

HIGH BAND EDGE BLOCK-1RB-HIGH_offset

HIGH BAND EDGE BLOCK-1RB-HIGH_offset

				\$
MultiView Spectrum				
Ref Level 26.00 dBm Offset 8.20 dB •	RBW 1 MHz			
Att 27 dB • SWT 3 s • TDF "1"	VBW 5 MHz Mode Auto Sweep			
1 Frequency Sweep				IRm View
20 days			M1[1	-22.66 dBm
20 dBm				-2,0210090 002
10 dBm-				
0 dBm-		-		
imt1_for_trace1				
420 dBm				
-30 dBm				
- Maria				
-40 dBm				
			minimum	
-30 0BII				
-6U dBm-				
-70 dBm-				
2.621 GHz	501 pts	900.0 kHz/	d d	2.63 GHz
			- Measuring	30.01.2024 11:06:50

11:06:51 30.01.2024

LOW BAND EDGE BLOCK-40M-100%RB

11:03:30 30.01.2024

Channel power

11:03:47 30.01.2024

LOW BAND EDGE BLOCK-40M-100%RB

HIGH BAND EDGE BLOCK-40M-100%RB

MultiView	Spectrum								
Ref Level 26. Att	00 dBm Offse	t 8.20 dB • RB 3 s • VB	WIMHz WISMHz Mode	Auto Sween					
TDF "1"	Sween								0.1Pm View
I frequency c	in cep					ľ	-	M1[1]	-31.39 dBm
20 dBm								-2,	620 120 80 GHz-
10 dBm									
0 dBm									
-10-dBm limit1_for_trace1			-						
-20 dBm				-		10			
-30 dBm	MI				~~~~~~				
-40 dBm									
-50 dBm									
-60 dBm									
-70 dBm									
2.62 GHz			501 pts		10	0.0 kHz/		*	2.621 GHz
							Measuring		30.01.2024 11:07:36

11:07:36 30.01.2024

11:08:17 30.01.2024

NR n41

OBW: 1RB-LOW_offset

10:49:50 30.01.2024

LOW BAND EDGE BLOCK-1RB-LOW_offset

MultiView	- Spectrum								
Ref Level 26. Att TDF "1"	00 dBm Offse 27 dB • SWT	t 8.20 dB ● RB 3 s ● VB	₩ 10 kHz ₩ 50 kHz Mod	e Auto Sweep					
1 Frequency S	Sweep								O1Rm View
20 dBm								M1[1]	-39.85 dBm 195 999 00 GHz -
10 dBm						8 8			
0 dBm									
-10 dBm									
limit1_for_trace1									
-20 dBm						C			
-30 dBm									
-40 dBm									M1
			Anno Amm MV	mmmm	www	mm	han	mm	mm
-SU dBm	mun	www.~~w	anere				<u> </u>		
-60 dBm									
-70 dBm									
2.495 GHz	÷		501 pts		10	0.0 kHz/			2.496 GHz
	~						Measuring		30.01.2024 10:50:31

10:50:32 30.01.2024

LOW BAND EDGE BLOCK-1RB-LOW_offset

10:51:13 30.01.2024

OBW: 1RB-HIGH_offset

10:52:25 30.01.2024

HIGH BAND EDGE BLOCK-1RB-HIGH_offset

HIGH BAND EDGE BLOCK-1RB-HIGH_offset

MultiView	Spectrum	1						
Ref Level 26.	00 dBm Offse	t 8.20 dB 🖷 RBV	V 1 MHz					
Att TDF "1"	27 dB 😐 SWT	3 s 🖷 VBV	V 5 MHz Mode	e Auto Sweep				
1 Frequency S	weep		2					01Rm View
100 A.S.							M1[1]	-29.23 dBm
20 dBm								2.691 009 0 GHz-
10 dBm								
0 dBm					 ~	-		
-10-dBm				4				
Inner_IOI_Clacer				L				
-20 dBm-								
M1								
-30 0811								
month								
-40 dBm		minin			17			
					 ~~~~~			
-50 dBm								
-60 dBm-							+	+
-70 dBm-								
2 691 GHz	1		501 nts		900 0 kHz/		1	2 7 GHz
21091 0112	-		501 pts		50010 KHZ/	Measuring		. 30.01.2024
						maasunnigaa		10:53:47

