Measurement Conditions

DASY system configuration, as far as not given on page 1.
DASY Version
:---
Distance Dipole Top - Probe Center
Scan resolution
Frequency
Input power drift

Maximum Field values at 1880 MHz

E-field 15 mm above dipole surface	condition	Interpolated maximum
Maximum measured above high end	100 mW input power	$87.2 \mathrm{~V} / \mathrm{m}=38.81 \mathrm{dBV} / \mathrm{m}$
Maximum measured above low end	100 mW input power	$85.4 \mathrm{~V} / \mathrm{m}=38.63 \mathrm{dBV} / \mathrm{m}$
Averaged maximum above arm	100 mW input power	$\mathbf{8 6 . 3} \mathbf{~ V / m} \pm \mathbf{1 2 . 8} \%(\mathbf{k}=\mathbf{2})$

Appendix (Additional assessments outside the scope of SCS 0108)

Antenna Parameters

Frequency	Return Loss	Impedance
1730 MHz	28.3 dB	$54.0 \Omega-0.5 \mathrm{j} \Omega$
1880 MHz	23.1 dB	$55.4 \Omega+5.1 \mathrm{j} \Omega$
1900 MHz	22.9 dB	$56.8 \Omega+3.4 \mathrm{j} \Omega$
1950 MHz	30.8 dB	$52.8 \Omega-1.0 \mathrm{j} \Omega$
2000 MHz	20.0 dB	$48.5 \Omega+9.8 \mathrm{j} \Omega$

3.2 Antenna Design and Handling

The calibration dipole has a symmetric geometry with a built-in two stub matching network, which leads to the enhanced bandwidth.
The dipole is built of standard semirigid coaxial cable. The internal matching line is open ended. The antenna is therefore open for DC signals.
Do not apply force to dipole arms, as they are liable to bend. The soldered connections near the feedpoint may be damaged. After excessive mechanical stress or overheating, check the impedance characteristics to ensure that the internal matching network is not affected.

After long term use with 40W radiated power, only a slight warming of the dipole near the feedpoint can be measured.

Impedance Measurement Plot

Status CH 1: $511 \quad$ C 1-Port

DASY5 E-field Result

Test Laboratory: SPEAG Lab2
DUT: HAC Dipole 1880 MHz ; Type: CD1880V3; Serial: CD1880V3 - SN: 1018
Communication System: UID $0-$ CW ; Frequency: 1880 MHz
Medium parameters used: $\sigma=0 \mathrm{~S} / \mathrm{m}, \varepsilon_{\mathrm{r}}=1 ; \rho=0 \mathrm{~kg} / \mathrm{m}^{3}$
Phantom section: RF Section
Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)
DASY52 Configuration:

- Probe: EF3DV3 - SN4013; ConvF(1, 1, 1)@ 1880 MHz ; Calibrated: 30.12 .2022
- Sensor-Surface: (Fix Surface)
- Electronics: DAE4 Sn781; Calibrated: 03.01.2023
- Phantom: HAC Test Arch with AMCC; Type: SD HAC P01 BA; Serial: 1070
- DASY52 52.10.4(1535); SEMCAD X 14.6.14(7501)

Dipole E-Field measurement @ 1880 MHz - E-Scan - 1880 MHz d=15mm/Hearing Aid Compatibility Test (41x181x1):
Interpolated grid: $\mathrm{dx}=0.5000 \mathrm{~mm}, \mathrm{dy}=0.5000 \mathrm{~mm}$
Device Reference Point: 0, $0,-6.3 \mathrm{~mm}$
Reference Value $=150.8 \mathrm{~V} / \mathrm{m}$; Power Drift $=0.01 \mathrm{~dB}$
Applied MIF $=0.00 \mathrm{~dB}$
RF audio interference level $=38.81 \mathrm{dBV} / \mathrm{m}$
Emission category: M2

