was scan (from 1 M to 4 M) and then the turntable was rotated (from 0 degree to 360 degrees) to find the maximum reading.
- 5. Set the test-receiver system to Peak or CISPR quasi-peak Detect Function with specified bandwidth under Maximum Hold Mode.
- 6. When the radiated emissions limits are expressed in terms of the average value of the emissions, and pulsed operation is employed, the measurement field strength shall be determined by averaging over one complete pulse train, including blanking intervals, as long as the pulse train does not exceed 0.1 seconds. As an alternative (provided the transmitter operates for longer than 0.1 seconds) or in cases where the pulse train exceeds 0.1 seconds, the measured field strength shall be determined from the average absolute voltage during a 0.1 second interval during which the field strength is at its maximum value.
- 7. In case the emission is lower than 30MHz, loop antenna has to be used for measurement and the recorded data should be QP measured by receiver. Antenna Requirements



3.5.5 Test Setup

For radiated emissions below 30MHz

For radiated emissions above 30MHz

3.5.6 Test Result of Radiated Emissions Measurement

Please refer to Appendix C.

Note:

- 1. There is a comparison data of both open-field test site and semi-Anechoic chamber, and the result came out very similar.
- 2. Tested for radiated below 30 MHz using a loop antenna in accordance with C63.10, the antenna was positioned in three antenna orientations: parallel, perpendicular, and ground-parallel. Pre-scanned the three antenna orientations, the worst case is parallel & perpendicular polarization, and test data of two mode was reported. (Parallel: The loop antenna is placed vertical axis and aligned along the site axis; Perpendicular: The loop antenna is placed vertical axis and orthogonal to the axis; ground-parallel: The loop antenna is placed horizontal axis and parallel with the ground).

3.6 Antenna Requirements

3.6.1 Standard Applicable

Except for special regulations, the Low-power Radio-frequency Devices must not be equipped with any jacket for installing an antenna with extension cable. An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator shall be considered sufficient to comply with the provisions of this Section. The manufacturer may design the unit so that the user can replace a broken antenna, but the use of a standard antenna jack or electrical connector is prohibited.

The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator shall be considered sufficient to comply with the rule.

3.6.2 Antenna Anti-Replacement Construction

An embedded-in antenna design is used.

4. List of Measuring Equipment

Instrument	Manufacturer	Model No.	Serial No.	Characteristics	Calibration Date	Test Date	Due Date	Remark
Spectrum Analyzer	R&S	FSV40	101078	10Hz~40GHz	Apr. 06, 2023	Mar. 23, 2024	Apr. 05, 2024	Conducted (TH01-SZ)
Thermal Chamber	Ten Billion Hongzhangrou p	LP-150U	H2014081 803	-40~+150°C	Jul. 05, 2023	Mar. 23, 2024	Jul. 04, 2024	Conducted (TH01-SZ)
EMI Test Receiver	R&S	ESR7	102261	9kHz~7GHz	Apr. 04, 2023	Mar. 24, 2024	Apr. 03, 2024	Radiation (03CH05-SZ)
EXA Spectrum Analyzer	KEYSIGHT	N9010B	MY590711 91	10Hz~44GHz	Apr. 04, 2023	Mar. 24, 2024	Apr. 03, 2024	Radiation (03CH05-SZ)
Loop Antenna	R&S	HFH2-Z2	100354	9kHz~30MHz	Jul. 28, 2022	Mar. 24, 2024	Jul. 27, 2024	Radiation (03CH05-SZ)
Log-periodic Antenna	SCHWARZBE CK	VULB 9168	01001	20MHz~1.5GHz	Jul. 08, 2023	Mar. 24, 2024	Jul. 07, 2024	Radiation (03CH05-SZ)
Amplifier	EM Electronics	EM330	060756	0.01Hz ~3000MHz	Apr. 04, 2023	Mar. 24, 2024	Apr. 03, 2024	Radiation (03CH05-SZ)
AC Power Source	APC	AFV-S-600	F11905001 3	N/A	Oct. 18, 2023	Mar. 24, 2024	Oct. 17, 2024	Radiation (03CH05-SZ)
Turn Table	EMEC	T-200-S-1	060925-T	0~360 degree	NCR	Mar. 24, 2024	NCR	Radiation (03CH05-SZ)
Antenna Mast	EMEC	MBS-400-1	060927	1 m~4 m	NCR	Mar. 24, 2024	NCR	Radiation (03CH05-SZ)
EMI Receiver	R&S	ESR7	101630	9kHz~7GHz;	Jul. 06, 2023	Mar. 22, 2024	Jul. 05, 2024	Conduction (CO01-SZ)
AC LISN	R&S	ENV216	100063	9kHz~30MHz	Aug. 21, 2023	Mar. 22, 2024	Aug. 20, 2024	Conduction (CO01-SZ)
AC LISN (for auxiliary equipment)	EMCO	3816/2SH	00103892	9kHz~30MHz	Oct. 16, 2023	Mar. 22, 2024	Oct. 15, 2024	Conduction (CO01-SZ)
AC Power Source	Chroma	61602	616020000 891	100Vac~250Vac	Jul. 07, 2023	Mar. 22, 2024	Jul. 06, 2024	Conduction (CO01-SZ)

