Appendix (Additional assessments outside the scope of SCS 0108)

Antenna Parameters with Head TSL

Impedance, transformed to feed point	$54.3 \Omega+4.2 \mathrm{j} \Omega$
Return Loss	-24.8 dB

General Antenna Parameters and Design

Electrical Delay (one direction)	1.164 ns

After long term use with 100 W radiated power, only a slight warming of the dipole near the feedpoint can be measured.
The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard.
No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged.

Additional EUT Data

Manufactured by	SPEAG

DASY5 Validation Report for Head TSL

Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole 2450 MHz ; Type: D2450V2; Serial: D2450V2 - SN:853

Communication System: UID 0 - CW; Frequency: 2450 MHz
Medium parameters used: $\mathrm{f}=2450 \mathrm{MHz} ; \sigma=1.85 \mathrm{~S} / \mathrm{m} ; \varepsilon_{\mathrm{r}}=37.8 ; \rho=1000 \mathrm{~kg} / \mathrm{m}^{3}$
Phantom section: Flat Section
Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)
DASY52 Configuration:

- Probe: EX3DV4 - SN7349; ConvF(7.9, 7.9, 7.9) @ 2450 MHz ; Calibrated: 10.01.2023
- Sensor-Surface: 1.4 mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn601; Calibrated: 19.12.2022
- Phantom: Flat Phantom 5.0 (front); Type: QD 000 P50 AA; Serial: 1001
- DASY52 52.10.4(1535); SEMCAD X 14.6.14(7501)

Dipole Calibration for Head Tissue/Pin=250 mW, $\mathbf{d = 1 0 m m} /$ Zoom Scan (7x7x7)/Cube 0:
Measurement grid: $\mathrm{dx}=5 \mathrm{~mm}, \mathrm{dy}=5 \mathrm{~mm}, \mathrm{dz}=5 \mathrm{~mm}$
Reference Value $=115.1 \mathrm{~V} / \mathrm{m}$; Power Drift $=0.00 \mathrm{~dB}$
Peak SAR $($ extrapolated $)=25.8 \mathrm{~W} / \mathrm{kg}$
$\operatorname{SAR}(1 \mathrm{~g})=13.3 \mathrm{~W} / \mathrm{kg} ; \operatorname{SAR}(10 \mathrm{~g})=6.25 \mathrm{~W} / \mathrm{kg}$
Smallest distance from peaks to all points 3 dB below $=9 \mathrm{~mm}$
Ratio of SAR at M2 to SAR at M1 $=51.7 \%$
Maximum value of SAR $($ measured $)=21.6 \mathrm{~W} / \mathrm{kg}$

Impedance Measurement Plot for Head TSL

2600 MHz Dipole Calibration Certificate

[^0]Page 1 of 6

S Schweizerischer Kalibrierdienst

Calibration is Performed According to the Following Standards:

a) IEC/IEEE 62209-1528, "Measurement Procedure For The Assessment Of Specific Absorption Rate Of Human Exposure To Radio Frequency Fields From Hand-Held And Body-Worn Wireless Communication Devices - Part 1528: Human Models, Instrumentation And Procedures (Frequency Range of 4 MHz to 10 GHz)", October 2020.
b) KDB 865664 , "SAR Measurement Requirements for 100 MHz to 6 GHz "

Additional Documentation:

c) DASY System Handbook

Methods Applied and Interpretation of Parameters:

- Measurement Conditions: Further details are available from the Validation Report at the end of the certificate. All figures stated in the certificate are valid at the frequency indicated.
- Antenna Parameters with TSL: The source is mounted in a touch configuration below the center marking of the flat phantom.
- Return Loss: This parameter is measured with the source positioned under the liquid filled phantom (as described in the measurement condition clause). The Return Loss ensures low reflected power. No uncertainty required.
- SAR measured: SAR measured at the stated antenna input power.
- SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector.
- SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result.

The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor $\mathrm{k}=2$, which for a normal distribution corresponds to a coverage probability of approximately 95%.

Measurement Conditions

DASY system configuration, as far as not given on page 1.

DASY Version	DASY52	V52.10.4
Extrapolation	Advanced Extrapolation	
Phantom	Modular Flat Phantom	
Distance Dipole Center - TSL	10 mm	with Spacer
Zoom Scan Resolution	$\mathrm{dx}, \mathrm{dy}, \mathrm{dz}=5 \mathrm{~mm}$	
Frequency	$2600 \mathrm{MHz} \pm 1 \mathrm{MHz}$	

Head TSL parameters

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	$22.0^{\circ} \mathrm{C}$	39.0	$1.96 \mathrm{mho} / \mathrm{m}$
Measured Head TSL parameters	$(22.0 \pm 0.2)^{\circ} \mathrm{C}$	$37.2 \pm 6 \%$	$2.01 \mathrm{mho} / \mathrm{m} \pm 6 \%$
Head TSL temperature change during test	$<0.5^{\circ} \mathrm{C}$	--	--

SAR result with Head TSL

SAR averaged over $\mathbf{1} \mathbf{c m}^{\mathbf{3}} \mathbf{(1 \mathbf { g })}$ of Head TSL	Condition	
SAR measured	250 mW input power	$14.1 \mathrm{~W} / \mathbf{k g}$
SAR for nominal Head TSL parameters	normalized to 1 W	$\mathbf{5 5 . 2} \mathbf{W} / \mathbf{k g} \pm \mathbf{1 7 . 0} \%(\mathbf{k}=\mathbf{2})$

SAR averaged over $\mathbf{1 0} \mathbf{~ c m}^{\mathbf{3}} \mathbf{(1 0 ~ \mathbf { g })}$ of Head TSL	condition	
SAR measured	$\mathbf{2 5 0} \mathbf{~ m W}$ input power	$6.36 \mathrm{~W} / \mathbf{k g}$
SAR for nominal Head TSL parameters	normalized to 1 W	$\mathbf{2 5 . 1} \mathbf{W} / \mathbf{k g} \pm \mathbf{1 6 . 5} \%(\mathbf{k = 2})$

Appendix (Additional assessments outside the scope of SCS 0108)

Antenna Parameters with Head TSL

Impedance, transformed to feed point	$47.7 \Omega-6.0 \mathrm{j} \Omega$
Return Loss	-23.6 dB

General Antenna Parameters and Design

Electrical Delay (one direction)	1.154 ns

After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured.
The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard.
No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged.