$\begin{array}{\|l\|} \hline \text { Grid } 1 \mathrm{M} 2 \\ 38.77 \mathrm{dBV} / \mathrm{m} \end{array}$	$\begin{array}{\|l\|} \hline \text { Grid } 2 \mathrm{M} 2 \\ \mathbf{3 8 . 8 1} \mathrm{dBV} / \mathrm{m} \end{array}$	$\begin{aligned} & \text { Grid } 3 \mathrm{M} 2 \\ & 38.44 \mathrm{dBV} / \mathrm{m} \end{aligned}$
$\begin{array}{\|l\|} \hline \text { Grid } 4 \mathrm{M} 2 \\ 36.08 \mathrm{dBV} / \mathrm{m} \end{array}$	$\begin{aligned} & \text { Grid 5 M2 } \\ & 36.09 \mathrm{dBV} / \mathrm{m} \end{aligned}$	$\begin{aligned} & \text { Grid } 6 \mathrm{M} 2 \\ & \mathbf{3 5 . 8 6} \mathrm{dBV} / \mathrm{m} \end{aligned}$
$\begin{aligned} & \text { Grid 7 M2 } \\ & 38.57 \mathrm{dBV} / \mathrm{m} \end{aligned}$	$\begin{aligned} & \text { Grid } 8 \mathrm{M} 2 \\ & \mathbf{3 8 . 6 3 \mathrm { dBV } / \mathrm { m }} \end{aligned}$	$\begin{aligned} & \text { Grid 9 M2 } \\ & 38.28 \mathrm{dBV} / \mathrm{m} \end{aligned}$

Dipole 2600 MHz

[^0]Page 1 of 5

Calibration Laboratory of
Schmid \& Partner
Engineering AG
Zeughausstrasse 43, 8004 Zurich, Switzerland

S Schweizerischer Kalibrierdienst

Accredited by the Swiss Accreditation Service (SAS)
C
S
Servizio svizzero di taratura Swiss Calibration Service

Accreditation No.: SCS 0108

References

[1] ANSI-C63.19-2019 (ANSI-C63.19-2011)
American National Standard, Methods of Measurement of Compatibility between Wireless Communications Devices and Hearing Aids.
Methods Applied and Interpretation of Parameters:

- Coordinate System: y-axis is in the direction of the dipole arms. z-axis is from the basis of the antenna (mounted on the table) towards its feed point between the two dipole arms. x-axis is normal to the other axes. In coincidence with the standards [1], the measurement planes (probe sensor center) are selected to be at a distance of 15 mm above the top metal edge of the dipole arms.
- Measurement Conditions: Further details are available from the hardcopies at the end of the certificate. All figures stated in the certificate are valid at the frequency indicated. The forward power to the dipole connector is set with a calibrated power meter connected and monitored with an auxiliary power meter connected to a directional coupler. While the dipole under test is connected, the forward power is adjusted to the same level.
- Antenna Positioning: The dipole is mounted on a HAC Test Arch phantom using the matching dipole positioner with the arms horizontal and the feeding cable coming from the floor. The measurements are performed in a shielded room with absorbers around the setup to reduce the reflections. It is verified before the mounting of the dipole under the Test Arch phantom, that its arms are perfectly in a line. It is installed on the HAC dipole positioner with its arms parallel below the dielectric reference wire and able to move elastically in vertical direction without changing its relative position to the top center of the Test Arch phantom. The vertical distance to the probe is adjusted after dipole mounting with a DASY5 Surface Check job. Before the measurement, the distance between phantom surface and probe tip is verified. The proper measurement distance is selected by choosing the matching section of the HAC Test Arch phantom with the proper device reference point (upper surface of the dipole) and the matching grid reference point (tip of the probe) considering the probe sensor offset. The vertical distance to the probe is essential for the accuracy.
- Feed Point Impedance and Return Loss: These parameters are measured using a Vector Network Analyzer. The impedance is specified at the SMA connector of the dipole. The influence of reflections was eliminating by applying the averaging function while moving the dipole in the air, at least 70 cm away from any obstacles.
- E-field distribution: E field is measured in the x-y-plane with an isotropic E-field probe with 100 mW forward power to the antenna feed point. In accordance with [1], the scan area is 20 mm wide, its length exceeds the dipole arm length (180 or 90 mm). The sensor center is 15 mm (in z) above the metal top of the dipole arms. Two 3D maxima are available near the end of the dipole arms. Assuming the dipole arms are perfectly in one line, the average of these two maxima (in subgrid 2 and subgrid 8) is determined to compensate for any nonparallelity to the measurement plane as well as the sensor displacement. The E-field value stated as calibration value represents the maximum of the interpolated 3D-E-field, in the plane above the dipole surface.