NCR: No Calibration Required

5. Uncertainty of Evaluation

The measurement uncertainties shown below were calculated in accordance with the requirements of ANSI 63.10-2013. All the measurement uncertainty value were shown with a coverage K=2 to indicate 95% level of confidence. The measurement data show herein meets or exceeds the CISPR measurement uncertainty values specified in CISPR 16-4-2 and can be compared directly to specified limit to determine compliance.

Uncertainty of Conducted Measurement

Test Item	Uncertainty
Occupied Channel Bandwidth	±0.012 MHz
Frequency	±1.3 Hz

Uncertainty of AC Conducted Emission Measurement (0.15 MHz ~ 30 MHz)

Measuring Uncertainty for a Level of Confidence of 95% (U = 2Uc(y))	2.5dB
--	-------

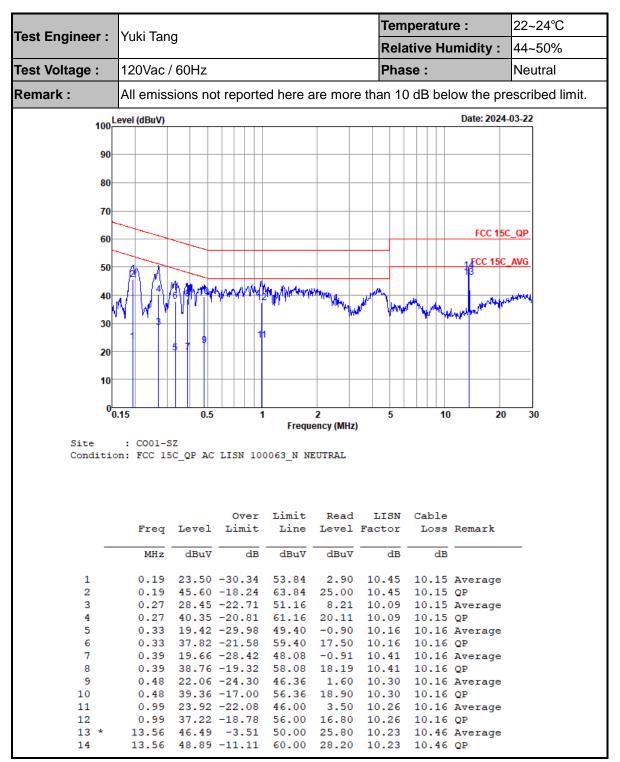
Uncertainty of Radiated Emission Measurement (9 kHz ~ 30 MHz)

Measuring Uncertainty for a Level of Confidence of 95% (U = 2Uc(y))	2.5dB
--	-------

Uncertainty of Radiated Emission Measurement (30 MHz ~ 1000 MHz)