10:53:48 30.01.2024





# LOW BAND EDGE BLOCK-100M-100%RB



10:55:08 30.01.2024

#### **Channel power**



10:55:25 30.01.2024





# LOW BAND EDGE BLOCK-100M-100%RB



10:56:06 30.01.2024

#### HIGH BAND EDGE BLOCK-100M-100%RB

MultiView	Spectrum								
Ref Level 26	00 dBm Offse	t 8.20 dB 🖷 RB	W 1 MHz						
Att TDF "1"	27 dB 🖷 SWT	3 s 🗢 VB	W 5 MHz Mode	e Auto Sweep					
1 Frequency S	weep		Ť	8.			1	MILII	01Rm View
20 dBm								2.	690 643 70 GHz
10 dBm			2	-	-	8			
0 dBm									
_10-dBm limit1_for_trace1									
-20 dBm									
-30 dBm						MI			
-40 dBm									
-50 dBm									
-60 dBm									
-70 dBm									
2.69 GHz		*	501 pts		. 10	0.0 kHz/			2.691 GHz
							Measuring		* 30.01.2024 10:57:15

10:57:15 30.01.2024







10:57:57 30.01.2024





#### NR n48

### OBW: 1RB-LOW_offset



12:15:05 30.01.2024

## LOW BAND EDGE BLOCK-1RB-LOW_offset

MultiView	Spectrum	1							
Ref Level 26.	00 dBm Offse 27 dB • SWT	et 8.50 dB ● RBN 5 s ● VBN	VI 5 kHz VI 30 kHzI Mod	e Auto Sweep					
1 Frequency S	weep			4.	10.				01Rm View
20 dBm								M1[1] 3.	-42.52 dBm 549 985 00 GHz-
10 dBm			5	2					
0 dBm									
-10 dBm									
limit1_for_trace1 -20 dBm									
-30 dBm									
-40 dBm									м1
-50 dBm		1 1 10	us when a	mm	mun	MAAM	ANANA	mm	
-60 dBm-	mm	munt W.	V	2001 20		~ ~ ~	Proto S V S S	13	
-70 dBm									
3.549 GHz	1		501 pts		10	00.0 kHz/			3.55 GHz
	~					~	Measuring		30.01.2024 12:15:45

12:15:46 30.01.2024





# LOW BAND EDGE BLOCK-1RB-LOW_offset



#### LOW BAND EDGE BLOCK-1RB-LOW_offset

MultiView	- Spectrum	1							
Ref Level 26.	00 dBm Offse	t 8.50 dB 🖷 RB	🛿 5 kHz						
Att	27 dB 🖷 SWT	5 s 👄 VBN	N 30 kHz Mod	e Auto Sweep					
TDF "1" 1 Erequency S	Sween							_	O 1Rm View
Thequency o								M1[1]	-64.39 dBm
20 dBm								-3.6	30 777 40 GHz
10 d8m									
10 dbin									
0 dBm						-			
-10 dBm									
limit1_for_trace1					-				
-20 dBm-									
LU UDIII									
-30 dBm-									
-40 dBm-		-							
-50 dBm-						a			
oo abiii									
-60 dBm-							M1		
m						man . A.	in man	. NOL 100	Ma
-70 dBmsan	mann	mont	Montom	"MAMMAN	w.m.m.m	war - War	h when an an	m. North	- · · · ·
3.63 GHz			501 pts		10	0.0 kHz/			3.631 GHz
			our pto				Measuring		30.01.2024
							and an		12:17:06
10-17-07 20	01 2024								

12:17:07 30.01.2024

©Copyright. All rights reserved by CTTL.





# LOW BAND EDGE BLOCK-1RB-LOW_offset



12:17:48 30.01.2024

## OBW: 1RB-HIGH_offset



12:18:56 30.01.2024





# HIGH BAND EDGE BLOCK-1RB-HIGH_offset



# HIGH BAND EDGE BLOCK-1RB-HIGH_offset

MultiView Spectrum							
Ref Level 26.00 dBm Offset 8.	50 dB 🖷 RBW 1 MHz						
Att 27 dB = SWT TDF "1"	5 s 🗢 VBW 5 MHz Mode	e Auto Sweep					
1 Frequency Sweep	Ť		2	<u>é</u> :			01Rm View
20 dBm-						M1[1]	-29.20 dBm
10 dBm			-				
0 dBm							
-10 dBm-							
imit1_for_trace1							
-20 dBm-							
-30 dBm							
-40 dBm	$\sim$						
-50 dBm-							
-60 dBm-				-			
-70 dBm							
3.701 GHz	501 pts		2	.9 MHz/	I		3.73 GHz
					Measuring		30.01.2024 12:20:18