The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor $\mathrm{k}=2$, which for a normal distribution corresponds to a coverage probability of approximately 95%.

Measurement Conditions

DASY system configuration, as far as not given on page 1.

DASY Version	DASY5	V52.10.4
Phantom	HAC Test Arch	
Distance Dipole Top - Probe Center	15 mm	
Scan resolution	$\mathrm{dx}, \mathrm{dy}=5 \mathrm{~mm}$	
Frequency	$2600 \mathrm{MHz} \pm 1 \mathrm{MHz}$	
Input power drift	$<0.05 \mathrm{~dB}$	

Maximum Field values at 2600 MHz

E-field 15 mm above dipole surface	condition	Interpolated maximum
Maximum measured above high end	100 mW input power	$86.3 \mathrm{~V} / \mathrm{m}=38.72 \mathrm{dBV} / \mathrm{m}$
Maximum measured above low end	100 mW input power	$85.4 \mathrm{~V} / \mathrm{m}=38.63 \mathrm{dBV} / \mathrm{m}$
Averaged maximum above arm	100 mW input power	$\mathbf{8 5 . 8} \mathbf{~ V / m} \pm \mathbf{1 2 . 8} \%(\mathbf{k}=\mathbf{2})$

Appendix (Additional assessments outside the scope of SCS 0108)

Antenna Parameters

Frequency	Return Loss	Impedance
2450 MHz	25.2 dB	$44.9 \Omega+1.0 \mathrm{j} \Omega$
2550 MHz	22.5 dB	$57.4 \Omega+3.1 \mathrm{j} \Omega$
2600 MHz	20.8 dB	$59.0 \Omega-4.1 \mathrm{j} \Omega$
2650 MHz	19.8 dB	$55.2 \Omega-9.5 \mathrm{j} \Omega$
2750 MHz	15.9 dB	$41.9 \Omega-12.4 \mathrm{j} \Omega$

3.2 Antenna Design and Handling

The calibration dipole has a symmetric geometry with a built-in two stub matching network, which leads to the enhanced bandwidth.
The dipole is built of standard semirigid coaxial cable. The internal matching line is open ended. The antenna is therefore open for DC signals.
Do not apply force to dipole arms, as they are liable to bend. The soldered connections near the feedpoint may be damaged. After excessive mechanical stress or overheating, check the impedance characteristics to ensure that the internal matching network is not affected.

After long term use with 40 W radiated power, only a slight warming of the dipole near the feedpoint can be measured.

Impedance Measurement Plot

DASY5 E-field Result

Test Laboratory: SPEAG Lab2

DUT: HAC Dipole 2600 MHz ; Type: CD2600V3; Serial: CD2600V3 - SN: 1017

Communication System: UID 0 - CW; Frequency: 2600 MHz
Medium parameters used: $\sigma=0 \mathrm{~S} / \mathrm{m}, \varepsilon_{\mathrm{r}}=1 ; \rho=0 \mathrm{~kg} / \mathrm{m}^{3}$
Phantom section: RF Section
Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)

DASY52 Configuration:

- Probe: EF3DV3 - SN4013; ConvF(1, 1, 1) @ 2600 MHz ; Calibrated: 30.12.2022
- Sensor-Surface: (Fix Surface)
- Electronics: DAE4 Sn781; Calibrated: 03.01.2023
- Phantom: HAC Test Arch with AMCC; Type: SD HAC P01 BA; Serial: 1070
- DASY52 52.10.4(1535); SEMCAD X 14.6.14(7501)