Measuring Uncertainty for a Level of Confidence	4.2dB
of 95% (U = 2Uc(y))	4.20B

----- THE END ------

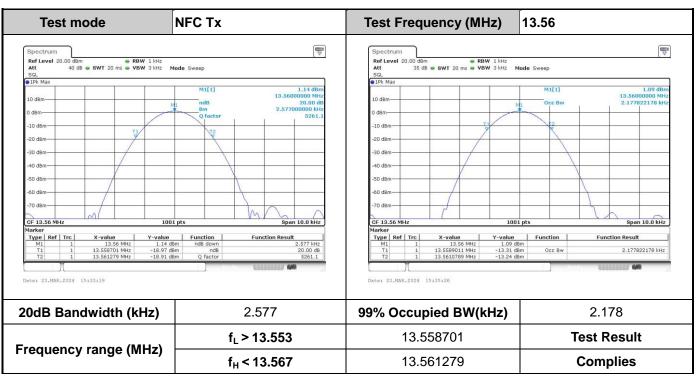

Appendix A. Test Results of Conducted Emission Test

Test Ennineer	Vuki Ton	a				Те	mperat	ure :		22~24°C
Test Engineer :	Yuki Tang Relative						lative l	ive Humidity :		44~50%
Test Voltage :	120Vac / 60Hz Phase :							Line		
Remark :	All emiss	All emissions not reported here are more than 10 dB below the p							ne pre	scribed limit.
100	evel (dBuV)	evel (dBuV)							: 2024-0)3-22
100-										
90-										
80-										
00										
70-										
	- A R							F	CC 15C_	QP
60	Allan									
50		ALALA						FC	<u>:C 15C_</u>	AVG
	Y (64)	TVP PPRAM	MANAMAN	Warpturtung		, stalin,			d'A una	tradit to a
40				A BURNER AND A BURNER	HARAN AND	Jun W	Allenander		A	Annual 1
30-	3 (- Martin	·•	Mar Andrea	ANY WALKARY		
		9 11 13								
20-										
10										
0).15	0.5	1		2	5		10	20	30
			1		2 ency (MHz)	-		10	20	30
Site		Z		Frequ	ency (MHz)	-		10	20	30
Site	: CO01-S	Z		Frequ	ency (MHz)	-		10	20	30
Site	: CO01-S	Z		Frequ	ency (MHz)	-		10	20	30
Site	: CO01-S	Z	LISN 10	Frequ	ency (MHz))			20	30
Site	: CO01-S on: FCC 15	Z C QP AC	LISN 10 Over	Frequ 0063 L L Limit	ency (MHz)	LISN	I Cabl			30
Site	: CO01-5 on: FCC 15 Freq	GC QP AC	LISN 10 Over Limit	Frequ 0063 L L Limit Line	Read Level	LISN Factor	Los	.e s Rema		30
Site	: CO01-S on: FCC 15	Z C QP AC	LISN 10 Over	Frequ 0063 L L Limit	ency (MHz) INE Read	LISN	Los	.e		30
Site Conditio	: CO01-5 on: FCC 15 Freq MHz 0.16	C QP AC Level dBuV 38.08	LISN 10 Over Limit dB -17.61	Frequ 0063 L L Limit Line dBuV 55.69	Read Level dBuV 17.60	LISN Factor dF 10.34	$\frac{1}{3} - \frac{1}{3}$.e ss Rema lB	urk	
Site Conditio 1 2	: CO01-5 on: FCC 15 Freq MHz 0.16 0.16	2 C QP AC Level dBuV 38.08 59.28	LISN 10 Over Limit 	Frequ 0063 L L Limit Line dBuV 55.69 65.69	Read Level dBuV 17.60 38.80	LISN Factor dF 10.34 10.34	E Los 	.e ss Rema lB	age	30
Site Conditio 1 2 3	: CO01-S on: FCC 15 Freq MHz 0.16 0.16 0.19	22 C QP AC Level dBuV 38.08 59.28 31.68	LISN 10 Over Limit dB -17.61 -6.41 -22.25	Frequ 0063 L L Limit Line dBuV 55.69 65.69 53.93	Read Level dBuV 17.60 38.80 11.10	LISN Factor dF 10.34 10.43	E Los 10.1 10.1 10.1 10.1	.e IB 4 Aver 4 QP 5 Aver	age	30
Site Conditio 1 2	: CO01-S on: FCC 15 Freq MHz 0.16 0.16 0.19 0.19 0.23	22 26 QP AC Level dBuV 38.08 59.28 31.68 55.08 18.93	LISN 10 Over Limit dB -17.61 -6.41 -22.25 -8.85 -33.59	Frequ 0063 L L Limit Line dBuV 55.69 65.69 53.93 63.93 52.52	Read Level dBuV 17.60 38.80 11.10 34.50 -1.50	LISN Factor dF 10.34 10.43 10.43 10.28	E Los 10.1 10.1 10.1 10.1 10.1 10.1 10.1 10.1	e s Rema lB 4 Aver 4 QP 5 Aver 5 QP 5 Aver	ark age	30