12:20:19 30.01.2024





# HIGH BAND EDGE BLOCK-1RB-HIGH_offset



12:21:00 30.01.2024

# HIGH BAND EDGE BLOCK-1RB-HIGH_offset

MultiView Spectrum				
RefLevel 26.00 dBm Offset 8 Att 27 dB ● SWT	3.50 dB ● RBW 1 MHz 5 s ● VBW 5 MHz Mode Auto Sweep			
TDF "1"				o 1Des Maru
Trreddency Sweep			M1[1]	-39.82 dBm
20 dBm-				3.664390 GHz-
10 dBm				
U dBm-				
-10 dBm				
-20 dBm-				
-30 dBm-				
limit1_for_trace1				M1
-50 dBm-				And
-60 dBm				
-70 dBm				
3.52 GHz	501 pts	14.9 MHz/	10	3.669 GHz
			Measuring	30.01.2024 12:21:40

12:21:41 30.01.2024





# LOW BAND EDGE BLOCK-100M-100%RB



# LOW BAND EDGE BLOCK-100M-100%RB

AultiView Spec	trum							
Ref Level 26.00 dBm	Offset 8.50 dB 🖷 I	R <b>BW</b> 1 MHz						
Att 27 dB ● DF "1"	SWT 5se	VBW 5 MHz Mode	Auto Sweep					
Frequency Sweep			5			-		01Rm View
0 550							M1[1]	-37.49 dBn
0 dBm							-	3548 855 0 GH
0 dBm								
dBm								
10 dBm								
					Г			
20. dBm								
20.40-								
SU UBIN								
hit1 for trace1								
40 dBm								
		15 184						
SO dBm								
60 dBm								+
70 dBm								
2.52 CHz		501 pts						3 540 CH
102 0112		001 pts		2				30.01.2024

12:23:40 30.01.2024





# LOW BAND EDGE BLOCK-100M-100%RB



11.114.11 00.01.1014

#### LOW BAND EDGE BLOCK-100M-100%RB

MultiView	Spectrum							
Ref Level 26. Att	00 dBm Offset 8.50 df 27 dB • SWT 5	3 ● RBW 1 MHz s ● VBW 5 MHz Mode Au	uto Sweep					
1 Frequency S	weep							●1Rm View
20 dBm							M1[1]	-42,49 dBm -3,651 080 GHz
10 dBm								
0 dBm								
-10 dBm								
-20 dBm-					6			
-30 dBm								
M140 dBm								
-50 dBm								
-60 dBm								
-70 dBm								
3.651 GHz	-	501 pts		7.	9 MHZ/	Measuring		3.73 GHz 30.01.2024
								12:25:01

12:25:02 30.01.2024





# ACLR

MultiView Spectru	im			•
Ref Level 26.00 dBm Off	set 8.50 dB • RBW 1 M	Hz Hz Mada Auto Swaan		
TDF "1"	1 38 <b>4 6 17</b> 3 Mi	12 Mode Auto Sweep		
1 ACLR				o 1Rm View
20 dBm				
10 dBm	Adi	T×1	Adí	
0 dBm				
-10 dBm-				
-20 dBm				
-30 dBm				
-40 dBm				
-50 dBm			mun	
-60 dBm				
-70 dBm-				
CF 3.6 GHz		500 pts	50.0 MHz/	Span 500.0 MHz
2 Result Summary		None		
Channel Tx1 (Ref) Tx Total	Bandwidth 100.000 MHz	Offset	22.60 dBm 22.60 dBm	
Channel	Bandwidth	Offset	Lower	Upper
	100.000 MH2	100.000 MH2	Measuring.	