Additional EUT Data

Manufactured by	SPEAG

DASY5 Validation Report for Head TSL

Date: 11.07.2023
Test Laboratory: SPEAG, Zurich, Switzerland
DUT: Dipole 2600 MHz ; Type: D2600V2; Serial: D2600V2 - SN:1012
Communication System: UID 0 - CW; Frequency: 2600 MHz
Medium parameters used: $\mathrm{f}=2600 \mathrm{MHz} ; \sigma=2.01 \mathrm{~S} / \mathrm{m} ; \varepsilon_{\mathrm{r}}=37.2 ; \rho=1000 \mathrm{~kg} / \mathrm{m}^{3}$
Phantom section: Flat Section
Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)
DASY52 Configuration:

- Probe: EX3DV4 - SN7349; ConvF(7.68, 7.68, 7.68) @ 2600 MHz ; Calibrated: 10.01 .2023
- Sensor-Surface: 1.4 mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn601; Calibrated: 19.12.2022
- Phantom: Flat Phantom 5.0 (front); Type: QD 000 P50 AA; Serial: 1001
- DASY52 52.10.4(1535); SEMCAD X 14.6.14(7501)

Dipole Calibration for Head Tissue/Pin=250 mW, $\mathbf{d = 1 0 m m} /$ Zoom Scan (7x7x7)/Cube 0:
Measurement grid: $\mathrm{dx}=5 \mathrm{~mm}, \mathrm{dy}=5 \mathrm{~mm}, \mathrm{dz}=5 \mathrm{~mm}$
Reference Value $=117.9 \mathrm{~V} / \mathrm{m}$; Power Drift $=-0.08 \mathrm{~dB}$
Peak SAR $($ extrapolated $)=27.2 \mathrm{~W} / \mathrm{kg}$
$\operatorname{SAR}(1 \mathrm{~g})=14.1 \mathrm{~W} / \mathrm{kg} ; \operatorname{SAR}(10 \mathrm{~g})=\mathbf{6 . 3 6} \mathrm{W} / \mathrm{kg}$
Smallest distance from peaks to all points 3 dB below $=9 \mathrm{~mm}$
Ratio of SAR at M2 to SAR at M1 $=51.7 \%$
Maximum value of SAR (measured) $=23.0 \mathrm{~W} / \mathrm{kg}$

Impedance Measurement Plot for Head TSL

3300 MHz Dipole Calibration Certificate

Certificate No: D3300V2-1011_Jun23
Page 1 of 6

Calibration Laboratory of

Schmid \& Partner
Engineering AG
Zeughausstrasse 43, 8004 Zurich, Switzerland
Accredited by the Swiss Accreditation Service (SAS)

S Schweizerischer Kalibrierdienst
C. Service suisse d'étalonnage

C Servizio svizzero di taratura
S Swiss Calibration Service
Accreditation No.: SCS 0108
The Swiss Accreditation Service is one of the signatories to the EA
Multilateral Agreement for the recognition of calibration certificates

Glossary:

TSL tissue simulating liquid
ConvF sensitivity in TSL / NORM x, y, z
N/A not applicable or not measured

Calibration is Performed According to the Following Standards:

a) IEC/IEEE 62209-1528, "Measurement Procedure For The Assessment Of Specific Absorption Rate Of Human Exposure To Radio Frequency Fields From Hand-Held And Body-Worn Wireless Communication Devices - Part 1528: Human Models, Instrumentation And Procedures (Frequency Range of 4 MHz to 10 GHz)", October 2020.
b) KDB 865664 , "SAR Measurement Requirements for 100 MHz to 6 GHz "

Additional Documentation:

c) DASY System Handbook

Methods Applied and Interpretation of Parameters:

- Measurement Conditions: Further details are available from the Validation Report at the end of the certificate. All figures stated in the certificate are valid at the frequency indicated.
- Antenna Parameters with TSL: The source is mounted in a touch configuration below the center marking of the flat phantom.
- Return Loss: This parameter is measured with the source positioned under the liquid filled phantom (as described in the measurement condition clause). The Return Loss ensures low reflected power. No uncertainty required.
- SAR measured: SAR measured at the stated antenna input power.
- SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector.
- SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result.

The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor $\mathrm{k}=2$, which for a normal distribution corresponds to a coverage probability of approximately 95%.

Measurement Conditions

DASY system configuration, as far as not given on page 1 .
DASY system configuration, as far as not given on page 1.