Site Conditio 	: CO01-S on: FCC 15 Freq MHz 0.16 0.16 0.19 0.19 0.23 0.23	22 26 QP AC 28 AC 38.08 59.28 31.68 55.08 18.93 40.13	LISN 10 Over Limit dB -17.61 -6.41 -22.25 -8.85 -33.59 -22.39	Frequ 0063 L L Limit Line dBuV 55.69 65.69 53.93 63.93 52.52 62.52	Read Level dBuV 17.60 38.80 11.10 34.50 -1.50 19.70	LISN Factor dF 10.34 10.43 10.43 10.28 10.28	E Los 10.1 10.1 10.1 10.1 10.1 10.1 10.1 10.1 10.1 10.1	e s Rema lB 4 Aver 4 QP 5 Aver 5 QP 5 Aver 5 QP	ark age age	30
Site Conditio 	: CO01-S on: FCC 15 Freq MHz 0.16 0.16 0.19 0.19 0.23 0.23 0.27	22 22 QP AC 24 25 QP AC 38.08 59.28 31.68 55.08 18.93 40.13 31.75	LISN 10 Over Limit dB -17.61 -6.41 -22.25 -8.85 -33.59 -22.39 -19.45	Frequ 0063 L L Limit Line dBuV 55.69 65.69 53.93 63.93 52.52 62.52 51.20	Read Level dBuV 17.60 38.80 11.10 34.50 -1.50 19.70 11.50	LISN Factor dF 10.34 10.43 10.43 10.28 10.28 10.28	E Los 10.1 10.1 10.1 10.1 10.1 10.1 10.1 10.1 10.1 10.1 10.1 10.1	e s Rema lB 4 Aver 4 QP 5 Aver 5 QP 5 Aver 5 QP 5 Aver	ark age age	30
Site Conditio 1 2 3 4 5 6 7 8	: CO01-S on: FCC 15 Freq MHz 0.16 0.16 0.19 0.19 0.23 0.23 0.27 0.27	22 26 QP AC 28 AC 38.08 59.28 31.68 55.08 18.93 40.13 31.75 48.55	LISN 10 Over Limit dB -17.61 -6.41 -22.25 -8.85 -33.59 -22.39 -19.45 -12.65	Frequ 0063 L L Limit Line dBuV 55.69 65.69 53.93 63.93 52.52 62.52 51.20 61.20	Read Level dBuV 17.60 38.80 11.10 34.50 -1.50 19.70 11.50 28.30	LISN Factor dF 10.34 10.43 10.43 10.28 10.28 10.20 10.10	Los 10.1	e s Rema lB 4 Aver 4 QP 5 Aver 5 QP 5 Aver 5 QP 5 Aver 5 QP	age age age	
Site Conditio 1 2 3 4 5 6 7 8 9	: CO01-S on: FCC 15 Freq MHz 0.16 0.19 0.19 0.23 0.23 0.27 0.27 0.32	2 2 2 2 2 2 2 2 2 2 2 2 2 2	LISN 10 Over Limit dB -17.61 -6.41 -22.25 -8.85 -33.59 -22.39 -19.45 -12.65 -26.13	Frequ 0063 L L Limit Line dBuV 55.69 65.69 53.93 63.93 52.52 62.52 51.20 61.20 49.62	Read Level dBuV 17.60 38.80 11.10 34.50 -1.50 19.70 11.50 28.30 3.20	LISN Factor dF 10.34 10.43 10.43 10.28 10.28 10.20 10.10 10.10	Los Los Los Los Los Los Los Los	e s Rema HB 4 Aver 4 QP 5 Aver 5 QP 5 Aver 5 QP 5 Aver 5 QP 6 Aver	age age age	
Site Conditio 1 2 3 4 5 6 7 8	: CO01-S on: FCC 15 Freq MHz 0.16 0.19 0.19 0.23 0.23 0.27 0.27 0.27 0.32 0.32	22 22 QP AC 24 25 QP AC 38.08 59.28 31.68 55.08 18.93 40.13 31.75 48.55 23.49 45.89	LISN 10 Over Limit dB -17.61 -6.41 -22.25 -8.85 -33.59 -22.39 -19.45 -12.65 -26.13 -13.73	Frequ 0063 L L Limit Line dBuV 55.69 65.69 53.93 63.93 52.52 62.52 51.20 61.20	Read Level dBuV 17.60 38.80 11.10 34.50 -1.50 19.70 11.50 28.30 3.20 25.60	LISN Factor dF 10.34 10.43 10.43 10.28 10.28 10.20 10.10 10.13 10.13	Los Los Los Los Los Los Los Los	e s Rema HB 4 Aver 4 QP 5 Aver 5 QP 5 Aver 5 QP 5 Aver 5 QP 6 Aver 6 QP	age age age age age	