12:25:20 30.01.2024







# HIGH BAND EDGE BLOCK-100M-100%RB

MultiView Spectrum					•
Ref Level 26.00 dBm         Offset 8.50           Att         27 dB • SWT	D dB ● RBW 1 MHz 5 s ● VBW 5 MHz Mode Auto Sweep				
TDF "1" 1 Frequency Sweep		a a 1		and the second second	01Rm View
20 dBm-				M1[1]	-38,92 dBm 3,701 145 0 GHz-
10 dBm-				3	
0 dBm					
-10 dBm					
-20 dBm-					
-30 dBm	\				
M1 MAR/dem					
-50 dBm	www.mentrementer	man	mm		
-60 dBm					
-70 dBm					
3.701 GHz	501 pts	2.9 MHz/			3.73 GHz
			Measuring		30.01.2024 12:27:26

12:27:26 30.01.2024







12:28:07 30.01.2024

#### **Channel power**



12:28:24 30.01.2024







12:29:05 30.01.2024

#### ACLR

MultiView Spectru	im			
Ref Level 26.00 dBm Off Att 24 dB • SW	set 8.50 dB ● RBW 1 MH T 5 s ● VBW 5 MH	iz Iz <b>Mode</b> Auto Sweep		_
TDF "1"				o 1Pm View
AGEN				O INIT VIEW
20 dBm				
		T*1		
10 dBm	AHi			
	Apt		миј	
0 dBm				
-10 dBm				
-20 dBm				
-30 dBm-				
40 db.				
-40 GBM				
FO dBm			manne	
-50 0611	- mm			
60 dBm				
oo dalii				
-70 dBm				
CF 3.649 98 GHz		500 pts	50.0 MHz/	Span 500.0 MHz
2 Result Summary		None		
Channel	Bandwidth	Offset	Power	
Tx1 (Ref)	100.000 MHz		22.13 dBm	
Chappel	Bandwidth	Offset	Lower	Upper
Adj	100.000 MHz	100.000 MHz	-33.60 dBc	-49.51 dBc
				20.01.2024

12:29:23 30.01.2024





#### **NR n66**

#### OBW: 1RB-LOW_offset



11:59:32 30.01.2024

## LOW BAND EDGE BLOCK-1RB-LOW_offset



12:00:20 30.01.2024





#### OBW: 1RB-HIGH_offset



12:01:28 30.01.2024

## HIGH BAND EDGE BLOCK-1RB-HIGH_offset



12:02:15 30.01.2024





# LOW BAND EDGE BLOCK-45M-100%RB



12:07:17 30.01.2024

# HIGH BAND EDGE BLOCK-45M-100%RB

MultiView Spe	ectrum							
Ref Level 26.00 dBm	Offset 0.80 dB = RB	₩ 500 kHz					5	GL
Att 35 dB TDF "1"	● SWT 50 ms ● VB	N 2 MHz Mode /	Auto Sweep				C	ount 100/100
1 Frequency Sweep		r r			Ť.	1		O1Rm Avg
20 dBm							M1[1]	-30,18 dBm . <del>780 758 0 GHz</del> -
10 dBm								
0 dBm					<i></i>			
-10 dBm-								
imit1 for trace1								
20.40.0								
-20 dBm-				M1				
-30 dBm-				minun	·····			
-40 dBm								
-50 dBm								
-60 dBm								
-70 dBm			S1					52
CF 1.78 GHz		501 pts		2	.0 MHz/		:	Span 20.0 MHz
-					5	Ready		30.01.2024 12:08:44