Dipole E-Field measurement @ $\mathbf{2 6 0 0 M H z} /$ E-Scan $-2600 \mathrm{MHz} \mathrm{d}=15 \mathrm{~mm} /$ Hearing Aid Compatibility Test (41x181x1):
Interpolated grid: $\mathrm{dx}=0.5000 \mathrm{~mm}, \mathrm{dy}=0.5000 \mathrm{~mm}$
Device Reference Point: 0, 0, -6.3 mm
Reference Value $=69.31 \mathrm{~V} / \mathrm{m}$; Power Drift $=0.01 \mathrm{~dB}$
Applied MIF $=0.00 \mathrm{~dB}$
RF audio interference level $=38.72 \mathrm{dBV} / \mathrm{m}$
Emission category: M2
MIF scaled E-field

$38.64 \mathrm{dBV} / \mathrm{m}$		$38.42 \mathrm{~dB}$

$0 \mathrm{~dB}=86.27 \mathrm{~V} / \mathrm{m}=38.72 \mathrm{dBV} / \mathrm{m}$

Dipole 3500 MHz

CALIBRATION CERTIFICATE

Calibration Laboratory of
Schmid \& Partner
Engineering AG
Zeughausstrasse 43, 8004 Zurich, Switzerland

Accredited by the Swiss Accreditation Service (SAS)
The Swiss Accreditation Service is one of the signatories to the EA
Multilateral Agreement for the recognition of calibration certificates

S Schweizerischer Kalibrierdienst
C
S Service suisse d'étalonnage
Servizio svizzero di taratura Swiss Calibration Service
Accreditation No.: SCS 0108

References

[1] ANSI-C63.19-2019 (ANSI-C63.19-2011)
American National Standard, Methods of Measurement of Compatibility between Wireless Communications Devices and Hearing Aids.

Methods Applied and Interpretation of Parameters:

- Coordinate System: y-axis is in the direction of the dipole arms. z-axis is from the basis of the antenna (mounted on the table) towards its feed point between the two dipole arms. x-axis is normal to the other axes. In coincidence with the standards [1], the measurement planes (probe sensor center) are selected to be at a distance of 15 mm above the top metal edge of the dipole arms.
- Measurement Conditions: Further details are available from the hardcopies at the end of the certificate. All figures stated in the certificate are valid at the frequency indicated. The forward power to the dipole connector is set with a calibrated power meter connected and monitored with an auxiliary power meter connected to a directional coupler. While the dipole under test is connected, the forward power is adjusted to the same level.
- Antenna Positioning: The dipole is mounted on a HAC Test Arch phantom using the matching dipole positioner with the arms horizontal and the feeding cable coming from the floor. The measurements are performed in a shielded room with absorbers around the setup to reduce the reflections. It is verified before the mounting of the dipole under the Test Arch phantom, that its arms are perfectly in a line. It is installed on the HAC dipole positioner with its arms parallel below the dielectric reference wire and able to move elastically in vertical direction without changing its relative position to the top center of the Test Arch phantom. The vertical distance to the probe is adjusted after dipole mounting with a DASY5 Surface Check job. Before the measurement, the distance between phantom surface and probe tip is verified. The proper measurement distance is selected by choosing the matching section of the HAC Test Arch phantom with the proper device reference point (upper surface of the dipole) and the matching grid reference point (tip of the probe) considering the probe sensor offset. The vertical distance to the probe is essential for the accuracy.
- Feed Point Impedance and Return Loss: These parameters are measured using a Vector Network Analyzer. The impedance is specified at the SMA connector of the dipole. The influence of reflections was eliminating by applying the averaging function while moving the dipole in the air, at least 70 cm away from any obstacles.
- E-field distribution: E field is measured in the x-y-plane with an isotropic E-field probe with 100 mW forward power to the antenna feed point. In accordance with [1], the scan area is 20 mm wide, its length exceeds the dipole arm length (180 or 90 mm). The sensor center is 15 mm (in z) above the metal top of the dipole arms. Two 3D maxima are available near the end of the dipole arms. Assuming the dipole arms are perfectly in one line, the average of these two maxima (in subgrid 2 and subgrid 8) is determined to compensate for any nonparallelity to the measurement plane as well as the sensor displacement. The E-field value stated as calibration value represents the maximum of the interpolated 3D-E-field, in the plane above the dipole surface.

The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor $\mathrm{k}=2$, which for a normal distribution corresponds to a coverage probability of approximately 95%.