Site Conditio 1 2 3 4 5 6 7 8 9 10	: CO01-S on: FCC 15 Freq MHz 0.16 0.19 0.19 0.23 0.23 0.27 0.27 0.27 0.32 0.32 0.39	2 2 2 2 2 2 2 2 2 2 2 2 2 2	LISN 10 Over Limit dB -17.61 -6.41 -22.25 -8.85 -33.59 -22.39 -19.45 -12.65 -26.13 -13.73 -27.46	Freque 0063 L L Limit Line dBuV 55.69 65.69 53.93 63.93 52.52 62.52 51.20 61.20 49.62 59.62	Read Level dBuV 17.60 38.80 11.10 34.50 -1.50 19.70 11.50 28.30 3.20 25.60 0.00	LISN Factor dF 10.34 10.43 10.43 10.28 10.28 10.20 10.10 10.13 10.13 10.43	$\begin{array}{c} & \text{Los} \\ \hline \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ $	e s Rema HB 4 Aver 4 QP 5 Aver 5 QP 5 Aver 5 QP 5 Aver 5 QP 6 Aver 6 Aver	age age age age age	
Site Condition 1 2 3 4 5 6 7 8 9 10 11 12 13	: CO01-5 on: FCC 15 Freq MHz 0.16 0.19 0.19 0.23 0.23 0.27 0.27 0.32 0.32 0.39 0.39 0.46	Level dBuV 38.08 59.28 31.68 55.08 18.93 40.13 31.75 48.55 23.49 45.89 20.57 43.97 20.99	LISN 10 Over Limit dB -17.61 -6.41 -22.25 -8.85 -33.59 -22.39 -19.45 -12.65 -12.65 -12.65 -13.73 -27.46 -14.06 -25.68	Freque 00063 L L Limit Line dBuV 55.69 65.69 53.93 63.93 52.52 62.52 51.20 61.20 49.62 59.62 48.03 58.03 46.67	Read Level dBuV 17.60 38.80 11.10 34.50 -1.50 19.70 11.50 28.30 3.20 25.60 0.00 23.40 0.50	LISN Factor de 10.34 10.43 10.43 10.43 10.28 10.10 10.10 10.11 10.13 10.41 10.43	Los Los Los Los Los Los Los Los Los Los	e Rema B 4 Aver 4 Aver 5 Aver 5 QP 5 Aver 5 QP 6 Aver 6 QP 6 Aver 6 QP 6 Aver	age age age age age age	30
Site Condition 1 2 3 4 5 6 7 8 9 10 11 12	: CO01-5 on: FCC 15 Freq MHz 0.16 0.16 0.19 0.23 0.23 0.27 0.27 0.22 0.32 0.32 0.32 0.39 0.39 0.46 0.46	Level dBuV 38.08 59.28 31.68 55.08 18.93 40.13 31.75 48.55 23.49 45.89 20.57 43.97 20.99 41.39	LISN 10 Over Limit dB -17.61 -6.41 -22.25 -8.85 -33.59 -22.39 -19.45 -12.65 -26.13 -13.73 -27.46 -14.06 -25.68 -15.28	Freque 0063 L L Limit Line dBuV 55.69 65.69 53.93 63.93 52.52 62.52 51.20 61.20 49.62 59.62 48.03 58.03	Read Level dBuV 17.60 38.80 11.10 34.50 -1.50 19.70 11.50 28.30 3.20 25.60 0.00 23.40 0.50 20.90	LISN Factor df 10.34 10.43 10.43 10.43 10.28 10.10 10.10 10.13 10.13 10.41 10.33 10.33	E Los A 10.1 A 10.1 A 10.1 B 10.1	e Rema B 4 Aver 4 QP 5 Aver 5 QP 5 Aver 5 QP 6 Aver 6 QP 6 Aver 6 QP 6 Aver 6 QP	age age age age age age	30