12:08:45 30.01.2024





# NR n71 OBW: 1RB-LOW_offset



11:38:06 30.01.2024

# LOW BAND EDGE BLOCK-1RB-LOW_offset







#### OBW: 1RB-HIGH_offset



11:39:57 30.01.2024

#### HIGH BAND EDGE BLOCK-1RB-HIGH_offset



11:40:40 30.01.2024





# LOW BAND EDGE BLOCK-35M-100%RB



11:41:59 30.01.2024

# HIGH BAND EDGE BLOCK-35M-100%RB



11:42:45 30.01.2024





# NR n77L OBW: 1RB-LOW_offset



12:30:26 30.01.2024

# LOW BAND EDGE BLOCK-1RB-LOW_offset



12:31:06 30.01.2024





# LOW BAND EDGE BLOCK-1RB-LOW_offset



12:31:46 30.01.2024

#### OBW: 1RB-HIGH_offset



12:32:58 30.01.2024





# HIGH BAND EDGE BLOCK-1RB-HIGH_offset



# HIGH BAND EDGE BLOCK-1RB-HIGH_offset



12:34:32 30.01.2024





# LOW BAND EDGE BLOCK-90M-100%RB



# LOW BAND EDGE BLOCK-90M-100%RB

MultiView	Spectrum								-
Ref Level 26.00 Att	dBm Offset 27 dB <b>e SWT</b>	: 8.50 dB ● RBV 3 s ● VBV	V 500 kHz V 3 MHz Mo	de Auto Sweep					
TDF "1" 1 Frequency Sw	еер		5	8	x)		2		01Rm View
20 dBm								M1[1]	-38.07 dBm <del>148 916 20 GHz</del> -
10 dBm						8 0			
0 dBm									
-10 dBm									
limit1_for_trace1									(
-20 dBm						с			
-30 dBm									
~40~dBm		······					~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~		M1
-50 dBm									
00 000									
-60 dBm									
-70 dBm									
3.445 GHz			501 pts		40	00.0 kHz/			3.449 GHz
	0					7	Measuring		12:36:29

12:36:30 30.01.2024







#### HIGH BAND EDGE BLOCK-90M-100%RB

MultiView	Spectrum								
Ref Level 26.0 Att	00 dBm Offse 27 dB • SWT	t 8.50 dB • RB 3 s • VB	₩ 500 kHz N 3 MHz M	ode Auto Sweep					
TDF "1" 1 Frequency Sy	weep								01Rm View
20 dBm								M1[1]	-43.14 dBm 552 193 60 GHz
10 dBm	1	-	21						
0 dBm									
-10 dBm									
limit1_for_trace1									
-20 dBm						0 0			
-30 dBm									
-40 dBm		M	1						
-50 dBm									
-6U dBm-									
-70 dBm									
3.551 GHz			501 pt	5	40	00.0 kHz/			3.555 GHz
							Measuring		30.01.2024 12:38:33

12:38:34 30.01.2024





# NR n77H OBW: 1RB-LOW_offset



12:39:37 30.01.2024

# LOW BAND EDGE BLOCK-1RB-LOW_offset



12:40:18 30.01.2024





# LOW BAND EDGE BLOCK-1RB-LOW_offset



12:40:57 30.01.2024

## OBW: 1RB-HIGH_offset



12:42:06 30.01.2024





# HIGH BAND EDGE BLOCK-1RB-HIGH_offset



#### HIGH BAND EDGE BLOCK-1RB-HIGH_offset

MultiView Spectrum			
Ref Level 26.00 dBm Offset 8.50 dB • I	RBW 500 kHz		
Att 27 dB • SWT 3 s • 1	BW 3 MHz Mode Auto Swe	eep	
1 Frequency Sweep			o 1Rm View
and the second sec			M1[1] -36.65 dBm
20 dBm-			3.981 251 50 GHz
10 dBm-			
0 dBm			
-10 dBm			
imit1 for trace1			
-20 dBm			
-30 dBm-			
multing			
-40 dBm-			
	men warmen where the second	man	
-50 dBm-			
-60 dBm-			
2608 - 408202			
70 40			
-70 UBM			
3.981 GHz	501 pts	400.0 kHz/	3.985 GHz
		v Mea	suring 30.01.2024 12:43:25

12:43:26 30.01.2024





# LOW BAND EDGE BLOCK-100M-100%RB



# HIGH BAND EDGE BLOCK-100M-100%RB



12:46:11 30.01.2024





#### NR n78L

#### OBW: 1RB-LOW_offset



12:46:58 30.01.2024

# LOW BAND EDGE BLOCK-1RB-LOW_offset



12:47:38 30.01.2024





# LOW BAND EDGE BLOCK-1RB-LOW_offset



12:48:18 30.01.2024

#### OBW: 1RB-HIGH_offset



12:50:23 30.01.2024





# HIGH BAND EDGE BLOCK-1RB-HIGH_offset



#### HIGH BAND EDGE BLOCK-1RB-HIGH_offset

MultiView Spectrum				
Ref Level 26.00 dBm Offset 8.50 dB = RB	₩ 500 kHz			
Att 27 dB • SWT 3 s • VB	W 3 MHz Mode Auto Swee	p		
1 Frequency Sweep				01Rm View
and the second sec			M1[1]	-33.57 dBm
20 dBm			-3.	551 363 30 GHz
10 dBm-				
0 ubm-				
-10 dBm-				
limit1_for_trace1				
-20 dBm-	L			
-20 d8m				
Jo doni ma				
and the second sec				
-40 dBm	a a manufacture and a			
		the second of the		
-50 dBm-				-
-60 dBm-				
1999 - 1995-197				
70 40-				
-70 080				
3.551 GHz	501 pts	400.0 kHz/		3.555 GHz
		Σ.	Measuring	30.01.2024 12:51:42