Measurement Conditions

DASY system configuration, as far as not given on page 1.
DASY system configuration, as far as not given on page 1.

DASY Version	DASY5	V52.10.4
Phantom	HAC Test Arch	
Distance Dipole Top - Probe Center	15 mm	
Scan resolution	$\mathrm{dx}, \mathrm{dy}=5 \mathrm{~mm}$	
Frequency	$3500 \mathrm{MHz} \pm 1 \mathrm{MHz}$	
Input power drift	$<0.05 \mathrm{~dB}$	

Maximum Field values at 3500 MHz

E-field $\mathbf{1 5} \mathbf{~ m m}$ above dipole surface	condition	Interpolated maximum
Maximum measured above high end	100 mW input power	$84.1 \mathrm{~V} / \mathrm{m}=38.50 \mathrm{dBV} / \mathrm{m}$
Maximum measured above low end	100 mW input power	$83.3 \mathrm{~V} / \mathrm{m}=38.41 \mathrm{dBV} / \mathrm{m}$
Averaged maximum above arm	100 mW input power	$\mathbf{8 3 . 7 ~ \mathbf { V } / \mathrm { m } \pm \mathbf { 1 2 . 8 } \% (\mathbf { k } = \mathbf { 2 })}$

Maximum Field values at 3900 MHz

E-field $\mathbf{1 5 ~ m m}$ above dipole surface	condition	Interpolated maximum
Maximum measured above high end	100 mW input power	$81.0 \mathrm{~V} / \mathrm{m}=38.17 \mathrm{dBV} / \mathrm{m}$
Maximum measured above low end	100 mW input power	$79.5 \mathrm{~V} / \mathrm{m}=38.00 \mathrm{dBV} / \mathrm{m}$
Averaged maximum above arm	100 mW input power	$\mathbf{8 0 . 2 ~ \mathbf { V } / \mathrm { m } \pm \mathbf { 1 2 . 8 } \% (\mathbf { k } = \mathbf { 2 })}$

Appendix (Additional assessments outside the scope of SCS 0108)

Antenna Parameters

Frequency	Return Loss	Impedance
3300 MHz	19.2 dB	$61.8 \Omega+3.5 \mathrm{j} \Omega$
3400 MHz	24.1 dB	$55.4 \Omega-3.8 \mathrm{j} \Omega$
3500 MHz	25.1 dB	$52.2 \Omega-5.2 \mathrm{j} \Omega$
3600 MHz	22.4 dB	$47.4 \Omega-7.0 \mathrm{j} \Omega$
3950 MHz	19.4 dB	$52.4 \Omega+10.7 \mathrm{j} \Omega$

Additional Frequencies

Frequency	Return Loss	Impedance
3900 MHz	20.8 dB	$48.9 \Omega+9.0 \mathrm{j} \Omega$

3.2 Antenna Design and Handling

The calibration dipole has a symmetric geometry with a built-in two stub matching network, which leads to the enhanced bandwidth.
The dipole is built of standard semirigid coaxial cable. The internal matching line is open ended. The antenna is therefore open for DC signals.
Do not apply force to dipole arms, as they are liable to bend. The soldered connections near the feedpoint may be damaged. After excessive mechanical stress or overheating, check the impedance characteristics to ensure that the internal matching network is not affected.

After long term use with 40 W radiated power, only a slight warming of the dipole near the feedpoint can be measured.

Impedance Measurement Plot

DASY5 E-field Result

Test Laboratory: SPEAG Lab2
DUT: HAC Dipole 3500 MHz ; Type: CD3500V3; Serial: CD3500V3-SN: 1008
Communication System: UID $0-\mathrm{CW}$; Frequency: 3500 MHz , Frequency: 3900 MHz
Medium parameters used: $\sigma=0 \mathrm{~S} / \mathrm{m}, \varepsilon_{\mathrm{r}}=1 ; \rho=0 \mathrm{~kg} / \mathrm{m}^{3}$
Phantom section: RF Section
Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)
DASY52 Configuration:

- Probe: EF3DV3 - SN4013; ConvF (1, 1, 1) @ $3500 \mathrm{MHz}, \operatorname{ConvF}(1,1,1)$ @ 3900 MHz ; Calibrated: 30.12.2022
- Sensor-Surface: (Fix Surface)
- Electronics: DAE4 Sn781; Calibrated: 03.01.2023
- Phantom: HAC Test Arch with AMCC; Type: SD HAC P01 BA; Serial: 1070
- DASY52 52.10.4(1535); SEMCAD X 14.6.14(7501)

Reference Dipole E-Field measurement (a) $3500 \mathrm{MHz} /$ E-Scan - $3500 \mathrm{MHz} \mathrm{d}=15 \mathrm{~mm} /$ Hearing Aid Compatibility Test
(41x121x1): Interpolated grid: $\mathrm{dx}=0.5000 \mathrm{~mm}, \mathrm{dy}=0.5000 \mathrm{~mm}$
Device Reference Point: $0,0,-6.3 \mathrm{~mm}$
Reference Value $=36.14 \mathrm{~V} / \mathrm{m}$; Power Drift $=-0.00 \mathrm{~dB}$
Applied MIF $=0.00 \mathrm{~dB}$
RF audio interference level $=38.50 \mathrm{dBV} / \mathrm{m}$
Emission category: M2

MIF scaled E-field

Grid 1 M 2	Grid 2 M2	Grid 3 M 2
$\mathbf{3 8 . 4 6 \mathrm { dBV } / \mathrm { m }}$	$38.5 \mathrm{dBV} / \mathrm{m}$	$38.22 \mathrm{dBV} / \mathrm{m}$
Grid 4 M 2	Grid 5 M 2	Grid $6 \mathbf{M} 2$
$38.18 \mathrm{dBV} / \mathrm{m}$	$38.21 \mathrm{dBV} / \mathrm{m}$	$37.97 \mathrm{dBV} / \mathrm{m}$
Grid 7 M 2	Grid 8 M 2	Grid 9 M 2
$38.37 \mathrm{dBV} / \mathrm{m}$	$\mathbf{3 8 . 4 1 \mathrm { dBV } / \mathrm { m }}$	$\mathbf{3 8 . 1 4 \mathrm { dBV } / \mathrm { m }}$

Reference Dipole E-Field measurement @ $3500 \mathrm{MHz} / \mathrm{E}-$ Scan 3900 MHz , $\mathrm{d}=15 \mathrm{~mm} /$ Hearing Aid Compatibility Test (41x121x1): Interpolated grid: $\mathrm{dx}=0.5000 \mathrm{~mm}, \mathrm{dy}=0.5000 \mathrm{~mm}$
Device Reference Point: $0,0,-6.3 \mathrm{~mm}$
Reference Value $=33.41 \mathrm{~V} / \mathrm{m}$; Power Drift $=-0.05 \mathrm{~dB}$
Applied MIF $=0.00 \mathrm{~dB}$
RF audio interference level $=38.17 \mathrm{dBV} / \mathrm{m}$
Emission category: M2
MIF scaled E-field

Grid 1 M 2	Grid 2 M 2	Grid 3 M 2
$38.12 \mathrm{dBV} / \mathrm{m}$	$38.17 \mathrm{dBV} / \mathrm{m}$	$37.94 \mathrm{dBV} / \mathrm{m}$
Grid 4 M 2	Grid 5 M 2	Grid 6 M 2
$37.9 \mathrm{dBV} / \mathrm{m}$	$37.93 \mathrm{dBV} / \mathrm{m}$	$37.77 \mathrm{dBV} / \mathrm{m}$
Grid $7 \mathbf{~ M} 2$	Grid $8 \mathbf{M} 2$	Grid $9 \mathbf{M 2}$
$37.93 \mathrm{dBV} / \mathrm{m}$	$38 \mathrm{dBV} / \mathrm{m}$	$\mathbf{3 7 . 7 8 \mathrm { dBV } / \mathrm { m }}$

$0 \mathrm{~dB}=84.13 \mathrm{~V} / \mathrm{m}=38.50 \mathrm{dBV} / \mathrm{m}$

[^0]: Certificate No: CD2600V3-1017_Aug23