DASY Version	DASY52	V52.10.4
Extrapolation	Advanced Extrapolation	
Phantom	Modular Flat Phantom	
Distance Dipole Center - TSL	10 mm	with Spacer
Zoom Scan Resolution	$\mathrm{dx}, \mathrm{dy}=4 \mathrm{~mm}, \mathrm{dz}=1.4 \mathrm{~mm}$	Graded Ratio $=1.4$ (Z direction)
Frequency	$3300 \mathrm{MHz} \pm 1 \mathrm{MHz}$	

Head TSL parameters

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	$22.0^{\circ} \mathrm{C}$	38.2	$2.71 \mathrm{mho} / \mathrm{m}$
Measured Head TSL parameters	$(22.0 \pm 0.2)^{\circ} \mathrm{C}$	$38.1 \pm 6 \%$	$2.79 \mathrm{mho} / \mathrm{m} \pm 6 \%$
Head TSL temperature change during test	$<0.5^{\circ} \mathrm{C}$	-	--

SAR result with Head TSL

SAR averaged over $\mathbf{1} \mathbf{~ c m}^{\mathbf{3}} \mathbf{(1 \mathbf { g })}$ of Head TSL	Condition	
SAR measured	100 mW input power	$6.67 \mathrm{~W} / \mathrm{kg}$
SAR for nominal Head TSL parameters	normalized to 1 W	$\mathbf{6 6 . 1} \mathbf{W} / \mathbf{k g} \pm \mathbf{1 9 . 9} \%(\mathbf{k}=\mathbf{2})$

SAR averaged over $\mathbf{1 0} \mathbf{~ c m}^{\mathbf{3}} \mathbf{(1 0 ~ \mathbf { g })}$ of Head TSL	condition	
SAR measured	100 mW input power	$2.56 \mathrm{~W} / \mathbf{k g}$
SAR for nominal Head TSL parameters	normalized to 1 W	$\mathbf{2 5 . 5} \mathbf{W} / \mathbf{k g} \pm \mathbf{1 9 . 5} \%(\mathbf{k}=\mathbf{2})$

Appendix (Additional assessments outside the scope of SCS 0108)

Antenna Parameters with Head TSL

Impedance, transformed to feed point	$53.8 \Omega-8.0 \mathrm{j} \Omega$
Return Loss	-21.4 dB

General Antenna Parameters and Design

Electrical Delay (one direction) 1.124 ns

After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured.
The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard.
No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged.

Additional EUT Data

Manufactured by	SPEAG

DASY5 Validation Report for Head TSL

Test Laboratory: SPEAG, Zurich, Switzerland
DUT: Dipole 3300 MHz; Type: D3300V2; Serial: D3300V2-SN: 1011
Communication System: UID 0 - CW; Frequency: 3300 MHz
Medium parameters used: $\mathrm{f}=3300 \mathrm{MHz} ; \sigma=2.79 \mathrm{~S} / \mathrm{m} ; \varepsilon_{\mathrm{r}}=38.1 ; \rho=1000 \mathrm{~kg} / \mathrm{m}^{3}$
Phantom section: Flat Section
Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)
DASY52 Configuration:

- Probe: EX3DV4 - SN3503; ConvF(7.97, 7.97, 7.97) @ 3300 MHz ; Calibrated: 07.03 .2023
- Sensor-Surface: 1.4 mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn601; Calibrated: 19.12.2022
- Phantom: Flat Phantom 5.0 (front); Type: QD 000 P50 AA; Serial: 1001
- DASY52 52.10.4(1535); SEMCAD X 14.6.14(7501)

Dipole Calibration for Head Tissue/Pin $=100 \mathrm{~mW}, \mathrm{~d}=10 \mathrm{~mm}, \mathrm{f}=\mathbf{3 3 0 0 \mathrm { MHz } / \text { Zoom Scan, }}$ dist $=1.4 \mathrm{~mm}(8 \times 8 \times 8) /$ Cube 0: Measurement grid: $\mathrm{dx}=4 \mathrm{~mm}, \mathrm{dy}=4 \mathrm{~mm}, \mathrm{dz}=1.4 \mathrm{~mm}$
Reference Value $=70.47 \mathrm{~V} / \mathrm{m}$; Power Drift $=-0.02 \mathrm{~dB}$
Peak SAR $($ extrapolated $)=17.4 \mathrm{~W} / \mathrm{kg}$
$\operatorname{SAR}(1 \mathrm{~g})=6.67 \mathrm{~W} / \mathrm{kg} ; \operatorname{SAR}(10 \mathrm{~g})=\mathbf{2 . 5 6} \mathrm{W} / \mathrm{kg}$
Smallest distance from peaks to all points 3 dB below $=8.2 \mathrm{~mm}$
Ratio of SAR at M2 to SAR at M1 $=75.7 \%$
Maximum value of SAR (measured) $=12.5 \mathrm{~W} / \mathrm{kg}$

Impedance Measurement Plot for Head TSL

3500 MHz Dipole Calibration Certificate

Calibration Laboratory of

Schmid \& Partner
Engineering AG
Zeughausstrasse 43, 8004 Zurich, Switzerland
Accredited by the Swiss Accreditation Service (SAS)
The Swiss Accreditation Service is one of the signatories to the EA
Multilateral Agreement for the recognition of calibration certificates

S Schweizerischer Kalibrierdienst
Service suisse d'étalonnage
Servizio svizzero di taratura
Swiss Calibration Service
Accreditation No.: SCS 0108

Certificate No
D3500V2-1016_Jun23

CALIBRATION CERTIFICATE

This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI).
The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate.
All calibrations have been conducted in the closed laboratory facility: environment temperature $(22 \pm 3)^{\circ} \mathrm{C}$ and humidity $<70 \%$.
Calibration Equipment used (M\&TE critical for calibration)

