HIGH BAND EDGE BLOCK-1RB-HIGH_offset

11:06:09 30.01.2024

HIGH BAND EDGE BLOCK-1RB-HIGH_offset

11:06:51 30.01.2024

LOW BAND EDGE BLOCK-40M-100\%RB

11:03:30 30.01.2024

Channel power

LOW BAND EDGE BLOCK-40M-100\%RB

11:04:29 30.01.2024

HIGH BAND EDGE BLOCK-40M-100\%RB

11:07:36 30.01.2024

HIGH BAND EDGE BLOCK-40M-100\%RB

11:08:17 30.01.2024

NR n41

OBW: 1RB-LOW_offset

LOW BAND EDGE BLOCK-1RB-LOW_offset

10:50:32 30.01.2024

LOW BAND EDGE BLOCK-1RB-LOW_offset

$10: 51: 13 \quad 30.01 .2024$

OBW: 1RB-HIGH_offset

HIGH BAND EDGE BLOCK-1RB-HIGH_offset

10:53:07 30.01.2024

HIGH BAND EDGE BLOCK-1RB-HIGH_offset

10:53:48 30.01.2024

LOW BAND EDGE BLOCK-100M-100\%RB

Channel power

LOW BAND EDGE BLOCK-100M-100\%RB

10:56:06 30.01.2024

HIGH BAND EDGE BLOCK-100M-100\%RB

10:57:15 30.01.2024

HIGH BAND EDGE BLOCK-100M-100\%RB

$10: 57: 57 \quad 30.01 .2024$

NR n48

OBW: 1RB-LOW_offset

12:15:05 30.01.2024

LOW BAND EDGE BLOCK-1RB-LOW_offset

12:15:46 30.01.2024

LOW BAND EDGE BLOCK-1RB-LOW_offset

12:16:26 30.01.2024

LOW BAND EDGE BLOCK-1RB-LOW_offset

12:17:07 30.01.2024

LOW BAND EDGE BLOCK-1RB-LOW_offset

12:17:48 30.01.2024

OBW: 1RB-HIGH_offset

HIGH BAND EDGE BLOCK-1RB-HIGH_offset

12:19:37 30.01.2024

HIGH BAND EDGE BLOCK-1RB-HIGH_offset

12:20:19 30.01.2024

HIGH BAND EDGE BLOCK-1RB-HIGH_offset

12:21:00 30.01.2024

HIGH BAND EDGE BLOCK-1RB-HIGH_offset

12:21:41 30.01.2024

LOW BAND EDGE BLOCK-100M-100\%RB

12:22:59 30.01.2024

LOW BAND EDGE BLOCK-100M-100\%RB

[^0]
LOW BAND EDGE BLOCK-100M-100\%RB

12:24:21 30.01.2024

LOW BAND EDGE BLOCK-100M-100\%RB

12:25:02 30.01.2024

ACLR

12:25:20 30.01.2024

HIGH BAND EDGE BLOCK-100M-100\%RB

12:26:46 30.01.2024

HIGH BAND EDGE BLOCK-100M-100\%RB

12:27:26 30.01.2024

HIGH BAND EDGE BLOCK-100M-100\%RB

12:28:07 30.01.2024

Channel power

HIGH BAND EDGE BLOCK-100M-100\%RB

12:29:05 30.01.2024

ACLR

NR n66

OBW: 1RB-LOW_offset

11:59:32 $\quad 30.01 .2024$

LOW BAND EDGE BLOCK-1RB-LOW_offset

12:00:20 30.01.2024

OBW: 1RB-HIGH_offset

12:01:28 30.01.2024

HIGH BAND EDGE BLOCK-1RB-HIGH_offset

12:02:15 30.01.2024

LOW BAND EDGE BLOCK-45M-100\%RB

12:07:17 30.01.2024

HIGH BAND EDGE BLOCK-45M-100\%RB

12:08:45 30.01.2024

NR n71

OBW: 1RB-LOW_offset

LOW BAND EDGE BLOCK-1RB-LOW_offset

11:38:49 30.01.2024

OBW: 1RB-HIGH_offset

HIGH BAND EDGE BLOCK-1RB-HIGH_offset

11:40:40 30.01.2024

LOW BAND EDGE BLOCK-35M-100\%RB

11:41:59 30.01.2024

HIGH BAND EDGE BLOCK-35M-100\%RB