(1) with antenna

Remark: 13.560MHz is the NFC RF fundamental signal.

(1) with antenna


Remark: 13.560MHz is the NFC RF fundamental signal.

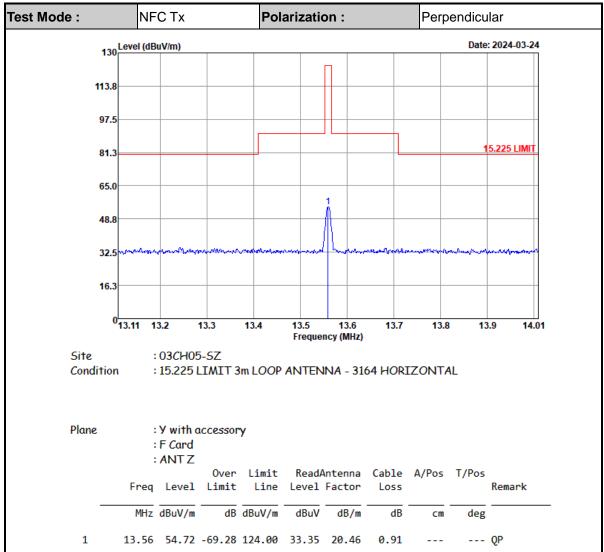
Note:

- 1. Level(dBµV) = Read Level(dBµV) + LISN Factor(dB) + Cable Loss(dB)
- 2. Over Limit(dB) = Level(dB μ V) Limit Line(dB μ V)

Appendix B. Test Results of Conducted Test Items

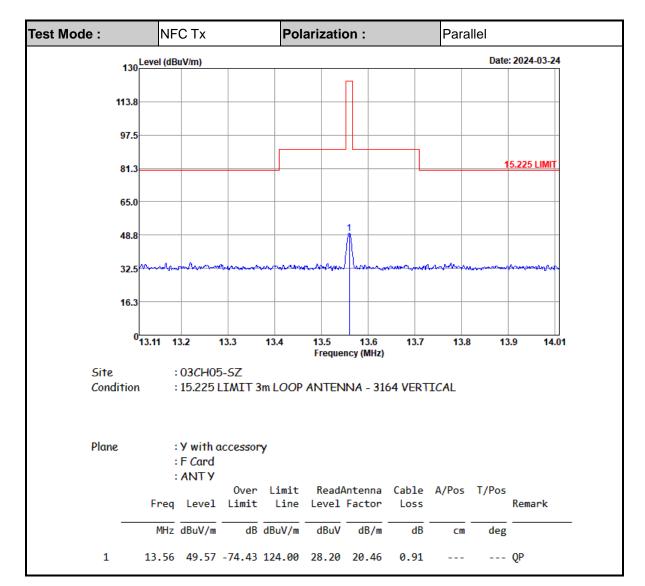
B1. Test Result of 20dB Spectrum Bandwidth

Remark: Because the measured signal is CW adjusting the RBW per C63.10 would not be practical since measured bandwidth will always follow the RBW and the result will be approximately twice the RBW.