Primary Standards	ID\#	Cal Date (Certificate No.)	Scheduled Calibration
Power meter NRP2	SN: 104778	30-Mar-23 (No. 217-03804/03805)	Mar-24
Power sensor NRP-Z91	SN: 103244	30-Mar-23 (No. 217-03804)	Mar-24
Power sensor NRP-Z91	SN: 103245	30-Mar-23 (No. 217-03805)	Mar-24
Reference 20 dB Attenuator	SN: BH9394 (20k)	30-Mar-23 (No. 217-03809)	Mar-24
Type-N mismatch combination	SN: 310982 / 06327	30-Mar-23 (No. 217-03810)	Mar-24
Reference Probe EX3DV4	SN: 3503	07-Mar-23 (No. EX3-3503_Mar23)	Mar-24
DAE4	SN: 601	19-Dec-22 (No. DAE4-601_Dec22)	Dec-23
Secondary Standards	ID\#	Check Date (in house)	Scheduled Check
Power meter E4419B	SN: GB39512475	$30-$ Oct-14 (in house check Oct-22)	In house check: Oct-24
Power sensor HP 8481A	SN: US37292783	07-Oct-15 (in house check Oct-22)	In house check: Oct-24
Power sensor HP 8481A	SN: MY41093315	07-Oct-15 (in house check Oct-22)	In house check: Oct-24
RF generator R\&S SMT-06	SN: 100972	15-Jun-15 (in house check Oct-22)	In house check: Oct-24
Network Analyzer Agilent E8358A	SN: US41080477	31-Mar-14 (in house check Oct-22)	In house check: Oct-24
	Name	Function	Signature
Calibrated by:	Kreseimir Franjic	Laboratory Technician	
Approved by:	Sven Kühn	Technical Manager	
			Issued: June 22, 2023

Certificate No: D3500V2-1016_Jun23
Page 1 of 8

Calibration Laboratory of
Schmid \& Partner
Engineering AG
Zeughausstrasse 43, 8004 Zurich, Switzerland

[^1]Accreditation No.: SCS 0108
Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA
Multilateral Agreement for the recognition of calibration certificates

Glossary:

TSL	tissue simulating liquid
ConvF	sensitivity in TSL / NORM x, y, z
N/A	not applicable or not measured

Calibration is Performed According to the Following Standards:

a) IEC/IEEE 62209-1528, "Measurement Procedure For The Assessment Of Specific Absorption Rate Of Human Exposure To Radio Frequency Fields From Hand-Held And Body-Worn Wireless Communication Devices - Part 1528: Human Models, Instrumentation And Procedures (Frequency Range of 4 MHz to 10 GHz)", October 2020.
b) KDB 865664 , "SAR Measurement Requirements for 100 MHz to 6 GHz "

Additional Documentation:

c) DASY System Handbook

Methods Applied and Interpretation of Parameters:

- Measurement Conditions: Further details are available from the Validation Report at the end of the certificate. All figures stated in the certificate are valid at the frequency indicated.
- Antenna Parameters with TSL: The source is mounted in a touch configuration below the center marking of the flat phantom.
- Return Loss: This parameter is measured with the source positioned under the liquid filled phantom (as described in the measurement condition clause). The Return Loss ensures low reflected power. No uncertainty required.
- SAR measured: SAR measured at the stated antenna input power.
- SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector.
- SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result.

The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor $\mathrm{k}=2$, which for a normal distribution corresponds to a coverage probability of approximately 95%.

Measurement Conditions

DASY system configuration, as far as not given on page 1.

DASY Version	DASY52	V52.10.4
Extrapolation	Advanced Extrapolation	
Phantom	Modular Flat Phantom V5.0	
Distance Dipole Center - TSL	10 mm	with Spacer
Zoom Scan Resolution	$\mathrm{dx}, \mathrm{dy}=4.0 \mathrm{~mm}, \mathrm{dz}=1.4 \mathrm{~mm}$	Graded Ratio $=1.4$ (Z direction)
	$3400 \mathrm{MHz} \pm 1 \mathrm{MHz}$	
Frequency	$3500 \mathrm{MHz} \pm 1 \mathrm{MHz}$	
	$3600 \mathrm{MHz} \pm 1 \mathrm{MHz}$	

Head TSL parameters at 3400 MHz
The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	$22.0^{\circ} \mathrm{C}$	38.0	$2.81 \mathrm{mho} / \mathrm{m}$
Measured Head TSL parameters	$(22.0 \pm 0.2)^{\circ} \mathrm{C}$	$37.9 \pm 6 \%$	$2.86 \mathrm{mho} / \mathrm{m} \pm 6 \%$
Head TSL temperature change during test	$<0.5^{\circ} \mathrm{C}$	-	-

SAR result with Head TSL at $3400 \mathbf{M H z}$

SAR averaged over $\mathbf{1} \mathbf{~ c m}^{\mathbf{3}} \mathbf{(1 \mathbf { g })}$ of Head TSL	Condition	
SAR measured	100 mW input power	$6.79 \mathrm{~W} / \mathbf{k g}$
SAR for nominal Head TSL parameters	normalized to 1 W	$\mathbf{6 7 . 6} \mathbf{W} / \mathbf{k g} \pm \mathbf{1 9 . 9} \%(\mathbf{k}=\mathbf{2})$

SAR averaged over $\mathbf{1 0} \mathbf{c m}^{\mathbf{3}} \mathbf{(1 0 ~ \mathbf { g }) \text { of Head TSL }}$	condition	
SAR measured	100 mW input power	$2.54 \mathrm{~W} / \mathbf{k g}$
SAR for nominal Head TSL parameters	normalized to 1 W	$\mathbf{2 5 . 4} \mathbf{W} / \mathbf{k g} \pm \mathbf{1 9 . 5} \%(\mathbf{k}=\mathbf{2})$