11:42:45 30.01.2024

NR n77L

OBW: 1RB-LOW_offset

12:30:26 30.01.2024

LOW BAND EDGE BLOCK-1RB-LOW_offset

12:31:06 30.01.2024

LOW BAND EDGE BLOCK-1RB-LOW_offset

12:31:46 30.01.2024

OBW: 1RB-HIGH_offset

HIGH BAND EDGE BLOCK-1RB-HIGH_offset

12:33:52 30.01.2024

HIGH BAND EDGE BLOCK-1RB-HIGH_offset

12:34:32 30.01.2024

LOW BAND EDGE BLOCK-90M-100\%RB

12:35:51 30.01.2024

LOW BAND EDGE BLOCK-90M-100\%RB

12:36:30 30.01.2024

HIGH BAND EDGE BLOCK-90M-100\%RB

12:37:54 30.01.2024

HIGH BAND EDGE BLOCK-90M-100\%RB

12:38:34 30.01.2024

NR n77H

OBW: 1RB-LOW_offset

LOW BAND EDGE BLOCK-1RB-LOW_offset

12:40:18 30.01 .2024

LOW BAND EDGE BLOCK-1RB-LOW_offset

12:40:57 30.01.2024

OBW: 1RB-HIGH_offset

HIGH BAND EDGE BLOCK-1RB-HIGH_offset

12:42:47 30.01.2024

HIGH BAND EDGE BLOCK-1RB-HIGH_offset

12:43:26 30.01.2024

LOW BAND EDGE BLOCK-100M-100\%RB

12:44:46 30.01.2024

HIGH BAND EDGE BLOCK-100M-100\%RB

12:46:11 30.01.2024

NR n78L

OBW: 1RB-LOW_offset

$12: 46: 58 \quad 30.01 .2024$

LOW BAND EDGE BLOCK-1RB-LOW_offset

12:47:38 30.01.2024

LOW BAND EDGE BLOCK-1RB-LOW_offset

12:48:18 $\quad 30.01 .2024$

OBW: 1RB-HIGH_offset

HIGH BAND EDGE BLOCK-1RB-HIGH_offset

12:51:04 30.01.2024

HIGH BAND EDGE BLOCK-1RB-HIGH_offset

12:51:43 30.01.2024

LOW BAND EDGE BLOCK-90M-100\%RB

12:49:03 30.01.2024

LOW BAND EDGE BLOCK-90M-100\%RB

12:49:42 30.01.2024

HIGH BAND EDGE BLOCK-90M-100\%RB

12:52:28 30.01.2024

HIGH BAND EDGE BLOCK-90M-100\%RB

Note: The maximum value of expanded measurement uncertainty for this test item is $U=0.626 \mathrm{kHz}, k=2$.

A. 7 Conducted Spurious Emission

A.7.1 Measurement Method

The following steps outline the procedure used to measure the conducted emissions from the EUT.

1. In measuring unwanted emissions, the spectrum shall be investigated from 30 MHz or the lowest radio frequency signal generated in the equipment, whichever is lower, without going below 9 kHz , up to at least the frequency given below:
(a) If the equipment operates below 10 GHz : to the tenth harmonic of the highest fundamental frequency or to 40 GHz , whichever is lower.
(b) If the equipment operates at or above 10 GHz : to the fifth harmonic of the highest fundamental frequency or to 100 GHz , whichever is lower.
2. Determine EUT transmit frequencies: below outlines the band edge frequencies pertinent to conducted emissions testing.
3. The number of sweep points of spectrum analyzer is greater than $2 \times$ span/RBW.