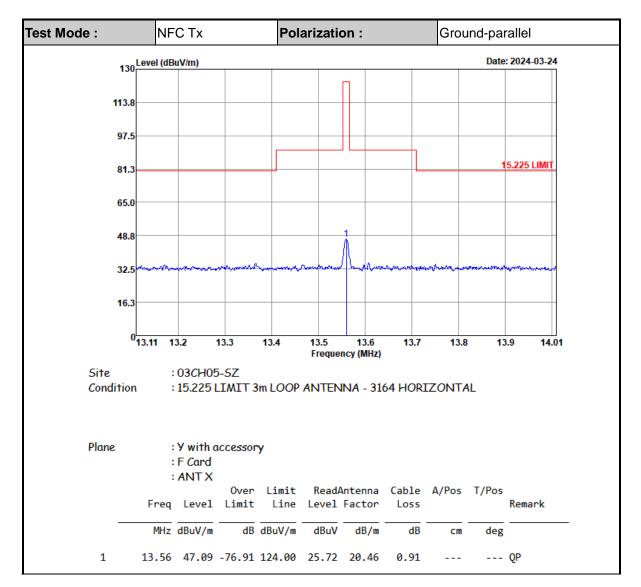


B2. Test Result of Frequency Stability

Voltage vs. Freque	ency Stability	Temperature vs. Fre	equency Stability
Voltage (Vdc)	Measurement Frequency (MHz)	Temperature (℃)	Measurement Frequency (MHz)
4.4	13.559990	-20	13.559995
3.85	13.559990	-10	13.559990
3.6	13.559990 0		13.559990
		10	13.559995
		20	13.559990
		30	13.559990
		40	13.559990
		50	13.559990
Max.Deviation (MHz)	-0.000010	Max.Deviation (MHz)	-0.000010
Max.Deviation (ppm)	-0.7375	Max.Deviation (ppm)	-0.7375
Limit	Limit FS < ±100 ppm Limit		FS < ±100 ppm
Test Result	PASS	Test Result	PASS


Appendix C. Test Results of Radiated Test Items

C1. Test Result of Field Strength of Fundamental Emissions



Note:

- 1. Level(dBµV/m) = Read Level(dBµV) + Antenna Factor(dB/m) + Cable Loss(dB)
- 2. Over Limit(dB) = Level(dBµV/m) Limit Line(dBµV/m)

C2. Results of Radiated Spurious Emissions (9 kHz~30MHz)

Test Mode :	NFC	Тх	Polarization :			Per	pendicula	ar	
Frequency	Level	Over	Limit	Read	Antenna	Cable	Ant	Table	Remark
	(-ID)//)	Limit		Level	Factor	Loss	Pos	Pos	
(MHz)	(dBµV/m)	(dB)	(dBµV/m)	(dBµV)	(dB)	(dB)	(cm)	(deg)	
0.01777	53.74	-68.87	122.61	33.73	19.96	0.05	-	-	Average
0.06195	48.64	-63.12	111.76	28.14	20.46	0.04	-	-	Average
0.09621	54.28	-53.66	107.94	33.81	20.44	0.03	-	-	QP
0.14343	44.74	-59.73	104.47	24.3	20.4	0.04	-	-	Average
1.687	41.91	-21.15	63.06	21.38	20.32	0.21	-	-	QP
2.078	39.83	-30.17	70	19.32	20.32	0.19	-	-	QP
12.328	36.62	-33.38	70	15.3	20.43	0.89	-	-	QP
23.722	37.8	-32.2	70	15.67	21.02	1.11	-	-	QP
29.92	39.51	-30.49	70	16.63	21.67	1.21	-	-	QP

Test Mode : NFC Tx			Polariz	ation :	Par	Parallel					
Frequency	Level	Over	Limit	Read	Antenna	Cable	Ant	Table	Remark		
		Limit	Line	Level	Factor	Loss	Pos	Pos			
(MHz)	(dBµV/m)	(dB)	(dBµV/m)	(dBµV)	(dB)	(dB)	(cm)	(deg)			
0.03986	48.68	-66.91	115.59	28.06	20.58	0.04	-	-	Average		
0.07122	40.91	-69.64	110.55	20.41	20.46	0.04	-	-	Average		
0.09126	47.62	-60.78	108.4	27.15	20.44	0.03	-	-	QP		
0.1365	42.94	-61.96	104.9	22.5	20.4	0.04	-	-	Average		
1.663	41.22	-21.97	63.19	20.69	20.32	0.21	-	-	QP		
2.672	38.04	-31.96	70	17.54	20.3	0.2	-	-	QP		
12.224	36.63	-33.37	70	15.33	20.42	0.88	-	-	QP		
22.174	37.44	-32.56	70	15.48	20.88	1.08	-	-	QP		
29.82	39.38	-30.62	70	16.5	21.67	1.21	-	-	QP		