Head TSL parameters at 3500 MHz
The following parameters and calculations were applied.
The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	$22.0^{\circ} \mathrm{C}$	37.9	$2.91 \mathrm{mho} / \mathrm{m}$
Measured Head TSL parameters	$(22.0 \pm 0.2)^{\circ} \mathrm{C}$	$37.8 \pm 6 \%$	$2.93 \mathrm{mho} / \mathrm{m} \pm 6 \%$
Head TSL temperature change during test	$<0.5^{\circ} \mathrm{C}$	--	---

SAR result with Head TSL at $3500 \mathbf{M H z}$

SAR averaged over $\mathbf{1} \mathbf{~ c m}^{\mathbf{3}} \mathbf{(1 \mathbf { g }) \text { of Head TSL }}$	Condition	
SAR measured	100 mW input power	$6.71 \mathrm{~W} / \mathbf{k g}$
SAR for nominal Head TSL parameters	normalized to 1 W	$\mathbf{6 6 . 9} \mathbf{W} / \mathbf{k g} \pm \mathbf{1 9 . 9} \%(\mathbf{k}=\mathbf{2})$

SAR averaged over $\left.\mathbf{1 0} \mathbf{c m}^{\mathbf{3}} \mathbf{(1 0 ~ g}\right)$ of Head TSL	condition	
SAR measured	100 mW input power	$\mathbf{2 . 5 3} \mathbf{W} / \mathbf{k g}$
SAR for nominal Head TSL parameters	normalized to 1 W	$\mathbf{2 5 . 2} \mathbf{W} / \mathbf{k g} \pm \mathbf{1 9 . 5} \%(\mathbf{k}=\mathbf{2})$

Head TSL parameters at 3600 MHz

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	$22.0^{\circ} \mathrm{C}$	37.8	$3.02 \mathrm{mho} / \mathrm{m}$
Measured Head TSL parameters	$(22.0 \pm 0.2)^{\circ} \mathrm{C}$	$37.7 \pm 6 \%$	$3.01 \mathrm{mho} / \mathrm{m} \pm 6 \%$
Head TSL temperature change during test	$<0.5^{\circ} \mathrm{C}$	-	--

SAR result with Head TSL at 3600 MHz

SAR averaged over $\mathbf{1} \mathbf{~ c m}^{\mathbf{3}} \mathbf{(1 \mathbf { g })}$ of Head TSL	Condition	
SAR measured	$\mathbf{1 0 0 ~ \mathrm { mW }}$ input power	$6.62 \mathrm{~W} / \mathrm{kg}$
SAR for nominal Head TSL parameters	normalized to 1 W	$\mathbf{6 6 . 2} \mathbf{W} / \mathbf{k g} \pm \mathbf{1 9 . 9} \%(\mathbf{k}=\mathbf{2})$

SAR averaged over $\mathbf{1 0} \mathbf{~ c m}^{\mathbf{3}} \mathbf{(1 0 \mathbf { g })}$ of Head TSL	condition	
SAR measured	100 mW input power	$2.47 \mathrm{~W} / \mathbf{k g}$
SAR for nominal Head TSL parameters	normalized to 1 W	$\mathbf{2 4 . 7} \mathbf{W} / \mathbf{k g} \pm \mathbf{1 9 . 5} \%(\mathbf{k}=\mathbf{2})$

Appendix (Additional assessments outside the scope of SCS 0108)

Antenna Parameters with Head TSL at 3400 MHz

Impedance, transformed to feed point	$45.3 \Omega-8.1 \mathrm{j} \Omega$
Return Loss	-20.2 dB

Antenna Parameters with Head TSL at 3500 MHz

Impedance, transformed to feed point	$54.5 \Omega-2.5 \mathrm{j} \Omega$
Return Loss	-26.1 dB

Antenna Parameters with Head TSL at 3600 MHz

Impedance, transformed to feed point	$58.6 \Omega-0.4 \mathrm{j} \Omega$
Return Loss	-22.0 dB

General Antenna Parameters and Design

Electrical Delay (one direction)	1.137 ns

After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured.
The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard.
No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged.

Additional EUT Data

Manufactured by	SPEAG

DASY5 Validation Report for Head TSL

Date: 21.06.2023
Test Laboratory: SPEAG, Zurich, Switzerland
DUT: Dipole 3500 MHz ; Type: D3500V2; Serial: D3500V2 - SN: 1016
Communication System: UID 0 - CW; Frequency: 3500 MHz , Frequency: 3400 MHz , Frequency: 3600
MHz
Medium parameters used: $\mathrm{f}=3500 \mathrm{MHz} ; \sigma=2.93 \mathrm{~S} / \mathrm{m} ; \varepsilon_{\mathrm{r}}=37.8 ; \rho=1000 \mathrm{~kg} / \mathrm{m}^{3}$
Medium parameters used: $\mathrm{f}=3400 \mathrm{MHz} ; \sigma=2.86 \mathrm{~S} / \mathrm{m} ; \varepsilon_{\mathrm{r}}=37.9 ; \rho=1000 \mathrm{~kg} / \mathrm{m}^{3}$
Medium parameters used: $\mathrm{f}=3600 \mathrm{MHz} ; \sigma=3.01 \mathrm{~S} / \mathrm{m} ; \varepsilon_{\mathrm{r}}=37.7 ; \rho=1000 \mathrm{~kg} / \mathrm{m}^{3}$
Phantom section: Flat Section
Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)
DASY52 Configuration:

- Probe: EX3DV4 - SN3503; ConvF(7.91, 7.91, 7.91) @ $3500 \mathrm{MHz}, \operatorname{ConvF}(7.91,7.91,7.91) @ 3400$ $\mathrm{MHz}, \operatorname{ConvF}(7.91,7.91,7.91$) @ 3600 MHz ; Calibrated: 07.03.2023
- Sensor-Surface: 1.4 mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn601; Calibrated: 19.12.2022
- Phantom: Flat Phantom 5.0 (front); Type: QD 000 P50 AA; Serial: 1001
- DASY52 52.10.4(1535); SEMCAD X 14.6.14(7501)

Dipole Calibration for Head Tissue/Pin $=\mathbf{1 0 0} \mathbf{m W}, \mathrm{d}=10 \mathrm{~mm}, \mathrm{f}=\mathbf{3 5 0 0 \mathrm { MHz } / \text { Zoom Scan, }}$ dist=1.4mm (8x8x8)/Cube 0: Measurement grid: $\mathrm{dx}=4 \mathrm{~mm}, \mathrm{dy}=4 \mathrm{~mm}, \mathrm{dz}=1.4 \mathrm{~mm}$
Reference Value $=69.74 \mathrm{~V} / \mathrm{m}$; Power Drift $=0.01 \mathrm{~dB}$
Peak SAR $($ extrapolated $)=18.0 \mathrm{~W} / \mathrm{kg}$
$\operatorname{SAR}(1 \mathrm{~g})=6.71 \mathrm{~W} / \mathrm{kg} ; \operatorname{SAR}(10 \mathrm{~g})=2.53 \mathrm{~W} / \mathrm{kg}$
Smallest distance from peaks to all points 3 dB below $=8 \mathrm{~mm}$
Ratio of SAR at M2 to SAR at M1 $=74.9 \%$
Maximum value of SAR $($ measured $)=12.9 \mathrm{~W} / \mathrm{kg}$
Dipole Calibration for Head Tissue/Pin $=100 \mathrm{~mW}, \mathrm{~d}=10 \mathrm{~mm}, \mathrm{f}=\mathbf{3 4 0 0 \mathrm { MHz } / \text { Zoom Scan, }}$
dist=1.4mm (8x8x8)/Cube 0: Measurement grid: $\mathrm{dx}=4 \mathrm{~mm}, \mathrm{dy}=4 \mathrm{~mm}, \mathrm{dz}=1.4 \mathrm{~mm}$
Reference Value $=70.34 \mathrm{~V} / \mathrm{m}$; Power Drift $=0.01 \mathrm{~dB}$
Peak SAR $($ extrapolated $)=18.1 \mathrm{~W} / \mathrm{kg}$
$\operatorname{SAR}(1 \mathrm{~g})=6.79 \mathrm{~W} / \mathrm{kg} ; \operatorname{SAR}(10 \mathrm{~g})=2.54 \mathrm{~W} / \mathrm{kg}$
Smallest distance from peaks to all points 3 dB below $=8 \mathrm{~mm}$
Ratio of SAR at M2 to SAR at M1 $=75.3 \%$
Maximum value of SAR $($ measured $)=13.1 \mathrm{~W} / \mathrm{kg}$

Dipole Calibration for Head Tissue $/ \mathbf{P i n}=100 \mathrm{~mW}, \mathbf{d}=10 \mathrm{~mm}, \mathbf{f}=\mathbf{3 6 0 0} \mathbf{M H z} /$ Zoom Scan, dist $=1.4 \mathrm{~mm}(8 \times 8 \times 8) /$ Cube 0: Measurement grid: $\mathrm{dx}=4 \mathrm{~mm}, \mathrm{dy}=4 \mathrm{~mm}, \mathrm{dz}=1.4 \mathrm{~mm}$
Reference Value $=68.24 \mathrm{~V} / \mathrm{m}$; Power Drift $=-0.00 \mathrm{~dB}$
Peak SAR $($ extrapolated $)=18.3 \mathrm{~W} / \mathrm{kg}$
$\operatorname{SAR}(1 \mathrm{~g})=6.62 \mathrm{~W} / \mathrm{kg} ; \operatorname{SAR}(10 \mathrm{~g})=2.47 \mathrm{~W} / \mathrm{kg}$
Smallest distance from peaks to all points 3 dB below $=8 \mathrm{~mm}$
Ratio of SAR at M2 to SAR at M1 $=74.2 \%$
Maximum value of SAR (measured) $=13.0 \mathrm{~W} / \mathrm{kg}$

Impedance Measurement Plot for Head TSL

3700 MHz Dipole Calibration Certificate

Calibration Laboratory of
Schmid \& Partner
Engineering AG
Zeughausstrasse 43, 8004 Zurich, Switzerland
Accredited by the Swiss Accreditation Service (SAS)
The Swiss Accreditation Service is one of the signatories to the EA
Multilateral Agreement for the recognition of calibration certificates

[^2]Page 1 of 7

Calibration Laboratory of

Schmid \& Partner
Engineering AG
S Schweizerischer Kalibrierdienst

Zeughausstrasse 43, 8004 Zurich, Switzerland

S Service suisse d'étalonnage
S Servizio svizzero di taratura
Swiss Calibration Service

Accredited by the Swiss Accreditation Service (SAS)
The Swiss Accreditation Service is one of the signatories to the EA
Multilateral Agreement for the recognition of calibration certificates

Glossary:

TSL	tissue simulating liquid
ConvF	sensitivity in TSL / NORM x, y, z
N/A	not applicable or not measured