A. 7.2 Measurement Limit

Part 22.917, Part 24.238 and Part 27.53(h) specify that the power of any emission outside of the authorized operating frequency ranges must be attenuated below the transmitting power (P) by a factor of at least $43+10 \log (P) d B$.
Part $27.53(\mathrm{~m})$ specifies for mobile digital stations, the attenuation factor shall be not less than $40+$ $10 \log (P) d B$ on all frequencies between the channel edge and 5 megahertz from the channel edge, $43+10 \log (\mathrm{P}) \mathrm{dB}$ on all frequencies between 5 megahertz and X megahertz from the channel edge, and $55+10 \log (P) d B$ on all frequencies more than X megahertz from the channel edge, where X is the greater of 6 megahertz or the actual emission bandwidth as defined in paragraph $(\mathrm{m})(6)$ of this section. In addition, the attenuation factor shall not be less that $43+10$ $\log (\mathrm{P}) \mathrm{dB}$ on all frequencies between 2490.5 MHz and 2496 MHz and $55+10 \log (\mathrm{P}) \mathrm{dB}$ at or below 2490.5 MHz. Mobile Satellite Service licensees operating on frequencies below 2495 MHz may also submit a documented interference complaint against BRS licensees operating on channel BRS Channel 1 on the same terms and conditions as adjacent channel BRS or EBS licensees.
Part $27.53(\mathrm{~g})$ states for operations in the 600 MHz band and the $698-746 \mathrm{MHz}$ band, the power of any emission outside a licensee's frequency band(s) of operation shall be attenuated below the transmitter power (P) within the licensed band(s) of operation, measured in watts, by at least 43 + $10 \log (P) \mathrm{dB}$. Compliance with this provision is based on the use of measurement instrumentation employing a resolution bandwidth of 100 kilohertz or greater. However, in the 100 kilohertz bands immediately outside and adjacent to a licensee's frequency block, a resolution bandwidth of at least 30 kHz may be employed.
Part 90.691 states that out-of-band emission requirement shall apply only to the "outer" channels included in an EA license and to spectrum adjacent to interior channels used by incumbent licensees. The emission limits are as follows:For any frequency removed from the EA licensee's frequency block by up to and including 37.5 kHz , the power of any emission shall be attenuated below the transmitter power (P) in watts by at least 116Log10(f/6.1) decibels or $50+10 \log 10(P)$
decibels or 80 decibels, whichever is the lesser attenuation, where f is the frequency removed from the center of the outer channel in the block in kilohertz and where fis greater than 12.5 kHz . For any frequency removed from the EA licensee's frequency block greater than 37.5 kHz , the power of any emission shall be attenuated below the transmitter power (P) in watts by at least $43+$ 10Log10(P) decibels or 80 decibels, whichever is the lesser attenuation, where f is the frequency removed from the center of the outer channel in the block in kilohertz and where f is greater than 37.5 kHz .

Part 96.41(e) states for channel and frequency assignments made by a CBSD to End User Devices, the conducted power of any End User Device emission outside the fundamental emission (whether in or outside of the authorized band) shall not exceed $-13 \mathrm{dBm} / \mathrm{MHz}$ within 0 to B megahertz (where B is the bandwidth in megahertz of the assigned channel or multiple contiguous channels of the End User Device) above the upper CBSD-assigned channel edge and within 0 to B megahertz below the lower CBSD-assigned channel edge. At all frequencies greater than B megahertz above the upper CBSD assigned channel edge and less than B megahertz below the lower CBSD-assigned channel edge, the conducted power of any End User Device emission shall not exceed $-25 \mathrm{dBm} / \mathrm{MHz}$. Notwithstanding the emission limits in this paragraph, the Adjacent Channel Leakage Ratio for End User Devices shall be at least 30 dB .
Part 27.53(n) states for mobile operations in the $3450-3550 \mathrm{MHz}$ band, the conducted power of any emission outside the licensee's authorized bandwidth shall not exceed $-13 \mathrm{dBm} / \mathrm{MHz}$.
Compliance with this paragraph $(\mathrm{n})(2)$ is based on the use of measurement instrumentation employing a resolution bandwidth of 1 megahertz or greater. However, in the 1 megahertz bands immediately outside and adjacent to the licensee's frequency block, a resolution bandwidth of at least one percent of the emission bandwidth of the fundamental emission of the transmitter may be employed, but limited to a maximum of 200 kHz . In the bands between 1 and 5 MHz removed from the licensee's frequency block, the minimum resolution bandwidth for the measurement shall be 500 kHz . The emission bandwidth is defined as the width of the signal between two points, one below the carrier center frequency and one above the carrier center frequency, outside of which all emissions are attenuated at least 26 dB below the transmitter power.

Part 27.53(I) states for mobile operations in the $3700-3980 \mathrm{MHz}$ band, the conducted power of any emission outside the licensee's authorized bandwidth shall not exceed $-13 \mathrm{dBm} / \mathrm{MHz}$.
Compliance with this paragraph $(\mathrm{I})(2)$ is based on the use of measurement instrumentation employing a resolution bandwidth of 1 megahertz or greater. However, in the 1 megahertz bands immediately outside and adjacent to the licensee's frequency block, the minimum resolution bandwidth for the measurement shall be either one percent of the emission bandwidth of the fundamental emission of the transmitter or 350 kHz . In the bands between 1 and 5 MHz removed from the licensee's frequency block, the minimum resolution bandwidth for the measurement shall be 500 kHz . The emission bandwidth is defined as the width of the signal between two points, one below the carrier center frequency and one above the carrier center frequency, outside of which all emissions are attenuated at least 26 dB below the transmitter power.

[^0]: 12:23:40 30.01.2024