Test Mode : NFC Tx				Polariz	ation :	Gro	Ground-parallel				
Frequency	Level	Over	Limit	Read	Antenna	Cable	Ant	Table	Remark		
(MHz)	(dBµV/m)	Limit (dB)	Line (dBµV/m)	Level (dBµV)	Factor (dB)	Loss (dB)	Pos (cm)	Pos (deg)			
0.04705	45.1	-69.05	114.15	24.48	20.58	0.04	-	-	Average		
0.08766	45.12	-63.63	108.75	24.65	20.44	0.03	-	-	Average		
0.09588	46.34	-61.63	107.97	25.87	20.44	0.03	-	-	QP		
0.14358	40.76	-63.7	104.46	20.32	20.4	0.04	-	-	Average		
1.623	39.71	-23.69	63.4	19.18	20.32	0.21	-	-	QP		
2.618	37.49	-32.51	70	16.99	20.3	0.2	-	-	QP		
10.416	36.74	-33.26	70	15.51	20.38	0.85	-	-	QP		
24.946	37.38	-32.62	70	15.09	21.15	1.14	-	-	QP		
28.14	39.12	-30.88	70	16.43	21.51	1.18	-	-	QP		

Note:

- 1. The amplitude of spurious emissions which are attenuated by more than 20dB below the permissible value has no need to be reported.
- 2. Distance extrapolation factor = 40 log (specific distance / test distance) (dB);
- 3. Limit line = specific limits $(dB\mu V)$ + distance extrapolation factor.

C3. Results of Radiated Spurious Emissions (30MHz~1GHz)

Test Mode	lode : NFC Tx				Polarizati	ion :	Horizon	Horizontal			
Frequency	Level	Over	Limit	Read	Antenna	Cable	Preamp	Ant	Table	Remark	
		Limit	Line	Level	Factor	Loss	Factor	Pos	Pos		
(MHz)	(dBµV/m	1) (dB)	(dBµV/m)	(dBµV)	(dB)	(dB)	(dB)	(cm)	(deg)		
30	22.68	-17.32	40	38.61	17.56	1.21	34.7	-	-	Peak	
108.57	36.67	-6.83	43.5	53.78	15.61	2.06	34.78	-	-	Peak	
135.73	25.71	-17.79	43.5	40.39	17.8	2.25	34.73	-	-	Peak	
168.71	24.16	-19.34	43.5	38.56	17.87	2.43	34.7	-	-	Peak	
263.77	25.24	-20.76	46	38.85	18	3.06	34.67	-	-	Peak	
390.84	23.37	-22.63	46	33.36	21.2	3.33	34.52	-	-	Peak	

Test Mode : NFC Tx					Polarizati	ion :	Vertical			
Frequency	Level	Over	Limit	Read	Antenna	Cable	Preamp	Ant	Table	Remark
Frequency	Lever	Limit	Linit	Level	Factor	Loss	Factor	Pos	Pos	Remark
(MHz)	(dBµV/m)	(dB)	(dBµV/m)	(dBµV)	(dB)	(dB)	(dB)	(cm)	(deg)	
36.79	30.21	-9.79	40	44.82	18.92	1.31	34.84	-	-	Peak
81.41	25.98	-14.02	40	43.91	14.86	1.92	34.71	-	-	Peak
108.57	32.45	-11.05	43.5	49.56	15.61	2.06	34.78	-	-	Peak
170.65	24.29	-19.21	43.5	38.8	17.75	2.44	34.7	-	-	Peak
257.95	22.6	-23.4	46	36.43	17.81	3.04	34.68	-	-	Peak
866.14	28.2	-17.8	46	29.37	28.74	4.39	34.3	-	-	Peak

Note:

- 1. The amplitude of spurious emissions which are attenuated by more than 20dB below the permissible value has no need to be reported.
- 2. Emission level (dB μ V/m) = 20 log Emission level (μ V/m).
- 3. Corrected Reading: Antenna Factor + Cable Loss + Read Level Preamp Factor= Level.