Calibration is Performed According to the Following Standards:

a) IEC/IEEE 62209-1528, "Measurement Procedure For The Assessment Of Specific

Absorption Rate Of Human Exposure To Radio Frequency Fields From Hand-Held And Body-Worn Wireless Communication Devices - Part 1528: Human Models, Instrumentation And Procedures (Frequency Range of 4 MHz to 10 GHz)", October 2020.
b) KDB 865664 , "SAR Measurement Requirements for 100 MHz to 6 GHz "

Additional Documentation:

c) DASY System Handbook

Methods Applied and Interpretation of Parameters:

- Measurement Conditions: Further details are available from the Validation Report at the end of the certificate. All figures stated in the certificate are valid at the frequency indicated.
- Antenna Parameters with TSL: The source is mounted in a touch configuration below the center marking of the flat phantom.
- Return Loss: This parameter is measured with the source positioned under the liquid filled phantom (as described in the measurement condition clause). The Return Loss ensures low reflected power. No uncertainty required.
- SAR measured: SAR measured at the stated antenna input power.
- SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector.
- SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result.

The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor $\mathrm{k}=2$, which for a normal distribution corresponds to a coverage probability of approximately 95%.

Measurement Conditions

DASY system configuration, as far as not given on page 1.
DASY system configuration, as far as not given on page 1.

DASY Version	DASY52	V52.10.4
Extrapolation	Advanced Extrapolation	
Phantom	Modular Flat Phantom V5.0	
Distance Dipole Center - TSL	10 mm	with Spacer
Zoom Scan Resolution	$\mathrm{dx}, \mathrm{dy}=4.0 \mathrm{~mm}, \mathrm{dz}=1.4 \mathrm{~mm}$	Graded Ratio $=1.4$ (Z direction)
Frequency	$3700 \mathrm{MHz} \pm 1 \mathrm{MHz}$	

Head TSL parameters at $3700 \mathbf{M H z}$
The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	$22.0^{\circ} \mathrm{C}$	37.7	$3.12 \mathrm{mho} / \mathrm{m}$
Measured Head TSL parameters	$(22.0 \pm 0.2)^{\circ} \mathrm{C}$	$37.6 \pm 6 \%$	$3.08 \mathrm{mho} / \mathrm{m} \pm 6 \%$
Head TSL temperature change during test	$<0.5^{\circ} \mathrm{C}$	--	--

SAR result with Head TSL at $3700 \mathbf{M H z}$

SAR averaged over $\mathbf{1} \mathbf{c m}^{\mathbf{3}} \mathbf{(1 \mathbf { g })}$ of Head TSL	Condition	
SAR measured	100 mW input power	$6.76 \mathrm{~W} / \mathrm{kg}$
SAR for nominal Head TSL parameters	normalized to 1 W	$\mathbf{6 7 . 8} \mathbf{W} / \mathbf{k g} \pm \mathbf{1 9 . 9} \%(\mathbf{k}=\mathbf{2})$

SAR averaged over $\mathbf{1 0} \mathbf{c m}^{\mathbf{3}} \mathbf{(1 0 ~ \mathbf { g })}$ of Head TSL	condition	
SAR measured	100 mW input power	$2.47 \mathrm{~W} / \mathbf{k g}$
SAR for nominal Head TSL parameters	normalized to 1 W	$\mathbf{2 4 . 7} \mathbf{W} / \mathbf{k g} \pm \mathbf{1 9 . 5} \%(\mathbf{k}=\mathbf{2})$

Head TSL parameters at $3800 \mathbf{M H z}$

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	$22.0^{\circ} \mathrm{C}$	37.6	$3.22 \mathrm{mho} / \mathrm{m}$
Measured Head TSL parameters	$(22.0 \pm 0.2)^{\circ} \mathrm{C}$	$37.5 \pm 6 \%$	$3.16 \mathrm{mho} / \mathrm{m} \pm 6 \%$
Head TSL temperature change during test	$<0.5^{\circ} \mathrm{C}$	-	--

SAR result with Head TSL at $3800 \mathbf{M H z}$

SAR averaged over $\mathbf{1} \mathbf{c m}^{\mathbf{3}} \mathbf{(1 \mathbf { g })}$ of Head TSL	Condition	
SAR measured	100 mW input power	$6.44 \mathrm{~W} / \mathbf{k g}$
SAR for nominal Head TSL parameters	normalized to 1 W	$\mathbf{6 4 . 6} \mathbf{W} / \mathbf{k g} \pm \mathbf{1 9 . 9} \%(\mathbf{k}=\mathbf{2})$

SAR averaged over $\mathbf{1 0} \mathbf{c m}^{\mathbf{3}} \mathbf{(1 0 ~ \mathbf { g })}$ of Head TSL	condition	
SAR measured	100 mW input power	$2.36 \mathrm{~W} / \mathrm{kg}$
SAR for nominal Head TSL parameters	normalized to 1 W	$\mathbf{2 3 . 6} \mathbf{W} / \mathbf{k g} \pm \mathbf{1 9 . 5} \%(\mathbf{k}=\mathbf{2})$

Appendix (Additional assessments outside the scope of SCS 0108)

Antenna Parameters with Head TSL at 3700 MHz

Impedance, transformed to feed point	$49.6 \Omega-6.3 \mathrm{j} \Omega$
Return Loss	-24.0 dB

Antenna Parameters with Head TSL at 3800 MHz

Impedance, transformed to feed point	$56.7 \Omega-4.6 \mathrm{j} \Omega$
Return Loss	-22.4 dB

General Antenna Parameters and Design

Electrical Delay (one direction)	1.139 ns

After long term use with 100 W radiated power, only a slight warming of the dipole near the feedpoint can be measured.
The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard.
No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged.