12:51:43 30.01.2024





### LOW BAND EDGE BLOCK-90M-100%RB



#### LOW BAND EDGE BLOCK-90M-100%RB

MultiView	<ul> <li>Spectrum</li> </ul>								
Ref Level 26.	00 dBm Offse	t 8.50 dB 🖷 RBV	<b>V</b> 500 kHz						
Att	27 dB 🖷 SWT	3 s 🖷 VBV	V 3 MHz Mo	de Auto Sweep					
1 Frequency S	Sweep		5				÷		01Rm View
20 dam-								M1[1]	-36,43 dBm
20 08/11								-01	40 572 10 012
10 dBm				-					
0 dBm									
ana 200									
-10 dBm-									
limit1_for_trace1									
-20 dBm						8			
-30 dBm									M1
=40 dBm		~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~				~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~		~~~~~×
HO UDIT									
-50 dBm	-			-					
-60 dBm-									
00 0011									
-70 dBm									
3.445 GHz			501 pts		40	0.0 kHz/			3.449 GHz
	-					2	Measuring		30.01.2024 12:49:41

12:49:42 30.01.2024







#### HIGH BAND EDGE BLOCK-90M-100%RB

MultiView	Spectrum								-
Ref Level 26.00 d	iBm Offset	: 8.50 dB 🖷 RBV	<b>V</b> 500 kHz						
Att 27	dB 👄 SWT	3 s 👄 VBV	V 3 MHz Mo	de Auto Sweep					
1 Frequency Swe	ер			ant i					O1Rm View
								M1[1]	-41.63 dBm
20 dBm-								-3.	52 145 70 GHz
10 40									
10 0811						8			
0. d8m									
o dom									
-10 dBm-									
limit1_for_trace1									
-20 dBm									
-30 dBm									
0.0000000000000000000000000000000000000									
-40 dBm		M1							
-50 dBm									
-60 dBm									
-70 dBm									
3.551 GHz			501 pts		40	1 00.0 kHz/			3.555 GHz
							Measuring		30.01.2024

12:53:07 30.01.2024

Note: The maximum value of expanded measurement uncertainty for this test item is U = 0.626 kHz, k = 2.





# A.7 Conducted Spurious Emission

## A.7.1 Measurement Method

The following steps outline the procedure used to measure the conducted emissions from the EUT.

1. In measuring unwanted emissions, the spectrum shall be investigated from 30 MHz or the lowest radio frequency signal generated in the equipment, whichever is lower, without going below 9 kHz, up to at least the frequency given below:

(a) If the equipment operates below 10 GHz: to the tenth harmonic of the highest fundamental frequency or to 40 GHz, whichever is lower.

(b) If the equipment operates at or above 10 GHz: to the fifth harmonic of the highest fundamental frequency or to 100 GHz, whichever is lower.

- 2. Determine EUT transmit frequencies: below outlines the band edge frequencies pertinent to conducted emissions testing.
- 3. The number of sweep points of spectrum analyzer is greater than 2×span/RBW.

# A. 7.2 Measurement Limit

Part 22.917, Part 24.238 and Part 27.53(h) specify that the power of any emission outside of the authorized operating frequency ranges must be attenuated below the transmitting power (P) by a factor of at least  $43 + 10 \log(P) dB$ .

Part 27.53(m) specifies for mobile digital stations, the attenuation factor shall be not less than 40 + 10 log (P) dB on all frequencies between the channel edge and 5 megahertz from the channel edge, 43 + 10 log (P) dB on all frequencies between 5 megahertz and X megahertz from the channel edge, and 55 + 10 log (P) dB on all frequencies more than X megahertz from the channel edge, where X is the greater of 6 megahertz or the actual emission bandwidth as defined in paragraph (m)(6) of this section. In addition, the attenuation factor shall not be less that 43 + 10 log (P) dB on all frequencies between 2490.5 MHz and 2496 MHz and 55 + 10 log (P) dB at or below 2490.5 MHz. Mobile Satellite Service licensees operating on frequencies below 2495 MHz may also submit a documented interference complaint against BRS licensees operating on channel BRS Channel 1 on the same terms and conditions as adjacent channel BRS or EBS licensees.