Additional EUT Data

Manufactured by	SPEAG

DASY5 Validation Report for Head TSL

Test Laboratory: SPEAG, Zurich, Switzerland
DUT: Dipole 3700 MHz; Type: D3700V2; Serial: D3700V2 - SN: 1004
Communication System: UID 0 - CW; Frequency: 3700 MHz , Frequency: 3800 MHz
Medium parameters used: $\mathrm{f}=3700 \mathrm{MHz} ; \sigma=3.08 \mathrm{~S} / \mathrm{m} ; \varepsilon_{\mathrm{r}}=37.6 ; \rho=1000 \mathrm{~kg} / \mathrm{m}^{3}$
Medium parameters used: $\mathrm{f}=3800 \mathrm{MHz} ; \sigma=3.16 \mathrm{~S} / \mathrm{m} ; \varepsilon_{\mathrm{r}}=37.5 ; \rho=1000 \mathrm{~kg} / \mathrm{m}^{3}$
Phantom section: Flat Section
Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)
DASY52 Configuration:

- Probe: EX3DV4-SN3503; ConvF(7.73, 7.73, 7.73) @ $3700 \mathrm{MHz}, \operatorname{ConvF}(7.73,7.73,7.73) @ 3800$ MHz; Calibrated: 07.03.2023
- Sensor-Surface: 1.4 mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn601; Calibrated: 19.12.2022
- Phantom: Flat Phantom 5.0 (front); Type: QD 000 P50 AA; Serial: 1001
- DASY52 52.10.4(1535); SEMCAD X 14.6.14(7501)

Dipole Calibration for Head Tissue/Pin=100 mW, $\mathbf{d}=10 \mathrm{~mm}, \mathbf{f}=\mathbf{3 7 0 0 M H z} /$ Zoom Scan,
dist $=1.4 \mathrm{~mm}(8 \times 8 \times 8) /$ Cube 0: Measurement grid: $\mathrm{dx}=4 \mathrm{~mm}, \mathrm{dy}=4 \mathrm{~mm}, \mathrm{dz}=1.4 \mathrm{~mm}$
Reference Value $=68.84 \mathrm{~V} / \mathrm{m}$; Power Drift $=-0.00 \mathrm{~dB}$
Peak SAR $($ extrapolated $)=19.0 \mathrm{~W} / \mathrm{kg}$
$\operatorname{SAR}(1 \mathrm{~g})=6.76 \mathrm{~W} / \mathrm{kg} ; \operatorname{SAR}(10 \mathrm{~g})=2.47 \mathrm{~W} / \mathrm{kg}$
Smallest distance from peaks to all points 3 dB below $=8 \mathrm{~mm}$
Ratio of SAR at M2 to SAR at M1 $=74.2 \%$
Maximum value of SAR (measured) $=13.3 \mathrm{~W} / \mathrm{kg}$
Dipole Calibration for Head Tissue/Pin=100 mW, $\mathbf{d}=10 \mathrm{~mm}, \mathrm{f}=\mathbf{3 8 0 0 \mathrm { MHz } / \text { Zoom Scan, }}$ dist $=1.4 \mathrm{~mm}(8 \times 8 \times 8) /$ Cube 0: Measurement grid: $\mathrm{dx}=4 \mathrm{~mm}, \mathrm{dy}=4 \mathrm{~mm}, \mathrm{dz}=1.4 \mathrm{~mm}$
Reference Value $=67.41 \mathrm{~V} / \mathrm{m}$; Power Drift $=0.02 \mathrm{~dB}$
Peak SAR $($ extrapolated $)=17.5 \mathrm{~W} / \mathrm{kg}$
$\operatorname{SAR}(1 \mathrm{~g})=6.44 \mathrm{~W} / \mathrm{kg} ; \operatorname{SAR}(10 \mathrm{~g})=\mathbf{2 . 3 6} \mathrm{W} / \mathrm{kg}$
Smallest distance from peaks to all points 3 dB below $=8.4 \mathrm{~mm}$
Ratio of SAR at M2 to SAR at M1 $=75.1 \%$
Maximum value of SAR $($ measured $)=12.6 \mathrm{~W} / \mathrm{kg}$

$0 \mathrm{~dB}=13.3 \mathrm{~W} / \mathrm{kg}=11.25 \mathrm{dBW} / \mathrm{kg}$

Impedance Measurement Plot for Head TSL

Eile	e Yiew	Channel	Sweep	Calibration	Irace	Scale	Marker	System	Window	Help	
$\sqrt{ }$	$\begin{gathered} \text { Ch } 1 \text { Avg }=20 \\ \text { Ch1: Start } 3.50000 \mathrm{GHz} \end{gathered}$									3.700000 GHz 6.8084 pF 3.800000 GHz 9.1122 pF 3.700000 GHz	49.596Ω -6.3179Ω 56.663Ω -45964Ω 63.437 mU -90.029° Stop 4.00000 GHz
10.005.000.005.00-10.00-15.00-20.00										3800000 GHz	$-24.404 \mathrm{~dB}$
				-							
	25.00										
	-25.00										
	-30.00										
	$\begin{array}{r} -35.00 \\ -40.00 \end{array}$										Stop 4.00000 GHz
$\left.\right\|^{-40.00 \quad \text { Ch1: Start } 3.50000 \mathrm{GHz}}$											
	Status	CH 1: 511			$C^{*} 1$-Port		Avg=20 Delay				LCL

[^0]: Certificate No: D2600V2-1012_Jul23

[^1]: S Schweizerischer Kalibrierdienst
 C Service suisse d'étalonnage
 C Servizio svizzero di taratura
 S Swiss Calibration Service

[^2]: Certificate No: D3700V2-1004_Jun23