Part 27.53(g) states for operations in the 600 MHz band and the 698–746 MHz band, the power of any emission outside a licensee's frequency band(s) of operation shall be attenuated below the transmitter power (P) within the licensed band(s) of operation, measured in watts, by at least 43 + 10 log (P) dB. Compliance with this provision is based on the use of measurement instrumentation employing a resolution bandwidth of 100 kilohertz or greater. However, in the 100 kilohertz bands immediately outside and adjacent to a licensee's frequency block, a resolution bandwidth of at least 30 kHz may be employed.

Part 90.691 states that out-of-band emission requirement shall apply only to the "outer" channels included in an EA license and to spectrum adjacent to interior channels used by incumbent licensees. The emission limits are as follows:For any frequency removed from the EA licensee's frequency block by up to and including 37.5 kHz, the power of any emission shall be attenuated below the transmitter power (P) in watts by at least 116Log10(f/6.1) decibels or 50 + 10 Log10(P)





decibels or 80 decibels, whichever is the lesser attenuation, where f is the frequency removed from the center of the outer channel in the block in kilohertz and where f is greater than 12.5 kHz. For any frequency removed from the EA licensee's frequency block greater than 37.5 kHz, the power of any emission shall be attenuated below the transmitter power (P) in watts by at least 43 + 10Log10(P) decibels or 80 decibels, whichever is the lesser attenuation, where f is the frequency removed from the center of the outer channel in the block in kilohertz and where f is greater than 37.5 kHz.

Part 96.41(e) states for channel and frequency assignments made by a CBSD to End User Devices, the conducted power of any End User Device emission outside the fundamental emission (whether in or outside of the authorized band) shall not exceed -13 dBm/MHz within 0 to B megahertz (where B is the bandwidth in megahertz of the assigned channel or multiple contiguous channels of the End User Device) above the upper CBSD-assigned channel edge and within 0 to B megahertz below the lower CBSD-assigned channel edge. At all frequencies greater than B megahertz above the upper CBSD assigned channel edge and less than B megahertz below the lower CBSD-assigned channel edge and less than B megahertz below the lower CBSD-assigned channel edge, the conducted power of any End User Device emission shall not exceed -25 dBm/MHz. Notwithstanding the emission limits in this paragraph, the Adjacent Channel Leakage Ratio for End User Devices shall be at least 30 dB.

Part 27.53(n) states for mobile operations in the 3450-3550 MHz band, the conducted power of any emission outside the licensee's authorized bandwidth shall not exceed -13 dBm/MHz. Compliance with this paragraph (n)(2) is based on the use of measurement instrumentation employing a resolution bandwidth of 1 megahertz or greater. However, in the 1 megahertz bands immediately outside and adjacent to the licensee's frequency block, a resolution bandwidth of at least one percent of the emission bandwidth of the fundamental emission of the transmitter may be employed, but limited to a maximum of 200 kHz. In the bands between 1 and 5 MHz removed from the licensee's frequency block, the minimum resolution bandwidth for the measurement shall be 500 kHz. The emission bandwidth is defined as the width of the signal between two points, one below the carrier center frequency and one above the carrier center frequency, outside of which all emissions are attenuated at least 26 dB below the transmitter power.

Part 27.53(I) states for mobile operations in the 3700-3980 MHz band, the conducted power of any emission outside the licensee's authorized bandwidth shall not exceed -13 dBm/MHz.

Compliance with this paragraph (I)(2) is based on the use of measurement instrumentation employing a resolution bandwidth of 1 megahertz or greater. However, in the 1 megahertz bands immediately outside and adjacent to the licensee's frequency block, the minimum resolution bandwidth for the measurement shall be either one percent of the emission bandwidth of the fundamental emission of the transmitter or 350 kHz. In the bands between 1 and 5 MHz removed from the licensee's frequency block, the minimum resolution bandwidth for the measurement shall be 500 kHz. The emission bandwidth is defined as the width of the signal between two points, one below the carrier center frequency and one above the carrier center frequency, outside of which all emissions are attenuated at least 26 dB below the transmitter power.